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ABSTRACT

Continual Federated Learning (CFL) is essential for enabling real-world appli-
cations where multiple decentralized clients adaptively learn from continuous
data streams. A significant challenge in CFL is mitigating catastrophic forgetting,
where models lose previously acquired knowledge when learning new informa-
tion. Existing works on this issue either make unrealistic assumptions about the
availability of task boundaries or heavily rely on surrogate samples. To address
this limitation, we introduce a buffer-based Gradient Projection method (FedGP).
This method tackles catastrophic forgetting by leveraging local buffer samples and
aggregated buffer gradients, thus preserving knowledge across multiple clients.
Our method is compatible with various existing continual learning and CFL tech-
niques, enhancing their performance in the CFL context. Our experiments on
standard benchmarks show consistent performance improvements across diverse
scenarios. For example, on a task-incremental learning setting with CIFAR100,
our method can help increase the accuracy up to 27%. Our code is available at
https://anonymous.4open.science/r/FedGP-F8D4.

1 INTRODUCTION

Federated Learning (FL) is a machine learning technique that facilitates collaborative model training
among a large number of users while keeping data decentralized for privacy and efficient communica-
tion. In real-world applications, models trained via FL need the flexibility to continuously adapt to
new data streams without forgetting past knowledge. This is critical in a variety of scenarios, such as
autonomous vehicles, which must adapt to changes in the surroundings like new buildings or vehicle
types without losing proficiency in previously encountered contexts. These real-world considerations
make it essential to integrate FL with continual learning (CL) (Shmelkov et al., 2017; Chaudhry et al.,
2018; Thrun, 1995; Aljundi et al., 2017; Chen & Liu, 2018; Aljundi et al., 2018), thereby giving rise
to the concept of Continual Federated Learning (CFL).

The biggest challenge in CFL, as in CL, is catastrophic forgetting, where the model gradually shifts its
focus from old data to new data and unintentionally discards previously acquired knowledge. Initial
attempts to mitigate catastrophic forgetting in CFL incorporated existing CL solutions at each client
of FL, such as replaying previous task data or penalizing the updates of weights that are crucial for
preserving the knowledge from earlier tasks. However, recent works (Bakman et al., 2023; Ma et al.,
2022; Yoon et al., 2021) have observed that this naı̈ve approach cannot fully mitigate the problem
due to two reasons: (i) small-scale devices participating in FL only have limited buffer size to store
the data from previous tasks, (ii) data distributions are not identical across clients in FL. Moreover,
existing methods developed for CFL suffer from several limitations. These include scalability issues
as the number of tasks grows (Yoon et al., 2021; Venkatesha et al., 2022), the need for significant
effort in generating or collecting surrogate data (Ma et al., 2022), and significant communication
overhead (Yao & Sun, 2020). A crucial constraint shared by all these methods is that they require
explicit task boundaries. Mitigating catastrophic forgetting in practical scenarios where fixed task
boundaries are absent throughout the training process, known as general continual learning (Buzzega
et al., 2020), remains an important open question.

To address these existing challenges of CFL, we introduce a method called buffer-based Gradient
Projection, which we dub FedGP. Our approach, illustrated in Fig. 1, involves two key components:
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1. Global Buffer Gradients: Each client k computes the local buffer gradient gkref of the global
model with respect to its local buffer data. All local buffer gradients are then securely averaged
to obtain aggregated buffer gradient gref .

2. Local Gradient Projection: In the next round, each client k updates its local model such that the
direction for the model update does not conflict with aggregated buffer gradient gref from the
previous round, ensuring each client preserves past information from all clients.

Importantly, our FedGP method is designed to be fully compatible with (i) general continual learning
settings, when task boundary is unknown, and (ii) secure aggregation techniques (Bonawitz et al.,
2017). Secure aggregation ensures that while clients share gradients or model updates, the individual
data remains private (Bakman et al., 2023).
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Figure 1: An overview of our proposed method,
FedGP. In each round t, client k receives data
Dk

t and trains a local model wk
t . To address catas-

trophic forgetting, a portion of the incoming data
is stored in a buffer Mk. Given the aggregated
model wt provided by the central server, each
client computes the gradient with respect to wt

using its buffer dataMk. The server securely ag-
gregates the local buffer gradients from all clients
to obtain an aggregated buffer gradient gref, which
will guide the local model update for each client k
in the subsequent round.

Our contributions: We introduce a new method
for CFL, called FedGP. This method utilizes
information from previous tasks across clients
to effectively mitigate catastrophic forgetting,
without having access to task boundaries or sur-
rogate samples. Furthermore, FedGP can seam-
lessly integrate with existing FL+CL and CFL
techniques to enhance performance.

We conduct comprehensive experiments to
demonstrate the effectiveness of FedGP across
various standard image classification bench-
marks and a text classification task on the
sequential-YahooQA dataset (Zhang et al., 2015;
Mehta et al., 2021). FedGP consistently im-
proves accuracy and reduces forgetting on top
of existing CL and CFL baselines across diverse
benchmark datasets. Further, we evaluate the
robustness of our method considering various
buffer sizes, communication frequency, asyn-
chronous environments, and different numbers
of tasks and users.

2 RELATED WORK

Prior work related to our paper falls into three categories: Continual Learning (CL), Federated
Learning (FL), and Continual Federated Learning (CFL). Further details are in Appendix E.

CL addresses the problem of learning multiple tasks consecutively using a single model. Catastrophic
forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999), where a classifier trained
for a current task performs poorly on previous tasks, is a major challenge. Existing approaches
can be categorized into regularization-based (Kirkpatrick et al., 2017; Zenke et al., 2017; Chaudhry
et al., 2018; Li & Hoiem, 2017), architecture-based (Rusu et al., 2016; Yoon et al., 2017; Mallya &
Lazebnik, 2018; Serra et al., 2018; Fernando et al., 2017; Wortsman et al., 2020; Pham et al., 2021;
Zhao et al., 2022), and replay-based methods (Ratcliff, 1990; Robins, 1995; Rebuffi et al., 2017;
Shin et al., 2017; Aljundi et al., 2019; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Prabhu
et al., 2020; Wu et al., 2019; Cha et al., 2021; Wang et al., 2022). Despite its simplicity, replay-based
techniques have shown great performances on multiple benchmarks (Mai et al., 2022; Parisi et al.,
2019). FedGP leverages a replay-based method that alleviates forgetting by reusing a portion of data
from previous tasks.

FL enables collaborative training of a model with improved data privacy (Kairouz et al., 2021; Lim
et al., 2020; Zhao et al., 2018; Konečnỳ et al., 2016). FedAvg (McMahan et al., 2017) is a widely
used FL algorithm, but most existing methods (Li et al., 2020; Shoham et al., 2019; Karimireddy
et al., 2020; Li et al., 2019; Mohri et al., 2019) assume static data distribution over time, ignoring
temporal dynamics.
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CFL tackles the problem of learning multiple consecutive tasks in the FL setup. FedProx (Li
et al., 2020) and FedCurv (Shoham et al., 2019) aim to preserve previously learned tasks, while
FedWeIT (Yoon et al., 2021) and NetTailor (Venkatesha et al., 2022) prevent interference between
irrelevant tasks. Other methods including CFeD (Ma et al., 2022), FedCL (Yao & Sun, 2020), and
GLFC (Dong et al., 2022) use surrogate datasets, importance weights, or class-aware techniques
to distill the knowledge obtained from previous tasks. However, existing CFL methods suffer
from several limitations, e.g., not scalable as the number of tasks increases (Yoon et al., 2021;
Venkatesha et al., 2022), requiring a surrogate dataset (Ma et al., 2022) or additional communication
overhead (Yao & Sun, 2020), and not applicable to general continual setting that does not have fixed
task boundaries.

3 PRELIMINARIES

We focus on finding a single classifier f (having model parameter w) that performs well on T tasks.
We assume that at time slot t ∈ [T ], the classifier is only allowed to be trained for task t, where we
define [N ] := {1, · · · , N} for a positive integer N . We assume the feature-label samples (xt, yt) for
task t are drawn from an unknown distribution Dt. The optimization problem for CL at time τ ∈ [T ]
is written as

min
w

τ∑
t=1

E(xt,yt)∼Dt
[ℓ (yt, f (xt;w))] , (1)

where ℓ is the loss function, and f(xt;w) is the output of classifier f with parameter w, for input
xt. We consider a practical scenario where we do not have enough storage to save all the data seen
for the previous task (t < τ ); instead, we employ a replay bufferM that selectively stores a subset
of data. We use the buffer data as a proxy to summarize past samples and refine the model updates.
We constrain the model updates in a way that the average loss for the data in bufferM does not
increase. Given the model wτ−1 trained on previous tasks, the constrained optimization problem at
time τ ∈ [T ] is represented as:

min
w

E(xτ ,yτ )∼Dτ
[ℓ (yτ , f (xτ ;w))]

s.t. E(xb,yb)∼Db
[ℓ (yb, f (xb;w)) ≤ ℓ (yb, f (xb;wτ−1))] ,

(2)

where Db is a uniform distribution over the samples in bufferM, and (xb, yb) are sampled from this
distribution Db. The optimization problem in Eq. 2 can be reformulated for various CL methods as
below. First, some methods including DER (Buzzega et al., 2020) use regularization techniques to
find the model parameter w that minimizes the loss with respect to the local replay bufferM as well
as current samples. For a given regularization coefficient γ, the optimization problem for CL with
replay buffers at time τ ∈ [T ] is:

min
w

E(xτ ,yτ )∼Dτ
[ℓ (yτ , f(xτ ;w))] + γE(xb,yb)∼Db

[ℓ (yb, f(xb;w))] . (3)

Second, some other methods, including A-GEM (Chaudhry et al., 2019), attempt to approximately
implement the constraints of Eq. 2 by considering the gradients with respect to the current/buffer
data. Specifically, the constraint promotes the alignment of the gradient with respect to the current
batch of data (xτ , yτ ) and that for the buffer data (xb, yb) sampled from the distribution Db. This
optimization problem at time τ ∈ [T ] is formulated as:

min
w

E(xτ ,yτ )∼Dτ
[ℓ (yτ , f (xτ ;w))]

s.t. E(xτ ,yτ )∼Dτ ,(xb,yb)∼Db
[⟨∇w [ℓ (yτ , f (xτ ;w))] ,∇w [ℓ (yb, f (xb;w))]⟩] ≥ 0

(4)

For the continual federated learning (CFL) setup where the data is owned by K clients, we use
the superscript k ∈ [K] to denote each client, i.e., client k samples the data from Dk

t at time t
and employs a local replay bufferMk. In the case of using FedAvg (McMahan et al., 2017), each
round of the CFL is operated as follows. First, each client k ∈ [K] performs multiple iterations
of local updates with Dk

t with the assistance of replay bufferMk. Second, once the local training
is completed, each client sends the model updates to the central server. Finally, the central server
aggregates the model updates and transmits them back to clients.
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4 FEDGP

We introduce a method FedGP that is compatible with various CL and CFL techniques, signif-
icantly enhancing their performance in the CFL context. Our approach draws inspiration from
A-GEM (Chaudhry et al., 2019), which projects the gradient with respect to its own historical data.
Building upon this idea, we utilize the global buffer gradient, which is the average buffer gradient
across all clients, as a reference to project the local gradient. This allows us to take advantage of
the collective experience of multiple clients and mitigate the risk of forgetting previously learned
knowledge in FL scenarios.

Algorithm 1 FedAvg ServerUpdate with FedGP

Initialize random wk, and setMk = {}, gref = None
for each task t = 1 to T do

for each communication r = 1 to R do
wk ← ClientUpdate(t, wk, gref), ∀k
w ← SecAgg

(
wk

)
gkref ← ComputeBufferGrad(w,Mk), ∀k
gref ← SecAgg

(
gkref

)
end for

end for
Return w, the final global model

Algorithm 2 ClientUpdate(t, w, gref) at client k

Input: Task index t, model w, buffer gradient gref
Load the dataset Dk

t , local bufferMk

Initialize n = 0 at the first task
for (x, y) ∈ Dk

t do
g = ∇w [ℓ(y, f(x;w))]
g̃ ← g − projgref g · 1(g

⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α
Mk ← ReservoirSampling(Mk, (x, y), n)
n← n+ 1

end for
Return w to server

Algorithm 3 ComputeBufferGrad(w,Mk)

Input: global model w, local bufferMk

(x1, y1) . . . (xm, ym)← random samples fromMk

g = 1
m

∑m
i=1∇w [ℓ(yi, f(xi;w))]

Return g to server

As a replay-based method, FedGP main-
tains a local buffer on each client, which
is a memory buffer randomly storing a
subset of data sampled from old tasks.
The local buffer at client k is denoted by
Mk. As the continuous data is loaded to
the client, it keeps updating the buffer so
thatMk becomes a good representative
of old tasks.

Algorithm 1 provides the overview of our
method in CFL setup, including the pro-
cess of sharing information (model and
buffer gradient) between the server and
each client. For each new task t ∈ [T ],
the server first aggregates the local mod-
els wk from client k ∈ [K], getting a
global model w. Afterwards, the server
aggregates the local buffer gradient gkref
(the gradient computed on the global
model w with respect to the local buffer
Mk) from client k ∈ [K] to obtain a
global buffer gradient gref. It is worth
noting that the term “aggregation” in this
context refers to the averaging of locally
computed values across all clients. Such
aggregation can be securely performed
by the central server using secure aggre-
gation (Bonawitz et al., 2017), which
is denoted as “SecAgg” in Algorithm
1. Note that here we have two functions
used at the client side, ClientUpdate
and ComputeBufferGrad, which are
given in Algorithm 2 and 3, respectively.

ClientUpdate shows how client k
updates its local model for task t. The client first loads the global model w and the global buffer
gradient gref which are received from the server in the previous round. It also loads the local buffer
Mk storing a subset of samples for previous tasks, and the data Dk

t for the current task. For new
batch of data (x, y) ∈ Dk

t , the client computes the gradient g = ∇wℓ(y, f(x;w)) for the model
w. The client then compares the direction of g with the direction of the global buffer gradient gref
received from the server. When the angle between g and gref is greater than 90◦, it implies that while
using the direction of g as a reference for gradient descent may improve performance on the current
task, but at the cost of degrading performance on previous tasks. To retain the knowledge on the
previous tasks, we do the following: whenever g and gref are having a negative inner product, we
project the gradient g onto the global buffer gradient (which can be considered as a reference) gref
and remove this component from g, i.e., define

g̃ = g − gT gref

gTrefgref
gref · 1(g⊤refg ≤ 0), (5)
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following the idea suggested in (Chaudhry et al., 2019). As illustrated in Fig. 2, this projection helps
prevent the model updates along the direction that is harming the performance on previous tasks.

After gradient projection, the client updates its local model w by applying the gradient descent step
with the updated gradient g̃. Finally, the client updates the contents of the bufferMk by using the
reservoir sampling (Vitter, 1985) written in Algorithm 4 in the Appendix. Reservoir sampling selects
a random sample of |Mk| elements from a local input stream, while ensuring that each element has
an equal probability of being included in the sample. One of the advantages of this method is that it
does not require any prior knowledge of the size of the data stream.

Once the updated local models {wk}Kk=1 are transmitted to the server, the global model w is securely
updated on the server side, and transmitted to each client. Then, each client k computes the local
buffer gradient (i.e., the gradient of the model w with respect to the samples in the local bufferMk)
as shown in Algorithm 3 ComputeBufferGrad.

g

gT gref
gT

refgref
grefg̃

gref

Figure 2: Illustration of the gradient pro-
jection in Eq. 5. If the angle between
the gradient update g and global buffer
gradient (considered as a reference) gref
is larger than 90◦, we project g on gref
to minimize the interference and merely
update along the directions of g̃ that is
orthogonal to gref.

After each client computes the local buffer gradient gkref,
the server allows the use of secure aggregation to combine
these local buffer gradients and update the global buffer
gradient gref. Secure aggregation is a well-established tech-
nique in FL that ensures the server learns nothing about
individual clients’ data beyond their aggregated sum. This
compatibility with secure aggregation enhances the privacy
safeguards of our proposed approach, effectively minimiz-
ing the risk of data leakage from individual clients. The
aforementioned process takes place between each commu-
nication and is repeated R times within each task. After
traversing T tasks, the final global model w is obtained,
as shown in Algorithm 1.

Note that the pseudocode describes the FL+FedGP process. FedGP is designed to be compatible with
various CL and CFL techniques. Details of the combination are elaborated upon in the Appendix D.
We have conducted extensive experiments for ablations on our algorithm design, which is decomposed
into (1) gradient manipulation algorithm, and (2) buffer updating algorithm. Regarding the gradient
manipulation algorithm, we tested on 8 different methods that use the reference gradient to manipulate
the gradient, details of which are provided in Appendix A.1. Regarding the buffer updating algorithm,
we compared three different methods (which are explained in Table 9 and Fig. 3).

5 EXPERIMENTS

In this section, we assess the efficacy of our method, FedGP, in combination with various CL
and CFL baselines, under non-IID data distribution across clients. To evaluate these methods,
we conduct experiments on image classification tasks for benchmark datasets including rotated-
MNIST (Lopez-Paz & Ranzato, 2017), permuted-MNIST (Goodfellow et al., 2013), sequential-
CIFAR10, and sequential-CIFAR100 (Lopez-Paz & Ranzato, 2017) datasets, as well as a text
classification task (Mehta et al., 2021) on sequential-YahooQA dataset (Zhang et al., 2015). We
also explore FedGP on an object detection task on a streaming CARLA dataset (Dai et al., 2023;
Dosovitskiy et al., 2017) in Appendix B. All experiments were conducted on a Linux workstation
equipped with 8 NVIDIA GeForce RTX 2080Ti GPUs and averaged across five runs, each using a
different seed. For further details and additional results, please refer to Appendix A.

5.1 IMAGE CLASSIFICATION

5.1.1 SETTINGS

Evaluation Datasets. We evaluate our approach on three CL scenarios: domain incremental learning
(domain-IL), class incremental learning (class-IL), and task incremental learning (task-IL). For
domain-IL, the data distribution of each class changes across different tasks. We use the rotated-
MNIST and permuted-MNIST datasets for domain-IL, where each task rotates the training digits by a
random angle or applies a random permutation. We create T = 10 tasks for domain-IL experiments.
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For class-IL and task-IL, we partition the set of classes into disjoint subsets and assign each subset to
a particular task. For instance, in our image classification experiments for class-IL and task-IL, we
divide the CIFAR-100 dataset (with C = 100 classes) into T = 10 subsets, each of which contains
the samples for C/T = 10 classes. Each task t ∈ [T ] is defined as the classification of images
from each subset t ∈ [T ]. The difference between class-IL and task-IL is that in the task-IL setup,
we assume the task identity t is given at inference time. That is, the model f predicts among the
C/T = 10 classes corresponding to task t. The class-IL and task-IL settings for CIFAR-10 are
defined by splitting the CIFAR-10 dataset into T = 5 tasks, with each task having two unique classes.

In the FL setup, we assume that the data distribution is non-IID across the different clients. Once
we define the data for each task, we split it among K clients in a non-IID manner. For the rotated-
MNIST or permuted-MNIST dataset, each client receives samples for two MNIST digits. To create
a sequential-CIFAR10 or sequential-CIFAR100 dataset, we use the Latent Dirichlet Allocation
(LDA) (Hsu et al., 2019). This algorithm partitions the dataset among multiple clients by assigning
samples of each class to different clients based on the probability distribution p ∼ Dir(α), where
α = 0.3. Communication of models and buffer gradients occurs whenever all clients complete E
local epochs training.

Architecture and Hyperparameters. For the rotated-MNIST and permuted-MNIST dataset, we
use a simple CNN architecture (McMahan et al., 2017), and split the dataset into K = 10 clients.
Each client performs local training for E = 1 epoch between communications, and we set the
number of communication rounds as R = 20 for each task. For the sequential-CIFAR10 and
sequential-CIFAR100 dataset, we use a ResNet18 architecture, and divide the dataset into K = 10
clients. Each client trains for E = 5 epochs between communications, and uses R = 20 rounds of
communication for each task. During local training, Stochastic Gradient Descent (SGD) is employed
with a learning rate of 0.01 for MNIST and 0.1 for CIFAR datasets. Unless otherwise noted, our
studies used a 200 buffer size, a negligible storage concern for edge device like iPhone. We also
conducted supplementary experiments to assess scalability by increasing the client count to K = 20.
Additionally, we evaluated a real-world scenario where only a random subset of clients participates in
training during each round. Detailed information and results are available in Appendix A.8 and A.9

Baselines. We evaluate the performance improvement of FedGP on three types of baselines: 1) FL,
the basic FedAvg which trains only on the current task without considering performance on previous
tasks; 2) FL+CL, which is FedAvg (FL) with continual learning solutions applied to clients; and 3)
CFL, which represents the existing Continual Federated Learning methods.

CL methods include A-GEM (Chaudhry et al., 2019), which aligns model gradients for buffer
and incoming data; GPM (Saha et al., 2021), using the network representation approximated by
top singular vectors as the reference vector; DER (Buzzega et al., 2020), utilizing network output
logits for past experience distillation; iCaRL (Rebuffi et al., 2017), which adds current task nearest-
mean-of-exemplars to a memory buffer via herding and counters representation deterioration with
a self-distillation loss term; and L2P (Wang et al., 2022), a state-of-the-art approach that instructs
pre-trained models to sequentially learn tasks using prompt pool memory spaces.

CFL methods we tested are FedCurv (Shoham et al., 2019), which avoids updating past task-critical
weights; FedProx (Li et al., 2020), introducing a proximal weight for global model alignment;
CFeD (Ma et al., 2022), using surrogate dataset-based knowledge distillation; and GLFC (Dong et al.,
2022), a tripartite method to counteract forgetting: 1) clients retain old task data and incorporate it
with a normalization factor during new task training, 2) clients save the prior model, compute the KL
divergence loss between the new and old model outputs (from the last layer), and 3) an additional
proxy server is used to gather perturbed gradients for client sample generation; FOT (Bakman
et al., 2023) also projects the gradients on the subspace specified by previous tasks. Details are
in Appendix A.4. As for FedWeIT (Yoon et al., 2021), we believe it might not serve as a suitable
benchmark given its focus on personalized FL without a global model accuracy to contrast with.

Note that CFeD, GLFC, GPM, and iCaRL require task boundaries during training. They exploit task
changes to snapshot the network, with iCaRL further relying on these for memory buffer updates.
For specific parameters and implementation unique to each method, please refer to Appendix A.12.

Performance Metrics. We assess the performance of the global model on the test dataset, which
is a union of the test data for all previous tasks. The average accuracy (measured after train-
ing on task t) is denoted as Acct = 1

t

∑t
i=1 at,i, where at,i is evaluated on task i after training
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up to task t. Additionally, we measure a performance metric called forgetting in Appendix A.6,
which is defined as the difference between the best accuracy obtained throughout the training
and the current accuracy (Chaudhry et al., 2018). This metric measures the model’s ability to re-
tain knowledge of previous tasks while learning new ones. The forgetting at task t is defined as:
Fgtt = 1

t−1

∑t−1
i=1 max

j=1,··· ,t−1
(aj,i − at,i). We also computed the Backward transfer (BWT) and

Forward transfer (FWT) metrics (Lopez-Paz & Ranzato, 2017). See Appendix A.10 for details.

5.1.2 RESULTS

Table 1: Average accuracy AccT (%) on standard benchmark datasets. ‘-’ indicates experiments we
were unable to run, because of compatibility issues (e.g. GLFC and iCaRL in Domain-IL) or the
absence of surrogate (e.g. CFeD on MNIST). The results, averaged over 5 random seeds, demonstrate
the benefits of our proposed method in combination with all baselines. A buffer size of 200 is utilized
whenever methods require it. Note that FL+L2P needs additional pretrained ViT.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL (McMahan et al., 2017) 68.02±3.1 79.46±4.1 (↑11.44) 17.44±1.3 18.02±0.6 (↑0.58) 70.58±4.0 80.83±2.0 (↑10.25)
FL+A-GEM (Chaudhry et al., 2019) 68.34±5.6 74.74±2.3 (↑6.40) 17.82±0.9 19.44±0.9 (↑1.62) 77.14±3.1 83.16±1.6 (↑6.02)

FL+GPM (Saha et al., 2021) 74.42±6.4 - 17.59±0.4 - 74.50±3.6 -
FL+DER (Buzzega et al., 2020) 57.73±3.6 81.33±3.3(↑23.60) 18.44±3.7 30.94±3.8 (↑12.50) 69.34±3.2 77.99±0.8 (↑8.65)
FL+iCaRL (Rebuffi et al., 2017) - - 28.54±3.8 33.92±3.0 (↑5.38) 80.85±2.9 80.09±4.1 (↓0.76)

FL+L2P (Wang et al., 2022) 80.90±3.3 85.05±0.7 (↑4.15) 28.61±1.0 81.86±7.2 (↑53.25) 98.49±0.1 98.63±0.3 (↑0.14)
FedCurv (Shoham et al., 2019) 68.21±2.6 80.53±4.3 (↑12.32) 17.36±0.7 17.86±0.5 (↑0.50) 67.77±1.4 81.28±1.1 (↑13.51)

FedProx (Li et al., 2020) 67.79±3.2 78.74±4.1 (↑10.95) 16.67±2.7 17.97±0.8 (↑1.30) 69.57±6.5 81.23±1.3 (↑11.66)
CFeD (Ma et al., 2022) - - 16.30±4.6 24.07±8.5 (↑7.77) 77.35±4.6 79.30±5.7 (↑1.95)

GLFC (Dong et al., 2022) - - 41.42±1.3 41.61±1.3 (↑0.19) 81.84±2.1 82.87±1.0 (↑1.03)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 25.92±2.1 34.23±2.7 (↑8.31) 8.76±0.1 17.08±1.8 (↑8.32) 47.74±1.2 74.71±0.9 (↑26.97)
FL+A-GEM 33.43±1.4 39.09±3.5 (↑5.66) 8.90±0.1 19.53±1.3 (↑10.63) 63.84±0.8 74.84±0.5 (↑11.00)

FL+GPM 31.92±3.4 - 8.18±0.1 - 54.48±1.4 -
FL+DER 19.79±1.7 38.81±2.0 (↑19.02) 13.32±1.6 22.96±3.6 (↑9.64) 57.71±1.2 65.57±1.9 (↑7.86)

FL+iCaRL - - 21.76±1.1 27.44±1.2 (↑5.68) 69.91±0.7 72.83±0.5 (↑2.92)
FL+L2P 66.98±4.6 69.15±3.1 (↑2.17) 23.12±1.7 46.16±0.4 (↑23.04) 94.46±0.4 94.91±0.2 (↑0.45)
FedCurv 26.00±2.4 35.21±5.1 (↑9.21) 8.92±0.1 16.67±0.9 (↑7.76) 49.14±1.6 74.64±0.7 (↑25.49)
FedProx 25.92±2.5 35.60±4.7 (↑9.68) 8.75±0.2 16.92±1.4 (↑8.17) 47.05±3.2 73.95±0.8 (↑26.89)
CFeD - - 13.76±1.2 26.66±0.3 (↑12.9) 51.41±1.0 72.20±0.9 (↑20.79)
GLFC - - 13.18±0.4 13.47±0.7 (↑0.29) 49.78±0.8 49.20±1.2 (↓0.58)

Table 1 presents the average accuracy AccT of various methods on image classification benchmark
datasets measured upon completion of the final task T . For each setting, we compare the performance
of an existing method with/without FedGP. We observe that the proposed methods (represented by
“w/ FedGP”) nearly always improves the base methods (“w/o FedGP”) across the different datasets
and scenarios, as seen from the upward arrows indicating performance improvements. Additional
results are obtained for forgetting performance FgtT given in Table 11 in Appendix A.6. Moreover,
the performance of FedGP is analyzed progressively across tasks in Appendix A.5.

Remarkably, even a simple integration of the basic baseline, FL, with FedGP surpassed the perfor-
mance of most FL+CL and CFL baselines. For instance, in the sequential-CIFAR100 experiment, FL
with FedGP (17.08% class-IL, 74.71% task-IL) outperformed a majority of the baselines. Specif-
ically, it exceeds the performance of the two advanced CFL baselines: GLFC (13.18% class-IL,
49.78% task-IL) and CFeD (13.76% class-IL, 51.41% task-IL). This underscores the substantial capa-
bility of our method in the CFL setting. Importantly, FedGP can achieve competitive performance
even without utilizing information about task boundaries, unlike CFeD, GLFC, GPM, and iCaRL.

We also note that the FL+L2P method consistently exhibited the highest accuracy, largely due to the
utilization of a pretrained Vision Transformer (ViT) (Dosovitskiy et al., 2020; Zhang et al., 2022),
which helps mitigate the catastrophic forgetting. This is why we wrote the numbers in gray with a
caveat in the caption. Yet, our approach still managed to achieve improved performance.

Effect of Buffer size. Table 2 reports the performances of baseline CL methods (A-GEM and DER)
with/without FedGP for different buffer sizes, ranging from 200 to 5120. For all different datasets
and all IL settings, increasing the buffer size further improves the advantage of applying FedGP, by
providing more data for replay and mitigating forgetting. However, a finite buffer cannot maintain
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Table 2: Impact of the buffer size on AccT (%)

rotated-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

Buffer Size Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

200
FL+A-GEM

68.34±5.6 74.74±2.3 (↑6.40) 8.90±0.1 19.53±1.3 (↑10.63) 63.84±0.8 74.84±0.5 (↑11.00)
500 70.18±8.7 78.74±3.2 (↑8.56) 8.87±0.1 25.89±0.9 (↑17.02) 64.38±1.4 79.35±0.5 (↑14.97)

5120 69.97±3.2 79.17±4.3 (↑9.20) 8.85±0.1 33.30±2.5 (↑24.45) 64.99±1.5 84.52±0.3 (↑19.53)

200
FL+DER

57.73±3.6 87.13±1.1 (↑29.40) 13.32±1.6 22.96±3.6 (↑9.64) 57.71±1.2 65.57±1.9 (↑7.86)
500 60.00±7.2 88.83±1.6 (↑28.83) 15.44±1.5 34.87±1.7 (↑19.43) 60.79±1.2 73.53±1.1 (↑12.74)

5120 58.63±3.9 89.46±1.2 (↑30.83) 18.89±1.0 45.76±3.8 (↑26.87) 62.77±1.5 83.41±1.3 (↑20.64)

Table 3: Effect of communication on accuracy (%) performance, with values in brackets indicating
differences from the FL baseline.

Method
R-MNIST P-MNIST S-CIFAR10 S-CIFAR100
Domain-IL Domain-IL Class-IL Task-IL Class-IL Task-IL

FL 68.02±3.1 27.49±2.0 17.44±1.3 70.58±4.0 8.76±0.1 47.74±1.2

FL w/ FedGP (2× comm overhead) 79.46±4.1 (↑11.44) 35.91±4.0 (↑8.42) 18.02±0.6 (↑0.58) 80.83±2.0 (↑10.25) 17.08±1.8 (↑8.32) 74.71±0.9 (↑26.97)
FL w/ FedGP (equalized comm overhead) 75.63±3.9 (↑7.61) 34.96±3.2 (↑7.47) 16.65±1.0 (↓0.79) 78.79±2.8 (↑8.21) 13.62±0.6 (↑4.86) 73.96±0.4 (↑26.22)

FL w/ FedGP (0.5× comm overhead) 76.05±4.0 (↑8.03) 29.75±4.6 (↑2.26) 14.30±1.3 (↓3.14) 66.90±3.6 (↓3.68) 13.09±0.5 (↑4.33) 69.96±0.6 (↑22.22)
FL w/ FedGP (0.2× comm overhead) 70.59±4.7 (↑2.57) 15.51±2.7 (↓11.98) 13.37±2.6 (↓4.07) 59.75±6.4 (↓10.83) 13.59±0.9 (↑4.83) 59.31±1.6 (↑11.57)

the entire history of data. In Fig. 4 we reported the effect of buffer size on the accuracy of old tasks.
We are assuming that every client has the same buffer size. If the buffer sizes are not equal during
model training, clients with bigger buffers might add more diverse data, which could make the model
biased. A possible solution is to use a reweighting algorithm, which we plan to explore in the future.

Effect of communication frequency. Compared with baseline methods, FedGP has extra commu-
nication overhead for transmitting the buffer gradients from each client to the server. This means that
the required amount of communication is doubled for FedGP. We consider a variant of FedGP which
updates the model and buffer gradient less frequently (i.e., reduce the communication rounds for each
task), which has reduced communication than the vanilla FedGP. Table 3 reports the performance
for different datasets, when the communication overhead is set to 2x, 1x, 0.5x and 0.2x. First, in most
cases, FedGP with equalized (1x) communication overhead is outperforming FL. In addition, for
most of tested datasets including R-MNIST, P-MNIST and S-CIFAR100, FedGP outperforms FL
with at most 0.5x communication overhead. This means that FedGP enjoys a higher performance
with less communication, in the standard benchmark datasets for continual federated learning.

Effect of computation overhead. Computation overhead is also an important aspect to consider
and we have conducted experiment on the actual wall-clock time measurements. Taking a CIFAR100
experiment as an example, the running time for 200 epochs for FedAvg on our device is 4068.97s.
When FedGP, which is built on top of FedAvg, was used, it ran for an additional 293.26s. This
indicates that it ran 7.2% longer over the same 200 epochs. The time consumed by FedGP can
be divided into two parts: (i) computing the global reference gradient after each FedAvg, and (ii)
projecting the gradient. In the above experiment, the reference gradient computation was done 200
times, taking a total of 49.07s, and the gradient projection was performed on 109,471 batches, which
is 68.38% of the total batches, taking a total of 244.19s. Overall, FedGP is computationally efficient
and affordable for edge devices.

Table 4: AccT (%) for asynchronous
task boundaries on the sequential-
CIFAR100 dataset.

Method Class-IL Task-IL

FL 16.22±1.2 59.04±1.7

FL+A-GEM 16.92±1.0 69.41±1.3

FL+A-GEM+FedGP 30.74±1.5 77.70±0.4

FL+DER 31.95±2.6 68.28±1.5

FL+DER+FedGP 36.29±1.0 72.02±0.7

Asynchronous task boundaries. In our previous exper-
iments, we assumed synchronous task boundaries where
clients finish tasks at the same time. However, in many
real-world scenarios, different clients finish each task asyn-
chronously. Motivated by this practical setting, we con-
ducted experiments in an asynchronous task boundary
setting on sequential-CIFAR100. For every R = 20 com-
munications, instead of traversing all data allocated for
the current task, each client traverses exactly 500 samples
allocated to it, irrespective of whether these samples come
from the same task. Consequently, some clients might

finish a task faster than others and move on to the next task. Thus, during each global communication,
clients could be working on different tasks. This setup more closely aligns with our general continual

8



Under review as a conference paper at ICLR 2024

learning settings, when the task boundary is unknown. Table 4 shows the accuracy of each method
averaged over T tasks after finishing all training, under the asynchronous setting. Similar to the
synchronous case, FedGP improves the accuracy of baseline methods including A-GEM and DER.
Notably, we have a better performance in the asynchronous setting (see Table 4) compared with the
synchronous setting (see Table 1). This might be because, in the asynchronous setting, some clients
receive new tasks earlier than others, which allows the model to be exposed to more diverse data for
each round, thus reducing the forgetting effect.

Effect of the number of tasks. We have conducted experiments with different number of tasks
for each dataset. For CIFAR100, we experimented with task numbers 5 and 10, while for CIFAR10
we tested with task numbers 2 and 5. Our results in Table 5 consistently demonstrate that the
FedGP algorithm provides a significant improvement in performance across all these different
task numbers. An interesting observation is that as the number of tasks increases, FedGP have
better performance improvement to baseline. This is because a higher number of tasks increases the
likelihood of data distribution shifts and therefore the problem of catastrophic forgetting becomes
more prominent. As such, FedGP, designed to handle this issue, has more opportunities to improve
the learning process in such scenarios. This might also partly explain why, in Table 1, FedGP shows
a generally higher improvement over the baselines on the sequential-CIFAR100 dataset compared to
the sequential-CIFAR10.

Table 5: Average accuracy AccT (%) across various task numbers.

(# of Task, # of Classes per Task) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)
FL FL w/ FedGP FL FL w/ FedGP

(2, 5) 43.53±0.8 44.05±0.8 (↑0.52) 75.54±0.6 77.52±0.8 (↑1.98)
(5, 2) 17.44±1.3 18.02±0.6 (↑0.6) 70.58±4.0 80.83±2.0 (↑10.25)

sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

(5, 20) 16.49±0.3 22.71±0.9 (↑6.22) 50.60±0.9 69.41±0.8 (↑18.81)
(10, 10) 8.76±0.1 17.08±1.8 (↑8.32) 47.74±1.2 74.71±0.9 (↑26.97)

5.2 TEXT CLASSIFICATION

In addition to image classification, we also extended the evaluation of our method on text classification
task (Mehta et al., 2021). For this purpose, we utilized the YahooQA (Zhang et al., 2015) dataset
which comprises texts (questions and answers), and user-generated labels representing 10 different
topics. Similar to the approach taken with the CIFAR10 dataset, we partitioned the YahooQA dataset
into 5 tasks, where each task consisted of two distinct classes. Within each task, we used LDA to
partition data across 10 clients in a non-IID manner. To conduct the experiment, we employed a
pretrained DistilBERT (Sanh et al., 2019) with linear classification layer. We freeze the DistilBERT
model and only fine-tune the additional linear layer. The results of this experiment can be found
in Table 6. We can observe that FedGP consistently enhances the accuracy (AccT ) over baselines,
particularly in class-IL scenarios.

Table 6: Average classification accuracy AccT (%) on split-YahooQA dataset.

sequential-YahooQA (Class-IL) sequential-YahooQA (Task-IL)
Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 17.86±0.6 30.67±4.4(↑12.81) 80.87±1.2 88.04±1.4(↑7.17)
FL+A-GEM 20.86±0.3 47.02±1.9(↑26.16) 87.29±1.3 90.20±0.2(↑2.91)

FL+DER 43.64±2.1 54.28±1.3(↑10.64) 89.57±0.2 90.48±0.2(↑0.91)

6 CONCLUSION

In this paper, we present FedGP, a novel method of using buffer data for mitigating the catastrophic
forgetting issues in CFL. Specifically, we use the gradient projection method to prevent model
updates that harm the performance on previous tasks. Our empirical results on benchmark datasets
(rotated-MNIST, permuted-MNIST, sequential-CIFAR10 and sequential-CIFAR100) and on a text
classification dataset show that FedGP improves the performance of existing CL and CFL methods.
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Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
learning. arXiv preprint arXiv:1905.10497, 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang,
Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A
comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based
on knowledge distillation. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, volume 3, 2022.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022.

Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

11



Under review as a conference paper at ICLR 2024

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investigation
of the role of pre-training in lifelong learning. arXiv preprint arXiv:2112.09153, 2021.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In Interna-
tional Conference on Machine Learning, pp. 4615–4625. PMLR, 2019.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Quang Pham, Chenghao Liu, and Steven Hoi. DualNet: Continual learning, fast and slow. Advances
in Neural Information Processing Systems, 34:16131–16144, 2021.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. GDumb: A simple approach that questions
our progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 524–540. Springer, 2020.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7263–7271, 2017.

G Anthony Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Mansi Sharma, Igor Davidyuk,
Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov, Dmitry Agapov, et al. OpenFL: An open-
source framework for federated learning. arXiv preprint arXiv:2105.06413, 2021.

Mark B Ring. CHILD: A first step towards continual learning. In Learning to learn, pp. 261–292.
Springer, 1998.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of object detectors
without catastrophic forgetting. In Proceedings of the IEEE international conference on computer
vision, pp. 3400–3409, 2017.

Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron Mor-Yosef, and
Itai Zeitak. Overcoming forgetting in federated learning on non-IID data. arXiv preprint
arXiv:1910.07796, 2019.

12



Under review as a conference paper at ICLR 2024

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? Advances in neural
information processing systems, 8, 1995.

Yeshwanth Venkatesha, Youngeun Kim, Hyoungseob Park, Yuhang Li, and Priyadarshini Panda.
Addressing client drift in federated continual learning with adaptive optimization. Available at
SSRN 4188586, 2022.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 374–382, 2019.

Xin Yao and Lifeng Sun. Continual local training for better initialization of federated models. In
2020 IEEE International Conference on Image Processing (ICIP), pp. 1736–1740. IEEE, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual
learning with weighted inter-client transfer. In International Conference on Machine Learning, pp.
12073–12086. PMLR, 2021.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö Arik, and Tomas Pfister. Nested
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A SUPPLEMENTARY RESULTS

In this section, we furnish additional experimental outcomes that serve to further bolster the findings
of our primary investigation.

A.1 ABLATIONS ON OUR ALGORITHM DESIGN

We added extensive experimental results for ablations on our algorithm design, which is decomposed
into (1) gradient manipulation algorithm, and (2) buffer updating algorithm.

First, we considered different ways of manipulating the gradient g, given the reference gradient gref.
In the below table, we compared four different methods of updating g:

• Average: define g ← (g + gref)/2.
• Rotate: rotate g towards gref while keeping the magnitude.
• Project: project g to the space that is orthogonal to gref.
• Project & Scale: apply Project and then scale up the vector such that the magnitude is

identical to the original g

Recall that our FedGP applies Project method only when the angle between g and gref is larger than
90 degree, i.e., when the reference gradient gref (measured for the previous tasks) and the gradient g
(measured for the current task) conflicts to each other. Our intuition for such choice is, it is better to
manipulate g if the direction favorable for current task is conflicting with the direction favorable for
previous tasks. To support that this choice is meaningful, we compared two ways of deciding when
we manipulate the gradients, denoted below:

• (> 90): update the gradient g only when the angle(g, gref)> 90

• (Always): update the gradient g always

We compared the performances of above choices in Table 7, for S-CIFAR100 dataset. One can confirm
that our FedGP (denoted by Project (> 90) in the table) far outperforms all other combinations,
showing that our design (doing projection for conflicting case only) is the right choice. If we check
each component (Project and (> 90)) independently, one can check that choosing Project outperforms
Average, Rotate and Project & Scale in most cases, and choosing (> 90) outperforms Always in all
cases.

Table 7: Effect of different gradient manipulation method on the accuracy (%) of FedGP, tested on
S-CIFAR100

Method Class-IL Task-IL
FL 8.76±0.1 47.74±1.2
Average (Always) 7.26±1.95 35.96±3.23
Average (> 90) 7.79±0.65 36.57±1.55
Rotate (Always) 7.59±0.89 36.15±2.83
Rotate (> 90) 8.41±0.78 38.97±1.83
Project & Scale (Always) 8.77±0.09 32.96±1.10
Project & Scale (> 90) 12.30±0.65 73.61±0.75
Project (Always) 8.90±0.08 34.00±1.98
Project (> 90), ours 17.08±1.8 74.71±0.9

We also tested whether doing the projection is helpful in all cases when angle(g, gref) > 90. We
considered applying the projection for p% of the cases having angle(g, gref) > 90, for p = 10, 50, 80
and 100. Note that p = 100% case reduces to our FedGP.

Table 8 shows the effect of projection rate p% on the accuracy, tested on S-CIFAR100 dataset. In
both class-IL and task-IL settings, increasing p always improves the accuracy of the FedGP method.
This supports that our way of projection is suitable for the continual federated learning setup.

In Table R3-2c, we compared three different buffer updating algorithms:
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Table 8: Effect of projection rate p% on the accuracy (%) of FedGP, tested on S-CIFAR100

Method Class-IL Task-IL
FL, p = 0% 8.76±0.1 47.74±1.2
FedGP, p = 10% 8.82±0.07 54.90±1.61
FedGP, p = 50% 8.91±0.07 67.89±0.67
FedGP, p = 80% 10.36±0.42 72.73±0.74
FedGP, p = 100% (Ours) 17.08±1.8 74.71±0.9

• Random Sampling: randomly replaces a data point in the buffer with incoming new data
• Sliding Window Sampling: replaces the earliest data point in the buffer when new data

arrives
• Reservoir Sampling (Ours): given N (the number of observed samples up to now) and B

(the buffer size), we do the following
– when N ≤ B, we put the current sample in the buffer
– when N > B, with probability B/N < 1, we replace a sample in the buffer with the

current sample

Note that when the number of incoming data is N , those N samples have the same probability of
getting into the buffer, for the Reservoir Sampling method used in our paper. Thus, when Reservoir
Sampling is used, the buffer contains approximately equal number of samples for each task (when
each task has the same number of samples), throughout the continual learning process. This is the
underlying intuition why we choose such buffer updating algorithm. To support this claim, we report
the performance of different sampling methods in Table 9. Here, one can confirm that our sampling
method is outperforming other sampling methods.

Table 9: Effect of different buffer updating algorithms on the accuracy (%) of FedGP, tested on
CIFAR100

Method Class-IL Task-IL
FL 8.76±0.1 47.74±1.2
Sliding Window Sampling 8.82±0.15 46.16±2.38
Random Sampling 9.72±0.10 54.82±1.58
Reservoir Sampling (Ours) 17.08±1.8 74.71±0.9

uniform

reservoir

sliding

Buffer size = number of samples per task

1 2 3

After task i

1

1 2 1 2 3

1

1
2
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3
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1-1/e

1/e^2

(1/e) * (1-1/e)

Figure 3: The sample distribution across different tasks for different buffer updating algorithms
(uniform-random, sliding window, ours).

Fig. 3 compares the sample distribution across different tasks, for different buffer updating algorithms
(uniform-random sampling, reservoir sampling and sliding window sampling). This clearly shows
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the difference of buffer updating algorithms, which guided to the different performances reported in
Table R3-2c.

All in all, the reservoir sampling method used in FedGP allows us to have balanced sample distribu-
tion across different tasks, thus allowing us to mitigate the catastrophic forgetting and to improve the
accuracy in the continual federated learning setting.

A.2 EFFECT OF BUFFER SIZE FOR OLD TASKS

Given a limited buffer size, the number of samples the buffer can maintain for old tasks is bounded
above. In Fig. 4, we reported the effect of buffer size on the accuracy of the trained model for old
tasks. At the end of each task, we measured the accuracy of the trained model with respect to the test
data for task 1. We tested on S-CIFAR100 dataset, and considered task incremental learning (task-IL)
setup.

One can observe that when the buffer size B is small, the accuracy drops as the model is trained
on new tasks. On the other hand, when B ≥ 100, the task-IL accuracy for task 1 is maintained
throughout the process. Note that training with our default setting B = 200 does not hurt the accuracy
for task 1 throughout the continual learning process.

Figure 4: Accuracy (%) for Task 1, under the Task-IL setting on S-CIFAR100. We tested on FedGP
with different buffer sizes.

A.3 PERFORMANCE ON THE CURRENT TASK

Balancing the retention of old tasks and the learning of new ones is a common challenge in continual
learning. It can be difficult to determine the best approach, especially when two tasks are significantly
different. This is a challenge faced by many methods in continual learning.

We provided additional experimental results on the performance measured for the current task. The
below Fig. 5 shows the Class-IL accuracy of FedGP (with buffer size 200) and FL for S-CIFAR100,
where the total number of tasks is set to 10. During the continual learning process, we measured
the accuracy of each model for the current task. One can confirm that using FedGP does not hurt
the current task accuracy, compared with FL. Note that this shows that FedGP does not impair the
performance of the current task, while also alleviating the forgetting in upcoming rounds.

A.4 COMPARISON WITH FOT

We compared our method with SOTA paper (Bakman et al., 2023) proposing Federated Orthogonal
Training (FOT) algorithm for continual federated learning.
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Figure 5: Class-IL Accuracy (%) of current task for FL and FedGP on the S-CIFAR100

In FOT, at the end of each task, the server aggregates the activations of each local model (computed for
local data points) and computes the subspace spanned by the aggregated activations. This subspace is
used during the global model update process; the gradient is updated in the direction that is orthogonal
to the subspace. Note that FOT has several advantages compared with existing baselines; the privacy
leakage is mitigated, the communication cost is reduced, and the solution has theoretical guarantees.

While both FOT and our FedGP project the gradients on the subspace specified by previous tasks,
they have two main differences. First, the subspace is defined in a different manner: FOT relies on
the representations of local model activations to define S. FedGP, on the other hand, relies on the
gradient of model computed on its local buffer data. Second, FOT projects the gradient computed at
the server side, while FedGP projects the gradient computed at each client.

The table 10 compares the accuracy of FL, FOT and FedGP (with buffer size 200) for P-MNIST and
S-CIFAR100 under the task incremental learning scenario, consistent with the paper’s benchmarks.
Assuming that the local buffer is available, FedGP outperforms FOT.

Table 10: Comparative accuracy (%) performance analysis of FL, FOT, and FL+FedGP

Methods P-MNIST (Domain-IL) S-CIFAR100 (Task-IL)
FL 25.92±2.1 47.74±1.2
FOT 23.77±1.1 50.57±1.5
FL+FedGP 34.23±2.7 74.71±0.9

A.5 PROGRESSIVE PERFORMANCE OF FEDGP ACROSS TASKS

Fig. 6 depicts the average accuracy Acct measured at task t = 1, 2, · · · , 10 and the average forgetting
Fgtt measured at task t = 2, 3, · · · , 10. The accuracy of FedAvg rapidly drops as different tasks are
given to the model, as expected. FedCurv and FedProx perform similarly to FedAvg, while A-GEM
and DER partially alleviate forgetting, resulting in higher accuracies and reduced forgetting compared
to FedAvg. Combining these baselines with FedGP lead to significant performance improvements,
which allows the solid lines in the accuracy plot consistently remain at the top. For example, for the
experiment on task-IL for sequential-CIFAR100, the accuracy measured at task 5 (denoted by Acc5)
is 55.37% for FedProx, while 71.12% for FedProx+FedGP. These results demonstrate that FedGP
effectively mitigates forgetting and enhances existing methods in CFL.

A.6 FORGETTING ANALYSIS ACROSS DATASETS

We present the complementary information to Table 1 in Table 11, illustrating the extent of FgtT
observed across multiple benchmark datasets. Our method exhibits exceptional effectiveness in
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Figure 6: Evaluating accuracy (↑) and forgetting (↓) in multiple datasets with and without FedGP
using a buffer size of 200. The solid lines indicate the results obtained with our method, while
the dotted lines represent the results obtained without our method. The results show a significant
improvement in accuracy as well as reduced forgetting for all settings.

mitigating forgetting. Remarkably, it demonstrates consistent performance across all datasets and
baselines, making it a versatile solution.

Table 11: Average forgetting FgtT (%) (lower is better) on benchmark datasets at the final task T .

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 25.98±3.2 11.66±2.7(↓14.32) 80.69±3.6 78.62±4.3(↓2.07) 15.37±4.8 4.49±1.9(↓10.88)
FedCurv 25.80±2.4 11.18±2.7(↓14.62) 80.90±6.6 79.85±3.9(↓1.05) 19.37±4.8 4.77±1.6(↓14.60)
FedProx 25.74±3.1 11.76±2.9(↓13.98) 84.35±2.4 80.24±2.5(↓4.11) 18.24±4.9 4.17±1.0(↓14.07)

FL+A-GEM 26.30±5.7 15.18±2.4(↓11.12) 82.18±6.6 80.38±2.5(↓1.80) 10.00±3.0 4.15±0.7(↓5.85)
FL+DER 21.42±4.0 5.51±1.2(↓15.91) 60.98±14.6 47.88±7.2(↓13.10) 6.34±4.9 2.73±1.3(↓3.61)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 43.47±5.3 21.40±4.9(↓22.07) 77.69±0.5 67.02±2.3(↓10.67) 34.38±1.6 5.39±0.8(↓28.99)
FedCurv 42.88±5.0 22.85±3.5(↓20.03) 78.40±0.9 67.75±0.8(↓10.65) 33.71±2.2 5.86±0.7(↓27.85)
FedProx 42.59±5.6 20.77±5.6(↓21.82) 77.35±0.4 66.81±2.2(↓10.54) 34.79±3.6 5.69±0.9(↓29.10)

FL+A-GEM 35.61±5.3 24.05±2.4(↓11.56) 77.97±0.7 63.99±2.0(↓13.98) 16.92±1.1 5.16±0.5(↓11.76)
FL+DER 45.33±5.0 34.71±5.0(↓10.62) 69.37±1.7 53.84±6.7(↓15.53) 22.43±0.7 14.16±1.7(↓8.27)

A.7 EXTENDED ANALYSIS ON THE INFLUENCE OF BUFFER SIZE

In the main body of our study, we examine the influence of different buffer sizes on the performance
metric AccT , utilizing rotated-MNIST and sequential-CIFAR100 datasets. To further augment our
analysis, we have included two additional datasets in Table 12, incorporating various buffer sizes. By
evaluating AccT (where higher values indicate better performance), we discovered that our proposed
method, referred to as FedGP, consistently enhances the average accuracy across these two datasets.

A.8 EFFECT OF THE NUMBER OF USERS.

While our previous experiments are conducted for cases with K = 10 clients, Table 13 shows
the results for K = 20 clients. This results demonstrates that FedGP consistently improves the
performance of baselines, across different number of clients. In line with the presentation of forgetting
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Table 12: Impact of the buffer size on AccT (%)

permuted-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Buffer Size Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

200
FL+A-GEM

33.43±1.4 39.09±3.5 (↑5.66) 17.82±0.9 19.44±0.9 (↑1.62) 77.14±3.1 83.16±1.6 (↑6.02)
500 33.35±1.0 42.45±6.9 (↑9.10) 18.39±0.2 20.34±0.6 (↑1.95) 78.43±3.0 85.95±0.6 (↑7.52)

5120 32.72±1.4 40.07±2.5 (↑7.35) 16.41±2.6 20.64±2.2 (↑4.23) 73.89±3.3 86.82±1.5 (↑12.93)

200
FL+DER

19.79±1.7 43.43±0.9 (↑23.64) 18.44±3.7 30.94±3.8 (↑12.50) 69.34±3.2 77.99±0.8 (↑8.65)
500 19.17±1.6 43.38±2.4 (↑24.21) 20.81±3.6 29.78±4.3 (↑8.97) 71.17±1.5 74.98±3.5 (↑3.81)

5120 18.57±1.4 44.68±2.4 (↑26.11) 34.75±2.2 42.38±4.5 (↑7.63) 78.22±2.3 81.94±1.7 (↑3.72)

Table 13: The AccT (%) performance measured when we have K = 20 users. Similar to the results
for K = 10 in Table 1, our method improves the performance of baselines.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 62.45±8.5 76.01±4.6 (↑13.56) 16.44±1.4 15.82±1.7 (↓0.62) 68.18±5.3 73.45±4.3 (↑5.27)
FedCurv 62.57±8.3 76.46±4.1 (↑13.89) 17.31±0.6 14.64±3.1 (↓2.67) 67.33±3.3 70.31±3.7 (↑2.98)
FedProx 62.14±8.6 75.84±4.4 (↑13.70) 16.37±1.1 16.15±1.3 (↓0.22) 66.24±1.4 74.79±3.9 (↑8.55)

FL+A-GEM 67.66±8.0 78.10±3.6 (↑10.44) 16.15±1.9 17.36±0.8 (↑1.21) 72.39±3.4 80.61±2.6 (↑8.22)
FL+DER 57.33±3.2 87.84±1.5 (↑30.51) 17.13±2.3 19.18±3.7 (↑2.05) 70.82±1.9 77.04±2.5 (↑6.22)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 20.26±1.6 20.67±4.7 (↑0.41) 8.61±0.1 17.47±1.1 (↑8.86) 50.00±1.6 76.29±0.8 (↑26.29)
FedCurv 20.25±1.9 23.30±5.7 (↑3.05) 8.93±0.0 19.42±1.1(↑10.49) 49.83±1.4 79.58±0.6 (↑29.75)
FedProx 20.19±1.4 23.78±5.2 (↑3.59) 8.88±0.1 18.86±1.0 (↑9.98) 50.86±1.2 78.19±0.9 (↑27.33)

FL+A-GEM 24.43±2.1 23.29±3.8 (↓1.14) 8.62±0.1 19.58±1.2 (↑10.96) 63.02±0.6 76.23±0.6 (↑13.21)
FL+DER 17.89±1.3 46.17±3.0 (↑28.28) 11.53±0.5 26.64±2.8 (↑15.11) 57.00±1.4 69.42±1.0 (↑12.42)

in Table 11, we present the forgetting analysis when the number of clients is set to 20 in Table 14.
Notably, our method exhibits consistent and impressive performance across varying numbers of users.
It consistently proves its effectiveness regardless of the specific user count, showcasing its robustness
and reliability.

Table 14: The FgtT (%) (lower is better) performance measured when we have K = 20 users.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Method w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FL 31.00±9.5 13.45±3.6 (↓17.55) 82.62±3.1 73.39±4.5 (↓9.23) 17.93±2.7 6.14±4.9 (↓11.79)
FedCurv 30.73±9.3 12.97±3.8 (↓17.76) 79.55±3.8 75.38±5.3 (↓4.17) 18.19±3.0 9.14±3.1 (↓9.05)
FedProx 31.04±9.7 13.31±3.4 (↓17.73) 82.94±1.1 78.67±4.2 (↓4.27) 20.60±2.6 8.52±3.0 (↓12.08)

FL+A-GEM 25.22±8.8 11.02±3.0 (↓14.20) 82.39±2.4 80.25±4.1 (↓2.14) 12.29±2.2 4.00±2.4 (↓8.29)
FL+DER 28.93±6.6 5.18±1.1 (↓23.75) 55.10±9.8 60.90±3.8 (↑5.80) 3.20±1.6 2.71±1.7 (↓0.49)

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FL 24.27±5.2 8.67±7.0 (↓15.60) 73.05±0.5 62.71±0.9 (↓10.34) 27.07±1.7 2.48±0.7 (↓24.59)
FedCurv 24.02±5.4 8.10±5.4 (↓15.92) 80.07±0.5 68.58±1.1 (↓11.49) 34.63±1.7 3.48±0.6 (↓31.15)
FedProx 23.01±5.7 5.93±5.1 (↓17.08) 79.46±0.5 68.40±0.9 (↓11.06) 32.82±1.4 4.13±0.7 (↓28.69)

FL+A-GEM 22.12±4.9 9.45±5.4 (↓12.67) 72.97±1.1 60.27±1.3 (↓12.70) 12.54±1.3 2.66±0.2 (↓9.88)
FL+DER 32.26±1.1 27.30±4.2 (↓4.96) 67.07±0.8 47.74±3.8 (↓19.33) 19.78±1.7 8.67±1.4 (↓11.11)

A.9 RANDOM SAMPLING

We implement a more realistic federated learning environment by applying uniform sampling tech-
niques to randomly select the participating clients in each round. We conduct experiments on
CIFAR100. A total of 50 clients is set up, and during each communication, only a random 50% of the
clients participate in training. As can be seen, even in such a scenario, where our algorithm cannot
update the reference gradient using the local buffer from all clients, there is still an improvement in
performance using our algorithm.
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Table 15: Average accuracy AccT (%) with 50 clients and 50% client sampling rate, for sequential-
CIFAR100

Method Class-IL Task-IL

FL 7.46± 0.08 43.85± 1.33
FL+FedGP 9.34± 0.31 (↑ 1.88) 65.76± 0.48 (↑ 21.91)

A.10 BACKWARD AND FORWARD TRANSFER METRICS

Our method outperforms FedAvg (FL) in both Backward and Forward Transfer metrics across the
sequential-CIFAR10 and sequential-CIFAR100 datasets, as shown in the Table 16.

Table 16: Backward and Forward Transfer (↑) Results for sequential-CIFAR100 and sequential-
CIFAR10

Metric Dataset Methods Class-IL Task-IL

Backward CIFAR100 FL −78.11 −36.52
Backward CIFAR100 FL+FedGP −72.24 (↑ 5.87) −3.68 (↑ 32.84)
Backward CIFAR10 FL −78.78 −14.48
Backward CIFAR10 FL+FedGP −78.55 (↑ 0.23) −0.60 (↑ 13.88)
Forward CIFAR100 FL 16.98 16.98
Forward CIFAR100 FL+FedGP 17.16 (↑ 0.18) 17.48 (↑ 0.50)
Forward CIFAR10 FL 12.75 12.74
Forward CIFAR10 FL+FedGP 12.98 (↑ 0.23) 12.99 (↑ 0.25)

A.11 EFFECT OF DIFFERENT CURRICULUM.

We evaluate how the performance of FedGP changes when we shuffle the order of tasks in the
continual learning. We randomly shuffle the sequential-CIFAR100 task order and label them as
curriculum 1 to 4, as shown in the Table 17. Regardless of the different curriculum, FL+FedGP
outperforms FedAvg.

A.12 ADDITIONAL HYPERPARAMETERS FOR SPECIFIC METHODS

In addition to the hyperparameters discussed in the main paper, additional method-specific hyperpa-
rameters are outlined in Table 18.

B OBJECT DETECTION

Here we test FedGP on realistic streaming data (Dai et al., 2023) which leverage two open
source tools, an urban driving simulator (CARLA (Dosovitskiy et al., 2017)) and a FL frame-
work (OpenFL (Reina et al., 2021)). As shown in Fig. 7a, CARLA provides OpenFL with a real-time
collection of continuous streaming vehicle camera output data and automatic annotation about object
detection. This streaming data capture the spatio-temporal dynamics of data generated from real-
world applications. After loading data of vehicles from CARLA, OpenFL performs collaborative
training over multiple clients.

Table 17: Average accuracy AccT (%) across randomized curriculum in sequential-CIFAR100.

Curriculum Methods Class-IL Task-IL

1 FL 8.15 46.25
1 FL+FedGP 12.10 (↑ 3.95) 72.69 (↑ 26.44)
2 FL 8.46 47.56
2 FL+FedGP 14.37 (↑ 5.91) 73.19 (↑ 25.63)
3 FL 8.82 45.04
3 FL+FedGP 12.58 (↑ 3.76) 74.71 (↑ 29.67)
4 FL 7.87 43.87
4 FL+FedGP 14.85 (↑ 6.98) 73.74 (↑ 29.87)
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Table 18: Additional hyperparameters for specific methods.

Method Parameter Values
FL+DER Regularization Coefficient sequential-CIFAR10 (0.3), Others (1)

FL+L2P Communication Round R rotated-MNIST (5), permuted-MNIST (1), sequential-CIFAR10 (20), sequential-CIFAR100 (20)

CFeD Surrogate Dataset sequential-CIFAR10 (CIFAR100), sequential-CIFAR100 (CIFAR10)
Note: No server distillation included.

(a) Framework for automotive data evaluation.
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(b) Object detection performance comparison.

Figure 7: (a) The data loader continuously supplies data from CARLA camera outputs to individual
FL clients. Each client trains on its local data and updates its buffer to retain old knowledge. (b)
The result shows the object detection performance comparison between Ideal, FedAvg, DER, and
DER+FedGP on a realistic CARLA dataset.

We evaluate the solutions to the forgetting problem by spawning two vehicles in a virtual town. During
the training of the tinyYOLO (Redmon & Farhadi, 2017) object detection model, we use a custom
loss that combines classification, detection and confidence losses. In order to quantify the quality
of the incremental model trained by various baselines, we report a common metric, namely, mean
average precision (mAP). This metric assesses the correspondence between the detected bounding
boxes and the ground truth, with higher scores indicating better performance. To calculate mAP, we
analyze the prediction results obtained from pre-collected driving snippets of vehicular clients. These
driving snippets are gathered by navigating the town over a duration of 3000 simulation seconds.

For those experiments on realistic CARLA streaming data, we compare the performances of Ideal,
FedAvg, DER and DER+FedGP. In the Ideal scenario, the client possesses sufficient memory to
retain all data from prior tasks, enabling joint training on all stored data. The last two methods are
equipped with buffer size of 200. We train for 70 communication rounds and each round continues
for about 200 simulation seconds. The results are presented in Fig. 7b. Note that at communication
round 60, one client gets on the highway, which incurs a domain shift. One can confirm that the
performance of FedAvg degrades in such domain shift scenario, whereas DER and DER+FedGP
maintain the accuracy. Moreover, FedGP nearly achieves the performance of the ideal scenario with
infinite buffer size, demonstrating the effectiveness of our method.

C ADDITIONAL ALGORITHMS

In this section, we present the pseudocode for the ReservoirSampling algorithm (see
Algorithm 4). In the initial phase, when the buffer is not yet full (i.e., n ≤ |Mk|),
ReservoirSampling stores each new sample (x, y) in the buffer. After the buffer is full, the
algorithm determines two things: (1) whether it should replace an element in the buffer with the new
sample, and (2) which element in the buffer it will replace. We now prove that for reservoir sampling,
the probability of a sample contained in the buffer is |Mk|

n . We prove this by induction; suppose
this statement holds when n− 1 samples are observed, and we show that this holds when one more
sample is observed. Note that the probability of a sample contained in the buffer can be computed as
|Mk|
n−1 ∗ (1−

|Mk|
n ∗ 1

|Mk| ) =
|Mk|
n , where
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• |Mk|
n−1 is the probability of the sample initially contained in the buffer;

• (1− |Mk|
n ∗ 1

|Mk| ) is the probability of a sample not being kicked out of the buffer;

• |Mk|
n ∗ 1

|Mk| is the probability of a sample being kicked out of the buffer

Algorithm 4 ReservoirSampling(Mk, (x, y), n) (Vitter, 1985) at client k

Input: local bufferMk, incoming data (x, y) and the number of observed samples n
if n ≤ |Mk| then

Add data (x, y) into local bufferMk

else
i← Uniform{1, 2, · · · , n}
if i ≤ |Mk| then
Mk[i]← (x, y)

end if
end if
ReturnMk, the updated local buffer

D CONTINUAL LEARNING METHODS WITH FEDGP

We provided the pseudocode for Algorithm 2 modifications when implementing FL+DER+FedGP
and FL+A-GEM+FedGP, respectively presented in Algorithm 5 and Algorithm 6. Other FL+CL
and CFL methods are also combined with FedGP in a similar manner.

Algorithm 5 incorporates Dark Experience Replay (DER) into the local update process on client
k ∈ [K].When the server sends the global model w to client k, the client calculates the output logits
or pre-softmax response z. In addition, the client samples past data (x′, y′) and the corresponding
logits z′ from the bufferMk. To address forgetting, the regularization term considers the Euclidean
distance between the sampled output logits and the current model’s output logits on buffer data. The
gradient g is then refined using this regularization term to minimize the discrepancy between the
current and past output logits, thereby mitigating forgetting. The following steps are the same as in
the main text.

Algorithm 6 combines with A-GEM, applying gradient projection twice. First, the client computes
the gradient gc with respect to the new data fromDk

t . After replaying previous samples (x′, y′) stored
in the local bufferMk, the client computes the gradient gb with respect to this buffered data. If
these gradients differ significantly in terms of their direction, the client projects gc onto gb to remove
interference.

E ADDITIONAL RELATED WORK

We summarize the prior works that are related to our paper, which are categorized as continual
learning, federated learning, and continual federated learning.

E.1 CONTINUAL LEARNING (CL)

CL is a problem of learning multiple different tasks consecutively using a single model (Ring, 1998;
Delange et al., 2021). For example, when the tasks are classification problems, CL focuses on the
scenario when a classifier is trained for one task in the first phase, and then trained for another task in
the second phase, and so on. In general, the data loaded at the current phase has a different distribution
compared to the data at the previous phases, known as domain distribution shift or class distribution
shift. Unfortunately, since the learner has a limited amount of memory to store data, the classifier
is only allowed to access the data for the current task, not for the previous tasks. In such a setting,
catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999) is a notorious
problem, where a classifier that performs well for the task from the current round does not perform
well on the tasks from the previous rounds. There has been extensive work to address this issue and
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Algorithm 5 DER ClientUpdate at client k

Input: Task index t, model w, buffer gradient
gref
Load the dataset Dk

t , local bufferMk

Initialize n = 0 at the first task
for (x, y) ∈ Dk

t do
z ← h(x;w) where f(x;w) := σ (h(x;w))
(x′, z′, y′)←Mk

ℓreg ← λ ∥z′ − h(x′;w)∥22
g = ∇w [ℓ(y, f(x;w)) + ℓreg]

g̃ ← g − projgref g · 1(g
⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α
ReservoirSampling(Mk, (x, z, y), n)
n← n+ 1

end for
Return w to server

Algorithm 6 A-GEM ClientUpdate at client k

Input: Task index t, model w, buffer gradient
gref
Load the dataset Dk

t , local bufferMk

Initialize n = 0 at the first task
for (x, y) ∈ Dk

t do
gc = ∇w [ℓ(y, f(x;w))]
(x′, y′)←Mk

gb = ∇w [ℓ(y′, f(x′;w))]
g ← gc − projgbgc · 1(g

⊤
b gc ≤ 0)

g̃ ← g − projgref g · 1(g
⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α
ReservoirSampling(Mk, (x, y), n)
n← n+ 1

end for
Return w to server

can be divided into three major categories: regularization-based methods, architecture-based methods
and replay-based methods.

Regularization-based methods Some CL methods add a regularization term in the loss used
for the model update; they penalize the updates on weights that are important for previous tasks.
EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), Riemannian Walk (Chaudhry et al., 2018) are
methods within this category. EWC uses Fisher information matrix to evaluate the importance of
parameters for previous tasks. Besides, LwF (Li & Hoiem, 2017) leverages knowledge distillation to
preserve outputs on previous tasks while learning the current task.

Architecture-based methods A class of CL methods assigns a subset of model parameters to each
task, so that different tasks are learned by different parameters. This class of methods is also known
as parameter isolation methods. Some methods including PNN (Rusu et al., 2016) and DEN (Yoon
et al., 2017) uses dynamic architectures where the architecture changes dynamically as the number of
tasks increases. These methods have issues where the number of required parameters grows linearly
with the number of tasks. To tackle this issue, fixed network are used in the recent methods including
PackNet (Mallya & Lazebnik, 2018), HAT (Serra et al., 2018) and PathNet (Fernando et al., 2017).
SupSup (Wortsman et al., 2020) and DualNet (Pham et al., 2021) are the latest SOTA methods.

Replay-based methods To avoid catastrophic forgetting, a class of CL methods employs a replay
buffer to save a small portion of the data seen in previous tasks and reuse it in the training of
subsequent tasks. One of the early works in this area is ER (Ratcliff, 1990; Robins, 1995). In more
contemporary studies, iCaRL (Rebuffi et al., 2017) stores exemplars of data from previous tasks and
adds distillation loss for old exemplars to mitigate the forgetting issue. Deep Generative Replay (Shin
et al., 2017) retains the memories of the previous tasks by loading the synthetic data generated by
GANs without replaying the actual data for the previous tasks. GSS (Aljundi et al., 2019) optimally
selects data for replay buffer by maximizing the diversity of samples in terms of the gradient in the
parameter space. GEM (Lopez-Paz & Ranzato, 2017) and its variant A-GEM (Chaudhry et al., 2019)
leverage an episodic memory that stores part of seen samples for each task to prevent forgetting
old knowledge. Similarly, OGD (Farajtabar et al., 2020) stores gradients as opposed to actual data,
providing a reference in projection. More recent work include GDumb (Prabhu et al., 2020), BiC (Wu
et al., 2019), DER++, and Co2L (Cha et al., 2021).

General continual learning Prior works on CL often rely on the information about the task bound-
aries. For example, some replay-based methods perform specific steps specifically at task boundaries,
some regularization-based methods store network responses at these boundaries; architecture-based
methods update the model architecture after one task is finished. However, when dealing with
streaming data in practical settings, task boundaries are not clearly defined. This scenario, where
sequential tasks are learned continuously without explicit knowledge of task boundaries, is referred
to as general continual learning (Buzzega et al., 2020; Aljundi et al., 2019; Chaudhry et al., 2019).
To address general continual learning, replay-based methods can utilize reservoir sampling (Vitter,
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1985), which allows sampling throughout the training rather than relying on task boundaries. In our
work, we specifically focus on general continual learning with reservoir sampling, particularly in the
context of federated learning setups.

E.2 FEDERATED LEARNING (FL)

There is a rapidly increasing level of interest in FL from both industry and academia, especially
due to its benefits on enabling multiple users to collaboratively train a model with improved data
privacy (Kairouz et al., 2021; Lim et al., 2020; Zhao et al., 2018; Konečnỳ et al., 2016). Fe-
dAvg (McMahan et al., 2017) is a widely used algorithm in FL where each round consists of three
steps: first, each client updates its local model using its data and transmits the updated local model
to the server; second, the central server aggregates the updated local models and updates the global
model in the direction of the average of local updates; third, the global model is broadcasted to each
client and the local model is redefined as the global model; we repeat these three steps for multiple
communication rounds. Variants of FedAvg were suggested in recent years (Li et al., 2020; Shoham
et al., 2019; Karimireddy et al., 2020; Li et al., 2019; Mohri et al., 2019), but most existing works
assume that the data distribution is static over time, which fails to capture the temporal dynamics of
real-world data.

E.3 CONTINUAL FEDERATED LEARNING (CFL)

CFL is a problem of learning multiple consecutive tasks in the FL setup. Several CFL methods have
been proposed in the literature. FedProx (Li et al., 2020) adds a proximal term to limit the impact of
variable local updates, while FedCurv (Shoham et al., 2019) adds a penalty term using the diagonal
of the Fisher information matrix to protect the important parameters for each task. Both methods aim
to preserve previously learned tasks while training new ones. Although FedProx (Li et al., 2020) and
FedCurv (Shoham et al., 2019) are effective approaches to mitigate forgetting in CFL, they have been
shown to achieve suboptimal performance when applied in a naı̈ve manner.

Other approaches, such as FedWeIT (Yoon et al., 2021) and NetTailor (Venkatesha et al., 2022), have
attempted to prevent interference between irrelevant tasks by decomposing network parameters or
using a dynamic architecture approach. However, these methods may not be practical for a large
number of tasks as the number of parameters scale linearly and require a clear understanding of all
task identities or boundaries in advance, which may not be feasible in real-world scenarios. CFeD (Ma
et al., 2022) and FedCL (Yao & Sun, 2020) utilize surrogate datasets or global importance weights to
distill learned knowledge and constrain local model updates, respectively. However, these methods
require extra effort to generate or collect auxiliary data and may consume extra communications or
storage overhead. GLFC (Dong et al., 2022) is another approach that uses a class-aware gradient
compensation loss and a class-semantic relation distillation loss to overcome catastrophic forgetting,
but it only considers class-incremental learning scenarios.

Unlike previous methods, our approach does not require explicit task boundaries, making it more
practical for real-world applications. Our method achieves this by aligning the gradients of the current
model with those of the global buffer, which contains past experiences from multiple clients. By
leveraging this collective experience, FedGP can effectively mitigate forgetting of previously learned
knowledge in FL scenarios with continuous data and real-world temporal dynamics.

24


	Introduction
	Related Work
	Preliminaries
	FedGP
	Experiments
	Image Classification
	Settings
	Results

	Text Classification

	Conclusion
	Supplementary results
	Ablations on our algorithm design
	Effect of buffer size for old tasks
	Performance on the current task
	Comparison with FOT
	Progressive performance of FedGP across tasks
	Forgetting analysis across datasets
	Extended analysis on the influence of buffer size
	Effect of the number of users.
	Random sampling
	Backward and forward transfer metrics
	Effect of different curriculum.
	Additional hyperparameters for specific methods

	Object Detection
	Additional algorithms
	Continual learning methods with FedGP
	Additional related work
	Continual Learning (CL)
	Federated Learning (FL)
	Continual Federated Learning (CFL)


