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Abstract—We explore the ability of deep ReLU
neural networks to realize functions on manifolds. By
establishing appropriate assumptions, we ensure that
the coordinate charts can be exactly represented without
error. Locally, we construct networks characterizing
tooth functions on coordinate neighborhoods. To re-
solve mismatches arising from the manifold’s complex
structure, we further develop a global tooth function
defined over the entire manifold, effectively represented
by a ReLU neural network.

Index Terms—Deep ReLU Neural Networks, Learn-
ing on Manifolds, Function Representation, Network
Complexity.

I. Introduction
Deep neural networks (DNNs) have emerged as pow-

erful tools for tackling data-driven tasks across various
scientific fields. Traditionally designed for inputs in vector
spaces, DNNs leverage well-defined operations tailored
to such structures [1], [6], [12], [13], [16]. However, with
advancements in sensing technologies, the ability to work
with manifold data has become increasingly important, as
such data often arise directly or indirectly in real-world
applications. Moreover, it is often observed that many
datasets of interest inherently reside on low-dimensional
manifolds within higher-dimensional ambient spaces, fur-
ther complicating the learning process and emphasizing the
need for methods that respect this underlying geometry.

While DNNs have demonstrated remarkable empirical
success in modeling complex problems, the theoretical
understanding of their effectiveness remains limited.

In this paper, we focus on the ability of DNNs to
exactly construct functions on manifolds, with a particular
emphasis on tooth functions, which play a critical role in
various theoretical aspects of DNNs [3], [5], [20]. In our
setting, and thanks to the assumptions made about the
given manifold, we investigated the realization of coordinate
charts using DNNs. Furthermore, while the tooth function
is initially defined locally, it can result in mismatches
between different regions. By leveraging ReLU DNNs, we
successfully constructed a general tooth function defined
over the entire manifold without any mismatches. More
specifically, the results of this paper aim to bridge the
so-called Theory-to-Practice gap in deep learning [4], [17].
Therefore, a follow-up paper addressing the Theory-to-
Practice gap for ReLU DNNs with manifold-based data
will be available soon.

To the best of our knowledge, the setting we consider has
not been explored in prior work. Most recent studies focus
on smooth manifolds [7], [8], [10], [14], [23] and the ability
of DNNs to approximate functions defined on them. By
contrast, we address Piecewise Linear Manifolds, demon-
strating that for this specific structure, tooth functions
can be represented exactly, without approximation, using
ReLU DNNs.

II. Piecewise linear d-manifold
Manifolds are widely used as an input domain and has

been extensively explored in many works when dealing
with low-dimensional data. In this section, we briefly recall
some preliminaries regarding piecewise linear manifolds.

Definition 1. Let U ⊆ Rd, V ⊆ Rm be open sets. A
function f : U → V is said to be piecewise affine-linear (PL)
if it is continuous and there is a locally-finite decomposition
U =

⋃
i∈I Ki into connected, closed subsets Ki ⊆ U with

respect to which f |Ki is affine-linear.

For a PL homeomorphism it is required that both maps,
the bijection and its inverse, are piecewise linear. Note
that, on a d-dimensional manifold (d-manifold) M, for any
x ∈ M, there exist an open neighborhood U ⊂ M of x
and a homeomorphism φ such that φ : U 7→ φ(U) ⊆ Rd.
The pair (U, φ) is called a chart for M around x. A chart
essentially defines a local coordinate system on M. An
atlas of M is a collection of charts (Ui, φi), i ∈ I, such that
M =

⋃
i∈I Ui. Given (Ui, φi)i∈I an atlas, the transition

functions are φi ◦ φ−1
j : φj(Ui ∩ Uj) 7→ φi(Ui ∩ Uj) with

the obvious convention that we consider φi ◦ φ−1
j if and

only if Ui ∩ Uj ̸= ∅.

Definition 2. A manifold M is called a piecewise linear
manifold of dimension d (PL d-manifold) if it is equipped
with an open covering M =

⋃
i∈I Ui and coordinate charts

φi : Ui → (Vi ⊆ Rd) to open subsets of Rd for which

φi ◦ φ−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

are PL homeomorphisms.

In our paper, we consider a compact PL d-manifold M
embedded in RD, where D > d. Intuitively, although M
is a (hyper) surface in RD, locally it is identified with Rd.

Definition 3 (Continuous functions on PL d-manifolds).
Let M be a manifold. A function f : M → R is continuous



if for any chart (U, φ), f ◦ φ−1 : φ(U) → R is continuous.
The space C(M) is the space of all continuous real-valued
functions on M, equipped with the supremum norm ∥·∥C(M).
The definition of continuous functions is independent of the
choice of the chart (U, φ).

III. ReLU Neural network in local coordinate
We describe the architecture of deep ReLU neural

networks which we use throughout this paper. We will
be concerned with target classes related to ReLU neural
networks. Here we use bold symbols for vectors x ∈
Rn, n ∈ N, and normal symbols for x ∈ M. Let
ϱ : R → R, such that ϱ(t) = max{0, t} be the ReLU
activation function. Given a depth L ∈ N, an architecture
(N0, N1, . . . , NL) ∈ NL+1, and neural network coefficients
Φ =

(
(W i, bi)

)L

i=1 ∈ ×L

i=1
(
RNi×Ni−1 × RNi

)
, we define

their realization R(Φ) ∈ C(RN0 ,RNL) as R(Φ)(x) =
xL, where x0 = x ∈ RN0 , xi = ϱ

(
W ixi−1 + bi

)
∈

RNi for i ∈ [L − 1], and xL = W LxL−1 + bL ∈ RNL ,
with ϱ applied componentwise. Let H(N0,...,NL),C be the
class of feed-forward neural networks with the architecture
A = (N0, . . . , NL) and a uniform coefficients upper bound
C > 0 as follows:

HA;C :=
{
R(Φ):Φ ∈

L

×
i=1

(
RNi×Ni−1 × RNi

)
| ∥Φ∥ℓ∞ ≤ C

}
,

where ∥Φ∥ℓ∞ := maxi=1,...,L max{∥W i∥ℓ∞ , ∥bi∥ℓ∞}, such
that ∥W i∥ℓ∞ := maxk,j |W i

k,j | and ∥bi∥ℓ∞ := maxk |bi
k|.

A. ReLU hat function on PL d-manifolds
Let d, D ∈ N, R > 0 and define

ΛR : R × R → (−∞, 1], (s, t) 7→ 1 − R · |t − s| (1)

furthermore using the ReLU activation function, we have
∆R : RD × RD → (−∞, 1], (ξ, x) 7→

(∑D
i=1 ΛR(ξi, xi)

)
−

(D − 1) and

ϑR : RD × RD → [0, 1], (ξ, x) 7→ ϱ(∆R(ξ, x)) (2)

Our aim is to extend the previous construction to M.
First, we construct a finite number of coordinates neigh-
borhoods that cover M. Let B(z, r) denotes the open
ℓ∞ ball in RD with center z ∈ M and radius r > 0:
B(z, r) := {x ∈ RD such that supj∈{1,...,D} |xj −zj | < r},

where (z1, . . . , zD) is the coordinate of z in RD. Here, we
assume that M ⊆ B(0, 1) = B(0RD , 1). The properties of
M imply the existence of a fixed number CM ∈ N, a finite
collection of points ci ∈ M for i = 1, . . . , CM, and r > 0,
such that M ⊆

⋃
i Bi(r) ≡ Bi(r).

We proceed under the following list of assumptions.

Assumption 1. Let 0 < r < ∞ such that there exists ci ∈
M, i ∈ IM = {1, . . . , CM}, with the following properties:

1) M ⊆
⋃CM

i=1 Bi(r);
2) Ui = Bi(r) ∩ M is a convex set for any i ∈ IM;
3) for any i ̸= j where i, j ∈ {1, . . . , CM}, we have

Ui
o ∩ Uj

o = ∅. (3)

We define our coordinate neighborhood Ui as the inter-
section Bi(r)∩M for any i ∈ {1, . . . , CM}. Let the tangent
space of M at ci denoted by Tci(M) = span(vi1, . . . , vid),
where {vi1, . . . , vid} form an orthonormal basis, then
Vi = [vi1, . . . , vid] is a projection matrix belongs to RD×d.
Furthermore, Vi is a semi-orthogonal matrix, that is,
V T

i Vi = Id, where Id is the identity matrix of size d. For
any x ∈ Ui, we define the projection ϕi as a coordinate
system, i = 1, . . . , CM, as follows:

ϕi(x) = Rd(oi)(V T
i (x − ci) + bi), (4)

where Rd(oi) is a d × d rotation matrix where oi is the
angle of rotation and bi ∈ Rd is a translation vector, such
that there exists r > 0 (from Assumption 1) where

[−r/2, r/2]d ⊆ϕi(Ui)= ϕi(Bi(r) ∩ M)⊆ [−r
√

D, r
√

D]d. (5)

Consequently

r
√

d ≤ diam(ϕi(Ui)) ≤ 2r
√

dD. (6)

Note that (compared to [8], [9], [19], [21], [22]) in our
construction of ϕi, we use a different factor, that is, the
rotation matrix Rd(oi) instead of a scaling factor. The fact
that M is a connected manifold insures that the center ci

of any coordinate neighborhood Ui is at least connected
in Ui to the boundary of the ℓ∞ ball Bi(r) and at most it
belongs in the diagonal of Bi(r). The right-hand interval
[−r

√
D, r

√
D]d in (5) contains the maximum projection

of Ui with respect to ϕi. The maximum projection refers
to the diagonal of the ℓ∞ ball, hence

√
D appears since

we use the ℓ∞ norm in RD. While [−r/2, r/2]d refers to the
minimum projection of Ui with respect to ϕi.

Each ϕi is a linear function which can be constructed by
a single layer ReLU network. Therefore, let r > 0 satisfies
Assumption 1 and {(Ui, ϕi)}CM

i=1 be an atlas on M.
At this point, our paper will continue with an atlas

{(Ui, ϕi)}CM
i=1 that fulfills Assumption 1 such that ϕi is

given by (4) and satisfies (5) for any i ∈ {1, . . . , CM}.
In order to construct a tooth function on M, we use

similar techniques to the construction of a bump function
on manifolds cf., [24, Chapter 13]. We define a tooth
function on ϕi(Ui), i ∈ {1, . . . , CM}, by first letting ci

be the center of Ui and ϕi(ci) = ci ∈ [−r/2, r/2]d, where
Φi : Ui × Ui → ϕi(Ui) × ϕi(Ui), (ci, x) 7→ (ϕi(ci), ϕi(x))
Φ−1

i : ϕi(Ui) × ϕi(Ui) → Ui × Ui, (ci, x) 7→ (ci, ϕ−1
i (x)).

Hence, we define a tooth function on ϕi(Ui) × ϕi(Ui) ⊂
[−r

√
D, r

√
D]d × [−r

√
D, r

√
D]d

Γi
R :[−r

√
D, r

√
D]d × [−r

√
D, r

√
D]d → [0, 1],

(ci, x) 7→ ϑR ◦ Φ−1
i (ci, x).

(7)

Consequently, a tooth function on M can be defined as

Γi
R ◦ Φi :Ui × Ui → [0, 1],

(ci, x) 7→ Γi
R ◦ Φi(ci, x) =

(
ϑR ◦ Φ−1

i

)∣∣
Φi(ci,x) .

Defining functions on manifolds in the previous way is
already known for deep learning [11]. The construction of



a geodesic distance on M throw ReLU networks is not a
part of the scope of this paper. Instead we use L∞ distance
from the ambient space RD in the construction of the tooth
function. Next, we derive some properties of Γi

R.

Theorem 4. Let r, R > 0, M be a manifold and
{(Ui, ϕi)}CM

i=1 be an atlas on M. Furthermore, let ci ∈ M
be the center of Ui such that ϕi(ci) = ci ∈ [−r/2, r/2]d,
and i ∈ {1, . . . , CM}. Then the tooth function Γi

R from (7)
satisfies the following:

supp Γi
R(ci, · ) ⊂ ϕi

(
Bi(R−1)

)
∩ ϕi (Ui)

and let τ = (2RD)−1, we have
1
2(2

√
2

3 )d(d−1)/p · min(τ, r)d/p

≤ ∥Γi
R(ci, · )∥Lp([−r

√
D, r

√
D]d) ≤

(
2
√

D · min(R−1, r)
)d/p

.

Proof. We use the early constructed atlas {(Ui, ϕi)}CM
i=1

in Section III-A. For a fixed ci ∈ Ui, in view of
(2) and (7) the tooth function Γi

R(ci, x) ̸= 0 only if
∆R(ϕ−1

i (ci), ϕ−1
i (x)) > 0. Consequently,

D∑
j=1

ΛR(ϕ−1
i (ci)j , ϕ−1

i (x)j) > D − 1.

Since ΛR(ϕ−1
i (ci)j , ϕ−1

i (x)j) ∈ (−∞, 1], we need that
ΛR(ϕ−1

i (ci)j , ϕ−1
i (x)j) > 0 for all j ∈ {1, . . . , D} which

is (in view of (1)) possible if |ϕ−1
i (ci)j − ϕ−1

i (x)j | ≤ 1
R for

any j ∈ {1, . . . , D}, hence

x ∈ ϕi

(
B(ϕ−1

i (ci), R−1) ∩ Ui

)
= ϕi

(
Bi(R−1)

)
∩ ϕi (Ui) ,

last equality holds true since ϕi is injective, for any i ∈
{1, . . . , CM}. Concerning the lower and upper bounds for
Γi

R(ci, · ) we recall that by assumption

diam (ϕi(Ui)) = diam (ϕi (Bi(r) ∩ M)) ≤ 2r
√

dD,

(see (5) and its consequence), hence

ϕi

(
Bi(R−1)

)
∩ ϕi (Ui) = ϕi

(
Bi(R−1)

)
∩ ϕi (Bi(r) ∩ M)

= ϕi

(
Bi(R−1) ∩ Bi(r) ∩ M

)
= ϕi

(
Bi(min(R−1, r)) ∩ M

)
,

the second equality holds true thanks to the injectivity of
ϕi. Then, we conclude that

diam
(
ϕi

(
Bi(R−1)

)
∩ ϕi (Ui)

)
≤ 2 · min(R−1, r) ·

√
dD.

Without loss of generality, the set ϕi

(
Bi(R−1)

)
∩ϕi (Ui) can

be thought as the product of intervals of the form (ai, bi)
such that 0 < ai < bi < 1 (see (5)) where i ∈ {1, . . . , d}.
We can bound the Lebesgue measure λd on Rd of a bounded
measurable set E =

∏d
i=1(ai, bi) ⊂ Rd as follows:

λd(E) =
d∏

i=1
(bi − ai) =

(
d∏

i=1
(bi − ai)2

)1/2

≤

(
1
d

d∑
i=1

(bi − ai)2

)d/2

=
(

1
d

)d/2
diam(E)d.

(8)

Hence, for any x ∈ ϕi

(
Bi(R−1)

)
∩ ϕi (Ui), we get∥∥Γi

R(ci, · )
∥∥

Lp(([−r
√

D,r
√

D]d)

≤ λd

(
ϕi

(
Bi(R−1)

)
∩ ϕi (Ui)

) 1
p ≤

(
2 · min(R−1, r)

√
D
) d

p

.

For the lower bound, we use a similar idea from [5, Proof
of Lemma 2.3]. That is, let x ∈ ϕi (Bi(τ)) ∩ ϕi (Ui),
then ϕ−1

i (x) ∈ Bi(τ) ∩ Ui which implies that for any
j ∈ {1, . . . , D} we have

ΛR

(
cij , ϕ−1

i (x)j

)
= 1 − R

∣∣∣ϕ−1
i (x))j − cij

∣∣∣ ≥ 1 − 1
2D

.

Consequently, we get ∆R

(
ci, ϕ−1

i (x)
)

=(∑D
j=1 ΛR

(
cij , ϕ−1

i (x)j

))
− (D − 1) ≥ 1

2 , and hence

Γi
R(ci, x) ≥ 1

2 for any x ∈ ϕi (Bi(τ)) ∩ ϕi (Ui) . (9)

The fact that ϕi (Bi(τ)) ∩ ϕi (Ui) =
ϕi (Bi(τ) ∩ Bi(r) ∩ M) = ϕi (Bi(min (τ, r) ∩ M) implies
that (in view of (6)) for any j ∈ {1, . . . , d} the sides sj of
ϕi (Bi(τ)) ∩ ϕi (Ui) satisfy

sj ∈ [min (τ, r) , 2 · min (τ, r) ·
√

D]. (10)

Furthermore, in our case min (τ, r) ≤ si ≤ 2
√

D ·min (τ, r),
hence, let M = 2

√
D · min (τ, r) and m = min (τ, r) it

follows that

(M + m)2

4Mm
≤

(
M + m ·

√
D
)2

4Mm
= 9

8 .
(11)

In view of (5), (8), [15, Theorem A] (10) and (11), we
get λd (ϕi (Bi(τ)) ∩ ϕi (Ui)) ≥

(
( 9

8 )− d−1
2 · 1

d ·
∑d

j=1 sj

)d ≥(
( 8

9 ) d−1
2 · 1

d · min(τ, r) · d
)d

≥ ( 2
√

2
3 )d(d−1) · min(τ, r)d.

Overall, from (5), using the previous inequality and (9),
we obtain the lower bound∥∥Γi

R(ci, · )
∥∥

Lp([−r
√

D,r
√

D]d) ≥ 1
2λd (ϕi (Bi(τ)) ∩ ϕi (Ui))

1
p

≥ 1
2(2

√
2

3 )d(d−1)/p · min(τ, r)
d
p .

In order to avoid any projection of a given x using
unmatched charts, we need to construct an indicator
function. For example if there exists y ∈ M \ Ui such
that the orthogonal projection of y on Tci

M is the same
as ϕi(ci) then Γi

R ◦ Φi(ci, y) = 1. This case should be
eliminated, that is, for i ∈ {1, . . . , CM} we would like to
get Γi

R ◦ Φi(ci, y) = 0 if y ∈ M \ Ui. Hence, we construct
a ReLU network 1i

r,δ that satisfies:
1i

r,δ(x) = 1 if x ∈ Bi(r − δ) ∩ Ui,

0 < 1i
r,δ(x) < 1 if x ∈

◦
U i \ Bi(r − δ),

1i
r,δ(x) = 0 if x /∈

◦
U i,

(12)



which can be considered as indicator function in our
setting. We refer the reader to Section III-B for more
details about the existence and the construction of the
indicator function 1i

r,δ using ReLU networks. Moreover,
in view of Theorem 4 for p = ∞ and (12), if x /∈ Ui then
max(0, Γi

1/r ◦ Φi(ci, x) + 1i
r,δ(x) − 1) = ϱ(Γi

1/r ◦ Φi(ci, x) −
1) = 0. Furthermore, if x ∈ Bi(r − δ) ∩ Ui, we have
1i

r,δ(x) = 1, which implies that max(0, Γi
1/r ◦ Φi(ci, x) +

1i
r,δ(x) − 1) = Γi

1/r ◦ Φi(ci, x). Consequently, the local
tooth function (without mismatching) can be constructed
as follows: Λi

r,δ(x) := ϱ(Γi
1/r ◦ Φi(ci, x) + 1i

r,δ(x) − 1) =
Γi

1/r◦Φi(ci, x) if x ∈ Bi(r−δ)∩Ui, and 0 if x /∈ Ui. Finally,
the global tooth function is defined as a summation of all
local teeth functions, i.e., Λr,δ(x) =

∑CM
i=1 Λi

r,δ(x).

B. ReLU indicator function on PL manifolds
Mainly, the indicator function 1Ui of an input x ∈

M determines the chart that x belongs to, for any
i ∈ {1, . . . , CM}, such that Ui = Bi(r) ∩ M satisfies
Assumption 1. We use an indicator function in order to
avoid any non proper coordinates neighborhood assignment
ϕi(y) if y /∈ Ui where i ∈ {1, . . . , CM}.

Lemma 5. Let 0 < δ ≤ r, d << D ∈ N and Ñj ∈ N such
that Ñj ≤ 3D where j ∈ {1, . . . , D − 1}. Let M be a d-
dimensional PL manifold embedded in RD and {(Ui, ϕi)}CM

i=1
be an atlas on M. Furthermore, let ci ∈ M be the center
of Ui and 1i

r,δ defined as

1i
r,δ(x) =


1 if x ∈ Bi(r − δ) ∩ Ui,

1 − 1
δ (x − r + δ) if x ∈ Ui \ Bi(r − δ) ∩ M

0 if x /∈ Ui.

then
1i

r,δ ∈ H(D,Ñ1,...,ÑD−1,1,1,1), 2/δ
.

Proof. In order to get a ReLU implementable indicator
function, we decompose 1Ui in two functions, namely 1[0,r]◦
L∞

i (x), such that 1[0,r] defined on R as follows:

1[0,r](t) :=
{

1 if t ∈ [0, r]
0 otherwise.

Further, let the distance function L∞
i : M → R+ be

defined as L∞
i (x) := max (|x1 − ci1|, . . . , |xD − ciD|) . The

function L∞
i measures the distance between any given data

x and the center ci of Ui with respect to the ℓ∞ norm, in
view of the Euclidean coordinate system in RD. The fact
that the maximum can be implemented using ReLU neural
networks without error, helps in the implementation of L∞

i .
In fact, if x1, x2 ∈ R, we have

max(x1, x2) = x1 + ϱ(x2 − x1) ∈ H(2,3,1),1 (13)

this implies that the maximum between two elements can
be implemented by a single hidden layer ReLU network,
since x1 = ϱ(x1) − ϱ(−x1).

In view of (13), for any x ∈ M, we can get L∞
i (x)

through a recursion argument. Indeed, in order to get the
maximum of (x1, x2, x3) it follows that we only need a
ReLU network with two hidden layers each contains at
most 9 neurons, that is, for any x1, x2, x3 ∈ R, we have
max(x1, x2, x3) = x1 +ϱ(x2 −x1)+ϱ(x3 −(x1 +ϱ(x2 −x1)))
assuming that our assumption holds true up to k > 3,
that is, max(x1, . . . , xk) can be represented as ReLU
neural networks with k − 1 hidden layers each layer
contains at most 3k neurons. Now, in order to repre-
sent max(x1, . . . , xk+1) as a ReLU network, we use (13):
max(x1, . . . , xk+1) = max(max(x1, . . . , xk), xk+1) which
can be seen as parallelization of two ReLU networks. Then,
there exists a ReLU network L∞

i such that L∞
i (x) =

max (|x1 − ci1|, . . . , |xD − ciD|) , using D − 1 layers each
contains at most 3D neurons. Hence, there exists C̃2 > 0
such that

L∞
i ∈ H(D,Ñ1,...,ÑD−1,1),C̃2

, where Ñ1, . . . , ÑD−1 ≤ 3D.
(14)

We use the following function to approximate 1[0,r]:

1r,δ(t) =


1 t ≤ r − δ,

1 − 1
δ (t − r + δ) t ∈ [r − δ, r] ,

0 t ≥ r,

(15)

where δ is the “width" of the error region (which should be
small enough). The function 1r,δ can be realized through a
ReLU network 1r,δ(t) = ϱ

(
1 − 1

δ ϱ(t − r + δ)
)
. Then, there

exists C̃1 > 0 (depends on δ) such that

1r,δ ∈ H(1,1,1,1),C̃1
. (16)

We can represent the function 1r,δ ◦ L∞
i (x) through a

composition of two ReLU neural networks, using (14) and
(16), i.e., 1r,δ ◦ L∞

i without error. The previous function
and its realization with a ReLU network satisfy:

1r,δ◦L∞
i (x) =


1 if x ∈ Bi(r − δ) ∩ M,

1 − 1
δ (t − r + δ) if x∈Ui\Bi(r − δ)∩M,

0 if x /∈ Ui.

In conclusion, it follows by a concatenation of networks,
(see e.g., [2], [18]), that

1r,δ ◦ L∞
i ∈ H(D,Ñ1,...,ÑD+1,1),C̃ , (17)

where C̃ = 2/δ and Ñ1, . . . , ÑD+1 ≤ 3D. In order to be
more precise with respect to the requirements in [18,
Lemma 2.5], We have R(Φ1) = 1r,δ ∈ H(1,1,1,1),C̃1

and
R(Φ2) = L∞

i ∈ H(D,Ñ1,...,ÑD−1,1),C̃2
here C̃2 = 1. Then,

we get R(Φ1) ◦ R(Φ2) = 1r,δ ◦ L∞
i = 1i

r,δ such that 1i
r,δ ∈

H(D,Ñ1,...,ÑD+1,1),max(C̃2,C̃1(1×C̃2+1) ⊂
H(D,Ñ1,...,ÑD−1,1,1,1),2/δ

, where Ñ1, . . . , ÑD−1 ≤ 3D.
Obviously the coefficients bound C̃ = 2/δ is independent
on the dimensions of the ambient space RD and M.
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