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Abstract
Exploring open-vocabulary video action recognition is a promising
venture, which aims to recognize previously unseen actions within
any arbitrary set of categories. Existing methods typically adapt
pretrained image-text models to the video domain, capitalizing
on their inherent strengths in generalization. A common thread
among such methods is the augmentation of visual embeddings
with temporal information to improve the recognition of seen ac-
tions. Yet, they compromise with standard less-informative action
descriptions, thus faltering when confronted with novel actions.
Drawing inspiration from human cognitive processes, we argue
that augmenting text embeddings with human prior knowledge
is pivotal for open-vocabulary video action recognition. To real-
ize this, we innovatively blend video models with Large Language
Models (LLMs) to devise Action-conditioned Prompts. Specifically,
we propose the Action-Centric generation strategy to produce a set
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of descriptive sentences that contain distinctive features for iden-
tifying given actions. Building upon this foundation, we further
introduce a multi-modal action knowledge alignment mechanism to
align concepts in video and textual knowledge encapsulated within
the prompts. Extensive experiments on various video benchmarks,
including zero-shot, few-shot, and base-to-novel generalization
settings, demonstrate that our method not only sets new SOTA
performance but also possesses excellent interpretability.

CCS Concepts
• Computing methodologies → Activity recognition and un-
derstanding.
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1 Introduction
Why can humans effortlessly recognize novel actions in videos,
even with limited or no prior exposure to those specific actions?
For instance, one can easily identify the action of “making sushi" in
Figure 1, despite having rarely witnessed the process of sushi prepa-
ration. This remarkable ability primarily arises from two factors.
First, a comprehensive understanding of foundational actions allow
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humans to quickly approximate a novel action, e.g., familiarity with
the general action of cooking aids in the recognition of making
sushi as a culinary process. Secondly, auxiliary knowledge involved
in specific actions serves as supplementary insights to enhance the
recognition of novel unseen actions, e.g., recognizing the chef’s
role, identifying raw fish slices, and capturing the distinctive rolling
motion in “sushi making". Drawing inspiration from human cog-
nitive behavior, we posit that an effective open-vocabulary video
action model should mirror these two factors, thus empowering it
to recognize any arbitrary actions without prior exposure.

Existing approaches [18, 27, 33, 46] always build open-vocabulary
video actionmodels on the foundation of pretrained Vision-Language
(VL)models, such as CLIP [40]. The primary aim is to harness CLIP’s
robust generalization capabilities and extend them to the video do-
main [46]. This is achieved by calculating the similarity between
query video and textual embeddings of various categories, with
the highest similarity score indicating the matched category. The
open-vocabulary capability stems from the fact that any action
categories can be represented and matched through text. Building
on this premise, a common thread among existing methods is the
integration of temporal modeling to evolve the image encoder into a
video encoder, with techniques like cross-frame interactions [18] or
temporal attention [33]. These advancements [33, 34, 46] have been
instrumental in improving temporal perception of seen actions.

Nevertheless, such approaches can be regarded as addressing
only the first factor. While they excel in recognizing foundational
actions, these methods generally fall short when tasked with recog-
nizing novel actions [41]. In Figure 1, we illustrate these methods
relying on basic, manually designed prompts such as “a video of
making sushi” often yield lower CLIP match scores, lacking a clear
mechanism to discern novel actions. Considering the second factor
mentioned previously, it’s crucial to equip themodel with additional
knowledge pertaining to novel actions. Such considerations should
encompass multi-attribute descriptions like the scene of the action,
involved elements, relevant props, and so forth. As shown in Figure
1, integrating this auxiliary knowledge into the text encoder enables
it to anchor the visual content, thereby enhancing the model’s abil-
ity to recognize novel actions. Motivated by these observations, our
key insight is that distinct actions, especially novel actions that
are previously unencountered, should be associated with their
own set of knowledge-rich prompts, which we term as Action-
conditioned Prompts. As shown in Figure 2, these prompts are
distinct from more generic, hand-written prompts. They not only
establish connections with foundational actions but also facilitate
the recognition of novel actions through specialized knowledge.

However, manually crafting these prompts presents significant
challenges: 1) the process is resource-intensive, both in time and
cost, making it impractical for large sets of actions. 2) the variability
in annotators’ perceptions may result in inconsistent and subjec-
tive descriptions, inevitably introducing biases. To address these
challenges, we innovatively blend video action models with Large
Language Models (LLMs) to devise Action-conditioned Prompts.
Specifically, we introduce a novel Action-Centric generation strat-
egy, which begins by constructing Hierarchical Attribute Graph for
video actions. This graph systematically defines pivotal attributes
across the categories of Scene, Actor, and Body-related aspects, as
depicted in Figure 3, which provides a solid foundation for themodel

Figure 1: The first line represents a traditional prompt, while
the subsequent lines detail prompts that describe the action
through multi-attributes. Scores on the right indicate CLIP
match scores between the video and textual embeddings of
corresponding prompts.
to achieve a comprehensive understanding of video actions. The
Action-Centric generation strategy then utilizes GPT-4 to generate
knowledge-rich descriptions corresponding to each predefined at-
tribute in the graph. These descriptions are then synthesized into
multi-attribute Action-conditioned Prompts, processed through
CLIP’s text encoder and combined classifiers to advance open-
vocabulary video action recognition. Building on these generating
prompts, we further introduce a Multi-modal Action Knowledge
Alignment (MAKA) mechanism to align visual concepts in video
and textual knowledge within prompts. Specifically, we adopt the
cross-modal late interaction, enabling the model to capture the
fine-grained relevancy between each prompt and each frame.

Extensive experiments demonstrate that our method exhibits sig-
nificant advancements over established baselines in various scenar-
ios including zero-shot, few-shot, and base-to-novel generalization
settings, as validated across five distinct video benchmarks. In all
these extensive settings and metrics, our approach has consistently
set new SOTA standards. Moreover, our method possesses excellent
interpretability, providing a clear pathway to understanding how
the model makes decisions when discerning actions through visual
and textual cues. The contributions of this paper are as follows:

1) We argue that Action-conditioned Prompts with human
prior knowledge is pivotal for open-vocabulary video action recog-
nition. Accordingly, we propose a novel Action-Centric generation
strategy to systematically devise these knowledge-rich prompts.

2)We further introduce a Multi-modal Action Knowledge Align-
ment (MAKA) to align visual concepts in video and textual knowl-
edge within prompts. This mechanism provides fine-grained match-
ing between videos and the corresponding prompts, enhancing the
accuracy and interpretability of the action recognition.

3) Extensive experiments across a range of video benchmarks,
including zero-shot, few-shot, and base-to-novel generalization
settings, demonstrate that our method not only establishes new
SOTA performance but also exhibits exceptional interpretability.
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Figure 2: Comparative visualization of text embeddings space
for different prompts. The standard prompt yields limited in-
formation, concentrating embeddings within a confined area
of the text space. In contrast, Action-conditioned prompts
offer multi-attribute descriptions of actions, not only estab-
lishing connections with foundational actions but also pro-
viding the necessary knowledge to discern novel actions.

2 Related Works
2.1 Video Action Recognition
The realm of video action recognition can be delineated into two
principal methodologies: uni-modal and multi-modal approaches.
Uni-modal methods are purely visual models, intensely focused
on encoding both spatial and motion cues. Early approaches [10,
42, 45, 59] leveraged various low-level streams to capture temporal
information, e.g., optical flow and RGB differences. More recently,
advanced mechanisms like 3D CNNs [8, 10, 13, 48] and video trans-
formers [2, 29, 56] are proposed to model the long-range spatio-
temporal relationships and have shown consistent improvements.

Complementing these uni-modal methods, the advent of Visual-
Language (VL) pre-training [40] has catalyzed the emergence of
multi-modalmethods [60]. These innovativemulti-modal approaches
aim to harness CLIP’s generalized VL representations for video
recognition. A thread among such methods is the integration of
temporal modeling to evolve the image encoder into a video encoder.
For instance, Ni et al. [33] propose a cross-frame attention mecha-
nism that explicitly exchanges information across frames. Pan et
al. [34] develop 3D convolutional modules as adapters within the
CLIP framework. Works such as ActionCLIP [46], STAN [28], ATM
[52] also adopt similar strategies. Yet, these approaches generally
underperform when tasked with identifying novel actions [41]. In
contrast, our work introduces knowledge-rich action-conditioned
prompts, aiming to enhance the recognition of novel actions.

2.2 Prompt Learning using LLM
The art of prompt engineering holds significant sway in refining
the accuracy of language models [6, 14, 15, 44, 55] and vision-
language models [40], which has incited extensive research into
optimizing prompt formats. Early efforts ranged from assembling

manually crafted prompts [3] to devising learnable prompt tokens
[23, 26, 61, 62]. Advancing beyond these, contemporary studies
have leveraged prompts auto-generated by LLMs [31, 32, 37, 57],
using them to create structured attribute lists that are reformulated
into captions for use with CLIP. These methods demonstrate how
the rich knowledge embedded in LLMs can effectively augment the
perceptual capabilities of visual models. Considering that previous
methods have primarily concentrated on fine-grained zero-shot im-
age classification, there remains a lack of a systematic approach for
exploring knowledge-rich prompts tailored to actions. This work
seeks to complement the scarce literature by introducing innovative
Action-conditioned Prompts for video action recognition.

3 Method
We first briefly overview the architecture of the CLIP model for
video action recognition. Then, we elaborate on the critical compo-
nent: Action-conditioned Prompts. Finally, we introduce the Multi-
modal Action Knowledge Alignment mechanism.

3.1 Adapt CLIP for video action recognition
Given a video𝑉 ∈ R𝑇×𝐻×𝑊 ×3 with𝑇 frames and a text description
𝐶 , where 𝑉 and𝐶 are sampled from a set of videos and a collection
of action category names respectively, we feed the𝑇 frames into the
video encoder 𝑓𝜃𝑣 and the text𝐶 into the text encoder 𝑓𝜃𝑡 to obtain a
video representation 𝑣 and a text representation 𝑐 correspondingly,

𝑣 = 𝑓𝜃𝑣 (𝑉 ), 𝑐 = 𝑓𝜃𝑡 (𝐶) . (1)

The primary objective in fine-tuning clip for video action model lies
in maximizing the similarity 𝑠𝑖𝑚(𝑣, 𝑐) if 𝑣 and 𝑐 are correspondingly
matched, and otherwise minimizing it. Typically, the similarity is
calculated using cosine similarity,

𝑠𝑖𝑚(𝑣, 𝑐) = ⟨𝑣, 𝑐⟩
∥𝑣 ∥∥𝑐 ∥ . (2)

During inference, the similarity score is calculated between the
given video and each action category, with the highest-scoring cat-
egory being designated as the video’s top-1 predicted classification.

3.2 Action-conditioned Prompts Generation
Figure 1 demonstrates the importance of supplementing models
with expansive knowledge to augment action recognition. How-
ever, acquiring expert annotations is both cost-prohibitive and
labor-intensive. It is also subject to individual biases, leading to
inconsistent results. To address this, we harness the capabilities
of Large Language Models (LLMs), e.g., GPT-4, known for their
extensive knowledge and versatility. Despite the absence of visual
training data, LLMs can generate descriptions that capture action
characteristics. This capability stems from the text data used in
their training, which is authored by individuals imbued with visual
knowledge, indirectly laying a foundation for visual recognition.

Although the application of LLMs to provide classificatory visual
cues has previously been investigated [1, 31, 32], existing methods
have predominantly concentrated on fine-grained image classifica-
tion. For example, [31] focuses on the differentiation of various bird
species, emphasizing static visual cues. Nonetheless, the analysis
of video data demands a more holistic understanding of actions,
incorporating not only visual elements but also the environmental
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Figure 3: Illustration of Action-conditioned Prompts generation workflow: On the left, the process of defining the Hierarchical
Attribute Graph is visualized. The middle section depicts the querying process with LLMs, transforming action and attributes
into structured prompts. On the right, we present sample snippets of the prompts generated.

and temporal contexts related to actors and scenes. Therefore, we
propose an Action-Centric generation strategy. This strategy
initially provides a comprehensive definition of video actions, fully
capturing the distinctive features inherent to video actions. Building
upon this foundation, by leveraging a series of defined core action
attributes, we utilize LLMs to obtain specific multi-attribute action
descriptions, culminating in the formation of Action-conditioned
Prompts corresponding to the defined actions. We subsequently
describe the specific steps of the Action-Centric generation strategy.

3.2.1 Hierarchical Attribute Graph of Video Actions. To dis-
cern critical attributes for action recognition and provide a complete
definition of video actions, we initially categorize the components
of an action into three fundamental aspects: Scene, Actor, and Body.
These three dimensions collectively encapsulate all core contents
of video actions, distinguishing them from the static attributes asso-
ciated with still images. We then consult GPT-4 to ascertain which
attributes within each aspect are necessary to differentiate actions.
From GPT-4’s responses, we select the four most representative
attributes for each aspect. This process culminates in 12 core at-
tributes, distributed across the three components, as displayed in
the left part in Figure 3. Through this approach, we have developed
a hierarchical video action attribute graph, which offers a compre-
hensive definition of video actions and lays a solid foundation for
generating prompts. For a comprehensive understanding of the
inquiries and GPT-4’s responses, refer to the appendix.

3.2.2 Multi-attribute Action-conditioned Prompts. Building
on the attributes defined in the hierarchical attribute graph, we
further utilize GPT-4 to generate knowledge-rich descriptive sen-
tences for each action category, forming the basis for our Action-
conditioned Prompts. Specifically, we first construct a set of LLM-
prompts. Then, for each LLM-prompt, we generate a suite of 12
distinct action-conditioned prompts, ensuring that every action is
matched with tailored descriptive phrases, as depicted in Figure 3.

Taking the HMDB dataset as an example, which contains 51
categories, if 3 LLM-prompts are used for each category, the total

Figure 4: Illustration of the MAKA mechanism.

number of prompts generated would be 1886 = 3× 12× 51. We con-
strain each prompt to amaximum of 30 tokens, truncating at the end
of a sentence to ensure succinctness. Further refinements include
the elimination of superfluous spaces and standardization of punc-
tuation, enhancing consistency. Selected examples are showcased in
the right segment of Figure 3. Before inputting each prompt into the
action recognition model, we concatenate the action-conditioned
prompt with a standard prompt format, “a video of {action}”, to
explicitly denote the represented action. For more LLM-prompts
across all datasets and more detailed design specifics, please refer
to the appendix in the supplementary material.
Reliability of the generated prompts. It is crucial to highlight
that manual verification has been integrated into critical stages
to safeguard the credibility of the generated content. The human
selection of attributes was meticulously conducted through discus-
sions among domain experts. To further ensure the reliability of the
generated prompts, we manually conducted a rapid double-check of
the corresponding prompts to eliminate any unreasonable prompts.

3.3 Multi-modal Action Knowledge Alignment
These generated action-conditioned prompts equip the model with
a multifaceted understanding of actions. However, the challenge
that follows is effectively aligning these prompts, which offer vari-
ous perspectives, with corresponding visual concepts within the
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videos. Previous methods temporally aggregate the embeddings of
video frames, e.g., mean pooling in [41] or attention pooling in [33],
to yield a video-level representation. This approach, while preva-
lent, is not conducive to fine-grained alignment and leaves much
to be desired in terms of nuanced representation and alignment
strategies. To tackle this issue, we introduce a novel Multi-modal
Action Knowledge Alignment mechanism to foster a more pre-
cise correspondence between text and video data.

To capture the multi-faceted features of videos, we implement a
multi-view strategy [8, 13, 51] that samples multiple clips per video
with several spatial crops, which allows the pre-trained vision-
language model to encode each video into multiple frame embed-
dings, as illustrated in Figure 4. Further, inspired by [21, 58], we
apply a cross-modal late interaction to model the fine-grained rele-
vancy between each prompt and each frame.

Specifically, we define 𝑛𝑣 and 𝑛𝑡 as the count of frames for the
video 𝑉 and the number of prompts for the category 𝐶 , respec-
tively. The visual features, denoted as 𝑣 = 𝑓𝜃𝑣 (𝑉 ) ∈ R𝑛𝑣×𝑑 , and the
prompt embeddings, denoted as 𝑐 = 𝑓𝜃𝑡 (𝐶) ∈ R𝑛𝑡×𝑑 , are encoded
accordingly. Here, 𝑣 and 𝑐 represent the normalized embeddings.
Note that the current 𝐶 no longer refers to the category name but
rather a series of action-conditioned prompts. The fine-grained
similarity between 𝑣 and 𝑐 is computed via the following process:

For the 𝑖-th visual features in 𝑣 , we assess its similarity across
all prompt embeddings 𝑐 , selecting the highest similarity by

max
0≤ 𝑗<𝑛𝑡

𝑣⊤𝑖 𝑐 𝑗 , (3)

which represents the maximum fine-grained similarity within the
𝐶 category. The video-to-category similarity is then the average of
these maximum similarities across all visual features, given by

𝑠𝑖𝑚𝑣2𝑡 (𝑣, 𝑐) =
1
𝑛𝑣

𝑛𝑣∑︁
𝑖=1

max
0≤ 𝑗<𝑛𝑡

𝑣⊤𝑖 𝑐 𝑗 . (4)

Conversely, for each 𝑖-th prompt embedding in 𝑐 , we calculate its
similarity with all visual features 𝑣 , adopting the highest as the
fine-grained maximum similarity. The category-to-video similarity
is the average of these values,

𝑠𝑖𝑚𝑡2𝑣 (𝑣, 𝑐) =
1
𝑛𝑡

𝑛𝑡∑︁
𝑖=1

max
0≤ 𝑗<𝑛𝑣

𝑣⊤𝑗 𝑐𝑖 . (5)

We refine the cosine similarity computation (Equation (2)), in
the training and inference processes by integrating both video-to-
category and category-to-video similarities,

𝑠𝑖𝑚(𝑣, 𝑐) = 1
2
(𝑠𝑖𝑚𝑣2𝑡 (𝑣, 𝑐) + 𝑠𝑖𝑚𝑡2𝑣 (𝑣, 𝑐)) . (6)

For model fine-tuning, we utilize a standardized protocol as out-
lined in ViFi-CLIP [41]. More details of the training objectives and
procedures are provided in the appendix.

Though inspired from [21, 58], it diverges significantly in its
application of the cross-modal late interaction. Prior methods [58]
have concentrated on fine-grained image-text matching at a token
level, necessitating extensive training to relearn these associations.
Such an approach does not contribute to enhancing generalizability.
In contrast, the primary aim of our method is to establish frame-
to-prompt correspondences, grounding similarity pairings in the
natural image-text matching capabilities that are a forte of CLIP.

By leveraging this inherent strength, frame-to-prompt associations
are more conducive to improved generalization.

4 Experiments
4.1 Experimental Setup
Datasets.We conduct experiments on five widely used video bench-
marks: Kinetics-400 and 600 [7, 20], HMDB-51 [22], UCF-101 [43]
and SSv2 [17]. See the appendix for more details of these datasets.
Implementation details.We use ViT-B/16 based CLIP [40] model
for our experiments. Our adaptation of the CLIP model follows [41],
with tailored modifications to the prompts and fine-grained simi-
larity function used. We refer to our method as AP-CLIP (Action-
conditioned Prompt). We use GPT-4 as the default prompt gener-
ator, and the default number of LLM-prompts is 3. Moreover, we
align with previous methods [18, 33, 41, 46] for various settings
including zero-shot, base-to-novel, few-shot, and fully-supervised.
Specifically, we utilize 8 frames and employ multi-view inference
incorporating 2 spatial crops and 2 temporal views. In the fully
supervised setting, our approach extends to using 16 frames, com-
bined with multi-view inference featuring 4 spatial crops and 3
temporal views, consistent with compared methods. More detailed
prompts and training configurations are provided in the appendix.

4.2 Comparisons with State-of-the-art
4.2.1 AP-CLIP Generalizes Well ! To demonstrate the open-
vocabulary recognizing capabilities, we follow the benchmark in
[41], evaluating models in two distinct settings: 1) zero-shot set-
ting and 2) base-to-novel setting. The former primarily assesses
the model’s capacity to recognize novel actions across different
datasets, while the latter tests its performance to recognize novel
and rarer actions within the given dataset. Further details regarding
these settings can be found in the appendix.
(i) Zero-shot Setting: We train the model on a large video ac-
tion recognition dataset, Kinetics-400 and evaluate across different
datasets, HMDB-51, UCF-101 and Kinetics-600. Results are pre-
sented in Table 1, where our model, AP-CLIP, is benchmarked
against both uni-modal methods and other CLIP-based approaches.
It’s evident that even the vanilla CLIP demonstrates an impres-
sive generalization performance as compared to uni-modal meth-
ods. Further analysis reveals that methods like ActionCLIP and
XCLIP, which integrate additional temporal modules, may overfit
on trained actions, thereby failing to show substantial generaliza-
tion improvements. An alternative strategy, exemplified by ViFi-
CLIP, involves merely fine-tuning the foundational CLIP model
without incorporating external modules, yielding more promising
generalization performance. Against this backdrop, our AP-CLIP
also employs a straightforward fine-tuning of the CLIP model, in-
corporating action-conditioned prompts and the multi-modal action
knowledge alignment. Table 1 demonstrates that AP-CLIP yields
consistent performance improvements, with gains of +4.1%, +5.6%,
and +2.2% on the HMDB-51, UCF-101, and Kinetics-600 datasets.

Furthermore, our method has demonstrated its adaptability. As a
representative, we choose the current best competitor, Open-VCLIP
[50], a robust model specifically designed for zero-shot action recog-
nition. By integrating our action-conditioned prompts in place of its
manual prompts, Open-VCLIP experienced a remarkable boost in
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Table 1: Zero-shot setting: We compare our AP-CLIP with
uni-modal and CLIP-based approaches. Besides our AP-CLIP,
generating action-conditioned prompts can be seamlessly
integrated into the zero-shot approach [50]. Gains over pre-
vious methods are indicated in the bottom row. Methods
marked with ‘*’ are re-evaluated using their official code.

Method HMDB-51 UCF-101 K600

Uni-modal zero-shot action recognition models

ASR [47] 21.8 ± 0.9 24.4 ± 1.0 -
ZSECOC [38] 22.6 ± 1.2 15.1 ± 1.7 -
UR [63] 24.4 ± 1.6 17.5 ± 1.6 -
E2E [5] 32.7 48 -
GCN [16] - - 22.3 ± 0.6
ER-ZSAR [9] 35.3 ± 4.6 51.8 ± 2.9 42.1 ± 1.4

Adapting pre-trained VL models (ViT-B/16)

Vanilla CLIP [40] 40.8 ± 0.3 63.2 ± 0.2 59.8 ± 0.3
ActionCLIP [46] 40.8 ± 5.4 58.3 ± 3.4 66.7 ± 1.1
XCLIP [33] 44.6 ± 5.2 72.0 ± 2.3 65.2 ± 0.4
A5 [18] 44.3 ± 2.2 69.3 ± 4.2 55.8 ±0.7
VicTR [19] 51.0 ± 1.3 72.4 ± 0.3 -
ViFi-CLIP [41] 51.3 ± 0.6 76.8 ± 0.7 71.2 ± 1.0
AP-CLIP(ours) 55.4 ± 0.8 82.4 ± 0.5 73.4 ± 1.0

+4.1 +5.6 +2.2

Open-VCLIP [50] 53.9 ± 1.2 83.4 ± 1.2 73.0 ± 0.8
+ Action prompts 57.0 ± 0.8 85.1 ± 1.2 74.4 ± 0.7

+3.1 +1.7 +1.4

Adapting pre-trained VL models (ViT-L/14)
BIKE* [54] 50.2 ± 3.7 79.1 ± 3.5 68.5 ± 1.2
Text4Vis [53] 58.1 ± 5.7 85.8 ± 3.3 68.9 ± 1.0
DiST [39] 57.5 ± 1.6 74.9 ± 0.8 -
Open-VCLIP [50] 59.0 ± 0.6 87.6 ± 1.2 81.1 ± 0.8
+ Action prompts 60.0 ± 1.4 90.2 ± 0.4 81.9 ± 1.0

+1.0 +2.6 +0.8

its generalization capabilities, all without necessitating any retrain-
ing. Remarkably, under the ViT-L/14 CLIP model, this integration
enhances Open-VCLIP to achieve groundbreaking performance,
recording impressive scores of 60.0%, 90.2%, and 81.9% across the
three datasets, thereby establishing new SOTA in zero-shot action
recognition. These results underscore significant generalization
improvements from our action-conditioned prompts.
(ii) Base-to-novel Generalization Setting: In Table 2, we evaluate
the generalization from base to novel classes on four datasets, K-400,
HMDB-51, UCF-101 and SSv2. All methods were initially trained on
well-established base classes, while the novel classes represented a
realm of previously unencountered scenarios, i.e., base and novel
classes are disjoint. We adopted two distinct approaches for the lat-
ter three datasets: one leveraging the original CLIP parameters, and
another utilizing parameters pre-trained on Kinetics-400. As shown
in Table 2, AP-CLIP demonstrates noticeable gains in novel accu-
racy. Despite observing marginal reductions in base accuracy under
certain conditions, our approach effectively balanced the trade-off
between base and novel class performance, securing the highest

overall harmonic mean on all datasets. We also observed varied
gains across different datasets. Temporally challenging datasets
like SSv2 [17] showed limited improvements, whereas less tempo-
rally complex datasets like UCF [43] exhibited significant gains.
In section 4.2.3, we provide a detailed discussion about the main
reason for the smaller gains observed on the temporally challenging
dataset. We also validate that our action-conditioned prompts can
indeed facilitate larger improvements on such datasets.

4.2.2 AP-CLIP Specializes Well ! Our investigation extends to
AP-CLIP’s efficacy in narrowing the domain gap within supervised
video action recognition tasks. We evaluate its performance under
two distinct data scenarios: 1) few-shot setting, where the number
of training samples is limited [11, 12, 49], and 2) fully-supervised
setting, where we have an abundance of samples. These settings
help us to understand and evaluate the specialization performance
of our approach under varying levels of data availability.
(i) Few-shot Setting: Table 3 delineates AP-CLIP’s performance
within a few-shot learning scenario, in comparison with other CLIP-
based methodologies. AP-CLIP consistently exhibits performance
improvements with increasing shots. Across both HMDB-51 and
UCF-101 datasets, AP-CLIP surpasses all competing methods in
each shot division (2, 4, 8, 16 shots). Notably, the advantage of our
approach is more pronounced when training data is scant. The
lesser training data provided, the more significant the improvement
brought by our method. This suggests that our prompts provide
more extensive knowledge, enabling the model to rapidly gain a
deeper understanding of actions even with fewer examples.
(ii) Fully-supervised Setting: We compare the performance of
AP-CLIP trained on Kinetics-400 with uni-modal video-specific
models and other CLIP-based methods in Table 4. To ensure a
fair comparison, results from methods employing ViT-L/14 have
been excluded, with all CLIP-related models in this study based
on the ViT-B/16 architecture. Despite AP-CLIP’s primary intent
for novel action recognition, Table 4 indicates its commendable
applicability to fully-supervised tasks. Although it may not outstrip
the more temporally intricate methods like UniFormerV2 [24] and
DUALPATH [35], themargin of difference is not significant. Relative
to baseline CLIP model fine-tuning [41], our approach delivers
competitive performance. This substantiates our approach’s utility
in narrowing the domain gap between image and video modalities.

4.2.3 AP-CLIP Thrives under Temporally Challenging Sce-
narios! Our approach provides a comprehensive definition of
video actions, emphasizing all essential aspects rather than merely
the static attributes typically focused on in previous research [1,
31, 32]. Specifically, the Body-Related attributes defined in our
method, such as Move Speed and Body Part Movement, are tai-
lored to deepen the understanding of an action’s movement pattern.
However, results on temporally challenging datasets like SSv2 are
somewhat disappointing, consistent with the performance of our
baseline [41]. We identify that the principal limitation is the need
for enhanced temporal perception within the visual encoder to
more effectively synchronize with our prompts.

Therefore, to further validate the efficacy of our approach under
Temporally Challenging Scenarios, we supplemented our method
with baselines incorporating Temporal Modules (TM), as detailed
in [50]. These modules extend the receptive field of the attention
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Table 2: Base-to-novel generalization: We compare the generalization ability of AP-CLIP with other models that adapt CLIP [40].
The values to the left of the “/” symbol indicate that models commence training from the native parameters of CLIP, while
the right values denote that models are initially pre-trained on Kinetics-400, serving to bridge the modality gap. HM refers to
harmonic mean which measures the trade-off between base and novel accuracy. Gains are shown in the bottom row.

K-400 HMDB-51 UCF-101 SSv2

Method Base Novel HM Base Novel HM Base Novel HM Base Novel HM

Vanilla CLIP [40] 62.3 53.4 57.5 53.3 / - 46.8 / - 49.8 / - 78.5 / - 63.6 / - 70.3 / - 4.9 / - 5.3 / - 5.1 / -
ActionCLIP [46] 61.0 46.2 52.6 69.1 / 69.0 37.3 / 57.2 48.5 / 62.6 90.1 / 85.6 58.1 / 75.3 70.7 / 80.1 13.3 / 8.1 10.1 / 8.7 11.5 / 8.4
XCLIP [33] 74.1 56.4 64.0 69.4 / 75.8 45.5 / 52.0 55.0 / 61.7 89.9 / 95.4 58.9 / 74.0 71.2 / 83.4 8.5 / 14.2 6.6 / 11.0 7.4 / 12.4
A5 [18] 69.7 37.6 48.8 46.2 / 70.4 16.0 / 51.7 23.8 / 59.6 90.5 / 95.8 40.4 / 71.0 55.8 / 81.6 8.3 / 12.9 5.3 / 5.7 6.4 / 7.9
ViFi-CLIP [41] 76.4 61.1 67.9 73.8 / 77.1 53.3 / 54.9 61.9 / 64.1 92.9 / 95.9 67.7 / 74.1 78.3 / 83.6 16.2 / 15.8 12.1 / 11.5 13.9 / 13.3

AP-CLIP(ours) 77.2 64.1 70.0 74.6 / 75.4 55.9 / 60.3 63.9 / 67.0 94.8 / 95.0 77.0 / 82.9 84.8 / 88.5 16.3 / 16.5 12.9 /12.7 14.4 / 14.3
+0.8 +3.0 +2.1 +0.8 / -1.7 +2.6 / +3.1 +2.0 / +2.9 +1.7 / -0.9 +9.3 / +7.6 +6.5 / +4.9 +0.1 / +0.7 +0.7 / +1.2 +0.5 / +1.0

Table 3: Few-shot setting: The values on two sides of the “/” have the same meaning as in Table 2, one from CLIP’s native
parameters and the other pre-trained on Kinetics-400. Gains are indicated in the bottom row.

Model HMDB-51 UCF-101

𝐾=2 𝐾=4 𝐾=8 𝐾=16 𝐾=2 𝐾=4 𝐾=8 𝐾=16

Vanilla CLIP [40] 41.9 / - 41.9 / - 41.9 / - 41.9 / - 63.6 / - 63.6 / - 63.6 / - 63.6 / -
ActionCLIP [46] 47.5 / 54.3 57.9 / 56.2 57.3 / 59.3 59.1 / 66.1 70.6 / 76.7 71.5 / 80.4 73.0 / 87.6 91.4 / 91.8
XCLIP [33] 53.0 / 60.5 57.3 / 66.8 62.8 / 69.3 64.0 / 71.7 48.5 / 89.0 75.6 / 91.4 83.7 / 94.7 91.4 / 96.3
A5 [18] 39.7 / 46.7 50.7 / 50.4 56.0 / 61.3 62.4 / 65.8 71.4 / 76.3 79.9 / 84.4 85.7 / 90.7 89.9 / 93.0
ViFi-CLIP [41] 57.2 / 63.0 62.7 / 65.1 64.5 / 69.6 66.8 / 72.0 80.7 / 91.0 85.1 / 93.7 90.0 / 95.0 92.7 / 96.4

AP-CLIP(ours) 59.9 / 65.1 64.8 / 66.8 66.8 / 70.9 68.5 / 72.5 84.9 / 92.9 89.1 / 95.0 91.7 / 95.8 94.1 / 96.9
+2.7 / +2.1 +2.1 / +0.0 +2.3 / +1.3 +1.7 / +0.5 +4.2 / +1.9 +4.0 / +1.3 +1.7 / +0.8 +1.4 / +0.5

Figure 5: The second row illustrates the visualization of visual attention maps from corresponding video frames. The third row
displays the top-5 prompts for each video frame. For visual simplicity, two video frames are grouped together as they share the
same top 5 prompts. The corresponding CLIP match scores are shown to the right of the bar graphs.

mechanism to bolster temporal modeling capabilities. As demon-
strated in Table 5, integrating temporal perception into our model
leads to substantial improvements on the SSv2 dataset. Importantly,
these benefits primarily arise from the Body attributes, which signif-
icantly aid in comprehending the action’s movement pattern. This
evidence highlights their critical role in temporally demanding con-
texts. Given that temporal modules introduce computational costs

and provide limited benefits in non-temporal challenge scenarios,
they were not included as a standard method of this paper.

4.3 Ablation Experiments
Extensive ablation experiments are conducted to demonstrate the
efficacy of our AP-CLIP’s components. We start from ViFi-CLIP [41]
as the baseline, employing ViT-B/16 as its backbone. The model



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Chengyou Jia et al.

Table 4: Fully-supervised setting.

Method Frames Top-1 Top-5 Views

Uni-modal action recognition models

Uniformer-B [25] 32 83.0 95.4 4 × 3
TimeSformer-L [4] 96 80.7 94.7 1 × 3
Mformer-HR [36] 16 81.1 95.2 10 × 3
Swin-L [30] 32 83.1 95.9 4 × 3
ViViT-H [2] 16 84.8 95.8 4 × 3
UniFormerV2-B [24] 8 85.6 97.0 4 × 3
DUALPATH-B [35] 32 85.4 97.1 1× 3

Adapting pre-trained image VL models

ActionCLIP [46] 32 83.8 96.2 10 × 3
X-CLIP [33] 16 84.7 96.8 4 × 3
A6 [18] 16 76.9 93.5 -
STAN [28] 16 84.9 96.8 1 × 3

ViFi-CLIP [41] 16 83.9 96.3 4 × 3
AP-CLIP(ours) 16 85.1 96.8 4 × 3

Table 5: Results on temporally challenging SSv2 datasets.

Method Base Novel HM

Base(ViFi-CLIP) 16.2 12.1 13.9
Base+TM 16.7 (+0.5) 12.4 (+0.3) 14.2 (+0.3)
Ours 16.3 (+0.1) 12.9 (+0.8) 14.4 (+0.5)
Ours+TM 17.7 (+1.5) 14.1 (+2.0) 15.7 (+1.8)
Ours+TM w/o Body 16.8 (+0.6) 13.0 (+0.9) 14.6 (+0.7)

is pre-trained on the Kinetics-400 dataset. Evaluation is carried
out across various datasets, including HMDB-51, UCF-101, and
Kinetics-600, to assess the impact of action-conditioned prompts and
the multi-modal action knowledge alignment within our framework.
(i) Is the “action-conditioned prompts" important?

Table 6 assesses the effectiveness of different prompting strate-
gies on model performance. These include the single prompt from
ViFi-CLIP [41], a collection of manually crafted prompts in Open-
VCLIP [50], and several approaches involving prompts generated
by GPT. The generative strategies consist of Customized prompts
in [37], action prompts directly generated by LLMs, and our specif-
ically designed prompts. The findings suggest that LLM-generated
prompts, with their rich knowledge base, not only reduce manual
labor but also substantially bolster performance. Moreover, while
directly utilizing the extensive knowledge from LLMs is a trivial
solution, the Action-Centric generation strategy inherent in our
action-conditioned prompt generation can better manage knowl-
edge from various perspectives, resulting in better generalizability.
This approach better mirrors human cognitive processes, crafting
prompts that more effectively aid in action recognition.
(ii) Is the “multi-modal alignment" important?

The multi-modal alignment mechanism aims to align multi-
attribute prompts with videos and is thus applicable exclusively to
methods that utilize multiple prompts. Table 7 showcases that the
incorporation of MAKA with both Customized prompts and our
Action-conditioned Prompts results in uniform performance gains.
This suggests that the multi-modal alignment facilitates the model’s

Table 6: Analysis on different prompting strategies.

Method HMDB-51 UCF-101 K-600

Single [41] 51.3 76.8 71.2
Set [50] 52.9 79.1 71.4
Customized [37] 53.1 78.8 71.8

LLMs-Direct 52.7 77.9 71.1
AP(ours) 54.2 (+1.5) 80.7 (+2.8) 72.4 (+1.3)

Table 7: Ablation of the MAKA mechanism.

Method HMDB-51 UCF-101 K-600

Customized [37] 53.1 78.8 71.8
+ MAKA 53.9 (+0.8) 79.9 (+1.1) 72.2 (+0.4)

AP(ours) 54.2 80.7 72.4
+ MAKA 55.4 (+1.2) 82.4 (+1.7) 73.4 (+1.0)

development of a more comprehensive and nuanced comprehension
of actions, thereby enhancing recognition performance.

4.4 Interpretability
Owing to the multi-attribute action-conditioned prompts and the
multi-modal action knowledge alignment, our approach exhibits
notable interpretability, which aids in elucidating the rationale be-
hind the model’s judgments. In Figure 5, we present the attention
map visualizations of video frames alongside the score distribu-
tions for various attribute prompts. These visualizations reveal that
different frames within a video garner varying focal points, which
correspond to distinct prompts. For instance, as depicted in Figure 5
(left), initial frames focus primarily on the actor’s clothing and the
surrounding environment, where actor-related and scene-related
prompts provide more clues for judgment. Conversely, subsequent
frames shift attention to scene elements and props. Similarly, the
example on the right also demonstrates a shift in focus, from props
to the environment, and illustrates how well these aspects match
with the corresponding prompts. These observations affirm that
a model’s access to diverse knowledge enhances its action recog-
nition abilities. Crucially, they also highlight the importance of
concept alignment within the video to corresponding prompts, a
vital factor for interpretability. In the appendix, we provide a more
detailed visualization of the frame-to-prompt correspondence.

5 Conclusion
In this work, we blend video models with Large Language Models
(LLMs) to enhance open-vocabulary action recognition. Our strat-
egy centers on generating Action-conditioned Prompts that enrich
the textual embeddings in the CLIP model with human prior knowl-
edge. Building on these knowledge-based prompts, we introduce
a multi-modal action knowledge alignment mechanism to align
concepts in video and knowledge encapsulated within the prompts.
Extensive experiments not only demonstrate the effectiveness of
our approach but also highlight its superior interpretability. By
highlighting the significance of knowledge-based prompting, we
expect that this research will catalyze additional investigation and
innovation within the domain of action recognition.
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