
Scale-Adaptive Balancing of Exploration and Exploitation in Classical Planning

Stephen Wissow*1, Masataro Asai*2

1University of New Hampshire, 2MIT-IBM Watson AI Lab, sjw@cs.unh.edu, masataro.asai@ibm.com

Abstract

Balancing exploration and exploitation has been an impor-
tant problem in both adversarial games and automated plan-
ning. While it has been extensively analyzed in the Multi-
Armed Bandit (MAB) literature, and the game community
has achieved great success with MAB-based Monte Carlo
Tree Search (MCTS) methods, the symbolic planning com-
munity has struggled to advance in this area. We describe how
Upper Confidence Bound 1’s (UCB1’s) assumption of reward
distributions with known bounded support shared among sib-
lings (arms) is violated when MCTS/Trial-based Heuristic
Tree Search (THTS) in previous work uses heuristic values
of search nodes in classical planning problems as rewards. To
address this issue, we propose a new Gaussian bandit, UCB1-
Normal2, and analyze its regret bound. It is variance-aware
like UCB1-Normal and UCB-V, but has a distinct advantage:
it neither shares UCB-V’s assumption of known bounded
support nor relies on UCB1-Normal’s unfounded conjectures
on Student’s t and χ2 distributions. Our theoretical analysis
predicts that UCB1-Normal2 will perform well when the es-
timated variance is accurate, which can be expected in de-
terministic, discrete, finite state-space search, as in classical
planning. Our empirical evaluation confirms that MCTS com-
bined with UCB1-Normal2 outperforms Greedy Best First
Search (traditional baseline) as well as MCTS with other ban-
dits.

1 Introduction
From the early history of AI and in particular of automated
planning and scheduling, heuristic forward search has been a
primary methodology for tacking challenging combinatorial
problems. A rich variety of search algorithms have been pro-
posed, including Dijkstra search (Dijkstra 1959), A∗/ WA∗

(Hart, Nilsson, and Raphael 1968), and Greedy Best First
Search (Bonet and Geffner 2001, GBFS). They are divided
into three categories: optimizing, which must guarantee the
optimality of the output, satisficing, which may or may not
attempt to minimize solution cost, and agile, which ignores
solution cost and focuses on finding a solution quickly. This
paper focuses on the agile setting.

Unlike optimizing search, theoretical understanding of
satisficing and agile search has been limited. Recent theo-
retical work on GBFS (Heusner, Keller, and Helmert 2017,

*These authors contributed equally.

2018b,a; Kuroiwa and Beck 2022) refined the concept of
search progress in agile search, but only based on a post
hoc analysis that depends on oracular information, making
their insights difficult to apply to practical search algorithm
design, although it has been recently applied to a learning-
based approach (Ferber et al. 2022a). More importantly,
their analysis is incompatible with a wider range of random-
ized algorithms (Nakhost and Müller 2009; Imai and Kishi-
moto 2011; Kishimoto, Zhou, and Imai 2012; Valenzano
et al. 2014; Xie, Nakhost, and Müller 2012; Xie, Müller,
and Holte 2014; Xie et al. 2014; Xie, Müller, and Holte
2015; Asai and Fukunaga 2017; Kuroiwa and Beck 2022)
that outperform the deterministic baseline with randomized
explorations; as a result, their detailed theoretical proper-
ties are largely unknown except for probabilistic complete-
ness (Valenzano et al. 2014). It is unsurprising that ana-
lyzing randomized algorithms requires a statistical perspec-
tive, which is also growing more important due to recent
advances in learned heuristic functions (Toyer et al. 2018;
Ferber, Helmert, and Hoffmann 2020; Shen, Trevizan, and
Thiébaux 2020; Ferber et al. 2022b; Rivlin, Hazan, and
Karpas 2019; Gehring et al. 2022; Garrett, Kaelbling, and
Lozano-Pérez 2016).

In this paper, we tackle the problem of balancing explo-
ration and exploitation in classical planning through a sta-
tistical lens and from the perspective of MABs. Previous
work showed that traditional forward search algorithms (A*,
GBFS) can be seen as a form of MCTS, but we refine and
recast this paradigm as a repeated process of collecting a
reward dataset and exploring the environment based on esti-
mates obtained from this dataset. This perspective reveals
a theoretical issue in THTS (Schulte and Keller 2014), a
MCTS modified for classical planning that uses UCB1: the
optimization objective of classical planning has no a priori
known bound, and this violates the bounded reward assump-
tion of UCB1.

To apply MAB to classical planning without THTS’s the-
oretical issues, we propose UCB1-Normal2, a new Gaus-
sian bandit, and GreedyUCT-Normal2, a new agile plan-
ning algorithm that combines MCTS with UCB1-Normal2,
and show that GreedyUCT-Normal2 outperforms traditional
agile algorithms (GBFS), existing MCTS-based algorithms
(GreedyUCT, GreedyUCT*), and other MCTS-based al-
gorithms combined with existing variance-aware bandits

(UCB1-Normal and UCB-V).
In summary, our core contributions are as follows.

• We identify theoretical issues that arise when applying
UCB1 to planning tasks.

• To address these issues, we present UCB1-Normal2, a
new Gaussian bandit. We analyze its regret bound, which
improves as the estimated variance is closer to the true
variance, and is constant when they match. This makes
it particularly powerful in a deterministic and finite state
space such as classical planning.

• We present GreedyUCT-Normal2, a new forward search
algorithm that combines UCB1-Normal2 with MCTS
and outperforms existing algorithms in agile classical
planning.

2 Background
2.1 Classical Planning
We define a propositional STRIPS Planning problem as a
4-tuple [P,A, I,G] where P is a set of propositional vari-
ables, A is a set of actions, I ⊆ P is the initial state, and
G ⊆ P is a goal condition. Each action a ∈ A is a 4-tuple
[PRE(a), ADD(a), DEL(a), C(a)] where C(a) ∈ Z0+ is a
cost, PRE(a) ⊆ P is a precondition and ADD(a), DEL(a) ⊆
P are the add-effects and delete-effects. A state s ⊆ P
is a set of true propositions (all of P \ s is false), an ac-
tion a is applicable when s ⊇ PRE(a) (read: s satisfies
PRE(a)), and applying action a to s yields a new successor
state a(s) = (s \ DEL(a)) ∪ ADD(a).

The task of classical planning is to find a sequence of
actions called a plan (a1, · · · , an) where, for 1 ≤ t ≤ n,
s0 = I , st ⊇ PRE(at+1), st+1 = at+1(st), and sn ⊇ G. A
plan is optimal if there is no plan with lower cost

∑
t C(at).

A plan is otherwise called satisficing. In this paper, we as-
sume unit-cost: ∀a ∈ A; C(a) = 1.

A domain-independent heuristic function h in classi-
cal planning is a function of a state s and the problem
[P,A, I,G], but the notation h(s) usually omits the latter.
It returns an estimate of the cumulative cost from s to one of
the goal states (which satisfy G), typically through a sym-
bolic, non-statistical means including problem relaxation
and abstraction. Notable state-of-the-art functions that ap-
pear in this paper include hFF, hmax, hadd, and hGC (Hoff-
mann and Nebel 2001; Bonet and Geffner 2001; Fikes, Hart,
and Nilsson 1972). Their implementation details are beyond
the scope of this paper, and are included in the appendix
Sec. S1.

2.2 Multi-Armed Bandit (MAB)
MAB (Thompson 1933; Robbins 1952; Bush and Mosteller
1953) is a problem of finding the best strategy to choose
from multiple unknown reward distributions. It is typically
depicted by a row of K slot machines each with a lever or
“arm.” Each time the player plays one of the machines and
pulls an arm (a trial), the player receives a reward sampled
from the distribution assigned to that arm. Through multiple
trials, the player discovers the arms’ distributions and selects
arms to maximize the reward.

The most common optimization objective of MAB is Cu-
mulative Regret (CR) minimization. Let ri (1 ≤ i ≤ K) be a
random variable (RV) for the reward that we would receive
when we pull arm i. We call p(ri) an unknown reward distri-
bution of i. Let ti be a RV of the number of trials performed
on arm i and T =

∑
i ti be the total number of trials across

all arms.

Definition 1. The cumulative regret ∆ is the gap between
the optimal and the actual expected cumulative reward: ∆ =
T maxi E[ri]−

∑
i E[ti]E[ri].

Algorithms whose regret per trial ∆/T converges to 0
with T → ∞ are called zero-regret. Those with a loga-
rithmically upper-bounded regret, O(log T), are also called
asymptotically optimal because this is the theoretical opti-
mum achievable by any algorithm (Lai, Robbins et al. 1985).

Upper Confidence Bound 1 (Auer, Cesa-Bianchi, and Fis-
cher 2002, UCB1) is a logarithmic CR MAB for rewards
ri ∈ [0, c] with known c. Let ri1 . . . riti ∼ p(ri) be ti i.i.d.
samples obtained from arm i. Let µ̂i =

1
ti

∑ti
j=1 rij . To min-

imize CR, UCB1 selects i with the largest Upper Confidence
Bound defined below.

UCB1i = µ̂i + c
√
2 log T/ti

LCB1i = µ̂i − c
√
2 log T/ti

(1)

For reward (cost) minimization, LCB1 instead select i with
the smallest Lower Confidence Bound defined above (e.g., in
Kishimoto et al. (2022)), but we may use the terms U/LCB1
interchangeably. UCB1’s second term is often called an ex-
ploration term. Generally, an LCB is obtained by flipping
the sign of the exploration term in a UCB. U/LCB1 refers
to a specific algorithm while U/LCB refers to general confi-
dence bounds. c is sometimes set heuristically as a hyperpa-
rameter called the exploration rate.

2.3 Forward Heuristic Best-First Search
Classical planning problems are typically solved as a path
finding problem defined over a state space graph induced by
the transition rules, and the current dominant approach is
based on forward search. Forward search maintains a set of
search nodes called an open list. They repeatedly (1) (se-
lection) select a node from the open list, (2) (expansion)
generate its successor nodes, (3) (evaluation) evaluate the
successor nodes, and (4) (queueing) reinsert them into the
open list. Termination typically occurs when a node is ex-
panded that satisfies a goal condition, but a satisficing/agile
algorithm can perform early goal detection, which immedi-
ately checks whether any successor node generated in step
(2) satisfies the goal condition. Since this paper focuses on
agile search, we use early goal detection for all algorithms.

Within forward search, forward best-first search defines a
particular ordering in the open list by defining node evalua-
tion criteria (NEC) f for selecting the best node in each iter-
ation. Let us denote a node by n and the state represented by
n as sn. As NEC, Dijkstra search uses fDijkstra(n) = g(n)
(g-value), the minimum cost from the initial state I to the
state sn found so far. A∗ uses fA∗(n) = g(n) + h(sn), the
sum of g-value and the value returned by a heuristic function

h (h-value). GBFS uses fGBFS(n) = h(sn). Forward best-
first search that uses h is called forward heuristic best-first
search. Dijkstra search is a special case of A∗ with h(s) = 0.

Typically, an open list is implemented as a priority queue
ordered by NEC. Since the NEC can be stateful, e.g., g(sn)
can update its value, a priority queue-based open list as-
sumes monotonic updates to the NEC because it has an un-
favorable time complexity for removals. A∗, Dijkstra, and
GBFS satisfy this condition because g(n) decreases mono-
tonically and h(sn) is constant.

MCTS is a class of forward heuristic best-first search that
represents the open list as the leaves of a tree. We call the tree
a tree-based open list. Our MCTS is based on the description
in Keller and Helmert (2013) and Schulte and Keller (2014),
whose implementation details are available in the appendix
(Sec. S2). Overall, MCTS works in the same manner as other
best-first search with a few key differences. (1) (selection)
To select a node from the tree-based open list, it recursively
selects an action on each branch of the tree, start from the
root, using the NEC to select a successor node, descending
until reaching a leaf node. (Sometimes the action selection
rule is also called a tree policy.) At the leaf, it (2) (expan-
sion) generates successor nodes, (3) (evaluation) evaluates
the new successor nodes, (4) (queueing) attaches them to
the leaf, and backpropagates (or backs-up) the information
to the leaf’s ancestors, all the way up to the root.

The evaluation obtains a heuristic value h(sn) of a leaf
node n. In adversarial games like Backgammon or Go, it is
obtained either by (1) hand-crafted heuristics, (2) playouts
(or rollouts) where the behaviors of both players are simu-
lated by uniformly random actions (default policy) until the
game terminates, or (3) a hybrid truncated simulation, which
returns a hand-crafted heuristic after performing a short sim-
ulation (Gelly and Silver 2011). In recent work, the default
policy is replaced by a learned policy (Silver et al. 2016).

Trial-based Heuristic Tree Search (Keller and Helmert
2013; Schulte and Keller 2014, THTS), a MCTS for clas-
sical planning, is based on two key observations: (1) the
rollout is unlikely to terminate in classical planning due
to sparse goals, unlike adversarial games, like Go, which
are guaranteed to finish in a limited number of steps with
a clear outcome (win/loss); and (2) a tree-based open list
can reorder nodes efficiently under non-monotonic updates
to NEC, and thus is more flexible than a priority queue-
based open list, and can readily implement standard search
algorithms such as A∗ and GBFS without significant perfor-
mance penalty. We no longer distinguish THTS and MCTS
and imply that the former is included in the latter, because
THTS is a special case of MCTS with an immediately trun-
cated default policy simulation.

Finally, Upper Confidence Bound applied to trees (Koc-
sis and Szepesvári 2006, UCT) is a MCTS that uses
UCB1 for action selection and became widely popular
in adversarial games. Schulte and Keller (2014) proposed
several variants of UCT including GreedyUCT (GUCT),
UCT*, and GreedyUCT* (GUCT*). We often abbreviate
a set of algorithms to save space, e.g., [G]UCT[*] denotes
{UCT,GUCT,UCT∗,GUCT∗}. In this paper, we mainly
discuss GUCT[*] due to our focus on the agile satisficing

setting that does not prioritize minimization of solution cost.

3 Theoretical Issues in Existing MCTS-based
Classical Planning

We revisit A∗ and GBFS implemented as MCTS from a sta-
tistical perspective. Let S(n) be the set of successors of a
node n, L(n) be the set of leaf nodes in the subtree under n,
and C(n, n′) be the path cost between n and n′ on the tree
(equivalent to an action cost if n′ is a successor of n). We de-
fine the NECs of A∗ and GBFS as fA∗(n) = g(n)+hA∗(n)
and fGBFS(n) = hGBFS(n) which satisfy the following
equations, shown by expanding hA∗ and hGBFS recursively
and assuming hA∗(n′) = hGBFS(n

′) = h(sn′) if n′ is a
leaf.

hA∗(n) = minn′∈S(n)[C(n, n
′) + hA∗(n′)]

= minn′∈L(n)[C(n, n
′) + h(sn′)]

hGBFS(n) = minn′∈S(n)[hGBFS(n
′)]

= minn′∈L(n)[h(sn′)]

Observe that these NECs estimate the minimum of the cost-
to-go from the dataset/samples L(n). The minimum is also
known as an order statistic; other order statistics include the
top-k element, the q-quantile, and the median (0.5-quantile).
In contrast, [G]UCT computes the average (instead of min-
imum) over the dataset, and adds an exploration term to the
average based on LCB1:

hUCT(n) =
1

|L(n)|
∑

n′∈S(n) |L(n′)|(C(n, n′)

+ hUCT(n
′))

= 1
|L(n)|

∑
n′∈L(n) (C(n, n′) + h(sn′))

hGUCT(n) =
1

|L(n)|
∑

n′∈S(n) |L(n′)|hGUCT(n
′)

= 1
|L(n)|

∑
n′∈L(n) h(sn′)

fUCT(n) =g(n) + hUCT(n)− c
√
(2 log |L(p)|)/|L(n)|

fGUCT(n) = hGUCT(n)− c
√
(2 log |L(p)|)/|L(n)|

where p is a parent node of n and |L(p)| is the number of
leaf nodes in the subtree of the parent. |L(p)| and |L(n)| re-
spectively correspond to T and ti in Eq. 1. Note that the term
“monte-carlo estimate” is commonly used in the context of
estimating the integral/expectation/average, but less often in
estimating the maximum/minimum, though we continue us-
ing the term MCTS.

From the statistical estimation standpoint, existing
MCTS-based planning algorithms have a number of theo-
retical issues. First, note that the samples of heuristic val-
ues collected from L(n) correspond to the rewards in the
MAB algorithms, and that UCB1 assumes reward distribu-
tions with known bounds shared by all arms. However, such
a priori known bounds do not exist for the heuristic values
of classical planning, unlike adversarial games whose re-
wards are either +1/0 or +1/-1 representing a win/loss. Also,
usually the range of heuristic values in each subtree of the
search tree substantially differ from each other. Schulte and

Keller (2014) claimed to have addressed this issue by mod-
ifying the UCB1, but their modification does not fully ad-
dress the issue, as we discuss below.

fGUCT-01(n)

= hGUCT(n)−m
M−m − c

√
(2 log |L(p)|)/|L(n)| (2)

m+ (M −m)fGUCT-01(n)

= hGUCT(n)− c(M −m)
√

(2 log |L(p)|)/|L(n)| (3)

Let us call their variant GUCT-01. GUCT-01 normal-
izes the first term of the NEC to [0, 1] by taking the
minimum and maximum among n’s siblings sharing the
parent p. Given M = maxn′∈S(p) hGUCT(n

′), m =
minn′∈S(p) hGUCT(n

′), and a hyperparameter c, GUCT-01
modifies fGUCT into fGUCT-01 (Eq. 2). However, the node or-
dering by NEC is maintained when all arms are shifted and
scaled by the same amount, thus GUCT-01 is identical to
the standard UCB1 with a reward range [0, c(M − m)] for
all arms (Eq. 3); we additionally note that this version avoids
a division-by-zero issue for M −m = 0.

There are two issues in GUCT-01: First, GUCT-01 does
not address the fact that different subtrees have different
ranges of heuristic values. Second, we would expect GUCT-
01 to explore excessively, because the range [0, c(M − n)]
obtained from the data of the entire subtree of the parent
is always broader than that of each child, since the parent’s
data is a union of those from all children. We do note that
M − m differs for each parent, and thus GUCT-01 adjusts
its exploration rate in a different parts of the search tree. In
other words, GUCT-01 is depth-aware, but is not breadth-
aware: it considers the reward range only for the parent, and
not for each child.

Further, in an attempt to improve the performance of
[G]UCT, Schulte and Keller (2014) noted that using the av-
erage is “rather odd” for planning, and proposed UCT* and
GreedyUCT* (GUCT*) which combines hA∗ and hGBFS

with LCB1 without statistical justification.
Finally, these variants failed to improve over traditional

algorithms (e.g., GBFS) unless combined with various other
enhancements such as deferred heuristic evaluation (DE)
and preferred operators (PO). The theoretical characteristics
of these enhancements are not well understood, rendering
their use ad hoc and the reason for GUCT-01’s performance
inconclusive, and motivating better theoretical analysis.

4 Bandit Algorithms with Unbounded
Distributions with Different Scales

To handle reward distributions with unknown support that
differs across arms, we need a MAB that assumes an un-
bounded reward distribution spanning the real numbers. We
use the Gaussian distribution here, although future work
may consider other distributions. Formally, we assume each
arm i has a reward distribution N (µi, σ

2
i) for some unknown

µi, σ
2
i . As σ2

i differs across i, the reward uncertainty differs
across the arms. By contrast, the reward uncertainty of each
arm in UCB1 is expressed by the range [0, c], which is the
same across the arms. We now discuss the shortcomings of

MABs from previous work (Eq. 4-7), and present our new
MAB (Eq. 8).

UCB1-Normali = µ̂i + σ̂i

√
(16 log T)/ti (4)

UCB1-Tuned1 = (5)

µ̂i + c

√
min(1/4, σ̂2

i +
√

2 log T/ti) log T/ti

UCB-Vi = µ̂i + σ̂i

√
(2 log T)/ti + (3c log T)/ti (6)

Bayes-UCT2i = µ̂Bayes
i + σ̂Bayes

i

√
2 log T (7)

UCB1-Normal2i = µ̂i + σ̂i

√
2 log T (8)

The UCB1-Normal MAB (Auer, Cesa-Bianchi, and Fis-
cher 2002, Theorem 4), which was proposed along with
UCB1 [idem, Theorem 1], is designed exactly for this
scenario but is still unpopular. Given ti i.i.d. samples
ri1 . . . riti ∼ N (µi, σ

2
i) from each arm i where T =

∑
i ti,

it chooses i that maximizes the metric shown in Eq. 4. To
apply this bandit to MCTS, substitute T = |L(p)| and
ti = |L(n)|, and backpropagate the statistics µ̂i, σ̂

2
i (see

Appendix Sec. S4). For minimization tasks such as classical
planning, use the LCB. We refer to the GUCT variant using
UCB1-Normal as GUCT-Normal. An advantage of UCB1-
Normal is its logarithmic upper bound on regret (Auer, Cesa-
Bianchi, and Fischer 2002, Appendix B). However, it did not
perform well in our empirical evaluation, likely because its
proof relies on two conjectures which are explicitly stated
by the authors as not guaranteed to hold.

Theorem 1 (From (Auer, Cesa-Bianchi, and Fischer
2002)). UCB1-Normal has a logarithmic regret-per-arm
256

σ2
i log T

∆2
i

+1+ π2

2 +8 log T if, for a Student’s t RV X with

s degrees of freedom (DOF), ∀a ∈ [0,
√
2(s+ 1)];P (X ≥

a) ≤ e−a2/4, and if, for a χ2 RV X with s DOF, P (X ≥
4s) ≤ e−(s+1)/2.

To avoid relying on these two conjectures, we need an al-
ternate MAB that similarly adjusts the exploration rate based
on the variance. Candidates include UCB1-Tuned (Auer,
Cesa-Bianchi, and Fischer 2002) in Eq. 5, UCB-V (Audib-
ert, Munos, and Szepesvári 2009) in Eq. 6, and Bayes-UCT2
(Tesauro, Rajan, and Segal 2010) in Eq. 7 (not to be con-
fused with Bayes-UCB (Kaufmann, Cappé, and Garivier
2012)), but they all have various limitations. UCB1-Tuned
assumes a bounded reward distribution and lacks a regret
bound. UCB-V improves UCB1-Tuned with a regret proof
but it also assumes a bounded reward distribution. Bayes-
UCT2 lacks a regret bound, proves its convergence only
for bounded reward distributions, lacks a thorough ablation
study for its 3 modifications to UCB1-based MCTS, and
lacks evaluation on diverse tasks as it is tested only on a
synthetic tree (fixed depth, width, and rewards).

We present UCB1-Normal2 (Eq. 8), a new, conservative,
trimmed-down version of Bayes-UCT2, and analyze its re-
gret bound.

Theorem 2 (Main Result). Let α ∈ [0, 1] be an unknown
problem-dependent constant and χ2

1−α,n be the critical

value for the tail probability of a χ2 distribution with signifi-
cance α and DOF n that satisfies P (tiσ̂

2
i /σ

2
i < χ2

1−α,ti) =
α. UCB1-Normal2 has a worst-case polynomial, best-case
constant regret-per-arm

−4(logα)σ2
i log T

∆2
i

+1 + 2C +
(1− α)T (T + 1)(2T + 1)

3
α→1−−−→ 1 + 2C

where C is a finite constant if each arm is pulled M =
inf{n|8 < χ2

1−α,n} times in the beginning.

Proof. (Sketch of appendix Sec. S3.2-S3.3.) We use Hoeffd-
ing’s inequality for sub-Gaussian distributions as Gaussian
distributions belong to sub-Gaussian distributions. Unlike
in UCB1 where the rewards have a fixed known support
[0, c], we do not know the true reward variance σ2

i . There-
fore, we use the fact that tiσ̂i

2/σ2
i follows a χ2 distribution

and P (tiσ̂i
2/σ2

i < χ2
1−α,ti) = α for some α. We use union-

bound to address the correlation and further upper-bound the
tail probability. We also use χ2

1−α,ti ≥ χ2
1−α,2 = −2 logα

for ti ≥ 2. The resulting upper bound contains an infinite
series C. Its convergence condition dictates the minimum
pulls M that must be performed initially. □

Polynomial regrets are generally worse than logarithmic
regrets of UCB1-Normal. However, our regret bound im-
proves over that of UCB1-Normal if T is small and α ≈ 1
(logα ≈ 0, 1−α ≈ 0). α represents the accuracy of the sam-
ple variance σ̂2 toward the true variance σ2. In determinis-
tic, discrete, finite state-space search problems like classical
planning, α tends to be close to (or sometimes even match)
1 because σ = σ̂ is achievable. Several factors of classical
planning contribute to this. Heuristic functions in classical
planning are deterministic, unlike rollout-based heuristics in
adversarial games. This means σ = σ̂ = 0 when a sub-
tree is linear due to the graph shape. Also, σ = σ̂ when all
reachable states from a node are exhaustively enumerated in
its subtree. In statistical terms, this is because draws from
heuristic samples are performed without replacements due
to duplication checking.

Unlike UCB-V and UCB1-Normal, our MCTS+UCB1-
Normal2 algorithm does not need explicit initialization pulls
because every node is evaluated once and its heuristic value
is used as a single sample. This means we assume M = 1,
thus α > ERF(2) > 0.995 because 8 < χ2

1−α,1 ⇔ 1− α <
γ(1

2 ,
8
2)

Γ(1
2)

= 1− ERF(2). In classical planning, this assumption
is more realistic than the conjectures used by UCB1-Normal.

5 Experimental Evaluation
We evaluated the efficiency of our algorithms in terms of
the number of nodes evaluated before a goal is found.
We used a python-based implementation (Alkhazraji et al.
2020, Pyperplan) for convenient prototyping. It is slower
than C++-based state-of-the-art systems (e.g. Fast Down-
ward (Helmert 2006)), but our focus on evaluations makes
this irrelevant and also improves reproducibility by avoiding
the effect of hardware differences and low-level implemen-
tation details.

We evaluated the algorithms over a subset of the Interna-
tional Planning Competition benchmark domains,1 selected
for compatibility with the set of PDDL extensions supported
by Pyperplan. The program terminates either when it reaches
10,000 node evaluations or when it finds a goal. In order
to limit the length of the experiment, we also had to ter-
minate the program on problem instances whose ground-
ing took more than 5 minutes. The grounding limit removed
113 instances from freecell, pipesworld-tankage, and logis-
tics98. This resulted in 751 problem instances across 24 do-
mains in total. We evaluated various algorithms with hFF,
hadd, hmax, and hGC (goal count) heuristics (Fikes, Hart,
and Nilsson 1972), and our analysis focuses on hFF. We in-
cluded hGC because it can be used in environments without
domain descriptions, e.g., in the planning-based approach
(Lipovetzky, Ramı́rez, and Geffner 2015) to the Atari envi-
ronment (Bellemare et al. 2015). We ran each configuration
with 5 random seeds and report the average number of prob-
lem instances solved. To see the spread due to the seeds, see
the cumulative histogram plots Fig. S1-S3 in the appendix.

We evaluated the following algorithms: GBFS is GBFS
implemented on priority queue. GUCT is a GUCT based
on the original UCB1. GUCT-01 is GUCT with ad
hoc [0, 1] normalization of the mean (Schulte and Keller
2014). GUCT-Normal/-Normal2/-V are GUCT variants
using UCB1-Normal/UCB1-Normal2/UCB-V respectively.
The starred variants GUCT*/-01/-Normal/-Normal2 are
using hGBFS backpropagation (Schulte and Keller 2014,
called full-bellman backup). For GUCT and GUCT-01, we
evaluated the hyperparameter c with the standard value c =
1.0 and c = 0.5. The choice of the latter is due to Schulte and
Keller (2014), who claimed that GUCT [*]-01 performed
the best when 0.6 < C = c

√
2 < 0.9, i.e., 0.4 < c < 0.63.

Our aim of testing these hyperparameters is to compare them
against automatic exploration rate adjustments performed by
UCB1-Normal[2].

Schulte and Keller (2014) previously reported that two ad
hoc enhancements to GBFS, PO and DE, also improve the
performance of GUCT [*]-01. We implemented them in our
code, and show the results. We do not report configurations
unsupported by the base Pyperplan system: GBFS+PO, and
PO with heuristics other than hFF.

Reproduction and a More Detailed Ablation of Previ-
ous Work We first reproduced the results in (Schulte and
Keller 2014) and provides its more detailed ablation. Table 1
shows that GUCT [*][-01] is indeed significantly outper-
formed by the more traditional algorithm GBFS, indicating
that UCB1-based exploration is not beneficial for planning.
Although this result disagrees with the final conclusion of
their paper, their conclusion relied on incorporating the DE
and PO enhancements, and these confounding factors im-
pede conclusive analysis.

Our ablation includes the effect of min-/max-based mean
normalization (Eq. 2), which was not previously evaluated.
GUCT [*]-01 performs significantly worse than GUCT [*]
which has no normalization. This implies that normalization

1github.com/aibasel/downward-benchmarks

h = hFF hadd hmax hGC hFF+PO hFF+DE hFF+DE+PO

c = 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1

GUCT 413.2 396.4 405.8 373.8 224.8 222.2 296 278 439.2 411.8 418.6 354.6 450 393.2
* 508.8 440.8 496.2 453.8 239.4 234.2 306.2 303 542.4 448 441.8 386.8 477 422
-01 369.6 354.8 345.2 312.8 242.2 227.6 307 295.2 403.2 387 355.6 344.8 406.4 404.4
*-01 393.6 372 373 343.6 236.2 226.4 306.2 289.8 430.2 401.2 377.6 363 426.2 421.2
-V 329.8 307.2 325 297.6 215 200 264.8 243.8 383.8 348.4 334.4 310 384.4 377.4

-Normal - 278 - 261.4 - 209.2 - 231.8 - 331.6 - 269.2 - 342.6
*-Normal - 311.6 - 294.8 - 212.2 - 244 - 338.2 - 285.2 - 343.8
-Normal2 - 563.8 - 519.2 - 301 - 374.6 - 596.4 - 496.8 - 550.8
*-Normal2 - 551.2 - 516.2 - 258.2 - 338.6 - 593.8 - 490.6 - 543.4
GBFS - 522.4 - 501.6 - 221.4 - 351.2 - - - 474 - -

Table 1: The number of problem instances solved with less than 10,000 node evaluations; top two configurations in bold for
each heuristic; each number represents an average over 5 trials. We show results for both c = 1.0 and c = 0.5 (“best parameter”
according to Schulte and Keller (2014)) when the algorithm requires one. Algorithms in the bottom half have no hyperparameter.
PO and DE stand for Preferred Operators and Deferred Evaluation. It does not contain PO for GBFS and heuristics other than
hFF due to the lack of support in Pyperplan.

in GUCT [*]-01 not only failed to address the theoretical
issue of applying UCB1 to rewards with unknown and dif-
ferent supports, but also had an adverse effect on node eval-
uations due to the excessive exploration, as predicted by our
analysis in Sec. 3.

The Effect of Scale Adaptability We compare the perfor-
mance of various algorithms in terms of the number of prob-
lem instances solved. First, GUCT-Normal2 outperforms
GBFS, making it the first instance of MCTS that performs
better than traditional algorithms by its own (without various
other enhancements). Overall, GUCT-Normal2 performed
well with all 4 heuristics.

GUCT-Normal2 also significantly outperformed
GUCT/GUCT-01/-Normal/-V and their GUCT* variants.
The dominance against GUCT-Normal is notable because
this supports our analysis that in classical planning σ̂2 ≈ σ2,
thus P (tiσ̂

2/σ2 < χ2
1−α,ti) = α ≈ 1, overcoming the

asymptotic deficit (the polynomial regret in GUCT-Normal2
vs. the logarithmic regret of GUCT-Normal).

While the starred variants (GUCT*, etc) can be signifi-
cantly better than the non-starred variants (GUCT) at times,
this trend was opposite in algorithms that perform bet-
ter, e.g., GUCT*-Normal2 tend to be worse than GUCT-
Normal2. This supports our claim that Full-Bellman backup
proposed by (Schulte and Keller 2014) is theoretically un-
founded and thus does not consistently improve search
algorithms. Further theoretical investigation of a similar
maximum-based backup is an important avenue of future
work.

The table also compares GUCT [*]-Normal[2], which do
not require any hyperparameter, against GUCT [*][-01/-V]
with different c values. Although c = 0.5 improves the
performance of GUCT [*]-01 as reported by (Schulte and
Keller 2014), it did not improve enough to catch up with the
adaptive exploration rate adjustment of GUCT [*]-Normal2.
We tested a larger variety of c-values and did not observe
significant change.

Preferred Operators Some heuristic functions based on
problem relaxation, notably hFF, compute a solution of the
delete-relaxed problem, called a relaxed plan, and return its
cost as the heuristic value (see appendix Sec. S1 for details).
Actions included in a relaxed plan are called “helpful ac-
tions” (Hoffmann and Nebel 2001) or “preferred operators”
(Richter and Helmert 2009) and are used by a planner in a
variety of ways (e.g., initial incomplete search of FF plan-
ner (Hoffmann and Nebel 2001) and alternating open list
in LAMA planner (Richter, Westphal, and Helmert 2011)).
Schulte and Keller (2014) used it in MCTS/THTS by limit-
ing the action selection to the preferred operators, and falling
back to original behavior if no successors qualify. In MCTS
terminology (Sec. 2.3), this is a way to modify the tree policy
by re-weighting with a mask. We reimplemented the same
strategy in our code base. Our result shows that it also im-
proves GUCT [*][-Normal2], consistent with the improve-
ment in GUCT [*]-01 previously reported.

Deferred Heuristic Evaluation Table 1 shows the effect
of deferred heuristic evaluation (DE) on search algorithms.
In this experiment, DE is expected to degrade the number
compared to the algorithms with eager evaluations because
deferred evaluation trades the number of calls to heuristics
with the number of nodes inserted to the tree, which is lim-
ited to 10,000. When CPU time is the limiting resource, DE
is expected to improve the number of solved instances, as-
suming the implementation is optimized for speed (e.g. us-
ing C++). However, our is not designed to measure this ef-
fect, since we implemented in Python, which is typically
100–1,000 times slower than C++, and this low-level bot-
tleneck could hide the effect of speed improvements.

The only meaningful outcome of this experiment is there-
fore to measure whether DE+PO is better than DE, and if
GUCT [*]-Normal2 continues to dominate the other algo-
rithms when DE is used. Table 1 answers both questions
positvely: DE+PO tends to perform better than DE alone,
and the algorithmic efficiency of GUCT [*]-Normal2 is still
superior to other algorithms with DE and DE+PO.

An interesting result observed in our experiment is that
the results of GUCT [*]-01 with DE, PO, and DE+PO are
still massively inferior to GBFS. This indicates that the im-
provement of GUCT [*]-01 + DE+PO observed by Schulte
and Keller is purely an artifact of low-level performance
and not a fundamental improvement in search efficiency. In-
deed, Schulte and Keller (2014) did not analyze node eval-
uations nor the results of GUCT [*]-01 + PO (they only an-
alyzed DE and DE+PO). Moreover, it means GUCT [*]-01
requires DE, an ad hoc and theoretically under-investigated
technique, in order to outperform GBFS.

Solution Quality We discuss the quality (here defined as
inverse cost) of the solutions returned by each algorithm us-
ing the hFF, hadd, and hmax heuristics. Fig. 1 shows that
GUCT [*]-Normal2 returns consistently longer, thus worse,
solutions than GBFS does. In contrast, the solution quality
tends to be similar between GBFS and other unsuccessful
MCTS algorithms. See appendix Fig. S5-S8 for more plots.
As the saying goes, “haste makes waste,” but in a positive
sense: for agile search, we claim that a successful explo-
ration must sacrifice the solution quality for faster search.

While Schulte and Keller (2014) claimed that exploration
mechanisms could improve solution quality, this does not
necessarily contradict our observations. First, their claim
only applies to their evaluation of [G]UCT [*]-01. Our result
comparing GUCT [*]-01 and GBFS agrees with their result
(Schulte and Keller 2014, Table.2, 143.5 vs 143.57). Second,
the IPC score difference in their paper is small (A∗:162.81
vs. UCT*:166.8—about 4 instances of best vs worst solution
gap) and could result from random tiebreaking.

6 Related Work
Due to its focus on adversarial games, MCTS literature
typically assumes a bounded reward setting (e.g., 0/1, -
1/+1), making applications of UCB1-Normal scarce (e.g.,
Google Scholar returns 5900 vs. 60 for keyword “UCB1”
and “UCB1-Normal”, respectively) except a few model-
selection applications (McConachie and Berenson 2018).
While Gaussian Process MAB (Srinivas et al. 2010) has
been used with MCTS for sequential decision making in
continuous space search and robotics (Kim et al. 2020), it
is significantly different from discrete search spaces like in
classical planning. Bayes-UCT2 (Tesauro, Rajan, and Segal
2010) was only evaluated on a synthetic tree and indeed was
often outperformed by the base UCT (Imagawa and Kaneko
2016).

MABs may provide a rigorous theoretical tool to analyze
the behavior of a variety of existing randomized enhance-
ments for agile/satisficing search that tackle the exploration-
exploitation dilemma. ϵ-greedy GBFS was indeed inspired
by MABs (Valenzano et al. 2014, Sec. 2). GUCT-Normal2
encourages exploration in nodes further from the goal,
which tend to be close to the initial state. This behavior is
similar to that of Diverse Best First Search (Imai and Kishi-
moto 2011), which stochastically enters an “exploration
mode” that expands a node with a smaller g value more
often. This reverse ordering is unique from other diversi-
fied search algorithms, including ϵ-GBFS, Type-GBFS (Xie,

Müller, and Holte 2015), and Softmin-Type-GBFS (Kuroiwa
and Beck 2022), which selects g rather uniformly during the
exploration.

Theoretical guarantees of MABs require modifications in
tree-based algorithms (e.g. MCTS) due to non-i.i.d. sam-
pling from the subtrees (Coquelin and Munos 2007; Munos
et al. 2014). Incorporating the methods developed in the
MAB community to counter this bias in the subtree samples
is an important direction for future work.

MDP and Reinforcement Learning literature often use
discounting to avoid the issue of divergent cumulative re-
ward: when the upper bound of step-wise reward is known
to be R, then the maximum cumulative reward goes to ∞
with infinite horizon, while the discounting with γ makes
it below R

1−γ , allowing the application of UCB1. Although
it addresses the numerical issue and UCB1’s theoretical re-
quirement, it no longer optimizes the cumulative objective.

7 Conclusion
We examined the theoretical assumptions of existing bandit-
based exploration mechanisms for classical planning, and
showed that ad hoc design decisions can invalidate the-
oretical guarantees and harm performance. We presented
GUCT-Normal2, a classical planning algorithm combining
MCTS and UCB1-Normal2, and analyzed it both theoret-
ically and empirically. The theoretical analysis of its re-
gret bound revealed that, despite its worst-case polynomial
bound, in practice it outperforms logarithmically-bounded
UCB1-Normal due to the unique aspect of the target applica-
tion (classical planning). Most importantly, GUCT-Normal2
outperforms GBFS, making it the first bandit-based MCTS
to outperform traditional algorithms. Future work includes
combinations with other enhancements for agile search in-
cluding novelty metric (Lipovetzky and Geffner 2017), as
well as C++ re-implementation and the comparison with the
state-of-the-art.

Our study showcases the importance of considering the-
oretical assumptions when choosing the correct bandit al-
gorithm for a given application. However, this does not im-
ply that UCB1-Normal is the end of the story: for example,
while the Gaussian assumption is sufficient for cost-to-go
estimates in classical planning, it is not necessary for justi-
fying its application to classical planning. The Gaussian as-
sumption implies that rewards can be any value in [−∞,∞],
which is an under-specification for non-negative cost-to-go
estimates. Future work will explore bandits that reflect the
assumptions in classical planning with even greater fidelity.

Acknowledgments
This work was supported through DTIC contract FA8075-
18-D-0008, Task Order FA807520F0060, Task 4 - Au-
tonomous Defensive Cyber Operations (DCO) Research &
Development (R&D).

References
Alkhazraji, Y.; Frorath, M.; Grützner, M.; Helmert, M.; Liebe-
traut, T.; Mattmüller, R.; Ortlieb, M.; Seipp, J.; Springenberg,
T.; Stahl, P.; and Wülfing, J. 2020. Pyperplan. https://

100 101 102
100

101

102

GUCT-01 vs GBFS

100 101 102
100

101

102

GUCT*-01 vs GBFS

100 101 102 103
100

101

102

103
GUCT-Normal2 vs GBFS

100 101 102
100

101

102

GUCT*-Normal2 vs GBFS

Figure 1: Comparing solution length of GUCT-based algorithms (x-axis) against GBFS (y-axis) using hFF.

doi.org/10.5281/zenodo.3700819. Accessed: 2022-
06-08.

Asai, M.; and Fukunaga, A. 2017. Exploration Among and
Within Plateaus in Greedy Best-First Search. In Proc. of ICAPS.
Pittsburgh, USA.

Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009.
Exploration–Exploitation Tradeoff using Variance Estimates in
Multi-Armed Bandits. Theoretical Computer Science, 410(19):
1876–1902.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time
Analysis of the Multiarmed Bandit Problem. Machine Learn-
ing, 47(2-3): 235–256.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2015. The Arcade Learning Environment: An Evaluation Plat-
form for General Agents (Extended Abstract). In Yang, Q.;
and Wooldridge, M. J., eds., Proc. of IJCAI, 4148–4152. AAAI
Press.

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic Search.
Artificial Intelligence, 129(1): 5–33.

Bush, R. R.; and Mosteller, F. 1953. A Stochastic Model with
Applications to Learning. The Annals of Mathematical Statis-
tics, 559–585.

Coquelin, P.-A.; and Munos, R. 2007. Bandit Algorithms for
Tree Search. In Proc. of UAI, 67–74.

Dijkstra, E. W. 1959. A Note on Two Problems in Connexion
with Graphs. Numerische mathematik, 1(1): 269–271.

Ferber, P.; Cohen, L.; Seipp, J.; and Keller, T. 2022a. Learning
and Exploiting Progress States in Greedy Best-First Search. In
Proc. of IJCAI.

Ferber, P.; Geißer, F.; Trevizan, F.; Helmert, M.; and Hoffmann,
J. 2022b. Neural Network Heuristic Functions for Classical
Planning: Bootstrapping and Comparison to Other Methods. In
Proc. of ICAPS.

Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyperpa-
rameter Space. In Proc. of ECAI, 2346–2353.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and Executing Generalized Robot Plans. Artificial Intelligence,
3(1-3): 251–288.

Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Learning to Rank for Synthesizing Planning Heuristics. In
Proc. of IJCAI, 3089–3095.

Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling, L. P.;
Sohrabi, S.; and Katz, M. 2022. Reinforcement Learning for
Classical Planning: Viewing Heuristics as Dense Reward Gen-
erators. In Proc. of ICAPS.

Gelly, S.; and Silver, D. 2011. Monte-Carlo Tree Search and
Rapid Action Value Estimation in Computer Go. Artificial In-
telligence, 175(11): 1856–1875.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost Paths.
Systems Science and Cybernetics, IEEE Transactions on, 4(2):
100–107.

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res.(JAIR), 26: 191–246.

Heusner, M.; Keller, T.; and Helmert, M. 2017. Understanding
the Search Behaviour of Greedy Best-First Search. In Proc. of
SOCS, volume 8.

Heusner, M.; Keller, T.; and Helmert, M. 2018a. Best-Case and
Worst-Case Behavior of Greedy Best-First Search. In Proc. of
IJCAI.

Heusner, M.; Keller, T.; and Helmert, M. 2018b. Search
Progress and Potentially Expanded States in Greedy Best-First
Search. In Proc. of IJCAI.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR), 14: 253–302.

Imagawa, T.; and Kaneko, T. 2016. Monte carlo tree search with
robust exploration. In International Conference on Computers
and Games, 34–46. Springer.

Imai, T.; and Kishimoto, A. 2011. A Novel Technique for
Avoiding Plateaus of Greedy Best-First Search in Satisficing
Planning. In Proc. of AAAI.

Kaufmann, E.; Cappé, O.; and Garivier, A. 2012. On Bayesian
Upper Confidence Bounds for Bandit Problems. In Proc. of
AISTATS, 592–600. PMLR.

Keller, T.; and Helmert, M. 2013. Trial-Based Heuristic Tree
Search for Finite Horizon MDPs. In Proc. of ICAPS.

Kim, B.; Lee, K.; Lim, S.; Kaelbling, L.; and Lozano-Pérez, T.
2020. Monte Carlo Tree Search in Continuous Spaces using
Voronoi Optimistic Optimization with Regret Bounds. In Proc.
of AAAI, volume 34, 9916–9924.

Kishimoto, A.; Bouneffouf, D.; Marinescu, R.; Ram, P.; Rawat,
A.; Wistuba, M.; Palmes, P.; and Botea, A. 2022. Bandit Lim-
ited Discrepancy Search and Application to Machine Learning
Pipeline Optimization. In Proc. of AAAI, volume 36, 10228–
10237.

Kishimoto, A.; Zhou, R.; and Imai, T. 2012. Diverse Depth-
First Search in Satisificing Planning. In Proc. of SOCS, vol-
ume 3.

Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-Carlo
Planning. In Proc. of ECML, 282–293. Springer.

Kuroiwa, R.; and Beck, J. C. 2022. Biased Exploration for Sat-
isficing Heuristic Search. In Proc. of ICAPS.

Lai, T. L.; Robbins, H.; et al. 1985. Asymptotically Efficient
Adaptive Allocation Rules. Advances in Applied Mathematics,
6(1): 4–22.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width Search:
Exploration and Exploitation in Classical Planning . In Proc. of
AAAI.

Lipovetzky, N.; Ramı́rez, M.; and Geffner, H. 2015. Classical
Planning with Simulators: Results on the Atari Video Games.
In Proc. of IJCAI.

McConachie, D.; and Berenson, D. 2018. Estimating Model
Utility for Deformable Object Manipulation using Multiarmed
Bandit Methods. IEEE Transactions on Automation Science
and Engineering, 15(3): 967–979.

Munos, R.; et al. 2014. From Bandits to Monte-Carlo Tree
Search: The Optimistic Principle Applied to Optimization and
Planning. Foundations and Trends® in Machine Learning, 7(1):
1–129.

Nakhost, H.; and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Proc. of IJCAI.

Richter, S.; and Helmert, M. 2009. Preferred operators and de-
ferred evaluation in satisficing planning. In Proc. of ICAPS,
volume 19, 273–280.

Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA 2008
and 2011. In Proc. of IPC, 117–124.

Rivlin, O.; Hazan, T.; and Karpas, E. 2019. Generalized Plan-
ning With Deep Reinforcement Learning. In Proc. of PRL.

Robbins, H. 1952. Some Aspects of the Sequential Design of
Experiments. Bulletin of the American Mathematical Society,
58(5): 527–535.

Schulte, T.; and Keller, T. 2014. Balancing Exploration and
Exploitation in Classical Planning. In Proc. of SOCS.

Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learn-
ing Domain-Independent Planning Heuristics with Hypergraph
Networks. In Proc. of ICAPS, volume 30, 574–584.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneer-
shelvam, V.; Lanctot, M.; et al. 2016. Mastering the Game
of Go with Deep Neural Networks and Tree Search. Nature,
529(7587): 484–489.

Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M. W.
2010. Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design. In Fürnkranz, J.; and
Joachims, T., eds., Proc. of ICML, 1015–1022. Omnipress.

Tesauro, G.; Rajan, V.; and Segal, R. 2010. Bayesian Inference
in Monte-Carlo Tree Search. In Proc. of UAI, 580–588.

Thompson, W. R. 1933. On the Likelihood that One Unknown
Probability Exceeds Another in View of the Evidence of Two
Samples. Biometrika, 25(3-4): 285–294.

Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Action
Schema Networks: Generalised Policies with Deep Learning.
In Proc. of AAAI, volume 32.

Valenzano, R. A.; Schaeffer, J.; Sturtevant, N. R.; and Xie, F.
2014. A Comparison of Knowledge-Based GBFS Enhance-
ments and Knowledge-Free Exploration. In Proc. of ICAPS.

Xie, F.; Müller, M.; and Holte, R. C. 2014. Adding Local Ex-
ploration to Greedy Best-First Search in Satisficing Planning.
In Proc. of AAAI, 2388–2394.

Xie, F.; Müller, M.; and Holte, R. C. 2015. Understanding and
Improving Local Exploration for GBFS. In Proc. of ICAPS,
244–248.

Xie, F.; Müller, M.; Holte, R. C.; and Imai, T. 2014. Type-
Based Exploration with Multiple Search Queues for Satisficing
Planning. In Proc. of AAAI.

Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning Via Ran-
dom Walk-Driven Local Search. In Proc. of ICAPS.

Appendix
S1 Domain-Independent Heuristics in

Classical Planning
A domain-independent heuristic function h in classical plan-
ning is a function of a state s and the problem [P,A, I,G],
but the notation h(s) usually omits the latter. In addi-
tion to what we discussed in the main article, this section
also uses a notation h(s,G). It returns an estimate of the
cumulative cost from s to one of the goal states (states
that satisfy G), typically through a symbolic, non-statistical
means including problem relaxation and abstraction. No-
table state-of-the-art functions that appear in this paper in-
cludes hFF, hmax, hadd, hGC (Hoffmann and Nebel 2001;
Bonet and Geffner 2001; Fikes, Hart, and Nilsson 1972).

A significant class of heuristics is called delete relaxation
heuristics, which solve a relaxed problem which does not
contain delete effects, and then returns the cost of the so-
lution of the relaxed problem as an output. The cost of the
optimal solution of a delete relaxed planning problem from a
state s is denoted by h+(s), but this is too expensive to com-
pute in practice (NP-complete) (Bylander 1996). Therefore,
practical heuristics typically try to obtain its further relax-
ations that can be computed in polynomial time.

One such admissible heuristic based on delete-relaxation
is called hmax (Bonet and Geffner 2001) that is recursively
defined as follows:

hmax(s,G) = max
p∈G

 0 if p ∈ s. Otherwise,
min{a∈A|p∈ADD(a)}[

C(a) + hadd(s, PRE(a))
]
.

(1)

Its inadmissible variant is called additive heuristics hadd

(Bonet and Geffner 2001) that is recursively defined as fol-
lows:

hadd(s,G) =
∑
p∈G

 0 if p ∈ s. Otherwise,
min{a∈A|p∈ADD(a)}[

C(a) + hadd(s, PRE(a))
]
.

(2)

Another inadmissible delete-relaxation heuristics called
hFF (Hoffmann and Nebel 2001) is defined based on an-
other heuristics h, such as h = hadd, as a subprocedure. For
each unachieved subgoal p ∈ G \ s, the action a that adds p
with the minimal [C(a) + h(s, PRE(a))] is conceptually “the
cheapest action that achieves a subgoal p for the first time
under delete relaxation”, called the cheapest achiever / best
supporter bs(p, s, h) of p. hFF is defined as the sum of ac-
tions in a relaxed plan Π+ constructed as follows:

hFF(s,G, h) =
∑

a∈Π+(s,G,h)

C(a) (3)

Π+(s,G, h) =
⋃
p∈G

{ ∅ if p ∈ s. Otherwise,
{a} ∪Π+(s, PRE(a))

where a = bs(p, s, h).
(4)

bs(p, s, h) = argmin
{a∈A|p∈ADD(a)}

[C(a) + h(s, PRE(a))] .

(5)

Goal Count heuristics hGC is a simple heuristic proposed
in (Fikes, Hart, and Nilsson 1972) that counts the number
of propositions that are not satisfied yet. [condition] is a cro-
necker’s delta / indicator function that returns 1 when the
condition is satisfied.

hGC(s,G) =
∑
p∈G

Jp ̸∈ sK. (6)

S2 Detailed Explanation for the Base MCTS
for Graph Search

Alg. 1 shows the pseudocode of MCTS adjusted for graph
search (Schulte and Keller 2014). Aside from what was de-
scribed from the main section, it has a node-locking mecha-
nism that avoids duplicate search effort.

Following THTS, our MCTS has a hash table that im-
plements a CLOSE list and a Transposition Table (TT). A
CLOSE list stores the generated states and avoids instanti-
ating nodes with duplicate states. A TT stores various infor-
mation about the states such as the parent information and
the action used at the parent. The close list is implemented
by a lock mechanism.

Since an efficient graph search algorithm must avoid vis-
iting the same state multiple times, MCTS for graph search
marks certain nodes as locked, and excludes them from the
selection candidates. A node is locked either (1) when a node
is a dead-end that will never reach a goal (detected by hav-
ing no applicable actions, by a heuristic function, or other
facilities), (2) when there is a node with the same state in
the search tree with a smaller g-value, (3) when all of its
children are locked, or (4) when a node is a goal (relevant
in an anytime iterated search setting (Richter, Thayer, and
Ruml 2010; Richter, Westphal, and Helmert 2011), but not
in this paper). Thus, in the expansion step, when a gener-
ated node n has the same state as a node n′ already in the
search tree, MCTS discards n if g(n) > g(n′), else moves
the subtree of n′ to n and marks n′ as locked. It also im-
plicitly detects a cycle, as this is identical to the duplicate
detection in Dijkstra/A∗/GBFS.

The queueing step backpropagates necessary information
from the leaf to the root. Efficient backpropagation uses a
priority queue ordered by descending g-value. The queue is
initialized with the expanded node p; each newly generated
node n that is not discarded is inserted into the queue, and
if a node n′ for the same state was already present in the
tree it is also inserted into the queue. In each backpropaga-
tion iteration, (1) the enqueued node with the highest g-value
is popped, (2) its information is updated by aggregating its
children’s information (including the lock status), (3) and its
parent is queued.

S3 Proof of Bandit Algorithms
To help understand the proof of UCB1-Normal2, we first
describe the general procedure for proving the regret of ban-
dit algorithms, demonstrate the proof of UCB1 using this
scheme, then finally show the proof of UCB1-Normal2.

The ingredients for proving an upper/lower confidence
bound are as follows:

• Ingredient 1: A specification of reward distributions.
For example, in the standard UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002), one assumes a reward distribution
bounded in [0, b]. Different algorithms assume differ-
ent reward distributions, and in general, more informa-
tion about the distribution gives a tighter bound (and
faster convergence). For example, one can assume an un-
bounded distribution with known variance, etc.

• Ingredient 2: A concentration inequality. It is also
called a tail probability bound. For example, in the stan-
dard UCB1, one uses Hoeffding’s inequality. Different
algorithms use different inequalities to prove the bound.
Examples include the Chernoff bound, Chebishev’s in-
equality, Bernstein’s inequality, Bennett’s inequality, etc.
Note that the inequality may be two-sided or one-sided.

The general procedure for proving the bound is as follows.

1. Write down the concentration inequality.

• P (|X − E[X]| ≥ ϵ) ≤ F (ϵ). (two-sided)
• P (X − E[X] ≥ ϵ) ≤ F (ϵ). (one-sided, upper)
• P (E[X]−X ≥ ϵ) ≤ F (ϵ). (one-sided, lower)

F is an inequality-specific form. This step may be some-
times missing, depending on which inequality you use.

2. Turn the inequality into a version for a sum of indepen-
dent variables Sn =

∑n
i=1 Xi.

P (|Sn − E[Sn]| ≥ ϵ) ≤ G(ϵ).

G is an inequality-specific form.
3. Divide the error by n and use δ = ϵ

n . This makes the
statement about the sum Sn into one for the mean µn =
1
n

∑n
i=1 Xi. Note that E[µn] = E[X] if Xi are i.i.d..

P (|µn − E[µn]| ≥
ϵ

n
= δ) ≤ G(nδ)

4. Simplify the inequality based on the assumptions made
in the reward distribution, e.g., bounds, mean, variance.

5. Expand |µn − E[µn]| ≥ δ into δ ≥ µn − E[µn] ≥ −δ.
6. Change the notations to model the bandit problem be-

cause each concentration inequality is a general state-
ment about RVs. Before this step, the notation was:

• n (number of samples)
• µn = 1

n

∑n
i=1 Xi

• E[µn] = E[X1] = . . . = E[Xn]

• 1
n

∑n
i=1(Xi − E[Xi])

2

• Var[X1] = . . . = Var[Xn]

After the change, they correspond to:

• ni (number of pulls of arm i).
• µ̂i (sample mean of arm i from ni pulls),
• µi (true mean of arm i),
• σ̂2

i (sample variance of arm i from ni pulls),
• σ2

i (true variance of arm i),

7. Let i be a suboptimal arm, ∗ be an optimal arm, UCBi =
µ̂i + δ, and LCBi = µ̂i − δ. Derive the relationship be-
tween δ and the gap ∆i = µi − µ∗ so that the following
conditions for the best arm holds:
• UCBi ≤ UCB∗ (for maximization)
• LCBi ≥ LCB∗ (for minimization)
This results in 2δ ≤ ∆i.

8. Replace the δ with a formula that becomes an exploration

term. For example, in UCB1, δ =
√

2 log T
ni

.

9. Derive the lower bound L for ni from 2δ ≤ ∆i.
10. Find the upper-bound of the probability of selecting a

sub-optimal arm i. This is typically done by a union-
bound argument.

11. Derive the upper bound of the expected number of pulls
E[ni] of a suboptimal arm i using a triple loop summa-
tion. This is typically the heaviest part that needs mathe-
matical tricks. The tricks do not seem generally transfer-
able between approaches.

12. Finally, derive an upper bound of the regret Tµ∗ −∑K
i=1 µiE[ni] by

Tµ∗ −
K∑
i=1

µiE[ni] =

K∑
i=1

(µ∗ − µi)E[ni]

=

K∑
i=1

∆iE[ni].

S3.1 The Proof of UCB1
1. UCB1 uses Hoeffding’s inequality, which is already de-

fined for a sum of RVs, thus the first step is skipped.
2. UCB1 assumes a reward distribution with a known

bound. According to Hoeffding’s inequality, given RVs
X1 . . . Xn, where Xi ∈ [li, ui], and their sum Sn =∑n

i=1 Xi,

P (Sn − E[Sn] ≥ ϵ) ≤ exp− 2ϵ2∑n
i=1(ui−li)2

.

P (E[Sn]− Sn ≥ ϵ) ≤ exp− 2ϵ2∑n
i=1(ui−li)2

.

We focus on P (Sn − E[Sn] ≥ ϵ) to avoid repetition.
3. Using δ = ϵ

n and µn = Sn

n ,

P (µn − E[µn] ≥ δ) ≤ exp− 2n2δ2∑n
i=1(ui − li)2

.

4. UCB1 assumes Xi are i.i.d. copies, thus ∀i;ui − li = c.

P (µn − E[µn] ≥ δ) ≤ exp−2n2δ2

nc2
= exp−2nδ2

c2
.

5. Expanding the two-sided error:

δ ≥ µn − E[µn] ≥ −δ.

6. Changing the notation:

δ ≥ µ̂i − µi ≥ δ.

7. Adding µi − δ to both sides,

µi ≥ µ̂i − δ = LCBi(T, ni) ≥ µi − 2δ.

Substituting i = ∗ (optimal arm), the first inequality is

µ∗ ≥ µ̂∗ − δ = LCB∗(T, n∗).

Assuming 2δ ≤ ∆i = µi − µ∗, the second inequality is

LCBi(T, ni) ≥ µi − 2δ ≥ µi −∆i = µ∗.

Therefore

LCBi(T, ni) ≥ µ∗ ≥ LCB∗(T, n∗).

8. Let δ = c
√

2 log T
ni

. Then

P (µni
− E[µni

] ≥ δ) ≤ exp−
2nc2 2 log T

ni

c2
= T−4.

9. From 2δ ≤ ∆i, considering ni is an integer,

2c

√
2 log T

ni
≤ ∆i ⇔ 4c2

2 log T

ni
≤ ∆2

i

⇔ 8c2 log T

∆2
i

≤
⌈
8c2 log T

∆2
i

⌉
= L ≤ ni.

10. LCBi(T, ni) ≥ µ∗ ≥ LCB∗(T, n∗) does not hold
when either inequality does not hold. LCBi(T, ni) ≥ µ∗
does not hold with probability less than T−4. µ∗ ≥
LCBi(T, n∗) does not hold with probability less than
T−4. Thus, by union-bound (probability of disjunctions),

P (LCBi(T, ni) ≤ LCB∗(T, n∗)) ≤ 2T−4.

11. Assume we followed the UCB1 strategy, i.e., we pulled
the arm that minimizes the LCB. The expected number of
pulls E[ni] from a suboptimal arm i is as follows. Note
that for K arms, every arm is at least pulled once.

E[ni] = 1 +

T∑
t=K+1

P (i is pulled at time t)

≤L+

T∑
t=K+1

P (i is pulled at time t ∧ ni > L)

=L+

T∑
t=K+1

P (∀j; LCBj(t, nj) ≥ LCBi(t, ni))

≤L+

T∑
t=K+1

P (LCB∗(t, n∗) ≥ LCBi(t, ni))

≤L+

T∑
t=K+1

P (∃u, v; LCB∗(t, u) ≥ LCBi(t, v))

≤L+

T∑
t=K+1

t−1∑
u=1

t−1∑
v=L

P (LCB∗(t, u) ≥ LCBi(t, v))

≤L+

T∑
t=K+1

t−1∑
u=1

t−1∑
v=L

2t−4

≤L+

∞∑
t=1

t∑
u=1

t∑
v=1

2t−4 = L+

∞∑
t=1

t2 · 2t−4

=L+ 2

∞∑
t=1

t−2 = L+ 2 · π
6
= L+

π

3

≤c2 8 log T
∆2

i

+ 1 +
π

3
∵ ⌈x⌉ ≤ x+ 1

12. The regret is

Tµ∗ −
K∑
i=1

µiE[ni] =

K∑
i=1

(µ∗ − µi)E[ni] =

K∑
i=1

∆iE[ni]

≤
K∑
i=1

∆i

(
c2

8 log T

∆2
i

+ 1 +
π

3

)

≤
K∑
i=1

(
c2

8 log T

∆i
+

(
1 +

π

3

)
∆i

)
.

S3.2 Preliminary for the Proof of UCB1-Normal2
Our analysis begins with a definition of Sub-Gaussian dis-
tributions.

Definition 1. (Vershynin 2018, Proposition 2.5.2, (iv)) A
distribution p(x) is sub-Gaussian when

∃t > 0;E[expx2/t2] < 2.

Theorem 1. A Gaussian distribution with 0-meanN (0, σ2)
(without loss of generality) is sub-Gaussian.

Proof.

p(x) = N (0, σ2) =
1√
2πσ2

exp− x2

2σ2
.

E[expx2/t2] =

∫
R
exp

x2

t2
1√
2πσ2

exp− x2

2σ2
dx

=
1√
2πσ2

∫
R
exp−x2

(
1

2σ2
− 1

t2

)
dx

=
1√
2πσ2

∫
R
exp− x2

C2
dx

=
1√
2πσ2

∫
R
exp−y2Cdy

(x

C
= y ⇔ dx = Cdy

)
=

C√
2πσ2

√
π

=
C√
2σ2

.

Where

1

C2
=

1

2σ2
− 1

t2

⇔ C2 =
2σ2t2

t2 − 2σ2
.

To show E[expx2/t2] < 2,

E[expx2/t2] =
C√
2σ2

=

√
t2

t2 − 2σ2
< 2,

⇔ t2 < 4(t2 − 2σ2),

⇔ 8

3
σ2 < t2.

□

Definition 2. For a sub-Gaussian RV x,

||x|| = inf
{
t > 0 | E[expx2/t2] < 2

}
.

Corollary 1. For p(x) = N (0, σ2), ||x|| =
√

8
3σ.

Next, we review the general Hoeffding’s inequality for
sub-Gaussian distributions ().

Theorem 2. For independent sub-Gaussian RVs
x1, . . . , xn, let their sum be Sn =

∑n
i=1 xi. Then, for

any ϵ > 0,

Pr(|Sn − E[Sn]| ≤ ϵ) ≥ 2 exp− ϵ2∑n
i=1 ||xi||2

,

Pr(Sn − E[Sn] ≤ ϵ) ≥ exp− ϵ2∑n
i=1 ||xi||2

,

Pr(E[Sn]− Sn ≤ ϵ) ≥ exp− ϵ2∑n
i=1 ||xi||2

.

(Two-sided bounds and one-sided upper/lower bounds, re-
spectively.)

S3.3 The Proof of UCB1-Normal2
1. Same as UCB1.
2. According to Hoeffding’s inequality for sub-Gaussian

RVs X1 . . . Xn and their sum Sn =
∑n

i=1 Xi,

P (Sn − E[Sn] ≥ ϵ) ≤ exp− ϵ2∑n
i=1 ||Xi||2 .

3. Using δ = ϵ
n ,

P (µn − E[µn] ≥ δ) ≤ exp− n2δ2∑n
i=1 ||Xi||2 .

4. We assume Xi = N (µ, σ2), thus ||Xi||2 = 8
3σ

2.

P (µn − E[µn] ≥ δ) ≤ exp− 3n2δ2

8nσ2 = exp− 3nδ2

8σ2 .

5. Same as UCB1.
6. Same as UCB1.
7. Same as UCB1.
8. Let δ = σ̂

√
log T . Then

P (A : µni
− E[µni

] ≥ δ) ≤ exp−3niσ̂
2 log T

8σ2

= T− 3niσ̂
2

8σ2 .

The trick starts here. The formula above is problematic
because we do not know the true variance σ2. However,
if event B : niσ̂

2

σ2 ≥ X holds for some X > 0, we have

T− 3niσ̂
2

8σ2 ≤ T− 3
8X .

One issue with this approach is that the two events A,B
may be correlated. To address the issue, we further upper-
bound the probability by union-bound. Let P (B) = α
which is close to 1. Then

P (¬(A ∧B)) = P (¬A ∨ ¬B) ≤ P (¬A) + P (¬B).

1− P (A ∧B) ≤ 1− P (A) + P (¬B).

P (A) ≤ P (A ∧B) + P (¬B).

∴ P (µni − E[µni] ≥ δ) ≤ T− 3
8X + 1− α.

We next obtain X that satisfies P (B) = α. We use the
fact that niσ̂

2

σ2 follows a Chi-Squared distribution χ2(ni)

with a degree of freedom ni. Then X = χ2
1−α,ni

, the
upper-tail critical value of χ2 distribution with degree of
freedom ni and significance level α, because

P (¬B) = P (
niσ̂

2

σ2
< χ2

1−α,ni
)

= χ2(
niσ̂

2

σ2
< χ2

1−α,ni
| ni) = 1− α.

9. From 2δ ≤ ∆i, assuming ni is an integer and ni ≥ 2,

∆2
i ≥ 2σ̂2 log T =

2niσ̂
2 log T

ni
≥

2σ2χ2
1−α,ni

log T

ni

≥
2σ2χ2

1−α,2 log T

ni
=
−4σ2 logα log T

ni
.

∴ ni ≥
⌈
−4σ2 logα log T

∆2
i

⌉
= L ≥ −4σ

2 logα log T

∆2
i

.

Note that we used the fact that χ2
1−α,n is monotonically

increasing for n, therefore χ2
1−α,n ≥ χ2

1−α,2 (ni ≥ 2),
and that χ2

1−α,2 = −2 logα:

1− α = χ2(X < χ2
1−α,n | n = 2)

=
γ(22 ,

χ2
1−α,2

2)

Γ(22)
= 1− e−

χ2
1−α,2

2 .

where γ and Γ are (incomplete) Gamma functions.
10. Using the same union-bound argument used in UCB1,

P (LCBi(T, ni) ≤ LCB∗(T, n∗))

≤ 2(T−χ2
1−α,ni + 1− α).

11. Assume we followed the UCB1-Normal2 strategy. We
use the same argument as UCB1. Assume we pull each
arm at least M times in the beginning and M ≤ L.

E[ni] ≤ L+

T∑
t=K+1

P (∃u, v; LCB∗(t, u) ≥ LCBi(t, v))

≤ L+

T∑
t=K+1

t−1∑
u=1

t−1∑
v=L

2(t−
3
8χ

2
1−α,v + 1− α)

≤ L+

T∑
t=K+1

t−1∑
u=1

t−1∑
v=L

2(t−
3
8χ

2
1−α,M + 1− α)

≤ L+

T∑
t=K+1

t∑
u=1

t∑
v=1

2(t−
3
8χ

2
1−α,M + 1− α)

= L+

T∑
t=K+1

2(t2−
3
8χ

2
1−α,M + (1− α)t2)

≤ L+ 2

∞∑
t=1

t2−
3
8χ

2
1−α,M + 2(1− α)

T∑
t=1

t2

= L+ 2C + 2(1− α)
T (T + 1)(2T + 1)

6

≤ −4σ
2 logα log T

∆2
i

+ 1 (∵ ⌈x⌉ ≤ x+ 1)

+ 2C +
(1− α)T (T + 1)(2T + 1)

3
.

C is a convergent series when

2− 3

8
χ2
1−α,M < −1 ⇔ 8 < χ2

1−α,M .

You can look up the value of M that guarantees this con-
dition from a numerically computed, so-called χ2-table
(Table S1). For example, with α = 0.99, 8 < χ2

0.01,M ,
thus M ≥ 2, and with α = 0.9, 8 < χ2

0.1,M , thus M ≥ 5.
However, the value of α depends on the problem and is
unknown prior to solving the problem.

12. Omitted.

S4 Statistics after Merging Datasets
Backpropagation in MCTS requires computing the statistics
of the samples in the leaf nodes in a subtree of a parent node.
To avoid iterating over all leaves of each parent, Backpropa-
gation typically propagates the statistics from the immediate
children. This can be seen as merging multiple datasets and
compute the statistics of the merged dataset from the statis-
tics of multiple datasets.

In variance-based MCTS algorithms, both the mean and
variance are backpropagated. Given two sets of samples
X1, X2, each with an empirical mean µi and ni elements
(i ∈ {1, 2}), the empirical mean µ12 of X1 ∪X2 is given by

µ12 =
∑

x∈X1
x+

∑
x∈X2

x

n1+n2
= n1µ1+n2µ2

n1+n2

We obtain NECs by iterating this process over a node’s chil-
dren, although there is a more efficient, incremental method
for backpropagating a change in a single child (see ap-
pendix). For the variance, we similarly merge the samples.
Given individual variances σ2

1 and σ2
2 , the variance σ2

12 of
X1 ∪X2 (proof available in appendix) is:

σ2
12 =

n1σ
2
1+n2σ

2
2+

n1n2
n1+n2

(µ2−µ1)
2

n1+n2
.

Below, we show the formulae and the proofs for this
method.

Theorem 3 (The empirical mean of merged datasets). Given
two sets of samples X1, X2, each with an empirical mean µi

and ni elements (i ∈ {1, 2}), the empirical mean µ12 of
X1 ∪X2 is given by

µ12 =
n1µ1 + n2µ2

n1 + n2
.

Also, µ12 = µ1 +
n2

n1 + n2
(µ2 − µ1).

Proof.

µ12 =

∑
x∈X1

x+
∑

x∈X2
x

n1 + n2
=

n1µ1 + n2µ2

n1 + n2
.

□

Theorem 4 (The empirical variance of merged datasets).
Given two sets of samples X1, X2, each with an empirical
mean µi, variance σ2

i , and ni elements (i ∈ {1, 2}), and
nij = ni + nj , the empirical variance µ12 of X1 ∪ X2 is
given by

σ2
12 =

n1σ
2
1 + n2σ

2
2 +

n1n2

n1+n2
(µ2 − µ1)

2

n1 + n2
.

Proof.

σ2
12 =

∑
x∈X1

(x− µ12)
2 +

∑
x∈X2

(x− µ12)
2

n1 + n2
.

∑
x∈X1

(x− µ12)
2

=
∑
x∈X1

(x− (µ1 +
n2

n1 + n2
(µ2 − µ1)))

2

=
∑
x∈X1

((x− µ1)−
n2

n1 + n2
(µ2 − µ1)))

2

=
∑
x∈X1

(x− µ1)
2 − 2

∑
x∈X1

(x− µ1)
n2

n1 + n2
(µ2 − µ1)

+
∑
x∈X1

(
n2

n1 + n2
(µ2 − µ1)

)2

= n1σ
2
1 − 2 · 0 + n1(

n2

n1 + n2
(µ2 − µ1))

2.

∴ (n1 + n2)σ
2
12

= n1σ
2
1 + n1(

n2

n1 + n2
(µ2 − µ1))

2

+ n2σ
2
2 + n2(

n1

n1 + n2
(µ1 − µ2))

2

= n1σ
2
1 + n2σ

2
2 +

n1n
2
2 + n2n

2
1

(n1 + n2)2
(µ2 − µ1)

2

= n1σ
2
1 + n2σ

2
2 +

n1n2

n1 + n2
(µ2 − µ1)

2.

□

n
α 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

Table S1: χ2
α,n table.

S5 Statistics after Retracting a Dataset
In the backpropagation step of MCTS, typically, only a few
children of an intermediate node update their statistics (most
often a single children). To compute the updated statistics ef-
ficiently, we could compute them by retracting the old data
of the child(ren) from the merged data and merging the new
data for the child(ren), rather than iterating over the children
to merge everything from scratch. This can impact the per-
formance when the number of children / the branching factor
is high.
Theorem 5 (The empirical mean after retracting a dataset).
Assume samples X1, X2 with empirical means µi and num-
ber of elements ni (i ∈ {1, 2}). Let their union be X12 =
X1 ∪ X2, its empirical means µ12, and its number of ele-
ments n12 = n1 + n2. µ1 is given by

µ1 =
n12µ12 − n2µ2

n12 − n2
.

Theorem 6 (The empirical variance after retracting a
dataset). Assume samples X1, X2 with empirical means µi,
empirical variance σ2

i , and number of elements ni (i ∈
{1, 2}). Let their union be X12 = X1 ∪ X2, its empirical
mean µ12, its empirical variance σ2

12, and its number of el-
ements n12 = n1 + n2. σ2

1 is given by µ12, µ2, µ1, n1, n2,
n12, σ2

12, and σ2
2 as follows.

σ2
1 =

1

n1

(
n12σ

2
12 − n2σ

2
2 −

n2n12

n1
(µ12 − µ2)

2

)
Proof.

n12σ
2
12 = n1σ

2
1 + n2σ

2
2 +

n1n2

n12
(µ2 − µ1)

2.

∴ n1σ
2
1 = n12σ

2
12 − n2σ

2
2 −

n1n2

n12
(µ2 − µ1)

2.

n1µ1 = n12µ12 − n2µ2.

∴ µ1 − µ2 =
n12µ12 − n2µ2

n1
− µ2

=
n12µ12 − n2µ2 − n1µ2

n1

=
n12µ12 − n2µ2 − (n12 − n2)µ2

n1

=
n12

n1
(µ12 − µ2).

∴ n1σ
2
1 = n12σ

2
12 − n2σ

2
2 −

n1n2

n12

n2
12

n2
1

(µ12 − µ2)
2

= n12σ
2
12 − n2σ

2
2 −

n2n12

n1
(µ12 − µ2)

2.

□

S6 Further Results
S6.1 Cumulative Histograms for All Heuristics

and All Search Statistics
Fig. S1-S3 shows the cumulative histogram of the
number of instances solved by a particular evalua-
tion/expansion/runtime. Although the graphs for the
expansion and the runtime are not entirely informative since
it is confounded by the node evaluation limit, the general
trend is the same between algorithms.

S6.2 Deferred Heuristic Evaluation
Fig. S4 shows the cumulative histogram of the num-
ber of instances solved under a particular evalu-
ation/expansion/runtime by hFF with/without DE,
with/without PO. Although the graphs for the expan-
sion and the runtime are not entirely informative since it is
confounded by the node evaluation limit, the general trend
is the same between algorithms.

S6.3 Solution Quality
Fig. S5-S8 shows the complete plot for the solution quality.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time
Analysis of the Multiarmed Bandit Problem. Machine Learn-
ing, 47(2-3): 235–256.

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic Search.
Artificial Intelligence, 129(1): 5–33.

Bylander, T. 1996. A Probabilistic Analysis of Prepositional
STRIPS Planning. Artificial Intelligence, 81(1): 241–271.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and Executing Generalized Robot Plans. Artificial Intelligence,
3(1-3): 251–288.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR), 14: 253–302.

Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The Joy of
Forgetting: Faster Anytime Search via Restarting. In Proc. of
ICAPS.

Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA 2008
and 2011. In Proc. of IPC, 117–124.

Schulte, T.; and Keller, T. 2014. Balancing Exploration and
Exploitation in Classical Planning. In Proc. of SOCS.

Vershynin, R. 2018. High-Dimensional Probability: An Intro-
duction with Applications in Data Science. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press.

Algorithm 1 High-level general MCTS. Input: Root node r,
successor function S, NEC f , heuristic function h, priority
queue Q sorted by g. Initialize ∀n; g(n)←∞.

while True do
Parent p← r
while not leaf p do # Selection

p← argminn∈S(p) f(n)

Q← {p}
for n ∈ S(p) do # Expansion

return n if n is goal. # Early goal detection
if ∃n′ already in tree with same state sn′ = sn then

if g(n) > g(n′) then
continue

Lock n′, S(n)← S(n′), Q← Q ∪ {n, n′}
else

Compute h(sn) # Evaluation
Q← Q ∪ {n}

while n← Q.POPMAX() do # Backpropagation
Update n’s statistics and lock status
Q← Q ∪ {n’s parent}

GUCT GUCT*

102 103 104
0

200

400

600 GUCT-Normal2
GBFS
GUCT
GUCT-01
GUCT-Normal
GUCT-V

102 103 104
0

200

400

600 GUCT*-Normal2
GBFS
GUCT*
GUCT*-01
GUCT*-Normal

h
F
F

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
a
d
d

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
m
a
x

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
G
C

Figure S1: The cumulative histogram of the number of problem instances solved (y-axis) below a certain number of node
evaluations (x-axis). Each line represents a random seed. In algorithms with an exploration coefficient hyperparameter, we use
c = 1.0.

GUCT GUCT*

102 103 104
0

200

400

600 GUCT-Normal2
GBFS
GUCT
GUCT-01
GUCT-Normal
GUCT-V

102 103 104
0

200

400

600 GUCT*-Normal2
GBFS
GUCT*
GUCT*-01
GUCT*-Normal

h
F
F

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
a
d
d

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
m
a
x

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
G
C

Figure S2: The cumulative histogram of the number of problem instances solved (y-axis) below a certain number of node
expansions (x-axis). Each line represents a random seed. In algorithms with an exploration coefficient hyperparameter, we use
c = 1.0.

GUCT GUCT*

102 103 104
0

200

400

600 GUCT-Normal2
GBFS
GUCT
GUCT-01
GUCT-Normal
GUCT-V

102 103 104
0

200

400

600 GUCT*-Normal2
GBFS
GUCT*
GUCT*-01
GUCT*-Normal

h
F
F

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
a
d
d

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
m
a
x

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
G
C

Figure S3: The cumulative histogram of the number of problem instances solved (y-axis) below a certain time elapsed (x-axis).
Each line represents a random seed. In algorithms with an exploration coefficient hyperparameter, we use c = 1.0.

evaluated expanded elapsed h

102 103 104
0

200

400

600 GUCT-Normal2
GUCT*-Normal2
GBFS
GUCT-01
GUCT*-01

102 103 104
0

200

400

600 GUCT-Normal2
GUCT*-Normal2
GBFS
GUCT-01
GUCT*-01

102 103 104
0

200

400

600 GUCT-Normal2
GUCT*-Normal2
GBFS
GUCT-01
GUCT*-01

h
F
F

102 103 104
0

200

400

600

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
F
F+D

E

102 103 104
0

200

400

600

102 103 104
0

200

400

600

102 103 104
0

200

400

600

h
F
F+PO

102 103 104
0

200

400

600

102 103 104
0

200

400

600

102 103 104
0

200

400

600 h
F
F+D

E
+PO

Figure S4: The cumulative histogram of the number of problem instances solved (y-axis) below a certain evalua-
tions/expansions/runtime (x-axis). Each line represents a random seed. In algorithms with an exploration coefficient hyper-
parameter, we use c = 1.0.

100 101 102
100

101

102

GUCT-01 vs GBFS

100 101 102
100

101

102

GUCT*-01 vs GBFS

100 101 102
100

101

102

GUCT vs GBFS

100 101 102
100

101

102

GUCT* vs GBFS

100 101 102
100

101

102

GUCT-Normal vs GBFS

100 101 102
100

101

102

GUCT*-Normal vs GBFS

100 101 102 103
100

101

102

103
GUCT-Normal2 vs GBFS

100 101 102
100

101

102

GUCT*-Normal2 vs GBFS

100 101 102
100

101

102

GUCT-V vs GBFS

Figure S5: Comparing the length of solutions found by GUCT-based algorithms (x-axis) against those by the baseline GBFS
(y-axis) using hFF.

100 101 102
100

101

102

GUCT-01 vs GBFS

100 101 102
100

101

102

GUCT*-01 vs GBFS

100 101 102
100

101

102

GUCT vs GBFS

100 101 102 103
100

101

102

103

GUCT* vs GBFS

100 101 102
100

101

102

GUCT-Normal vs GBFS

100 101 102
100

101

102

GUCT*-Normal vs GBFS

100 101 102 103
100

101

102

103

GUCT-Normal2 vs GBFS

100 101 102 103
100

101

102

103

GUCT*-Normal2 vs GBFS

100 101 102
100

101

102

GUCT-V vs GBFS

Figure S6: Comparing the length of solutions found by GUCT-based algorithms (x-axis) against those by the baseline GBFS
(y-axis) using hadd.

100 101 102
100

101

102 GUCT-01 vs GBFS

100 101 102
100

101

102 GUCT*-01 vs GBFS

100 101 102
100

101

102 GUCT vs GBFS

100 101 102
100

101

102

GUCT* vs GBFS

100 101 102
100

101

102

GUCT-Normal vs GBFS

100 101 102
100

101

102

GUCT*-Normal vs GBFS

100 101 102 103
100

101

102

103
GUCT-Normal2 vs GBFS

100 101 102 103
100

101

102

103
GUCT*-Normal2 vs GBFS

100 101 102
100

101

102 GUCT-V vs GBFS

Figure S7: Comparing the length of solutions found by GUCT-based algorithms (x-axis) against those by the baseline GBFS
(y-axis) using hmax.

100 101 102
100

101

102

GUCT-01 vs GBFS

100 101 102
100

101

102

GUCT*-01 vs GBFS

100 101 102
100

101

102

GUCT vs GBFS

100 101 102
100

101

102

GUCT* vs GBFS

100 101 102
100

101

102

GUCT-Normal vs GBFS

100 101 102
100

101

102

GUCT*-Normal vs GBFS

100 101 102 103
100

101

102

103

GUCT-Normal2 vs GBFS

100 101 102
100

101

102

GUCT*-Normal2 vs GBFS

100 101 102
100

101

102

GUCT-V vs GBFS

Figure S8: Comparing the length of solutions found by GUCT-based algorithms (x-axis) against those by the baseline GBFS
(y-axis) using hGC.

