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Abstract

Text-to-Image (T2I) synthesis is a challenging task that requires modelling complex interac-
tions between two modalities (i.e., text and image). A common framework adopted in recent
state-of-the-art approaches to achieving such multi-modal interactions is to bootstrap the
learning process with pre-trained image-aligned text embeddings. These text embeddings
are typically learned by training an independent network with a contrastive loss between
text and image features. Such a scheme comes with the downside that these embeddings are
learned to capture distinctive features and trained only to differentiate between instances.
These learned text embeddings are unaware of the different perspectives of generation to
capture intricate, complex variations of image generation and discrimination process to cap-
ture distinctive features, which may hinder their usage in generative modelling.
To alleviate this downside, this paper explores a new direction to learn text embeddings in
an end-to-end manner from text-to-image synthesis task that considers the different per-
spectives of generation and discrimination process. Specifically, a novel text-embedding
learning scheme called "Dual Text Embedding" (DTE) is presented, in which one part of
the embeddings is optimised to enhance the photo-realism of the generated images, and
the other part seeks to capture text-to-image alignment. Through a comprehensive set of
experiments on three text-to-image benchmark datasets (Oxford-102, Caltech-UCSD, and
MS-COCO), models with dual text embeddings perform favourably in comparison with
embeddings trained only to learn distinctive features.

1 Introduction

Visualising images for any textual statement is elemental to human understanding of the world. Intelligent
systems’ ability to generate images from the text for human understanding has a wide range of applications
such as information sharing, computer-aided design, text-to-image search and photo editing. Image synthesis
from text is a challenging task due to complex interaction and ambiguous association of text modality with
the image modality. For instance, multiple textual descriptions can describe the same image and vice versa.
Further, finer details of the images may not always be well captured in textual descriptions. In this domain,
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) were the go-to method for generating
realistic images. Conditional GANs (Mirza & Osindero, 2014; Odena et al., 2017; Miyato & Koyama, 2018)
allow us to generate real images semantically coherent with the text (Reed et al., 2016b; Dash et al., 2017;
Reed et al., 2016a) by conditioning the generation process on global sentence embeddings.

Though GANs have been shown to generate meaningful images, directly generating high-resolution images
from text leads to sub-par visual results and training instability due to the multi-modal nature (i.e., image
vs. text) of the task. One set of methods attempts to solve this issue by advancing the visual generation
part of the model. For instance, StackGAN (Zhang et al., 2017b) employs a hierarchical stage-wise training
of GANs from a low-resolution to a high resolution and conditions the generator at every stage by images
generated from the previous stage generator.

Another set of methods (Xu et al., 2018; Zhu et al., 2019; Liang et al., 2020) addresses high-quality image
generation from a text by improving the compatibility between text and image modalities. It is achieved
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Figure 1: (a) Text and image are projected into a shared embedding space to enhance mutual information
capturing discriminative features (Discriminative Embeddings), (b) Word embeddings are trained by gener-
ating images capturing semantic details (Generative Embeddings) and (c) Dual Text Embeddings approach
combining both generative and discriminative embeddings.

by semantically aligning the visual features in image sub-regions with the pre-trained word embeddings
through attention. Among these methods, text embeddings trained by projecting text and image features
into common embedding space and increasing the mutual information between the text-image pairs are
shown to be crucial for high-quality image generation. Recent state-of-the-art methods (Xu et al., 2018;
Liang et al., 2020; Tao et al., 2022; Liao et al., 2022; Ramesh et al., 2021; 2022; Gafni et al., 2022; Rombach
et al., 2021) are predominantly trained using pre-trained vision-language models (Radford et al., 2021;
Xu et al., 2018). These vision-language models project images and text into a shared embedding space,
where matching pairs exhibit high similarity and dissimilar pairs show low similarity. This training relies
on contrastive learning to distinguish between pairs by learning discriminative features as shown in Figure
1.a, resulting in superior text-image alignment. Such models are commonly used for encoding captions in
Text-to-Image synthesis. This scheme of learning embeddings comes with a limitation that these learned
text embeddings are unaware of the different perspectives of generation and discrimination process, i.e., the
generative process necessitates learning complex appearance variations needed for creating realistic images.
Integrating generative and discriminator perspectives leads to a superior text encoding scheme, enhancing
Text-to-Image synthesis.

In this work, we explore a new direction to capture both such perspectives in an unified end-to-end training
as shown in Figure 1.c for improving compatibility between image and text modalities. In this regard, a
novel Dual Text Embedding GAN (DTE-GAN) setup is proposed to learn text embeddings in an end-to-
end manner that takes into account the different perspectives of the generation and discrimination process.
Specifically, DTE contains two parts of embedding for each word: 1) Generator-side embedding to capture
image generation specific characteristics and is specifically optimised to improve the quality of the generated
images, and 2) Discriminator-side embedding seeks to increase text-to-image alignment and is learnt from the
multi-modal contrastive loss between the image and text features. Owing to its simpler design, a single-stage
GAN (Tao et al., 2022) is used for Text-to-Image synthesis. Specifically, the DTE-GAN uses a generator G
to synthesise images from the given text and a discriminator D to give feedback on whether the generated
image is real or fake and align the text and image pairs semantically through cross-modal contrastive loss
(Zhang et al., 2021). Besides generating images consistent with the text, the model learns the dual-text
embeddings (DTE) to capture the different perspectives of the generation and discrimination process. Naive
approaches of independent or fully shared text embeddings between the generator and discriminator lead
to sub-par results. We hypothesise that one of the prominent reasons for such sub-par results is the noisy
image generation during early GAN training.

To evaluate the effectiveness of the proposed approach, experiments are conducted on three datasets namely,
1) Oxford-102 (Nilsback & Zisserman, 2008), 2) Caltech-UCSD Birds 200 (CUB) (Welinder et al., 2010)
and 3) MS-COCO (Lin et al., 2014b). Three metrics are used for quantitatively evaluating the generated
images: Inception Score (Salimans et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017)
for quality of the images and R-precision (Xu et al., 2018) to measure the semantic consistency between the
generated image and the text. Our model decreases the FID score from 14.06 to 13.67 and 40.31 to 30.07
on the CUB and Oxford-102 datasets respectively. For the COCO dataset, our model decreases the FID
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Figure 2: Overview of DTE-GAN architecture. DTE-GAN consists of three core components: i) a single-stage
generator G (Section 3.2), ii) a discriminator D (Section 3.3), and iii) a dual text embedding setup (Section
3.4). In the Figure, WG = generator-side word embeddings, SG = generator-side sentence embedding, WD =
discriminator-side word embeddings, SD = discriminator-side sentence embedding. The model is optimised
using two objective functions: 1) adversarial loss, and 2) multi-modal contrastive loss.

from 35.49 to 25.17 in comparison to that of AttnGAN (Xu et al., 2018) which uses embeddings trained to
capture distinctive features. Contribution of this paper are summarised as follows:

• A novel framework to learn dual text embeddings to encompass the different perspectives of the
generation and discrimination process is proposed.

• DTE setup is incorporated into a single-stage GAN to learn text embeddings and generate images
simultaneously in an end-to-end framework.

• Through a comprehensive set of experiments and ablation studies, performance improvements of
DTE approach are illustrated comparing with those using embedding trained to capture distinctive
features only.

2 Related Work

In this section, some of the relevant works in the literature relating to this paper are discussed briefly.

Generative Adversarial Networks: In past few years, GANs (Goodfellow et al., 2014) had been the
go-to method for generating images and class-specific images (Mirza & Osindero, 2014; Odena et al., 2017;
Miyato & Koyama, 2018) on small datasets such as MNIST (LeCun & Cortes, 2010) and CIFAR (Krizhevsky
et al.). However, GAN training is highly unstable when used to generate images on large datasets such as
ImageNet (Deng et al., 2009). Researchers have explored to fix this training instability by re-framing GAN
loss and regularisation (Arjovsky et al., 2017; Gulrajani et al., 2017; Mao et al., 2017; Miyato et al., 2018;
Brock et al., 2017) to generate high-resolution images on large datasets (Karras et al., 2018; Brock et al.,
2019).

Text-to-Image synthesis: GANs conditioned on global sentence-level embeddings are known to generate
meaningful images at low resolutions (Reed et al., 2016a; Dash et al., 2017; Reed et al., 2016b). StackGAN
(Zhang et al., 2017b) generates high-resolution images in stage-wise approach, where the generator at each
stage is conditioned by the image generated from the previous stage. Unlike StackGAN, HDGAN (Zhang
et al., 2018) trains single generator and multiple discriminators for each resolution. AttnGAN (Xu et al.,
2018) uses text embeddings for fine-tuning the image features and also introduces a multi-modal contrastive
loss (DAMSM loss) to bridge the gap between generated images and words. DM-GAN (Zhu et al., 2019)
refines words and image features using a memory module. MirrorGAN (Qiao et al., 2019b) generates caption
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for generated images that improves the text vs. image semantic consistency. SD-GAN (Yin et al., 2019)
introduces Siamese structure for generator that uses Conditional Batch Normalization (CBN) (Chen et al.,
2019) to improve the text-image alignment. CPGAN (Liang et al., 2020) learns a memory attended text en-
coder by attending to salient features in images for each word and fine-grained discriminator (Li et al., 2019).
DTGAN (Zhang & Schomaker, 2020) applies channel and spatial attention, conditioned on sentence vector
to focus on important features for each textual representation. XMC-GAN (Zhang et al., 2021) maximises
the mutual information between text and image using intra-modality and inter-modality contrastive losses.
DF-GAN (Tao et al., 2022) uses deep affine transformed global sentence embedding to condition the gener-
ator and matching-aware discriminator. In this space of text-to-image semantic alignment-based methods,
pre-trained embeddings are an inherent prerequisite. These embeddings are only trained by discriminative
approach. Unlike these methods, DTE attempts to learn text embeddings that capture generative and
discriminative properties.

Generative embedding learning: Some methods attempt to learn embeddings (text / visual) end-to-end
as part of a generator. For instance, (van den Oord et al., 2017; Esser et al., 2020) learn discrete embeddings
for visual representation and show substantial improvement in Text-to-Image synthesis performance (Ramesh
et al., 2021; Ding et al., 2021). Further better and compact representation are learned to improve the quality
of image generation (Razavi et al., 2019; Lee et al., 2022; Gafni et al., 2022). Unlike these works that consider
only the generation process while learning embeddings, DTE explores to capture different perspectives of
generation and discrimination process by learning dual text embeddings.

Large Scale Text-to-Image Synthesis: Denoising Diffusion Probabilistic models (Sohl-Dickstein et al.,
2015) are currently achieved remarkable success in image generation (Ho et al., 2020; Nichol & Dhariwal,
2021; Dhariwal & Nichol, 2021) by reversing the forward markovian process with noise removal in multiple
steps. Though diffusion-based models are able to generate images with complex and varied interactions for
text and generate high-quality images (Ramesh et al., 2022; Saharia et al., 2022; Gu et al., 2022), these
approaches require large-scale training and exploit pre-trained discriminative language models like CLIP
(Radford et al., 2021). Further, CLIP-based language and image encoders are used as a bootstrapping
approach for predicting conditional representations in large-scale GAN-based approaches (Tao et al., 2023;
Kang et al., 2023; Zhou et al., 2021). Unlike CLIP, which is trained only to capture distinctive representations,
we propose DTE to capture the different perspectives of generation and discrimination.

3 Methodology

In this section, an end-to-end framework called “Dual Text Embedding GAN " (DTE-GAN) is formulated
to learn dual text embeddings and capture the different perspectives of the generation and discrimination
process in the text-to-image synthesis task. In the following sub-sections, overall architecture is introduced
followed by specific details on generator and discriminator architectures respectively; then the final sub-
section focuses on learning dual text embeddings.

3.1 Model overview

DTE-GAN consists of three core components: 1) a novel dual text embedding setup, 2) a single-stage
generator G, and 3) a discriminator D. The overall architecture is shown in Figure 2.

First, the given text T is passed through the novel dual text embedding procedure to encode the text into
two types of sentence embeddings, namely: 1) Generator-side sentence embedding SG, and 2) Discriminator-
side sentence embedding SD. The dual text embedding setup consists of two separate Bi-LSTM (Schuster
& Paliwal, 1997) text encoders (Generator-side and Discriminator-side) and their own independent word
embeddings (WG & WD). As the name suggests, the Generator-side word embeddings WG and its en-
coder are intended to be trained from the image-generation process (generator G) and its losses, while the
Discriminator-side word embeddings WD and its encoder are optimised by the loss from the multi-modal
contrastive branch of discriminator D. Such a decoupling between these two parts of embedding adds flex-
ibility in capturing different natures of image generations and discrimination processes. Specifically, the
image generation process warrants learning specific appearance details along with the intricacies involved
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in creating an image, while the discrimination process strives to learn features to simply differentiate the
instances. Further, the separation of these two embeddings allows WG to learn from noisy gradients of G
independently (as G’s gradients are initially noisy due to fake image - sentence pairs), while WD learns from
stable gradients of D (real image - sentence pairs).

During training, WG, the generator-side text encoder, and Generator G are trained from gradient signals of
the generation process i.e., Adversarial loss of fake images (Ifake) and multi-modal contrastive loss between
the generated image Ifake and the given text T . Next, WD and the discriminator-side text encoder are trained
from the gradient signals of the multi-modal contrastive loss between the real image Ireal and the given text
T . Further, discriminator D is trained from Adversarial loss (Ifake, Ireal) and multi-modal contrastive loss
between the real image Ireal and the given text T .

3.2 Generator

As opposed to other methods that use stacks of GANs or hierarchical GAN, a single-stage generator is
employed that can generate an image at any resolution owing to its simpler design and easier training
procedure. The generator G takes three inputs: i) a noise vector z of dimension dz from a Standard Gaussian
Distribution N (0, 1) with the Truncation Trick (Brock et al., 2019; Tao et al., 2022; Zhang & Schomaker,
2020), ii) the generator-side sentence embedding SG of dimension dSG, and iii) the discriminator-side sentence
embedding SD of dimension dSD. Next, the two sentence embeddings (SG, SD) together are passed through
the conditioning augmentation (Zhang et al., 2017b) to get the conditional vector Ct which is concatenated
with a noise vector z sampled from a Standard Gaussian Distribution N (0, 1) to form the input vector fG

and passed through a fully connected layer with reshape to create a low-resolution spatial feature map. It
may be noted that, in this step, SD is detached from the gradient flow of G to avoid getting gradients from
the generation process (refer to ablation studies in Section 4.3.4).

Further, this low-resolution feature map is passed through a set of upsampling blocks (UpBlock) followed by
a convolution layer that accepts the last high-resolution feature map and outputs the generated image Ifake

of dimension 3 × h × w (h = height, w = width). Each UpBlock is formulated as a residual layer consisting
of a bi-linear upsampling step followed by two convolution blocks (convolutional layer + Conditional Batch
Normalization (CBN)(Chen et al., 2019) + LeakyReLU (Maas et al., 2013)). To increase the stochastic
capability of the model, scaled noise is added (similar to StyleGAN (Karras et al., 2019)) to input before
passing to the convolutional layer. The modulation parameters in Conditional Batch Normalization (CBN)
(Yin et al., 2019; Chen et al., 2019) γc, and βc are calculated from fG by means of a linear projection layer.
The modulation parameters γc, and βc in CBN are calculated as follows:

BN(x | Ct, z) = (γ + γc) · x − µ(x)
σ(x) + (β + βc) (1)

fG = Concat[Ct, z] (2)
γc = FCγ(fG) (3)
βc = FCβ(fG) (4)

The generator is trained to minimise adversarial loss (LG
Adv), and multi-modal contrastive loss (LG

cont). LG
cont

is formulated as a loss between the features from the generated image and the discriminator-side sentence
embeddings. Mathematically, the objective functions can be written as follows:

LG
Adv = Ex̂∼pG

[−D(x̂)] (5)

LG
cont

(
f̂vi

, SDi

)
= − log

exp
(

Sim
(

f̂vi
, SDi

))
∑N

j=1 exp
(

Sim
(

f̂vi
, SDj

)) (6)

Sim(fv, SD) = cos (fv, SD) /τ (7)

Here, Sim(., .) is a score function to calculate the similarity between sentence embeddings and image features,
cos(u, v) = uT v/∥u∥∥v∥ is the Cosine Similarity between features and τ denotes the temperature hyper-
parameter, and f̂v represents visual features extracted by the discriminator for the generated image Ifake. We

5



Under review as submission to TMLR

use conditioning augmentation (Zhang et al., 2017b) to sample the sentence condition from an independent
Gaussian Distribution N (µ (st) , Σ (st)). The regularisation term from conditioning augmentation (LCA) for
combined sentence embeddings(st) is:

LCA = DKL (N (µ (st) , Σ (st)) ∥N (0, I)) (8)

Here µ(st) and Σ(st) are mean and diagonal covaraince matrices that are computed as functions of the com-
bined sentence embedding. The regualarisation term is KL Divergence between the Conditioning Gaussian
and a Standard Gaussian Distribution. The final loss for generator is defined as:

LG = LG
Adv + λ1LCA + λ2LG

cont (9)

3.3 Discriminator

The discriminator D is designed to serve two purposes: (1) to be a critic to determine whether the image
is real or fake, and (2) to be a feature encoder to extract image features for multi-modal contrastive loss.
The given image (Ireal or Ifake) is passed through a series of downsampling blocks (DownBlocks), until the
feature map is of size 8 × 8. Next, these 8 × 8 dimensional spatial features are passed through two separate
branches: one for extracting features for the adversarial loss and the other for computing image features
for multi-modal contrastive loss. For the adversarial branch, the input is passed through a DownBlock,
ResBlock, and a fully connected layer to predict the logit to represent if the given image is real or fake. The
predicted logit is used as input to an Adversarial Hinge loss (Miyato et al., 2018) LD

Adv as follows:
LD

Adv = Ex∼pdata [max(0, 1 − D(x))]
+Ex̂∼pG

[max(0, 1 + D(x̂))]
(10)

Here, x and x̂ are real (Ireal) and generated (Ifake) images.

In the multi-modal contrastive loss branch, the features are passed through a DownBlock, ResBlock, and a
linear projection layer to output visual features fv. The multi-modal contrastive loss LD

cont takes as input
the real image features fvi

and sentence embeddings SDi
and calculates the contrastive loss to increase the

mutual information in text and image as follows:
LD

cont (fvi
, SDi

) = − log exp (Sim (fvi
, SDi

))∑N
j=1 exp

(
Sim

(
fvi , SDj

)) (11)

LD
cont is the contrastive loss between real image - text pairs. The final objective function for the Discriminator

is defined as:
LD = LD

Adv + λ3LD
cont (12)

3.4 Dual text embedding learning

Embeddings can be viewed as memory representation learned by reducing a loss. Multiple embeddings, each
learned by optimising on different losses, will capture various memory representations for the same word. The
goal of the dual text embedding setup is to learn generator-side word embeddings WG (along with its encoder)
to capture complex representation of words to aid improve the photo-realism of the generated images and
discriminator-side word embeddings WD (along with its encoder) to capture distinctive features for words
to align text-image associativity. To achieve this, we make sure that WG receives only the gradients from
image-generation process whereas WD receives gradients from the discriminator. Specifically, we formulate
the generator-side embedding loss (LG

emb) and the discriminator-side embedding loss (LD
emb) as follows:

LG
emb = LG (13)

LD
emb = λ3LD

cont (14)

Here, LG denotes the loss function for the generator G, LD
cont denotes the multi-modal contrastive loss

between real image (Ireal) features and discriminator-side sentence embedding SD for the given text T.
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Figure 3: Visual comparision of the images generated by DF-GAN (Tao et al., 2022) and DTE-GAN on
CUB(Welinder et al., 2010) and COCO(Lin et al., 2014a) Datasets.
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Figure 4: Illustration of the images generated by HDGAN (Zhang et al., 2018) and those of DTE-GAN on
Oxford-102 Flower Dataset (Nilsback & Zisserman, 2008).

4 Experiments

In this section, datasets and evaluation metrics are introduced for experiments. Futher, proposed DTE is
evaluated and compared quantitatively and qualitatively with other methods in the literature. The specific
training details and hyper-parameters are mentioned in the supplementary material.

Datasets: DTE-GAN is evaluated on three datasets, namely, 1) Caltech-UCSD birds (CUB) (Welinder
et al., 2010), 2) Oxford-102 flowers (Nilsback & Zisserman, 2008), and 3) MS COCO (Lin et al., 2014b)
datasets. For CUB and Oxford-102 datasets, we have similar setup to StackGAN (Zhang et al., 2017b). Ten
captions are provided for each image in both the datasets. The MS-COCO dataset consists of around 80k
training and 40k validation images; and for every image, there are 5 captions provided with the dataset.

4.1 Visual comparison

The generated images are visually compared between DF-GAN (Tao et al., 2020) and DTE-GAN on CUB
and COCO datasets. In Figure 3, it is evident that DF-GAN struggles to depict complete bird shapes.
The presented model, employing dual text embeddings, minimises image generation loss, improving shape
accuracy and realistic fine-grained features in generated images. Additionally, DTE-GAN outperforms DF-
GAN in pose representation, resulting in more natural-looking images. Regarding semantic consistency
between images and text, DTE-GAN captures detailed structures and overall coherence compared to those
of DF-GAN. Despite not using word embeddings for image region attention, DTE-GAN’s ability to learn
embeddings for both generation and discrimination allows it to generate images with finer details. DTE-
GAN produces images that resemble real images due to its learned embeddings encompassing generation
and discrimination aspects. For the COCO dataset, it is observed that DTE-GAN generates similar quality
images as DF-GAN with significantly less amount of parameters. In Figure 4, images for the Oxford-102
dataset are generated and compared with those of HDGAN (Zhang et al., 2018). We can observe that
our model is able to capture the complex variation of the flowers and generate more realistic images than
HDGAN.

4.2 Quantitative Evaluation

Evaluation metrics: To assess the quality of images generated, the metrics used are: Inception Score
(IS) (Salimans et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017). For text-to-image
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Method CUB COCO
IS ↑ FID ↓ R% ↑ FID ↓ R% ↑ NoP ↓

StackGAN (Zhang et al., 2017b) 3.70 ± .04 - - - - -
AttnGAN (Xu et al., 2018) 4.36 ± .02 23.98 67.82 35.49 83.82 230M
MirrorGAN (Qiao et al., 2019b) 4.56 ± .17 18.32 57.67 34.71 74.53 -
DM-GAN (Zhu et al., 2019) 4.75 ± .07 16.09 72.32 32.64 88.56 46M
KT-GAN (Tan et al., 2021) 4.85 ± .05 17.32 - 30.73 - -
TIME (Liu et al., 2021) 4.91 ± .04 14.30 71.57 31.14 - 120M
DAE-GAN (Ruan et al., 2021) 4.42 ± .04 15.19 85.45 28.12 92.61 98M
CSM-GAN (Tan et al., 2022a) 4.62 ± .08 20.18 - 33.48 - -
DR-GAN (Tan et al., 2023a) 4.90 ± .05 14.96 - 27.80 - 73M
ALR-GAN (Tan et al., 2023b) 4.96 ± .04 15.14 77.54 29.04 69.20 76M
DF-GAN (Tao et al., 2022) 4.86 ± .04 14.81 - 19.32 - 19M
SSA-GAN (Liao et al., 2022) 5.17 ± .08 15.61 85.4 19.37 90.6 26M

DTE-GAN 5.12 ± .04 13.67 86.64 25.17 90.82 11M
DTE-GAN+MAGP 5.09 ± .02 13.94 81.33 19.69 88.39 11M

Table 1: Quantitative comparison between DTE-GAN and other models on CUB (Welinder et al., 2010) and
COCO (Lin et al., 2014a) datasets. "-" indicates values are unreported. The best three results are marked
with red, green, and blue, respectively. “↑” indicates the higher, the better, while “↓” indicates the lower,
the better.

Method IS ↑ FID ↓
StackGAN (Zhang et al., 2017b) 3.20 ± .01 51.89
StackGAN++ (Zhang et al., 2017a) 3.26 ± .01 48.68
HDGAN (Zhang et al., 2018) 3.45 ± .07 43.17
SegAttnGAN (Gou et al., 2020) 3.36 ± .08 -
SSTIS (Tan et al., 2022b) 3.37 ± .05 -
SS-TiGAN (Tan et al., 2023c) 3.45 ± .04 40.54
DualAttn-GAN (Cai et al., 2019) 4.06 ± .05 40.31
RAT-GAN (Ye et al., 2024) 4.09 -
DTE-GAN 4.21 ± .08 30.07
DTE-GAN+MAGP 4.26 ± .07 31.13

Table 2: Quantitative comparison between DTE-GAN and other models on Oxford-102 Dataset. The best
three results are marked with red, green, and blue, respectively. “↑” indicates the higher, the better, while
“↓” indicates the lower, the better."-" indicates values are unreported.

alignment, R-precision (R%) (Xu et al., 2018) is used. IS calculates the Kullback-Leibler (KL) divergence be-
tween a conditional distribution and marginal distribution for class probabilities from Inception-v3 (Szegedy
et al., 2016) model. Higher the IS, higher is the quality of images with more diverse classes. FID calculates
the Fréchet Distance between two multivariate Gaussians, which are fit to the global features extracted
from the Inception-v3 (Szegedy et al., 2016) model on the synthetic and generated images. Lower the FID,
higher is the quality of generated images (i.e., closer to real images). R-precision is used to determine the
text-to-image alignment, which evaluates whether generated images can be used to retrieve the text.

The performance of proposed model is compared with that of the lightweight GAN approaches (having similar
training setups) for the task of text-to-image synthesis on CUB and COCO datasets in Table 1. From Table
1, on the CUB dataset, we observe that DTE-GAN improves IS from 4.91 to 5.12, achieves the best R-
precision of 86.64 and further decreases FID from 14.06 to 13.67. We also train our DTE-GAN with the
proposed regularisation trick Matching-Aware Gradient Penalty (MAGP) (Tao et al., 2022), which smooths
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CAPTION

this flower is
yellow and black in
color, with petals

that are skinny and
oval shaped.

REAL CLIP CLIP + Gemb DTE CAPTION
this flower has

yellow petals with
red spots on them,

and red on the
border of each

petal. 

REAL CLIP CLIP + Gemb DTE

a small red bird
with slight grey in

coverts,
secondaries and

primaries. 

this bird has a very
long pointy bill

while it's breast is
in orange color ,that
has a green crown

and body 

Figure 5: Images generated using CLIP, CLIP + Learnable Generator side embeddings (CLIP + Gemb) and
DTE on CUB and Oxford-102 datasets.

out discriminator function and allows to generate more realistic images. On the CUB dataset, compared to
AttnGAN (Xu et al., 2018) that employs contrastive loss-based embeddings, our model decreases FID from
23.98 to 13.67. Such an improvement illustrates the effectiveness of the end-to-end learned dual embeddings
over fixed pre-trained embeddings learned on the same data. On MS-COCO (Lin et al., 2014b) dataset (in
Table 1), we achieve similar performance of DF-GAN and SSA-GAN with fewer parameters, which proves the
efficacy of the proposed DTE. DTE-GAN+MAGP achieves similar performance as that of SSA-GAN (Liao
et al., 2022) on COCO dataset as SSA-GAN and DF-GAN (Tao et al., 2022) both incorporating MAGP.

By Capturing both representations in a unified Dual Text Embeddings approach, we achieve superior textual
embeddings that improve conditional image generation while reducing the complexity of Text-to-Image
synthesis models. As shown in the table, we employed a network with significantly fewer parameters by
reducing the width of the layers by half compared to SSA-GAN Liao et al. (2022) and DF-GAN Tao et al.
(2020) in their respective UpBlock and DownBlock. Despite this reduction, we achieved comparable results
by learning superior text encoding representations that enhance effective Text-to-Image synthesis.

Following previous works (Tao et al., 2022; Zhang & Schomaker, 2020; Liao et al., 2022), we report only
FID scores, as IS scores for the MS-COCO dataset do not reflect the quality of the synthesised images. In
comparision to TIME (Liu et al., 2021) which learns embeddings along with the Text-to-Image synthesis
model, DTE-GAN achieves significant improvement (0.6 in FID, +15% in R-precision) demonstrating the
effectiveness of dual text embeddings. In Table 2, on the Oxford-102 dataset, we use IS and FID scores for
evaluation, as R-precision scores are not available in the literature. In this dataset, our model improves IS
score from 4.06 to 4.21 over the state-of-the-art (DualAttn-GAN (Cai et al., 2019), LeicaGAN (Qiao et al.,
2019a)) models and remarkably decreases FID from 40.31 to 30.07.

4.3 Additional Studies

Dataset Embeddings IS ↑ FID ↓ R % ↑

CUB
CLIP 4.53 21.33 74.12

CLIP+Gemb 4.51 19.36 78.35
DTE 5.12 13.67 86.64

Oxford
CLIP 3.72 38.36 71.78

CLIP+Gemb 3.81 35.93 73.87
DTE 4.21 30.07 83.19

Table 3: We compare quality of T2I generation of our proposed DTE approach with that of models trained
using CLIP (Radford et al., 2021) and CLIP+Gemb. The best results are red. “↑” indicates the higher, the
better, while “↓” indicates the lower, the better.

4.3.1 DTE vs CLIP:

We compare DTE with pre-trainThised CLIP embeddings by training a GAN for text-to-image generation.
Additionally, we train another GAN model resembling the DTE setup. This model uses learnable Generator-
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side embeddings and pre-trained CLIP embeddings for the discriminator (referred to as CLIP+ Gemb). Table
3 compares image quality using different CUB and Oxford-102 datasets embeddings. CLIP+Gemb improves
over just CLIP. In Figure 5, CLIP images differ from reality, while CLIP+Gemb matches better text and
real images due to learned generative embeddings. DTE’s combined approach creates images closer to real
images.

4.3.2 Generalisation ability of DTE:

To assess how well the DTE setup applies to other architectures, we integrate it into AttnGAN (Xu et al.,
2018), now called AttnGAN+DTE. In AttnGAN, pre-trained text embeddings (DAMSM embeddings) for
training are used. Instead, we have trained it from scratch using DTE. Incorporating DTE into AttnGAN
involves modifying its discriminators to include a dual branch (adversarial loss and multi-modal contrastive
loss) after reaching 8 × 8 feature size. As AttnGAN uses words for alignment in the attention layer, we
introduce a word-contrastive loss (Xu et al., 2018; Zhang et al., 2021) in the final discriminator as an
additional branch when the feature size is 8 × 8, aimed at reducing the semantic gap between words and
image features. We combine generator-side and discriminator-side word embeddings to provide word features
for the Generator’s attention mechanism. The results in Table 4 show that AttnGAN+DTE can train without
pre-trained embeddings and even improve the results, proving that DTE works well with other methods.

Method IS ↑ FID ↓ R%
AttnGAN 4.36 ± .02 23.98 67.82
AttnGAN+DTE 4.38 ± .03 21.45 71.39
DTE-GAN 5.12 ± .04 13.67 86.64

Table 4: Impact of DTE approach on AttnGAN (Xu et al., 2018) on CUB Dataset (Welinder et al., 2010).
The best results are red. “↑” indicates the higher, the better, while “↓” indicates the lower, the better.
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Figure 6: Examples of manipulated images generated by LightWeight GAN (Li et al., 2020b) using DTE-
GAN pre-trained embeddings on CUB dataset. Source images are manipulated by the caption of concept
images.

4.3.3 Application to Text-to-Image manipulation task:

To demonstrate the versatility of the learned dual embeddings, we apply them to text-to-image manipulation
tasks. We train dual text embeddings through DTE-GAN on the CUB dataset for text-to-image synthesis.
We then utilise the pre-trained word embeddings (WG, WD) from this synthesis task for text-to-image manip-
ulation in the Lightweight GAN for Text-to-Image manipulations (Li et al., 2020b) task on the same dataset.
It is important to note that these pre-trained dual text embeddings remain fixed during training. In Table
5, the quantitative performance of the model using these pre-trained embeddings is compared with that of
other text-to-image manipulation models. The model improves the Inception score from 8.48 (MANIGAN
(Li et al., 2020a)) to 8.56 and reduces the FID score from 8.02 (Li et al., 2020b) to 7.77 on the CUB dataset.
This demonstrates the ability of dual text embeddings to generalise effectively across different tasks. Figure
6 illustrates few visual examples of the text-to-image manipulations.
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Method IS ↑ FID ↓
MANIGAN 8.48 9.75
LWGAN 8.26 8.02
LWGAN w/ DTE-EMB 8.56 7.77

Table 5: Quantitative comparison of Inception score and FID for manipulated images on CUB dataset. We
use Lightweight GAN (Li et al., 2020b) which we name as LWGAN with the pre-trained embeddings using
DTE-GAN (LWGAN w/ DTE-EMB). The best results are red. “↑” indicates the higher, the better, while
“↓” indicates the lower, the better.

Emb.
type

Components CUB Oxford-102
LG LD

cont SD → G SG → D IS ↑ FID ↓ R% ↑ IS ↑ FID ↓ R% ↑
Shared ✗ ✓ - - 4.54 ± .04 15.81 85.63 3.52 ± .06 33.57 81.73
Shared ✓ ✓ - - 4.27 ± .06 18.38 82.73 3.32 ± .05 34.83 76.15
Dual ✓ ✓ ✗ ✗ 4.73 ± .05 14.93 63.79 3.84 ± .03 32.98 54.97
Dual ✓ ✓ ✓ ✓ 4.25 ± .05 18.01 69.38 3.28 ± .04 35.41 70.48
Dual ✓ ✓ ✓ ✗ 5.12 ± .04 13.67 86.64 4.21 ± .08 30.07 83.19

Table 6: Quantitative comparison of DTE with its variants. Here, LG = generator loss, LD
cont = multi-

modal contrastive loss between real image - text pairs, SD → G = whether the generator has access to the
discriminator-side sentence embedding, SG → D = whether the discriminator has access to the generator-
side sentence embedding. The best results are red. “↑” indicates the higher, the better, while “↓” indicates
the lower, the better.

4.3.4 Importance of dual text embeddings
To verify the effectiveness of the proposed Dual Text Embeddings (DTE) setup, different ways of organising
the word embeddings between generator G and discriminator D are evaluated on CUB and Oxford-102
datasets and results shown in Table 6. Specifically, four variants of organising the embeddings are compared,
namely: i) A shared word embedding layer between G and D that is trained only with a multi-modal
contrastive loss LD

cont between real image-text pairs as it is trained only to capture distinctive features (Table
6, row 1). ii) A shared word embedding layer between G and D that is trained using both the generator loss
LG and real image-text pair contrastive loss LD

cont to capture distinctive and intricate appearance features
in single embeddings (Table 6, row 2). iii) A dual embedding setup where G doesn’t have access to the
discriminator-side sentence embedding SD(Table 6,row 3). iv) A dual embedding setup where both G and D
have access to the generator-side sentence embeddings SG and discriminator-side sentence embeddings SD

(Table 6, row 4). The shared embedding model trained only with LD
cont to capture distinctive features (Table

6, row 1) achieves similar R-precision scores as those of the proposed DTE-GAN, but there is significant
drop in IS and FID scores suggesting that there is drop in the quality of generated images. Next, the shared
embedding model trained with both LG and LD

cont performs inferior to the one trained only with LD
cont.

It proves that capturing generator-side noisy gradient signals into the same word embeddings degrades
the performance. Further, the dual embedding model with independent generator- and discriminator-side
embeddings achieves better IS and FID scores compared to those of shared embedding models but has a
significant drop in R-precision, suggesting that the images generated are realistic but do not capture text-
to-image alignment. Further, allowing the discriminator to have access to the generator-side embeddings
significantly drops the performance (Table 6, row 4). As the Discriminator-side embeddings are learned with
ground-truth real image-text pairs, it is found beneficial to allow Generator to have access (i.e., a sneak
peek) to Discriminator-side embeddings (Table 6, row 5). Discriminator-side embeddings capture distinct
features and Generator-side feature captures intricate details to improve photo-realism; providing both the
information to Generator allows to generate more realistic and text-aligned images. On the other hand,
Generator-side embeddings are learned using noisy gradients from fake images and allowing the discriminator
to access them introduces an adverse effect and decreases the performance (Table 6, row 4).
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When generator-side embeddings are provided to the discriminator, we observe a significant drop in overall
image generation quality, as reported in Table 6. To further evaluate this effect, we conducted an experiment
in which generator-side embeddings were supplied to the discriminator after a specified number of training
epochs, with the results presented in Table 7. Specifically, generator-side SG embeddings were combined
with SD using summation from the start of training (epoch = 0), after 100 epochs when the generator began
producing images with plausible structure, and after 300 epochs when more realistic images were generated.
The low or noisy quality of generated images during the initial stages affects the learning of generator-side
embeddings; consequently, providing these embeddings to the discriminator negatively impacts the overall
image generation quality.

Epoch
Count

Components CUB Oxford-102
SD → G SG → D IS ↑ FID ↓ R% ↑ IS ↑ FID ↓ R% ↑

0 ✓ ✓ 4.21 ± .04 18.33 69.81 3.34 ± .05 36.18 71.13
100 ✓ ✓ 4.59 ± .06 16.24 74.46 3.56 ± .05 33.27 75.68
300 ✓ ✓ 4.82 ± .04 14.96 78.57 3.91 ± .04 31.38 78.92

Table 7: Quantitative comparison of of (SG → D) whether the discriminator has access to the generator-side
sentence embedding from the epoch count. SD → G represents generator has access to the discriminator-side
sentence embedding. The best results are red. “↑” indicates the higher, the better, while “↓” indicates the
lower, the better.

5 Limitation and Future Scope

This work proposes an approach to learning vision-language models by generating images. Due to compu-
tational constraints (our model is trained on a single 1080Ti graphics card with 12 GB memory), we focus
our approach and conduct experiments on smaller datasets. For future work, we aim to explore learning
vision-language models by generating images using diffusion-based (Ho et al., 2020; Dhariwal & Nichol, 2021)
models on large-scale, openly available datasets (Bain et al., 2021; Wang et al., 2022).

6 Conclusion

This study introduces a unique approach called Dual Text Embeddings (DTE) for text-to-image synthesis.
This method learns word embeddings simultaneously with the main task, enhancing image quality by con-
sidering both generation and discrimination aspects separately. DTE-GAN paves a new path in language
model design by employing multiple components in embeddings, optimising them independently decoupled.
This strategy proves effective for end-to-end learning across various tasks.

In comparision to embeddings trained for distinct representations, our experiments reveal that the DTE
setup enhances image quality across three datasets (Oxford-102, Caltect-UCSD, and MS-COCO). It can be
seamlessly integrated into existing GAN architectures. Moreover, we showcase the adaptability of learned
dual embeddings in different language-based vision tasks, like Text-to-Image manipulations. In our upcoming
work, we plan to extend the dual embedding setup to other language-based vision tasks, including image or
video captioning and visual question answering.

6.1 Broader Impact Statement

The proposed Dual Text Embeddings paradigm introduces a new approach where text encoding schemes
capture the perspective of current vision-language models and are also trained to capture generators per-
spective. This approach enables learning text representations that enhance the image synthesis capabilities
of conditional generation models and also provide a new paradigm of learning representation by generating
images.
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A DTE-GAN with MA-GP

Recent methods (Tao et al., 2022; Zhang & Schomaker, 2020; Liao et al., 2022) have significantly improved
quality of synthesised images on COCO dataset (Lin et al., 2014b). Their improved performance may
be associated with the Matching-Aware zero-centered Gradient Penalty (MA-GP) term adopted in these
methods. MA-GP is applied to Discriminator with real images and its corresponding text to smooth the loss
function that allows the Generator to synthesise more realistic images. Incorporating MA-GP into DTE-
GAN by changing the Discriminator to conditional Discriminator (towards one-way output for gradient
penalty). Mismatch pairs are not used as DTE-GAN has a multi-modal contrastive branch for text-image
alignment. For conditional prediction, following similar setup of DF-GAN (Tao et al., 2022) of replicating
sentence features and concatenating with image features to predict logit values for adversarial loss. The
modified adversarial loss function of Discriminator for conditional loss with MA-GP is:

LAdv
D = − Ex∼Pdata

[max(0, 1 − D(x, SD))]
+ Ex̂∼PG

[max(0, 1 + D(x̂, SD))]
+ kEx∼Pdata

[(∥∇xD(x, SD)∥ + ∥∇SD
D(x, SD)∥)p]

(15)

Here, k and p are hyper-parameters (we use the same hyper-parameter values from DF-GAN (Tao et al.,
2022)). For training discriminator-side word embeddings and their sentence encoder from real image-text
pairs, we do not update the weights using the gradient of fake conditional prediction from the adversarial
loss. Conditional Adversarial loss for Generator is:

LAdv
G = − Ex̂∼PG

[D(x̂, SD)] (16)

The final objective function for the Generator and Discriminator is defined as:

LG = LG
Adv + λ1LCA + λ2LG

cont (17)
LD = LD

GAN + λ3LD
cont (18)
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B Text Encoding Scheme

We used a single-stage Bi-LSTM Schuster & Paliwal (1997) for text encoding, following the popular DAMSM
Xu et al. (2018) embeddings commonly employed in lightweight GAN models Xu et al. (2018); Zhu et al.
(2019); Liao et al. (2022); Tao et al. (2020). The DAMSM embeddings are trained to learn discriminative
features by distinguishing between instances, ensuring a fair comparison focused on design principles rather
than simply increasing the number of parameters. Additionally, we conducted an ablation study by replacing
the Bi-LSTM (Schuster & Paliwal, 1997) with a 4-layer Transformer encoder Vaswani et al. (2017) in both
the generator and discriminator text encoders, and we reported the results in Table 8.

Dataset Encodings IS ↑ FID ↓ R % ↑

CUB Bi-LSTM 5.12 13.67 86.64
Transformer Encoder 5.19 13.12 87.9

Oxford Bi-LSTM 4.21 30.07 83.19
Transformer Encoder 4.27 29.61 83.94

Table 8: We compare quality of T2I generation using Bi-LSTM and 4 layer Transformer Encoder text
encoding scheme and report the results on CUB and Oxford-102 dataset.

C Details of the Proposed Architecture

In this section, we elaborate internal architecture details of the DTE-GAN. Proposed model is implemented
using Pytorch (Paszke et al., 2019) framework. DTE-GAN architecture consists of a dual text embedding
setup (Section C.0.1), a single-stage Generator (Section C.0.2) and a Discriminator (Section C.0.3).

C.0.1 Dual Text Embeddings

In the Dual Text Embeddings setup, bi-Directional LSTM (Schuster & Paliwal, 1997) are used as text encoder
both generator-side and discriminator-side. For each direction in the LSTM, hidden layer size is set as 128.
The size of word embeddings WD and WG is set to 256. The sentence embeddings SG, SD are encoded from
the output of last hidden state of respective text encoders. For both the text encoders, sentence embedding
size is set to 256.

C.0.2 Generator

Single-stage generator G is used to generate 256 × 256 resolution images with base channel dimension of 64.
Details of G’s architecture are shown in Table 9. The generator G takes noise z along with generator-side
sentence embeddings SG and the discriminator-side sentence embedding SD and passes them through a set
of linear layers followed by a set of upsampling blocks (UpBlocks). UpBlock at each stage is utilised for up
sampling spatial features as shown in Figure 7. SG and SD are also used to calculate modulation parameters
for Conditional Batch Normalisation (Yin et al., 2019). Feature are passed through a self modulation
convolution and a 1 × 1 convolution resulting in generation of final image of dimension 3 × 256 × 256

C.0.3 Discriminator

Discriminator D is utilise to provide adversarial loss and also act as a feature extractor for multi-modal
contrastive loss (as shown in Table 10). Unlike multiple / multi-stage discriminator setup, presented model
with a single discriminator, is easy to train and not having a cumbersome training procedure. The dis-
criminator D takes image of dimension 3 × 256 × 256 and passes it through a set of down sampling blocks
(DownBlocks- as shown in Figure 8) followed by two branches, one for the adversarial loss and the other
multi-modal contrastive loss.
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Figure 7: UpBlock used in Generator of DTE-GAN.

zϵR100 ∼ N (0, I) , SG ϵ R256, SD ϵ R256,
WG ϵ R256, WD ϵ R256

Linear(512) −→ 512
Conditional Augmentation(512) −→ 200

Linear(200+100) −→ (8 ∗ ch) × 4 × 4
UpBlock −→ (8 ∗ ch) × 8 × 8

UpBlock −→ (8 ∗ ch) × 16 × 16
UpBlock −→ (4 ∗ ch) × 32 × 32
UpBlock −→ (2 ∗ ch) × 64 × 64

UpBlock −→ (2 ∗ ch) × 128 × 128
UpBlock −→ ch × 256 × 256

Self Modulation Convolution −→ ch × 256 × 256
1 × 1 Convolution −→ 3 × 256 × 256

Table 9: Generator architecture of DTE-GAN. Base channel dimension ch = 64.

C.1 Implementation Details

Implementation of the models is done using the PyTorch framework (Paszke et al., 2019) and optimise
the network using Adam optimiser (Kingma & Ba, 2015) with the following hyper parameters: β1 = 0.5,
β2 = 0.999, batch size = 24, learning rate = 0.0002, λ1 = 1, λ2 = 1 and λ3 = 1. Spectral Normalisation
(Miyato et al., 2018) is used for all convolutions and fully connected layers in generator and discriminator.
The model is trained for 600 epochs on CUB and Oxford-102 datasets (takes ∼4 days in 2 NVIDIA 1080Ti
GPUs) and 120 epochs for COCO dataset (takes ∼7 days in 2 NVIDIA 1080Ti GPUs). During inference,
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Figure 8: DownBlock used in Discriminator of DTE-GAN.

RGB images 3 × 256 × 256, SD ϵ R256, WD ϵ R256

DownBlock −→ ch × 128 × 128
DownBlock −→ (2 ∗ ch) × 64 × 64
DownBlock −→ (4 ∗ ch) × 32 × 32
DownBlock −→ (4 ∗ ch) × 16 × 16
DownBlock −→ (4 ∗ ch) × 8 × 8

DownBlock −→ (8 ∗ ch) × 4 × 4 DownBlock −→ (8 ∗ ch) × 4 × 4
ResBlock −→ (8 ∗ ch) × 4 × 4 ResBlock −→ (8 ∗ ch) × 4 × 4
Linear((8 ∗ ch) × 4 × 4) −→ 1 Linear((8 ∗ ch) × 4 × 4) −→ 256

Adversarial Loss Multi-Modal Contrastive Loss

Table 10: Discriminator architecture of DTE-GAN. Base channel dimension ch = 64.

we report results with exponential moving average weights, with a decay rate of 0.999. For R-precision, we
obtain text features from D-side Bi-LSTM sentence encoder and image features from discriminator network.
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