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Abstract

Spurred by advancements in scale, large lan-001
guage models (LLMs) have demonstrated002
strong few-shot learning ability via in-context003
learning (ICL). However, the performance of004
ICL has been shown to be highly sensitive to005
the selection of few-shot demonstrations. Se-006
lecting the most suitable examples as context007
remains an ongoing challenge and an open008
problem. Existing literature has highlighted the009
importance of selecting examples that are di-010
verse or semantically similar to the test sample011
while ignoring the fact that the optimal selec-012
tion dimension, i.e., diversity or similarity, is013
task-specific. Based on how the test sample is014
answered, we propose Iterative Demonstration015
Selection (IDS) to leverage the merits of both016
dimensions. Using zero-shot chain-of-thought017
reasoning (Zero-shot-CoT), IDS iteratively se-018
lects examples that are diverse but still strongly019
correlated with the test sample as ICL demon-020
strations. Specifically, IDS applies Zero-shot-021
CoT to the test sample before demonstration se-022
lection. The output reasoning path is then used023
to choose demonstrations that are prepended024
to the test sample for inference. The generated025
answer is followed by its corresponding rea-026
soning path for extracting a new set of demon-027
strations in the next iteration. After several028
iterations, IDS adopts majority voting to obtain029
the final result. Through extensive experiments030
on tasks including reasoning, question answer-031
ing, and topic classification, we demonstrate032
that IDS can consistently outperform existing033
ICL demonstration selection methods.034

1 Introduction035

With the recent advancements in scaling up model036

parameters, large language models (LLMs) show-037

case promising results on a variety of few-shot038

tasks through in-context learning (ICL), where the039

model is expected to directly generate the output of040

the test sample without updating parameters. This041

is achieved by conditioning on a manually designed042

Text: LeBron James ...         Topic: Sports

Text: ChatGPT ...         Topic: Technology

Text: Lionel Messi ...               Topic: Sports

Text: OpenAI ...         Topic:

Input

Frozen LLM

Output Technology

Figure 1: Illustration of in-context learning (ICL) on
topic classification. A frozen large language model
directly generates the topic ‘Technology’ for the test
sample ‘OpenAI ...’ by taking the demonstrations and
the test sample as input.

prompt consisting of an optional task description 043

and a few demonstration examples (Brown et al., 044

2020). Fig. 1 shows an example describing how 045

LLMs perform ICL on the topic classification task. 046

Given a few text-topic pairs as demonstrations, ICL 047

combines them with the test sample as input, to the 048

LLM for inference. The output, i.e., ‘Technology’, 049

is generated by the model autoregressively without 050

any parameter updates. 051

Despite the effectiveness, the performance of 052

ICL has been shown to be highly sensitive to the 053

selection of demonstration examples (Zhao et al., 054

2021). Different sets of demonstrations can yield 055

performance ranging from nearly random to com- 056

parable with state-of-the-art models (Gao et al., 057

2021; Lu et al., 2022). To alleviate the above is- 058

sue, researchers in ICL have proposed a number 059

of methods to select a set of examples as few-shot 060

demonstrations (Rubin et al., 2022; Liu et al., 2022; 061

Li and Qiu, 2023; Wang et al., 2023b; Li et al., 062

2023a; Ma et al., 2023; An et al., 2023b). However, 063

for LLMs for which parameters or detailed output 064

distributions are not available (Sun et al., 2022), 065
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it is still a common practice to randomly select066

examples or select examples that are semantically067

similar to the test sample as demonstrations, i.e.,068

considering diversity or similarity. While several069

approaches investigate the combination of similar-070

ity and diversity when prompting with explanations,071

exploring compositional generalization, or choos-072

ing examples for annotation (Ye et al., 2023b; An073

et al., 2023a; Su et al., 2023), it is not yet clear how074

to determine and leverage the optimal dimension075

for different tasks in ICL and how the rationale for076

answering the query benefits the balance between077

these two dimensions.078

Actually, the optimal dimension for selecting079

demonstration examples is task-specific. As we080

will show in §4, the diversity dimension is superior081

to the similarity dimension on CommonsenseQA082

while the similarity dimension outperforms the di-083

versity dimension on AGNews and BoolQ. Thus, it084

is unreasonable to claim that one dimension is con-085

sistently better than the other across different tasks.086

To fully leverage the merits of both dimensions, we087

propose Iterative Demonstration Selection (IDS)088

for ICL (Fig. 2) by utilizing how the test sample is089

answered. IDS can iteratively select demonstration090

examples that are diverse but still have a strong091

correlation with the test sample through zero-shot092

chain-of-thought reasoning (Zero-shot-CoT) (Ko-093

jima et al., 2022). Specifically, Zero-shot-CoT, e.g.,094

“Let’s think step by step.”, is first applied to the095

test sample before selecting demonstrations to ob-096

tain a reasoning path. The training examples that097

are most semantically similar to the generated rea-098

soning path are then selected as demonstrations.099

They are prepended to the test sample for inference.100

Note that IDS ensures that the generated answer101

is accompanied by the reasoning path through de-102

signed prompts. The new reasoning path is then103

used for extracting another set of demonstration104

examples by semantic similarity in the next itera-105

tion. After a few iterations, IDS adopts majority106

voting to obtain the final result. Empirical results107

on tasks spanning mathematical reasoning, com-108

monsense reasoning, logical reasoning, question109

answering, and topic classification show that IDS110

can consistently outperform previous ICL demon-111

stration selection baselines. In summary, our main112

contributions are:113

• We consider both the diversity and similarity114

dimensions of ICL demonstration selection for115

LLMs. We identify that the optimal dimension116

for selecting demonstrations is task-specific and 117

propose Iterative Demonstration Selection (IDS) 118

based on how the test query is answered to fully 119

leverage the merits of both dimensions. 120

• With extensive experiments and analysis, we 121

demonstrate the effectiveness of IDS on a variety 122

of tasks. 123

2 Related Work 124

This work mainly explores how to select few-shot 125

in-context learning demonstrations for LLMs by 126

leveraging Zero-shot-CoT. In light of this, we re- 127

view four lines of research that form the basis of 128

this work: few-shot learning, in-context learning 129

basics, demonstration selection for in-context learn- 130

ing, and chain-of-thought reasoning. 131

2.1 Few-shot Learning 132

Few-shot learning aims to learn tasks with only a 133

few labeled samples, which results in a big chal- 134

lenge, i.e., over-fitting, for models as they typically 135

require large amounts of data for training. Prior 136

methods to address over-fitting mainly focused on 137

augmenting the few-shot data (Gao et al., 2020; 138

Qin and Joty, 2022), reducing the hypothesis space 139

(Triantafillou et al., 2017; Hu et al., 2018), or opti- 140

mizing the strategy for searching the best hypothe- 141

sis (Ravi and Larochelle, 2017; Finn et al., 2017). 142

More recently, LLMs have demonstrated strong 143

few-shot learning ability through in-context learn- 144

ing without any parameter updates (Brown et al., 145

2020). 146

2.2 In-context Learning 147

Brown et al. (2020) first showed that a frozen GPT- 148

3 model can achieve impressive results on a vari- 149

ety of few-shot NLP tasks through conditioning 150

on manually designed prompts consisting of task 151

descriptions and several demonstration examples. 152

Since then many efforts have been made on in- 153

context learning (ICL) (Dong et al., 2022). Chen 154

et al. (2022); Min et al. (2022a); Wei et al. (2023a) 155

demonstrated that the ICL ability of language mod- 156

els can be further improved through self-supervised 157

or supervised training. Some analytical studies at- 158

tempted to understand what factors affect ICL per- 159

formance (Zhao et al., 2021; Shin et al., 2022; Wei 160

et al., 2022a; Min et al., 2022b; Yoo et al., 2022; 161

Wei et al., 2023b) and why ICL works (Xie et al., 162

2022; Olsson et al., 2022; Li et al., 2023b; Pan et al., 163

2023; Dai et al., 2023). Other ongoing research on 164
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ICL has also explored (i) demonstration designing,165

including demonstration selection (Liu et al., 2022;166

Rubin et al., 2022; Wang et al., 2023b), demonstra-167

tion ordering (Lu et al., 2022), and demonstration168

formatting (Wei et al., 2022b; Wang et al., 2022c;169

Zhou et al., 2023; Zhang et al., 2023a), (ii) appli-170

cations of ICL (Ding et al., 2022; Meade et al.,171

2023; Zheng et al., 2023), and (iii) ICL beyond text172

(Wang et al., 2023c; Huang et al., 2023; Zhu et al.,173

2023; Wang et al., 2023a).174

2.3 Demonstration Selection for In-context175

Learning176

The performance of ICL has been shown to be177

highly sensitive to the selection of demonstration178

examples (Zhao et al., 2021). Existing methods to179

solve this problem can be mainly divided into two180

categories. First, unsupervised methods rely on pre-181

defined metrics. Liu et al. (2022) proposed to select182

the closest neighbors as demonstrations. In con-183

trast, Levy et al. (2022) selected diverse demonstra-184

tions to improve in-context compositional general-185

ization. More recent studies have explored lever-186

aging the output distributions of language mod-187

els to select few-shot demonstrations (Wu et al.,188

2022; Nguyen and Wong, 2023; Li and Qiu, 2023;189

Ma et al., 2023) or self-generating demonstrations190

(Chen et al., 2023). Second, supervised methods191

involve model training. Rubin et al. (2022); Ye et al.192

(2023a); Li et al. (2023a); Luo et al. (2023); Wang193

et al. (2024) proposed to learn to retrieve demon-194

stration examples. Wang et al. (2023b) posited195

LMs as implicit topic models to facilitate demon-196

stration selection. In addition, some studies (Zhang197

et al., 2022; Scarlatos and Lan, 2023) attempted198

to select demonstrations based on reinforcement199

learning. However, it is still a common practice200

to randomly select examples or select examples201

that are semantically similar to the test sample as202

demonstrations for LLMs for which parameters203

or detailed output distributions are not available204

(Sun et al., 2022). Several methods investigated205

the combination of diversity and similarity in dif-206

ferent scenarios, e.g., prompting with explanations207

(Ye et al., 2023b), choosing examples for annota-208

tion (Su et al., 2023) and exploring compositional209

generalization (An et al., 2023a). Nevertheless, it210

remains unclear to us how to determine and lever-211

age the optimal dimension for different tasks in ICL212

and how the reason for answering the test sample213

benefits the balance between the two dimensions,214

which motivates us to propose our simple but effec-215

tive approach (IDS). 216

2.4 Chain-of-Thought Reasoning 217

Chain-of-thought (CoT) reasoning induces LLMs 218

to produce intermediate reasoning steps before gen- 219

erating the final answer (Wei et al., 2022b). De- 220

pending on whether there are manually designed 221

demonstrations, current CoT reasoning methods 222

mainly include Manual-CoT and Zero-shot-CoT. 223

In Manual-CoT, human-labeled reasoning paths 224

are used to perform CoT reasoning (Wei et al., 225

2022b; Zhou et al., 2022; Wang et al., 2022b; 226

Li et al., 2022; Wang et al., 2022a). In contrast, 227

LLMs leverage self-generated rationales for rea- 228

soning in Zero-shot-CoT (Kojima et al., 2022; Ze- 229

likman et al., 2022; Zhang et al., 2023a; Diao et al., 230

2023). The ongoing research on CoT reasoning 231

has also explored (i) multimodal reasoning (Zhang 232

et al., 2023b; Wu et al., 2023), (ii) distilling knowl- 233

edge from LLMs (Ho et al., 2022; Fu et al., 2023), 234

and (iii) iterative optimization (Shinn et al., 2023; 235

Madaan et al., 2023; Paul et al., 2023). 236

3 Problem Formulation 237

Given the test set Dtest and the training set Dtrain, 238

the goal of ICL demonstration selection is to find 239

an optimal subset S = {(x1, y1), ..., (xk, yk)} (k- 240

shot) of Dtrain as demonstration examples for each 241

test sample (x̂i, ŷi) to maximize the overall task 242

performance on Dtest. More formally, the optimal 243

selection method h̃ is defined as: 244

h̃ = argmax
h∈H

∣Dtest∣
∑
i=1

δLLM([h(Dtrain,x̂i,ŷi),x̂i]),ŷi (1) 245

where H is the hypothesis space for searching 246

demonstration examples, h(Dtrain, x̂i, ŷi) refers to 247

demonstrations selected for (x̂i, ŷi) using h, [, ] 248

stands for concatenation, and δa,b is the Kronecker 249

delta function: δa,b = 1 if a equals b, otherwise 250

δa,b = 0. In this work, we aim to find the optimal 251

method h̃ by leveraging Zero-shot-CoT. 252

4 What Makes Good In-Context 253

Demonstrations? 254

As demonstrated in previous work (Zhao et al., 255

2021), the overall task performance is highly sen- 256

sitive to the selection method h. Different sets 257

of demonstration examples can yield significantly 258

different performance. For example, Zhang et al. 259

3



CommonsenseQA BoolQ AGNews

Similar-ICL-Consistency (Similarity) 76.0 85.0 90.0
Random-ICL-Voting (Diversity) 79.0 84.0 88.0

Table 1: Results of different methods on Common-
senseQA, BoolQ and AGNews. The optimal dimension
for selecting ICL demonstrations is task-specific.

(2022) show that the minimum and maximum ICL260

performance due to random sampling differs by261

> 30% on 4 classification tasks, which emphasizes262

the importance of selecting good demonstrations263

for LLMs.264

A natural question is: what makes good in-265

context demonstrations? For LLMs, it is still a266

common practice to select a subset S consisting of267

examples that are diverse or semantically similar268

to the test sample as demonstrations, i.e., consider-269

ing the diversity or similarity of S. To investigate270

whether one dimension is consistently better than271

the other one across different tasks, we conduct272

some pilot experiments on CommonsenseQA (Tal-273

mor et al., 2019), BoolQ (Clark et al., 2019) and274

AGNews (Zhang et al., 2015). Specifically, we ran-275

domly sample 100 examples from the original test276

set for experiments and conduct 4-shot learning277

using GPT-3.5 (gpt-3.5-turbo).278

Following Zhang et al. (2023a), we use Sentence-279

BERT (Reimers and Gurevych, 2019) to encode280

all samples. For each test sample, the Similar-281

ICL method selects the top-4 similar training data282

based on cosine similarity while the Random-ICL283

method randomly samples 4 training examples as284

few-shot demonstrations. Inspired by Wang et al.285

(2022b), we apply self-consistency with 3 decod-286

ing paths (temperature 0.7) to Similar-ICL (named287

Similar-ICL-Consistency) and run Random-ICL288

3 times before majority voting (named Random-289

ICL-Voting) to improve the robustness.290

The results of different methods on four datasets291

are reported in Table 1. We can observe that the292

diversity dimension outperforms the similarity di-293

mension on CommonsenseQA while the similarity294

dimension is superior to the diversity dimension295

on BoolQ and AGNews. Therefore, the optimal296

dimension for selecting demonstration examples is297

task-specific. Thus, it is unreasonable to claim that298

one dimension is consistently better than the other299

one in ICL demonstration selection.300

Intuitively, semantically similar examples can301

help the model correctly answer the test query302

as they might share similar input-output patterns303

with the test sample which could unleash GPT-304

3.5’s power of text generation. To further under- 305

stand why the similarity dimension underperforms 306

the diversity dimension on CommonsenseQA, we 307

present a case study in Table 2. We can see that 308

the answer of the final demonstration example 309

extracted by Similar-ICL-Consistency, i.e., ‘most 310

buildings’ is also in the options list of the test sam- 311

ple, which misleads the decision process of the 312

model, leading to a wrong answer. In addition, the 313

selected demonstrations might not include enough 314

important information as high similarity also re- 315

sults in redundancy. 316

Considering the strengths and weaknesses of 317

both dimensions, we aim to design a method that 318

can select demonstration examples that are di- 319

verse (minimizing misleading information) but still 320

strongly correlated with the test sample, which is 321

introduced in the next section. 322

5 Iterative Demonstration Selection 323

Based on the observations and considerations in 324

§4, we introduce Iterative Demonstration Selection 325

(IDS) for ICL demonstration selection by leverag- 326

ing how the test sample is answered (see Fig. 2 for 327

an illustration). Intuitively, the demonstrations that 328

are similar to the reason for answering a sample are 329

strongly correlated with this sample. Therefore, we 330

propose to incorporate zero-shot chain-of-thought 331

reasoning (Zero-shot-CoT) into IDS to iteratively 332

select demonstration examples that are diverse but 333

still have a strong correlation with the test sample. 334

Specifically, for each test sample x̂i, IDS mainly 335

consists of four steps: 336

1. We apply Zero-shot-CoT, i.e., “Let’s think step 337

by step.” to the test sample x̂i before selecting 338

demonstrations to obtain a reasoning path R. 339

2. The reasoning path R is then used to 340

select top-k (k is the number of shot) 341

most semantically similar training examples 342

{(x1, y1), ..., (xk, yk)} as few-shot demonstra- 343

tions. We use Sentence-BERT (Reimers and 344

Gurevych, 2019) to encode the reasoning path 345

R and training examples to obtain the contex- 346

tual representations and use cosine similarity to 347

measure the similarity between representations. 348

3. The selected k training examples 349

{(x1, y1), ..., (xk, yk)} are then prepended to 350

the test sample x̂i for ICL. During inference, we 351

ensure that the generated answer Â is accom- 352

panied by its corresponding reasoning path R̂ 353
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Similar-ICL-Consistency Random-ICL-Voting

Which choice is the correct answer to the question? Which choice is the correct answer to the question?

Examples:
Question: If you have cleaned off dust here it may be dif-
ficult to do your homework where? Answer Choices: (A)
desktop (B) closet (C) most buildings (D) surface of earth
(E) stove
Answer: A
Question: Where is dust likely to be under? Answer Choices:
(A) closet (B) ground (C) windowsill (D) attic (E) carpet
Answer: E
Question: Where would you find a dustbin that is being
used? Answer Choices: (A) utility closet (B) ground (C)
cupboard (D) broom closet (E) kitchen
Answer: E
Question: Dust accumulates where? Answer Choices: (A)
ceiling (B) library (C) surface of earth (D) most buildings
(E) desktop
Answer: D

Examples:
Question: She had a busy schedule, she had to run errands
and pick up the kids the second she did what? Answer
Choices: (A) make time for (B) take money (C) go outdoors
(D) leave work (E) field
Answer: D
Question: What is the worst outcome of an injury? Answer
Choices: (A) cause death (B) cause bleeding (C) falling
down (D) become infected (E) claim insurance
Answer: A
Question: Mom said that Sarah should stay in bed until she
was able to go to school again. What did mom say to Sarah
when she tried to get up? Answer Choices: (A) you’re sick
(B) were sick (C) more rest (D) rest more (E) get back under
the covers
Answer: A
Question: John got a raise, but he lost rank. Overall, it was a
good what? Answer Choices: (A) demotion (B) push down
(C) go off strike (D) lower (E) go off strike
Answer: A

The response should follow the format: Answer: {A, B, C,
D or E}

The response should follow the format: Answer: {A, B, C,
D or E}

Here is the test data. Here is the test data.
Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Answer: E ✗ Answer: D ✓

Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first run) for
constructing demonstration examples. The upper part is the input to LLMs, including few-shot demonstrations, and
the lower part is the predicted answer. Similar-ICL-Consistency gives the wrong answer ‘most buildings’ which is
actually the output of the final demonstration example, indicating that the decision process of the model is misled by
this similar sample.

through designed prompts, e.g., “The response354

should follow the format: Topic: {world, sports,355

business or technology}\nReason: {reason}”.356

Note that Zero-shot-CoT is also applied in357

this step to improve the quality of generated358

reasoning paths. After ICL, we go back to Step359

2 for iterations using the new reasoning path R̂.360

4. After q rounds of iterations between Step 2 and361

3, we adopt majority voting on all Â to obtain362

the final result Âfinal.363

Obviously, the selected demonstration examples364

are strongly correlated with the original test sample,365

i.e., achieving similarity, as they are selected by the366

generated reasoning paths (see Appendix A.4 for367

quantitative analysis of reasoning paths). And they368

can be different during iterations to achieve diver-369

sity because the reasoning paths vary in different370

iterations. Note that there is no reasoning path in371

few-shot demonstrations (as shown in the green372

part in Fig. 2). The reasoning path only exists in373

Algorithm 1 Selection process of IDS

Require: Training set Dtrain, test set Dtest, LLMθ , number of
demonstrations k, number of iterations q and answer set
Âall = ∅

1: ENCODE all samples in Dtrain using Sentence-BERT ▷
Encode training set

2: for x̂i in Dtest do
3: APPLY Zero-shot-CoT to x̂i to obtain the reasoning

path R ▷ Zero-shot-CoT
4: for j = 1, . . . , q do
5: ENCODE R using Sentence-BERT ▷ Encode

reasoning path
6: USE R to select top-k most similar examples S =

{(x1, y1), ..., (xk, yk)} from Dtrain as demonstrations ▷
KNN selection

7: (Â, R̂) = LLMθ(S, x̂i) ▷ ICL with
Zero-shot-CoT

8: R = R̂, Âall = Âall ∪ {Â} ▷ Update reasoning
path and answer set

9: end for
10: ADOPT majority voting for Âall to obtain the final

result Âfinal for the test sample x̂i ▷ Majority voting
11: end for

the output of LLMs. 374

In addition, we illustrate the whole selection 375
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What is the topic of the input? World, sports, 
business or technology?
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Input: Lionel Messi won the World Cup ...
Let's think step by step.

Task description

Frozen 
LLM

Topic: sports
Reason: The mention of Lionel Messi, a highly 
renowned soccer player ... Therefore, the topic of 
the given input is sports.

KNN 
selection

What is the topic of the input? World, sports, 
business or technology?
Examples:
Input: The 22nd World Cup was held in Qatar ... 
Topic: sports

...
Input: Denver Nuggets won the NBA Finals ...
Topic: sports
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Here is the test data.
Input:  Lionel Messi won the World Cup ...
Let's think step by step.

Training 
examples

Topic: sports
Reason: The World Cup and NBA Finals are both 
famous sporting events ... So the topic is sports.

Update reasoning path for next iteration

1

2

3

Majority 
voting

4

Output format instruction
Test sample

Zero-shot-CoT trigger
Few-shot demonstrations

Reasoning path

Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies Zero-shot-CoT
to the test sample to obtain a reasoning path, which is then used to select few-shot demonstrations from training
examples through KNN. The selected demonstration examples are prepended to the test sample for ICL. To obtain
the new reasoning path for extracting another set of demonstrations in the next iteration, an instruction for output
format is inserted before the test sample. After several iterations, IDS uses majority voting to obtain the final result.

process in Alg. 1 and show the instructions and376

input formats of different types of tasks for ICL in377

Appendix A.1.378

6 Experiments379

In this section, we first describe the tasks and380

datasets, and then introduce methods compared381

in our work. Finally, we present the experimental382

results.383

6.1 Experimental Setup384

Tasks and Datasets We mainly investigate 6 dif-385

ferent datasets covering 5 representative task cate-386

gories: mathematical reasoning (GSM8K (Cobbe387

et al., 2021) and MATH (Hendrycks et al., 2021)),388

commonsense reasoning (CommonsenseQA (Tal-389

mor et al., 2019)), logical reasoning (LogiQA (Liu390

et al., 2020)), question answering (BoolQ (Clark391

et al., 2019)) and topic classification (AGNews392

(Zhang et al., 2015)). For each dataset, we ran-393

domly sample at most 10000 examples from the394

original training set as Dtrain and at most 2000 test395

examples as Dtest for evaluating the performance of 396

selected demonstrations. The detailed information 397

of different datasets is shown in Appendix A.2. To 398

reduce the randomness, we run every experiment 399

five times with different random seeds (resulting in 400

different training and test samples if not using the 401

whole set) and report the average results. Without 402

specification, we use k = 4 number of demonstra- 403

tions following Wang et al. (2023b) and set the 404

number of iterations q to 3. 405

Methods Compared We mainly use GPT-3.5 406

(gpt-3.5-turbo) as the LLM and compare our IDS 407

with the following methods in the experiments for 408

selecting ICL demonstrations: 409

• Top-k-Consistency (Liu et al., 2022) selects the 410

top-k semantically similar examples from the 411

training set Dtrain as demonstrations for each test 412

sample and applies self-consistency (Wang et al., 413

2022b) with q decoding paths (temperature 0.7) 414

to match the number of iterations. Following 415

Zhang et al. (2023a), all samples are encoded by 416
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Method BoolQ GSM8K MATH CommonsenseQA LogiQA AGNews Average

Vote-k 86.7±0.7 76.5±0.5 35.7±0.2 75.2±0.3 45.4±0.3 88.1±1.2 67.9±0.2
MMR 86.4±0.8 75.5±0.7 34.8±0.3 74.9±0.2 44.7±0.3 87.6±1.1 67.3±0.3
G-fair-Prompting 84.8±0.7 76.9±0.6 34.6±0.3 75.5±0.3 43.8±0.4 88.9±1.0 67.4±0.2
Skill-KNN 85.9±0.5 76.5±0.3 35.1±0.2 75.2±0.2 44.6±0.2 88.7±0.9 67.7±0.1
Top-k-Consistency 87.1±0.2 76.1±0.5 35.6±0.3 74.5±0.2 45.7±0.4 89.3±0.8 68.1±0.1
Random-Voting 87.3±0.6 75.6±0.4 35.4±0.1 77.0±0.2 45.1±0.3 87.0±1.6 67.9±0.2
Cluster-Voting 86.4±0.7 76.8±0.3 34.9±0.4 76.5±0.3 44.1±0.3 86.8±1.2 67.6±0.3
IDS 87.8±0.8 78.5±0.4 37.5±0.2 78.1±0.1 46.9±0.2 89.8±0.8 69.8±0.1

Table 3: Accuracy (%) of different methods on 6 datasets. Bold indicates the best result. IDS is consistently better
than all previous baselines.

Sentence-BERT (Reimers and Gurevych, 2019)417

to obtain contextual representations for calculat-418

ing the cosine similarity.419

• Random-Voting randomly selects k examples420

from Dtrain as few-shot demonstrations for every421

test sample and runs experiments q times before422

majority voting.423

• Cluster-Voting partitions Dtrain into k clusters424

and selects a representative example from each425

cluster to form demonstrations. Following Zhang426

et al. (2023a), we choose the sample closest to427

the centroid in each cluster as the representative428

example. Same as Random-Voting, after run-429

ning experiments q times, Cluster-Voting adopts430

majority voting to obtain the final result.431

Besides, we also compare IDS with several latest432

ICL demonstration selection approaches: Vote-k433

(Su et al., 2023), MMR (Ye et al., 2023b), G-fair-434

Prompting (Ma et al., 2023) and Skill-KNN (An435

et al., 2023b) (see Appendix A.3 for more details436

of baselines). Similar to Top-k-Consistency, we437

apply self-consistency to these baselines to match438

the number of iterations q. Note that we find that439

simultaneously generating answers and reasoning440

paths can improve the ICL performance in general441

even if the target task is not a reasoning task in the442

conventional sense, e.g., topic classification. There-443

fore, we apply the same prompt, e.g., “The response444

should follow the format: Topic: {world, sports,445

business or technology}\nReason: {reason}”, and446

Zero-shot-CoT to baseline methods.447

6.2 Main Results448

Table 3 shows the average performance scores449

of different methods on all investigated datasets.450

From the results, we can observe that451

• Our proposed IDS consistently outperforms pre-452

vious baselines on all datasets with a negligible453

Top-k-Consistency IDS Random-Voting

Average Similarity Score 0.68 0.48 0.32

Table 4: Average similarity scores between test exam-
ples and the corresponding selected demonstrations of
three methods (Top-k-Consistency, IDS and Random-
Voting).

1 3 5 7 Average

66

68

70

72
A

cc
ur

ac
y 

(%
)

Top-k-Consistency IDS

Figure 3: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of reasoning paths or iterations.

increase in API request cost (Zero-shot-CoT in the 454

first step), which demonstrates that our method 455

can indeed effectively and efficiently select better 456

ICL demonstration examples by incorporating the 457

reason for answering the test query. 458

• On average, IDS yields about 1.7% perfor- 459

mance boost compared with the best baseline Top- 460

k-Consistency as it can fully leverage the merits 461

of both selection dimensions (diversity and similar- 462

ity). While the performance gain on a few simple 463

benchmarks looks somewhat small (because the 464

baseline results are already pretty high, e.g., the 465

baseline performance of BoolQ and AGNews is 466

above 85%), IDS performs much better than base- 467

lines on more complex tasks. For example, IDS can 468

bring an average relative improvement of about 4% 469

on mathematical reasoning tasks compared with 470

Top-k-Consistency. 471

To delve deeper into how different dimensions 472

are leveraged in selected demonstrations, we report 473

the average similarity scores between test samples 474
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GPT-3.5 GPT-4

Top-k-Consistency 68.3 73.9
IDS 69.9 75.4

Table 5: Accuracy (%) of Top-k-Consistency and IDS
with different LLMs (GPT-3.5 and GPT-4). For GPT-4,
we randomly sample 200 test examples per dataset due
to the high cost.

and the corresponding demonstrations of different475

methods in Table 4. Specifically, we randomly476

select 500 test examples for each dataset and use477

Sentence-BERT to obtain contextual representa-478

tions for calculating similarity scores. We can see479

that the average similarity score of IDS is between480

that of Top-k-Consistency and Random-Voting, in-481

dicating that it can indeed strike a balance between482

two selection dimensions.483

6.3 Analysis484

Different Numbers of Iterations Our experi-485

ments and analysis so far use q = 3 iterations. To486

verify whether the performance gain of IDS is con-487

sistent across different numbers of iterations, we488

conduct controlled experiments with q = {1, 5, 7}.489

The average results of the 6 datasets with a ran-490

domly selected seed are reported in Fig. 3. IDS491

consistently outperforms the best baseline Top-k-492

Consistency with different q (even q = 1, i.e., with-493

out voting), emphasizing the importance of ratio-494

nales in selecting demonstration examples. Inter-495

estingly, the performance of ICL does not always496

improve with the number of iterations, which might497

be because increased iterations can also lead to un-498

necessary noise.499

Robustness to Model Types To demonstrate the500

robustness of IDS to model types, we conduct con-501

trolled experiments with GPT-4. Specifically, we502

randomly select one seed and sample 200 test ex-503

amples per dataset for experiments due to the ex-504

pensive cost. From the average results shown in505

Table 5, we can observe that IDS still achieves506

better performance than Top-k-Consistency when507

using GPT-4 as the LLM, showing its robustness508

to different LLMs.509

Generalization to Open-source LLMs To bet-510

ter verify the generalization ability of IDS, we511

use vLLM (Kwon et al., 2023) to serve Llama-2-512

chat models (Touvron et al., 2023) for experiments513

and compare IDS with Top-k-Consistency on two514

datasets: BoolQ and GSM8K. We randomly sam-515

13B 70B

BoolQ GSM8K BoolQ GSM8K

Top-k-Consistency 81.3 24.8 84.2 49.6
IDS 82.2 27.1 85.4 51.4

Table 6: Accuracy (%) of different methods with Llama-
2-chat models.

Iterative Demonstration Selection Top-k-Consistency
Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Iteration 1: Answer: B\nReason: ...
Iteration 2: Answer: D\nReason: ...
Iteration 3: Answer: D\nReason: ...

Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Response: Answer: B\nReason: ...; Answer: 
B\nReason: ...; Answer: B\nReason: ...

Label: D Label: D

Iterative Demonstration Selection Random-Voting
Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Label: Technology Label: Technology

Iteration 1
Examples: 
Input: Six days a week, teens crowd the Blue 
Screen Gaming cybercafe to hunt each other 
down with assault rifles inside virtual computer 
worlds...
Topic: Technology

...
Response: Topic: Technology\nReason: ...

Iteration 2: ... Response: Topic: Technology ...
Iteration 3: ... Response: Topic: Technology ...

Iteration 1
Examples: 
Input: The Boston Celtics added a healthy Tom 
Gugliotta and deleted injured Delonte West. Tom, 
34, was activated Wednesday from the injured list 
after missing seven games ...
Topic: Sports

...
Response: Topic: Sports\nReason: ...

Iteration 2: ... Response: Topic: Business ...
Iteration 3: ... Response: Topic: Sports ...

Figure 4: Several case studies of model responses. We
color correct outputs in green, and wrong outputs in red.

ple 500 test examples for experiments and report 516

the results in Table 6, which demonstrates that IDS 517

can successfully generalize to open-source LLMs. 518

Case Study To further understand the advantage 519

of IDS, we show several cases in Fig. 4. As shown 520

in the upper part of the figure, IDS can iteratively 521

select more diverse demonstration examples than 522

Top-k-Consistency which may be able to correct 523

errors from previous iterations. Compared with 524

Random-Voting, IDS can find examples that share 525

more similar input-output patterns with the test 526

sample to induce the LLM to generate correct an- 527

swers (the lower part of the figure). 528

In addition, we show the results with different 529

numbers of demonstrations, the robustness of IDS 530

to different embedding models and Zero-shot-CoT 531

triggers in Appendix A.5 ∼ A.7, respectively. 532

7 Conclusion 533

In this work, we have introduced Iterative Demon- 534

stration Selection (IDS) that can iteratively select 535

examples that are diverse but still strongly correlate 536

with the test sample as demonstrations to improve 537

the performance of in-context learning (ICL) by 538

leveraging the rationale for answering the test sam- 539

ple. Extensive experimental results and analysis 540

show that IDS can consistently outperform previ- 541

ous ICL demonstration selection baselines. 542
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Limitations543

This work has several limitations. First, due to544

the inference cost of ChatGPT, we do not conduct545

experiments on the entire test set. Besides, we546

include 6 datasets covering 5 different task types547

in this work. A further improvement could be to548

explore more diverse types of tasks.549
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What is the topic of the input? World, sports, business or technology?
Examples:
Input: Cavs earn fourth straight win ...
Topic: Sports

...
The response should follow the format: Topic: {world, sports, business or technology}\nReason: {reason}
Here is the test data.
Input: Microsoft intros new mice, keyboards ...
Let's think step by step.

Topic Classification

Please answer the question based on the context.
Examples:
Context: Sikma was voted as one of the ...
Question: is jack sikma in the hall of fame
Answer: Yes

...
The response should follow the format: Answer: {yes or no}\nReason: {reason}
Here is the test data.
Context: Blue is a playful female puppy ...
Question: is blue off of blue's clues a girl
Let's think step by step.

Question Answering

Which choice is the correct answer to the question?
Examples:
Question: If you poke yourself ... Answer Choices: (A) have fun ...
Answer: C

...
The response should follow the format: Answer: {A, B, C, D or E}\nReason: {reason}
Here is the test data.
Question: How can I store ... Answer Choices: ...
Let's think step by step.

Commonsense Reasoning

Please solve the following mathematical problem.
Examples:
Question: Eric, Ben, and Jack have some money. Eric has $10 less than Ben ...
Answer: The answer is 50

...
The response should follow the format: {reason} The answer is {your answer}
Here is the test data.
Question: Kim raises $320 more than Alexandra, who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money did they all raise in total?

Mathematical Reasoning

Which choice is the correct answer to the question?
Examples:
Context: Li Lin is a civil servant, but not a college graduate.
Question: Which of the following is necessarily true? Answer Choices: (A) Not all university ...
Answer: B

...
The response should follow the format: Answer: {A, B, C or D}\nReason: {reason}
Here is the test data.
Context: The people in Harbin are all northerners, and some people in Harbin are not workers.
Question: If the above proposition is true, then which answer must be true? Answer Choices: ...
Let's think step by step.

Logical Reasoning

Figure 5: Instructions and input formats of five different categories of tasks (topic classification, question answering,
commonsense reasoning, logical reasoning, and mathematical reasoning) for ICL. For Zero-shot-CoT in the first
step of IDS, there is no demonstration example and the instruction “Here is the test data.”.

BoolQ GSM8K MATH CommonsenseQA LogiQA AGNews

# Training Samples 9427 (full) 7473(full) 5000 9741 (full) 7376(full) 10000
# Test Samples 2000 1000 1000 1221 (full) 500 1000

Table 7: Deailed information of different datasets. # refers to ‘the number of’ and ‘full’ means the whole set. Note
that different random seeds do not result in different samples if the whole set is used.

A.2 Datasets Information985

We show the detailed information of different986

datasets in Table 7.987

A.3 Details of Baselines988

In this work, we compare IDS with the following989

latest ICL demonstration selection approaches:990

• Vote-k (Su et al., 2023) is an unsupervised,991

graph-based selective annotation method used992

for selecting and annotating diverse, represen-993

tative examples. The annotated examples then994

serve as a pool for demonstration retrieval.995

• MMR (Ye et al., 2023b) proposes a maximal996

marginal relevance-based approach for demon-997

stration selection.998

• G-fair-Prompting (Ma et al., 2023) leverages999

greedy search to select the example with the high-1000

est fairness score at each step.1001

• Skill-KNN (An et al., 2023b) generates skill-1002

based descriptions for test queries and then uses1003

these descriptions to select similar examples as1004

scorereason scorerandom scoresimilar

Average Similarity Score 0.59 0.32 0.68

Table 8: Comparison between different average similar-
ity scores.

demonstrations. 1005

A.4 Measure of Reasoning Path Correlation 1006

We report the average similarity score between test 1007

samples and the corresponding generated reasoning 1008

paths (scorereason), the average similarity score be- 1009

tween test samples and randomly selected training 1010

examples (scorerandom), and the average similarity 1011

score between test samples and the most similar 1012

training examples (scoresimilar) in Table 8. For each 1013

dataset, we randomly select 500 test samples and 1014

use Sentence-BERT for similarity calculation. We 1015

can observe that scorereason is slightly worse than 1016

scoresimilar and much higher than scorerandom, indi- 1017

cating that the generated reasoning path is indeed 1018

strongly correlated with the test sample. 1019
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2 4 6 8

Top-k-Consistency 68.0 68.3 68.5 68.4
IDS 69.4 69.9 69.9 69.7

Table 9: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of demonstrations k.

BoolQ CommonsenseQA GSM8K

Top-k-Consistency 86.0 75.4 75.8
IDS 87.2 78.0 77.6

Table 10: Accuracy (%) of different methods with Ope-
nAI embedding model (text-embedding-ada-002) on
three datasets.

A.5 Different Numbers of Demonstrations1020

While we use k = 4 demonstration examples for1021

all experiments, we also evaluate the effectiveness1022

of IDS with different k. We randomly choose one1023

seed for experiments and report the average results1024

of the 6 datasets in Table 9. We can see that IDS1025

consistently outperforms Top-k-Consistency with1026

different numbers of demonstrations. In addition,1027

more demonstrations do not guarantee better ICL1028

performance, which is consistent with the observa-1029

tion in Wang et al. (2023b).1030

A.6 Robustness to Embedding Models1031

Instead of using Sentence-BERT, we also ex-1032

plore adopting the OpenAI embedding model (text-1033

embedding-ada-002) as the encoder. Specifically,1034

we conduct experiments on 3 datasets: BoolQ,1035

CommonsenseQA and GSM8K. For each dataset,1036

we randomly sample 500 test examples and com-1037

pare IDS with the baseline Top-k-Consistency. The1038

results reported in Table 10 demonstrate IDS’s ro-1039

bustness to different embedding models.1040

A.7 Robustness to Zero-shot-CoT Triggers1041

To verify the robustness of IDS to Zero-shot-CoT1042

triggers, we conduct controlled experiments with1043

two new triggers: “Let’s work this out in a step1044

by step way to be sure we have the right answer.”1045

(Trigger1) and “Let’s solve this problem step by1046

step” (Trigger2). Specifically, we randomly sam-1047

ple 500 test examples per dataset for experiments1048

and report the average results in Table 11, which1049

demonstrates that IDS is indeed robust to different1050

Zero-shot-CoT triggers.1051

Default Trigger1 Trigger2

IDS 70.1 70.3 70.0

Table 11: Accuracy (%) of IDS with different Zero-shot-
CoT triggers.
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