In-Context Learning with Iterative Demonstration Selection

Anonymous ACL submission

Abstract

Spurred by advancements in scale, large language models (LLMs) have demonstrated strong few-shot learning ability via in-context learning (ICL). However, the performance of ICL has been shown to be highly sensitive to the selection of few-shot demonstrations. Selecting the most suitable examples as context remains an ongoing challenge and an open problem. Existing literature has highlighted the importance of selecting examples that are diverse or semantically similar to the test sample 012 while ignoring the fact that the optimal selection dimension, *i.e.*, diversity or similarity, is task-specific. Based on how the test sample is answered, we propose Iterative Demonstration Selection (IDS) to leverage the merits of both 017 dimensions. Using zero-shot chain-of-thought reasoning (Zero-shot-CoT), IDS iteratively selects examples that are diverse but still strongly correlated with the test sample as ICL demonstrations. Specifically, IDS applies Zero-shot-CoT to the test sample before demonstration selection. The output reasoning path is then used to choose demonstrations that are prepended to the test sample for inference. The generated answer is followed by its corresponding reasoning path for extracting a new set of demonstrations in the next iteration. After several iterations, IDS adopts majority voting to obtain the final result. Through extensive experiments on tasks including reasoning, question answering, and topic classification, we demonstrate that IDS can consistently outperform existing ICL demonstration selection methods.

1 Introduction

042

With the recent advancements in scaling up model parameters, large language models (LLMs) showcase promising results on a variety of few-shot tasks through in-context learning (ICL), where the model is expected to directly generate the output of the test sample without updating parameters. This is achieved by conditioning on a manually designed

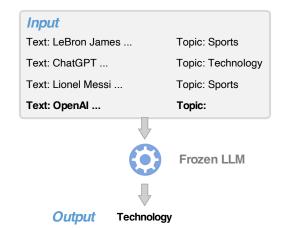


Figure 1: Illustration of in-context learning (ICL) on topic classification. A frozen large language model directly generates the topic 'Technology' for the test sample 'OpenAI ...' by taking the demonstrations and the test sample as input.

prompt consisting of an optional task description and a few demonstration examples (Brown et al., 2020). Fig. 1 shows an example describing how LLMs perform ICL on the topic classification task. Given a few text-topic pairs as demonstrations, ICL combines them with the test sample as input, to the LLM for inference. The output, *i.e.*, 'Technology', is generated by the model autoregressively without any parameter updates. 043

044

047

054

056

057

061

062

063

064

065

Despite the effectiveness, the performance of ICL has been shown to be highly sensitive to the selection of demonstration examples (Zhao et al., 2021). Different sets of demonstrations can yield performance ranging from nearly random to comparable with state-of-the-art models (Gao et al., 2021; Lu et al., 2022). To alleviate the above issue, researchers in ICL have proposed a number of methods to select a set of examples as few-shot demonstrations (Rubin et al., 2022; Liu et al., 2022; Li and Qiu, 2023; Wang et al., 2023b; Li et al., 2023a; Ma et al., 2023; An et al., 2023b). However, for LLMs for which parameters or detailed output distributions are not available (Sun et al., 2022),

it is still a common practice to randomly select examples or select examples that are semantically similar to the test sample as demonstrations, *i.e.*, considering diversity or similarity. While several approaches investigate the combination of similarity and diversity when prompting with explanations, exploring compositional generalization, or choosing examples for annotation (Ye et al., 2023b; An et al., 2023a; Su et al., 2023), it is not yet clear how to determine and leverage the optimal dimension for different tasks in ICL and how the rationale for answering the query benefits the balance between these two dimensions.

066

067

068

071

072

077

078

079

097

100

103

104

105

106

108

109

110

111

112

113

Actually, the optimal dimension for selecting demonstration examples is task-specific. As we will show in §4, the diversity dimension is superior to the similarity dimension on CommonsenseQA while the similarity dimension outperforms the diversity dimension on AGNews and BoolQ. Thus, it is unreasonable to claim that one dimension is consistently better than the other across different tasks. To fully leverage the merits of both dimensions, we propose Iterative Demonstration Selection (IDS) for ICL (Fig. 2) by utilizing how the test sample is answered. IDS can iteratively select demonstration examples that are diverse but still have a strong correlation with the test sample through zero-shot chain-of-thought reasoning (Zero-shot-CoT) (Kojima et al., 2022). Specifically, Zero-shot-CoT, e.g., "Let's think step by step.", is first applied to the test sample before selecting demonstrations to obtain a reasoning path. The training examples that are most semantically similar to the generated reasoning path are then selected as demonstrations. They are prepended to the test sample for inference. Note that IDS ensures that the generated answer is accompanied by the reasoning path through designed prompts. The new reasoning path is then used for extracting another set of demonstration examples by semantic similarity in the next iteration. After a few iterations, IDS adopts majority voting to obtain the final result. Empirical results on tasks spanning mathematical reasoning, commonsense reasoning, logical reasoning, question answering, and topic classification show that IDS can consistently outperform previous ICL demonstration selection baselines. In summary, our main contributions are:

We consider both the diversity and similarity dimensions of ICL demonstration selection for LLMs. We identify that the optimal dimension

for selecting demonstrations is task-specific and propose Iterative Demonstration Selection (IDS) based on how the test query is answered to fully leverage the merits of both dimensions. 117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

• With extensive experiments and analysis, we demonstrate the effectiveness of IDS on a variety of tasks.

2 Related Work

This work mainly explores how to select few-shot in-context learning demonstrations for LLMs by leveraging Zero-shot-CoT. In light of this, we review four lines of research that form the basis of this work: few-shot learning, in-context learning basics, demonstration selection for in-context learning, and chain-of-thought reasoning.

2.1 Few-shot Learning

Few-shot learning aims to learn tasks with only a few labeled samples, which results in a big challenge, *i.e.*, over-fitting, for models as they typically require large amounts of data for training. Prior methods to address over-fitting mainly focused on augmenting the few-shot data (Gao et al., 2020; Qin and Joty, 2022), reducing the hypothesis space (Triantafillou et al., 2017; Hu et al., 2018), or optimizing the strategy for searching the best hypothesis (Ravi and Larochelle, 2017; Finn et al., 2017). More recently, LLMs have demonstrated strong few-shot learning ability through in-context learning without any parameter updates (Brown et al., 2020).

2.2 In-context Learning

Brown et al. (2020) first showed that a frozen GPT-3 model can achieve impressive results on a variety of few-shot NLP tasks through conditioning on manually designed prompts consisting of task descriptions and several demonstration examples. Since then many efforts have been made on incontext learning (ICL) (Dong et al., 2022). Chen et al. (2022); Min et al. (2022a); Wei et al. (2023a) demonstrated that the ICL ability of language models can be further improved through self-supervised or supervised training. Some analytical studies attempted to understand what factors affect ICL performance (Zhao et al., 2021; Shin et al., 2022; Wei et al., 2022a; Min et al., 2022b; Yoo et al., 2022; Wei et al., 2023b) and why ICL works (Xie et al., 2022; Olsson et al., 2022; Li et al., 2023b; Pan et al., 2023; Dai et al., 2023). Other ongoing research on

ICL has also explored (i) demonstration designing, 165 including demonstration selection (Liu et al., 2022; 166 Rubin et al., 2022; Wang et al., 2023b), demonstra-167 tion ordering (Lu et al., 2022), and demonstration 168 formatting (Wei et al., 2022b; Wang et al., 2022c; 169 Zhou et al., 2023; Zhang et al., 2023a), (ii) appli-170 cations of ICL (Ding et al., 2022; Meade et al., 171 2023; Zheng et al., 2023), and (iii) ICL beyond text 172 (Wang et al., 2023c; Huang et al., 2023; Zhu et al., 2023; Wang et al., 2023a). 174

2.3 Demonstration Selection for In-context Learning

175

176

177

178

179

181

182

186

187

188

190

192

193

194

195

196

198

199

201

202

207

210 211

212

213

215

The performance of ICL has been shown to be highly sensitive to the selection of demonstration examples (Zhao et al., 2021). Existing methods to solve this problem can be mainly divided into two categories. First, unsupervised methods rely on predefined metrics. Liu et al. (2022) proposed to select the closest neighbors as demonstrations. In contrast, Levy et al. (2022) selected diverse demonstrations to improve in-context compositional generalization. More recent studies have explored leveraging the output distributions of language models to select few-shot demonstrations (Wu et al., 2022; Nguyen and Wong, 2023; Li and Qiu, 2023; Ma et al., 2023) or self-generating demonstrations (Chen et al., 2023). Second, supervised methods involve model training. Rubin et al. (2022); Ye et al. (2023a); Li et al. (2023a); Luo et al. (2023); Wang et al. (2024) proposed to learn to retrieve demonstration examples. Wang et al. (2023b) posited LMs as implicit topic models to facilitate demonstration selection. In addition, some studies (Zhang et al., 2022; Scarlatos and Lan, 2023) attempted to select demonstrations based on reinforcement learning. However, it is still a common practice to randomly select examples or select examples that are semantically similar to the test sample as demonstrations for LLMs for which parameters or detailed output distributions are not available (Sun et al., 2022). Several methods investigated the combination of diversity and similarity in different scenarios, e.g., prompting with explanations (Ye et al., 2023b), choosing examples for annotation (Su et al., 2023) and exploring compositional generalization (An et al., 2023a). Nevertheless, it remains unclear to us how to determine and leverage the optimal dimension for different tasks in ICL and how the reason for answering the test sample benefits the balance between the two dimensions, which motivates us to propose our simple but effective approach (IDS).

2.4 Chain-of-Thought Reasoning

Chain-of-thought (CoT) reasoning induces LLMs to produce intermediate reasoning steps before generating the final answer (Wei et al., 2022b). Depending on whether there are manually designed demonstrations, current CoT reasoning methods mainly include Manual-CoT and Zero-shot-CoT. In Manual-CoT, human-labeled reasoning paths are used to perform CoT reasoning (Wei et al., 2022b; Zhou et al., 2022; Wang et al., 2022b; Li et al., 2022; Wang et al., 2022a). In contrast, LLMs leverage self-generated rationales for reasoning in Zero-shot-CoT (Kojima et al., 2022; Zelikman et al., 2022; Zhang et al., 2023a; Diao et al., 2023). The ongoing research on CoT reasoning has also explored (i) multimodal reasoning (Zhang et al., 2023b; Wu et al., 2023), (ii) distilling knowledge from LLMs (Ho et al., 2022; Fu et al., 2023), and (iii) iterative optimization (Shinn et al., 2023; Madaan et al., 2023; Paul et al., 2023).

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

3 Problem Formulation

Given the test set $\mathcal{D}_{\text{test}}$ and the training set $\mathcal{D}_{\text{train}}$, the goal of ICL demonstration selection is to find an optimal subset $S = \{(x_1, y_1), ..., (x_k, y_k)\}$ (*k*shot) of $\mathcal{D}_{\text{train}}$ as demonstration examples for each test sample (\hat{x}_i, \hat{y}_i) to maximize the overall task performance on $\mathcal{D}_{\text{test}}$. More formally, the optimal selection method \tilde{h} is defined as:

$$\tilde{h} = \operatorname*{arg\,max}_{h \in \mathcal{H}} \sum_{i=1}^{|\mathcal{D}_{\text{test}}|} \delta_{\text{LLM}([h(\mathcal{D}_{\text{train}}, \hat{x}_i, \hat{y}_i), \hat{x}_i]), \hat{y}_i} \quad (1)$$

where \mathcal{H} is the hypothesis space for searching demonstration examples, $h(\mathcal{D}_{\text{train}}, \hat{x}_i, \hat{y}_i)$ refers to demonstrations selected for (\hat{x}_i, \hat{y}_i) using h, [,] stands for concatenation, and $\delta_{a,b}$ is the Kronecker delta function: $\delta_{a,b} = 1$ if a equals b, otherwise $\delta_{a,b} = 0$. In this work, we aim to find the optimal method \tilde{h} by leveraging Zero-shot-CoT.

4 What Makes Good In-Context Demonstrations?

As demonstrated in previous work (Zhao et al., 2021), the overall task performance is highly sensitive to the selection method *h*. Different sets of demonstration examples can yield significantly different performance. For example, Zhang et al.

	CommonsenseQA	BoolQ	AGNews
Similar-ICL-Consistency (Similarity)	76.0	85.0	90.0
Random-ICL-Voting (Diversity)	79.0	84.0	88.0

Table 1: Results of different methods on CommonsenseQA, BoolQ and AGNews. The optimal dimension for selecting ICL demonstrations is task-specific.

(2022) show that the minimum and maximum ICL performance due to random sampling differs by > 30% on 4 classification tasks, which emphasizes the importance of selecting good demonstrations for LLMs.

A natural question is: what makes good incontext demonstrations? For LLMs, it is still a common practice to select a subset S consisting of examples that are diverse or semantically similar to the test sample as demonstrations, *i.e.*, considering the diversity or similarity of S. To investigate whether one dimension is consistently better than the other one across different tasks, we conduct some pilot experiments on CommonsenseQA (Talmor et al., 2019), BoolQ (Clark et al., 2019) and AGNews (Zhang et al., 2015). Specifically, we randomly sample 100 examples from the original test set for experiments and conduct 4-shot learning using GPT-3.5 (gpt-3.5-turbo).

Following Zhang et al. (2023a), we use Sentence-BERT (Reimers and Gurevych, 2019) to encode all samples. For each test sample, the Similar-ICL method selects the top-4 similar training data based on cosine similarity while the Random-ICL method randomly samples 4 training examples as few-shot demonstrations. Inspired by Wang et al. (2022b), we apply *self-consistency* with 3 decoding paths (temperature 0.7) to Similar-ICL (named **Similar-ICL-Consistency**) and run Random-ICL 3 times before majority voting (named **Random-ICL-Voting**) to improve the robustness.

The results of different methods on four datasets are reported in Table 1. We can observe that the diversity dimension outperforms the similarity dimension on CommonsenseQA while the similarity dimension is superior to the diversity dimension on BoolQ and AGNews. Therefore, the optimal dimension for selecting demonstration examples is task-specific. Thus, it is unreasonable to claim that one dimension is consistently better than the other one in ICL demonstration selection.

Intuitively, semantically similar examples can help the model correctly answer the test query as they might share similar input-output patterns with the test sample which could unleash GPT- 3.5's power of text generation. To further understand why the similarity dimension underperforms the diversity dimension on CommonsenseQA, we present a case study in Table 2. We can see that the answer of the final demonstration example extracted by Similar-ICL-Consistency, *i.e.*, 'most buildings' is also in the options list of the test sample, which misleads the decision process of the model, leading to a wrong answer. In addition, the selected demonstrations might not include enough important information as high similarity also results in redundancy. 305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

336

337

338

340

341

342

343

344

345

347

348

Considering the strengths and weaknesses of both dimensions, we aim to design a method that can select demonstration examples that are diverse (minimizing misleading information) but still strongly correlated with the test sample, which is introduced in the next section.

5 Iterative Demonstration Selection

Based on the observations and considerations in §4, we introduce Iterative Demonstration Selection (IDS) for ICL demonstration selection by leveraging *how the test sample is answered* (see Fig. 2 for an illustration). Intuitively, the demonstrations that are similar to the *reason* for answering a sample are strongly correlated with this sample. Therefore, we propose to incorporate zero-shot chain-of-thought reasoning (Zero-shot-CoT) into IDS to iteratively select demonstration examples that are diverse but still have a strong correlation with the test sample.

Specifically, for each test sample \hat{x}_i , IDS mainly consists of four steps:

- 1. We apply **Zero-shot-CoT**, *i.e.*, "Let's think step by step." to the test sample \hat{x}_i before selecting demonstrations to obtain a reasoning path R.
- 2. The **reasoning path** R is then used to select top-k (k is the number of shot) most semantically similar training examples $\{(x_1, y_1), ..., (x_k, y_k)\}$ as few-shot demonstrations. We use Sentence-BERT (Reimers and Gurevych, 2019) to encode the reasoning path R and training examples to obtain the contextual representations and use cosine similarity to measure the similarity between representations.
- 3. The selected k training examples $\{(x_1, y_1), ..., (x_k, y_k)\}$ are then prepended to the test sample \hat{x}_i for ICL. During inference, we ensure that the generated answer \hat{A} is accompanied by its corresponding reasoning path \hat{R} 353

300

301

Similar-ICL-Consistency	Random-ICL-Voting
Which choice is the correct answer to the question?	Which choice is the correct answer to the question?
Examples:	Examples:
Question : If you have cleaned off dust here it may be difficult to do your homework where? Answer Choices: (A)	Question : She had a busy schedule, she had to run errands and pick up the kids the second she did what? Answer
desktop (B) closet (C) most buildings (D) surface of earth	Choices: (A) make time for (B) take money (C) go outdoors
(E) stove	(D) leave work (E) field
Answer: A	Answer: D
Question : Where is dust likely to be under? Answer Choices: (A) closet (B) ground (C) windowsill (D) attic (E) carpet Answer : E	Question : What is the worst outcome of an injury? Answer Choices: (A) cause death (B) cause bleeding (C) falling down (D) become infected (E) claim insurance
Question: Where would you find a dustbin that is being	Answer: A
used? Answer Choices: (A) utility closet (B) ground (C)	Question: Mom said that Sarah should stay in bed until she
cupboard (D) broom closet (E) kitchen Answer: E	was able to go to school again. What did mom say to Sarah
Question: Dust accumulates where? Answer Choices: (A)	when she tried to get up? Answer Choices: (A) you're sick (B) were sick (C) more rest (D) rest more (E) get back under
ceiling (B) library (C) surface of earth (D) most buildings	the covers
(E) desktop	Answer: A
Answer: D	Question : John got a raise, but he lost rank. Overall, it was a good what? Answer Choices: (A) demotion (B) push down (C) go off strike (D) lower (E) go off strike
	Answer: A
The response should follow the format: Answer: {A, B, C,	The response should follow the format: Answer: {A, B, C,
D or E}	D or E}
Here is the test data.	Here is the test data.
Question: John wanted to clean all of the dust out of his	Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What	place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B) under the bed (C) television (D) attic (E) <u>most buildings</u>	might he hardest do dust? Answer Choices: (A) closet (B) under the bed (C) television (D) attic (E) most buildings
Answer: E X	Answer: D ✓

Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first run) for constructing demonstration examples. The upper part is the input to LLMs, including few-shot demonstrations, and the lower part is the predicted answer. Similar-ICL-Consistency gives the wrong answer 'most buildings' which is actually the output of the final demonstration example, indicating that the decision process of the model is misled by this similar sample.

through designed prompts, *e.g.*, "The response should follow the format: Topic: {world, sports, business or technology}\nReason: {reason}". Note that **Zero-shot-CoT** is also applied in this step to improve the quality of generated reasoning paths. After ICL, we go back to Step 2 for *iterations* using the *new* reasoning path \hat{R} .

357

361

365

371

373

 After q rounds of iterations between Step 2 and 3, we adopt **majority voting** on all to obtain the final result Â_{final}.

Obviously, the selected demonstration examples are strongly correlated with the original test sample, *i.e.*, achieving similarity, as they are selected by the generated reasoning paths (see Appendix A.4 for quantitative analysis of reasoning paths). And they can be different during iterations to achieve diversity because the reasoning paths vary in different iterations. Note that there is *no* reasoning path in few-shot demonstrations (as shown in the green part in Fig. 2). The reasoning path only exists in Algorithm 1 Selection process of IDS

- **Require:** Training set $\mathcal{D}_{\text{train}}$, test set $\mathcal{D}_{\text{test}}$, LLM_{θ}, number of demonstrations k, number of iterations q and answer set $\hat{A}_{all} = \emptyset$
- 1: ENCODE all samples in \mathcal{D}_{train} using Sentence-BERT \triangleright Encode training set
- 2: for \hat{x}_i in $\mathcal{D}_{\text{test}}$ do
- 3: APPLY Zero-shot-CoT to \hat{x}_i to obtain the reasoning path R \triangleright Zero-shot-CoT
- 4: **for** j = 1, ..., q **do**
- 5: ENCODE R using Sentence-BERT ▷ Encode reasoning path
- 6: USE R to select top-k most similar examples $S = \{(x_1, y_1), ..., (x_k, y_k)\}$ from $\mathcal{D}_{\text{train}}$ as demonstrations \triangleright KNN selection

7:
$$(\hat{A}, \hat{R}) = LLM_{\theta}(S, \hat{x}_i)$$
 \triangleright ICL with Zero-shot-CoT

- 8: $R = \hat{R}, \hat{A}_{all} = \hat{A}_{all} \cup \{\hat{A}\} \triangleright$ Update reasoning path and answer set
- 9: end for
- 10: ADOPT majority voting for \hat{A}_{all} to obtain the final result \hat{A}_{final} for the test sample $\hat{x}_i \triangleright$ Majority voting 11: end for

the output of LLMs.

In addition, we illustrate the whole selection

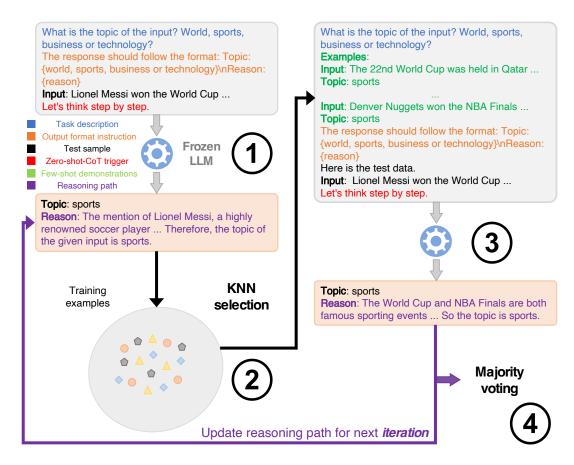


Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies Zero-shot-CoT to the test sample to obtain a reasoning path, which is then used to select few-shot demonstrations from training examples through KNN. The selected demonstration examples are prepended to the test sample for ICL. To obtain the new reasoning path for extracting another set of demonstrations in the next iteration, an instruction for output format is inserted before the test sample. After several iterations, IDS uses majority voting to obtain the final result.

process in Alg. 1 and show the instructions and input formats of different types of tasks for ICL in Appendix A.1.

Experiments 6

376

377

379

384

391

In this section, we first describe the tasks and datasets, and then introduce methods compared in our work. Finally, we present the experimental results.

Experimental Setup 6.1

Tasks and Datasets We mainly investigate 6 different datasets covering 5 representative task categories: mathematical reasoning (GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021)), commonsense reasoning (CommonsenseQA (Talmor et al., 2019)), logical reasoning (LogiQA (Liu et al., 2020)), question answering (BoolQ (Clark et al., 2019)) and topic classification (AGNews (Zhang et al., 2015)). For each dataset, we randomly sample at most 10000 examples from the original training set as \mathcal{D}_{train} and at most 2000 test

examples as \mathcal{D}_{test} for evaluating the performance of selected demonstrations. The detailed information of different datasets is shown in Appendix A.2. To reduce the randomness, we run every experiment five times with different random seeds (resulting in different training and test samples if not using the whole set) and report the average results. Without specification, we use k = 4 number of demonstrations following Wang et al. (2023b) and set the number of iterations q to 3.

397

399

400

401

402

403

404

405

406

407

408

409

412

413

414

415

416

Methods Compared We mainly use GPT-3.5 (gpt-3.5-turbo) as the LLM and compare our IDS with the following methods in the experiments for selecting ICL demonstrations:

• Top-k-Consistency (Liu et al., 2022) selects the 410 top-k semantically similar examples from the 411 training set \mathcal{D}_{train} as demonstrations for each test sample and applies *self-consistency* (Wang et al., 2022b) with q decoding paths (temperature 0.7) to match the number of iterations. Following Zhang et al. (2023a), all samples are encoded by

Method	BoolQ	GSM8K	MATH	CommonsenseQA	LogiQA	AGNews	Average
Vote-k	$86.7_{\pm 0.7}$	$76.5_{\pm 0.5}$	$35.7_{\pm 0.2}$	$75.2_{\pm 0.3}$	$45.4_{\pm 0.3}$	$88.1_{\pm 1.2}$	$67.9_{\pm 0.2}$
MMR	$86.4_{\pm 0.8}$	$75.5_{\pm 0.7}$	$34.8_{\pm 0.3}$	$74.9_{\pm 0.2}$	$44.7_{\pm 0.3}$	$87.6_{\pm 1.1}$	$67.3_{\pm 0.3}$
G-fair-Prompting	$84.8_{\pm 0.7}$	$76.9_{\pm 0.6}$	$34.6_{\pm 0.3}$	$75.5_{\pm 0.3}$	$43.8_{\pm 0.4}$	$88.9_{\pm 1.0}$	$67.4_{\pm 0.2}$
Skill-KNN	$85.9_{\pm 0.5}$	$76.5_{\pm 0.3}$	$35.1_{\pm 0.2}$	$75.2_{\pm 0.2}$	$44.6_{\pm 0.2}$	$88.7_{\pm 0.9}$	$67.7_{\pm 0.1}$
Top-k-Consistency	$87.1_{\pm 0.2}$	$76.1_{\pm 0.5}$	$35.6_{\pm 0.3}$	$74.5_{\pm 0.2}$	$45.7_{\pm 0.4}$	$89.3_{\pm 0.8}$	$68.1_{\pm 0.1}$
Random-Voting	$87.3_{\pm 0.6}$	$75.6_{\pm 0.4}$	$35.4_{\pm 0.1}$	$77.0_{\pm 0.2}$	$45.1_{\pm 0.3}$	$87.0_{\pm 1.6}$	$67.9_{\pm 0.2}$
Cluster-Voting	$86.4_{\pm 0.7}$	$76.8_{\pm 0.3}$	$34.9_{\pm 0.4}$	$76.5_{\pm 0.3}$	$44.1_{\pm 0.3}$	$86.8_{\pm 1.2}$	$67.6_{\pm 0.3}$
IDS	$87.8_{\pm0.8}$	$78.5_{\pm 0.4}$	$37.5_{\pm 0.2}$	$78.1_{\pm 0.1}$	$46.9_{\pm 0.2}$	$89.8_{\pm0.8}$	$69.8_{\pm0.1}$

Table 3: Accuracy (%) of different methods on 6 datasets. **Bold** indicates the best result. IDS is consistently better than all previous baselines.

Sentence-BERT (Reimers and Gurevych, 2019) to obtain contextual representations for calculating the cosine similarity.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

452

453

- **Random-Voting** randomly selects k examples from $\mathcal{D}_{\text{train}}$ as few-shot demonstrations for every test sample and runs experiments q times before majority voting.
- Cluster-Voting partitions \mathcal{D}_{train} into k clusters and selects a representative example from each cluster to form demonstrations. Following Zhang et al. (2023a), we choose the sample closest to the centroid in each cluster as the representative example. Same as Random-Voting, after running experiments q times, Cluster-Voting adopts majority voting to obtain the final result.

Besides, we also compare IDS with several latest ICL demonstration selection approaches: Vote-k(Su et al., 2023), MMR (Ye et al., 2023b), G-fair-Prompting (Ma et al., 2023) and Skill-KNN (An et al., 2023b) (see Appendix A.3 for more details of baselines). Similar to Top-k-Consistency, we apply self-consistency to these baselines to match the number of iterations q. Note that we find that simultaneously generating answers and reasoning paths can improve the ICL performance in general even if the target task is not a reasoning task in the conventional sense, e.g., topic classification. Therefore, we apply the same prompt, *e.g.*, "The response should follow the format: Topic: {world, sports, business or technology \\nReason: {reason}", and Zero-shot-CoT to baseline methods.

6.2 Main Results

Table 3 shows the average performance scores
of different methods on all investigated datasets.
From the results, we can observe that

• Our proposed IDS consistently outperforms previous baselines on all datasets with a negligible

	Top-k-Consisten	cy IDS Ra	undom-Voting
Average Similarity Score	0.68	0.48	0.32

Table 4: Average similarity scores between test examples and the corresponding selected demonstrations of three methods (Top-*k*-Consistency, IDS and Random-Voting).



Figure 3: Accuracy (%) of Top-k-Consistency and IDS with different numbers of reasoning paths or iterations.

increase in API request cost (Zero-shot-CoT in the first step), which demonstrates that our method can indeed effectively and efficiently select better ICL demonstration examples by incorporating the reason for answering the test query.

• On average, IDS yields about 1.7% performance boost compared with the best baseline Topk-Consistency as it can fully leverage the merits of both selection dimensions (diversity and similarity). While the performance gain on a few simple benchmarks looks somewhat small (because the baseline results are already pretty high, *e.g.*, the baseline performance of BoolQ and AGNews is above 85%), IDS performs much better than baselines on more complex tasks. For example, IDS can bring an average relative improvement of about 4% on mathematical reasoning tasks compared with Top-k-Consistency.

To delve deeper into how different dimensions are leveraged in selected demonstrations, we report the average similarity scores between test samples

474

454

455

456

457

	GPT-3.5	GPT-4
Top-k-Consistency	68.3	73.9
IDS	69.9	75.4

Table 5: Accuracy (%) of Top-*k*-Consistency and IDS with different LLMs (GPT-3.5 and GPT-4). For GPT-4, we randomly sample 200 test examples per dataset due to the high cost.

and the corresponding demonstrations of different methods in Table 4. Specifically, we randomly select 500 test examples for each dataset and use Sentence-BERT to obtain contextual representations for calculating similarity scores. We can see that the average similarity score of IDS is between that of Top-*k*-Consistency and Random-Voting, indicating that it can indeed strike a balance between two selection dimensions.

6.3 Analysis

Different Numbers of Iterations Our experiments and analysis so far use q = 3 iterations. To verify whether the performance gain of IDS is consistent across different numbers of iterations, we conduct controlled experiments with $q = \{1, 5, 7\}$. The average results of the 6 datasets with a randomly selected seed are reported in Fig. 3. IDS consistently outperforms the best baseline Top-k-Consistency with different q (even q = 1, *i.e.*, without voting), emphasizing the importance of rationales in selecting demonstration examples. Interestingly, the performance of ICL does not always improve with the number of iterations, which might be because increased iterations can also lead to unnecessary noise.

Robustness to Model Types To demonstrate the robustness of IDS to model types, we conduct controlled experiments with GPT-4. Specifically, we randomly select one seed and sample 200 test examples per dataset for experiments due to the expensive cost. From the average results shown in Table 5, we can observe that IDS still achieves better performance than Top-*k*-Consistency when using GPT-4 as the LLM, showing its robustness to different LLMs.

510Generalization to Open-source LLMsTo bet-511ter verify the generalization ability of IDS, we512use vLLM (Kwon et al., 2023) to serve Llama-2-513chat models (Touvron et al., 2023) for experiments514and compare IDS with Top-k-Consistency on two515datasets: BoolQ and GSM8K. We randomly sam-

	1	3B	70B		
	BoolQ	GSM8K	BoolQ	GSM8K	
Top-k-Consistency	81.3	24.8	84.2	49.6	
IDS	82.2	27.1	85.4	51.4	

Table 6: Accuracy (%) of different methods with Llama-2-chat models.

Iterative Demonstration Selection	Top-k-Consistency
Question: The homeowner frowned at the price of gas, what did he have to do later? Answer Choices: (A) own home (B) mail property tax payments (C) board windows (D) cut grass (E) receive mail Iteration 1: Answer: BunReason: Iteration 2: Answer: DinReason: Iteration 2: Answer: DinReason:	Question: The homeowner frowned at the price of gas, what did he have to do later? Answer Choices: (A) own home (B) mail property tax payments (C) board windows (D) cut grass (E) receive mail Response: Answer: BinReason:; Answer: BinReason:; Answer: BinReason:
Label: D	Label: D
Iterative Demonstration Selection	Random-Voting
Input: Texas entrepreneur wants to kick computer gaming up to the next level by offering players a chance at some real-live killing via mouse and modem.	Input: Texas entrepreneur wants to kick computer gaming up to the next level by offering players a chance at some real-live killing via mouse and modem.
Iteration 1 Examples: Input: Six days a week, teens crowd the Blue Screen Gaming cybercafe to hunt each other down with assault rifles inside virtual computer words Tople: Technology	Iteration 1 Examples: Input: The Boston Cellics added a healthy Tom Guijotia and deleted injured Delonte West. Tom, 34, wastinvated Wednesday from the injured list after missing seven games Topic: Sports
Response: Topic: Technology\nReason:	Response: Topic: Sports\nReason:
Iteration 2: Response: Topic: Technology Iteration 3: Response: Topic: Technology	Iteration 2: Response: Topic: Business Iteration 3: Response: Topic: Sports
Label: Technology	Label: Technology

Figure 4: Several case studies of model responses. We color correct outputs in green, and wrong outputs in red.

ple 500 test examples for experiments and report the results in Table 6, which demonstrates that IDS can successfully generalize to open-source LLMs. **Case Study** To further understand the advantage of IDS, we show several cases in Fig. 4. As shown in the upper part of the figure, IDS can iteratively select more diverse demonstration examples than Top-k-Consistency which may be able to correct errors from previous iterations. Compared with Random-Voting, IDS can find examples that share more similar input-output patterns with the test sample to induce the LLM to generate correct answers (the lower part of the figure).

In addition, we show the results with different numbers of demonstrations, the robustness of IDS to different embedding models and Zero-shot-CoT triggers in Appendix $A.5 \sim A.7$, respectively.

7 Conclusion

In this work, we have introduced Iterative Demonstration Selection (IDS) that can iteratively select examples that are diverse but still strongly correlate with the test sample as demonstrations to improve the performance of in-context learning (ICL) by leveraging the rationale for answering the test sample. Extensive experimental results and analysis show that IDS can consistently outperform previous ICL demonstration selection baselines.

550

551

552

554

560

561

562

566

573

582

583

584

590

592

593

594

597

Limitations

This work has several limitations. First, due to 544 the inference cost of ChatGPT, we do not conduct 545 experiments on the entire test set. Besides, we 546 include 6 datasets covering 5 different task types in this work. A further improvement could be to explore more diverse types of tasks.

References

- Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei Zhang. 2023a. How do in-context examples affect compositional generalization? In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11027-11052, Toronto, Canada. Association for Computational Linguistics.
- Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, and Jian-Guang Lou. 2023b. Skill-based few-shot selection for in-context learning. arXiv preprint arXiv:2305.14210.
- Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
- Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor Mihaylov, Srini Iyer, Veselin Stoyanov, and Zornitsa Kozareva. 2022. Improving in-context few-shot learning via self-supervised training. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3558-3573, Seattle, United States. Association for Computational Linguistics.
- Wei-Lin Chen, Cheng-Kuang Wu, Yun-Nung Chen, and Hsin-Hsi Chen. 2023. Self-ICL: Zero-shot in-context learning with self-generated demonstrations. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 15651-15662, Singapore. Association for Computational Linguistics.
- Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2924–2936, Minneapolis, Minnesota. Association for Computational Linguistics.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. 2021. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

- Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. 2023. Why can gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers. In ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models.
- Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. 2023. Active prompting with chain-ofthought for large language models. arXiv preprint arXiv:2302.12246.
- Bosheng Ding, Chengwei Qin, Linlin Liu, Lidong Bing, Shafiq Joty, and Boyang Li. 2022. Is gpt-3 a good data annotator? arXiv preprint arXiv:2212.10450.
- Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey for in-context learning. arXiv preprint arXiv:2301.00234.
- Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 1126-1135. PMLR.
- Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. 2023. Specializing smaller language models towards multi-step reasoning. arXiv preprint arXiv:2301.12726.
- Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making pre-trained language models better few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3816-3830, Online. Association for Computational Linguistics.
- Tianyu Gao, Xu Han, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, and Maosong Sun. 2020. Neural In The snowball for few-shot relation learning. Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7772-7779. AAAI Press.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874.
- Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large language models are reasoning teachers. arXiv preprint arXiv:2212.10071.
- Zikun Hu, Xiang Li, Cunchao Tu, Zhiyuan Liu, and Maosong Sun. 2018. Few-shot charge prediction

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

598

759

760

761

762

763

764

708

709

with discriminative legal attributes. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 487–498, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

- Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao Lv, Lei Cui, Owais Khan Mohammed, Qiang Liu, et al. 2023. Language is not all you need: Aligning perception with language models. *arXiv preprint arXiv:2302.14045*.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models are zero-shot reasoners. In *Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022).*
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the* ACM SIGOPS 29th Symposium on Operating Systems Principles.

671

672

673

674

677

678

685

690

694

701

703

704

- Itay Levy, Ben Bogin, and Jonathan Berant. 2022. Diverse demonstrations improve in-context compositional generalization. *arXiv preprint arXiv:2212.06800*.
- Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng Qiu. 2023a. Unified demonstration retriever for incontext learning. *arXiv preprint arXiv:2305.04320*.
- Xiaonan Li and Xipeng Qiu. 2023. Finding supporting examples for in-context learning. *arXiv preprint arXiv:2302.13539*.
- Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. 2022. On the advance of making language models better reasoners. *arXiv preprint arXiv:2206.02336*.
- Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. 2023b. Transformers as algorithms: Generalization and stability in in-context learning.
- Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. 2022. What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 100–114, Dublin, Ireland and Online. Association for Computational Linguistics.
- Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. 2020. Logiqa: A challenge dataset for machine reading comprehension with logical reasoning. *arXiv preprint arXiv:2007.08124*.

- Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2022. Fantastically ordered prompts and where to find them: Overcoming fewshot prompt order sensitivity. In *Proceedings of the* 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8086–8098, Dublin, Ireland. Association for Computational Linguistics.
- Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasupat, Mehran Kazemi, Chitta Baral, Vaiva Imbrasaite, and Vincent Y Zhao. 2023. Dr. icl: Demonstration-retrieved in-context learning. *arXiv* preprint arXiv:2305.14128.
- Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu, Zhirui Zhang, Peilin Zhao, Shu Zhang, Huazhu Fu, Qinghua Hu, and Bingzhe Wu. 2023. Fairnessguided few-shot prompting for large language models. *arXiv preprint arXiv:2303.13217*.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-refine: Iterative refinement with self-feedback.
- Nicholas Meade, Spandana Gella, Devamanyu Hazarika, Prakhar Gupta, Di Jin, Siva Reddy, Yang Liu, and Dilek Hakkani-Tür. 2023. Using in-context learning to improve dialogue safety. *arXiv preprint arXiv:2302.00871*.
- Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2022a. MetaICL: Learning to learn in context. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2791–2809, Seattle, United States. Association for Computational Linguistics.
- Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2022b. Rethinking the role of demonstrations: What makes in-context learning work? In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 11048–11064, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Tai Nguyen and Eric Wong. 2023. In-context example selection with influences. *arXiv preprint arXiv:2302.11042*.
- Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*.
- Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. 2023. What in-context learning "learns" in-context: Disentangling task recognition and task learning. In *Findings of the Association for Computational*

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

822

823

824

765

771

- 778 779 780 781 782 783 784 785 786 786 786 787 788 789
- 7 7 7 7 7 7

790

- 796 797 798 799
- 8
- 8
- 8
- 810
- 811
- 812 813
- 814 815

816

817 818

- 819 820
- 820 821

- *Linguistics: ACL 2023*, pages 8298–8319, Toronto, Canada. Association for Computational Linguistics.
- Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, and Boi Faltings. 2023. Refiner: Reasoning feedback on intermediate representations.
- Chengwei Qin and Shafiq Joty. 2022. Continual fewshot relation learning via embedding space regularization and data augmentation. In *Proceedings of the* 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2776–2789, Dublin, Ireland. Association for Computational Linguistics.
- Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-shot learning. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
- Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERTnetworks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.
- Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 2022. Learning to retrieve prompts for in-context learning. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2655–2671, Seattle, United States. Association for Computational Linguistics.
- Alexander Scarlatos and Andrew Lan. 2023. Reticl: Sequential retrieval of in-context examples with reinforcement learning. *arXiv preprint arXiv:2305.14502.*
- Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, and Nako Sung. 2022. On the effect of pretraining corpora on in-context learning by a large-scale language model. In *Proceedings of the 2022 Conference* of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5168–5186, Seattle, United States. Association for Computational Linguistics.
- Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
 2023. Reflexion: Language agents with verbal reinforcement learning.
- Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023.
 Selective annotation makes language models better few-shot learners. In *The Eleventh International Conference on Learning Representations*.

- Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. 2022. Black-box tuning for language-model-as-a-service. In *International Conference on Machine Learning*, pages 20841–20855. PMLR.
- Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, Minneapolis, Minnesota. Association for Computational Linguistics.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*.
- Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. 2017. Few-shot learning through an information retrieval lens. *arXiv preprint arXiv:1707.02610*.
- Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, Huaming Wang, Jinyu Li, et al. 2023a. Neural codec language models are zero-shot text to speech synthesizers. *arXiv preprint arXiv:2301.02111*.
- Liang Wang, Nan Yang, and Furu Wei. 2024. Learning to retrieve in-context examples for large language models. In *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1752–1767, St. Julian's, Malta. Association for Computational Linguistics.
- Xinyi Wang, Wanrong Zhu, and William Yang Wang. 2023b. Large language models are implicitly topic models: Explaining and finding good demonstrations for in-context learning. *arXiv preprint arXiv:2301.11916*.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. 2022a. Rationaleaugmented ensembles in language models. *arXiv preprint arXiv:2207.00747*.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. 2022b. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint arXiv:2203.11171*.
- Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi. 2022c. Self-instruct: Aligning language model with self generated instructions. *arXiv preprint arXiv:2212.10560*.
- Zhendong Wang, Yifan Jiang, Yadong Lu, Yelong Shen, Pengcheng He, Weizhu Chen, Zhangyang

934

935

Wang, and Mingyuan Zhou. 2023c. In-context learning unlocked for diffusion models. *arXiv preprint arXiv:2305.01115*.

878

885

891

892

894

900

901

903

904

905

906

907

908

909

910

911

912

913

914

915

917

918

919

921

925

926

927

929

930

931

932

933

- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. 2022a. Emergent abilities of large language models. *Transactions on Machine Learning Research*. Survey Certification.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b. Chain of thought prompting elicits reasoning in large language models. In *Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022).*
 - Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, et al. 2023a. Symbol tuning improves in-context learning in language models. *arXiv preprint arXiv:2305.08298*.
 - Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang, Denny Zhou, et al. 2023b. Larger language models do in-context learning differently. *arXiv preprint arXiv:2303.03846*.
- Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. 2023. Visual chatgpt: Talking, drawing and editing with visual foundation models. *arXiv preprint arXiv:2303.04671*.
- Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. 2022. Self-adaptive in-context learning. *arXiv preprint arXiv:2212.10375*.
- Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2022. An explanation of in-context learning as implicit bayesian inference. In *International Conference on Learning Representations*.
- Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. 2023a. Compositional exemplars for in-context learning. *arXiv preprint arXiv:2302.05698*.
- Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoyanov, Greg Durrett, and Ramakanth Pasunuru. 2023b. Complementary explanations for effective in-context learning. In *Findings of the Association for Computational Linguistics: ACL 2023*, pages 4469–4484, Toronto, Canada. Association for Computational Linguistics.
- Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee, and Taeuk Kim. 2022. Ground-truth labels matter: A deeper look into input-label demonstrations. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2422– 2437, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

- Eric Zelikman, Yuhuai Wu, and Noah D Goodman. 2022. Star: Bootstrapping reasoning with reasoning. *arXiv preprint arXiv:2203.14465*.
- Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. *Advances in neural information processing systems*, 28:649–657.
- Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Active example selection for in-context learning. *arXiv preprint arXiv:2211.04486*.
- Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2023a. Automatic chain of thought prompting in large language models. In *The Eleventh International Conference on Learning Representations* (*ICLR 2023*).
- Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. 2023b. Multimodal chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*.
- Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improving few-shot performance of language models. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 12697–12706. PMLR.
- Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. 2023. Can we edit factual knowledge by in-context learning? *arXiv preprint arXiv:2305.12740*.
- Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*.
- Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. 2023. Large language models are human-level prompt engineers. In *The Eleventh International Conference on Learning Representations*.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing vision-language understanding with advanced large language models. *arXiv preprint arXiv:2304.10592*.

A Appendix

A.1 Instructions and Input Formats of Different Tasks

We show the instructions and input formats of different types of tasks for in-context learning in Fig. 5.

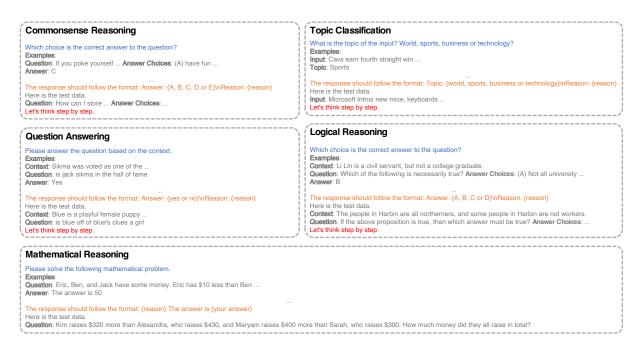


Figure 5: Instructions and input formats of five different categories of tasks (topic classification, question answering, commonsense reasoning, logical reasoning, and mathematical reasoning) for ICL. For Zero-shot-CoT in the first step of IDS, there is no demonstration example and the instruction "Here is the test data.".

	BoolQ	GSM8K	MATH	CommonsenseQA	LogiQA	AGNews
# Training Samples	9427 (full)	7473(full)	5000	9741 (full)	7376(full)	10000
# Test Samples	2000	1000	1000	1221 (full)	500	1000

Table 7: Deailed information of different datasets. # refers to 'the number of' and 'full' means the whole set. Note that different random seeds do not result in different samples if the whole set is used.

A.2 Datasets Information

985

987

989

991

992

993

995

998

999

1001

1002

1004

We show the detailed information of different datasets in Table 7.

A.3 Details of Baselines

In this work, we compare IDS with the following latest ICL demonstration selection approaches:

- Vote-k (Su et al., 2023) is an unsupervised, graph-based selective annotation method used for selecting and annotating diverse, representative examples. The annotated examples then serve as a pool for demonstration retrieval.
- **MMR** (Ye et al., 2023b) proposes a maximal marginal relevance-based approach for demonstration selection.
- **G-fair-Prompting** (Ma et al., 2023) leverages greedy search to select the example with the highest fairness score at each step.
- **Skill-KNN** (An et al., 2023b) generates skillbased descriptions for test queries and then uses these descriptions to select similar examples as

	score _{reason}	score _{random}	score _{similar}
Average Similarity Score	0.59	0.32	0.68

Table 8: Comparison between different average similarity scores.

demonstrations.

A.4 Measure of Reasoning Path Correlation

We report the average similarity score between test 1007 samples and the corresponding generated reasoning paths (score_{reason}), the average similarity score between test samples and randomly selected training examples (score_{random}), and the average similarity 1011 score between test samples and the most similar 1012 training examples (score_{similar}) in Table 8. For each 1013 dataset, we randomly select 500 test samples and 1014 use Sentence-BERT for similarity calculation. We 1015 can observe that score_{reason} is slightly worse than 1016 score_{similar} and much higher than score_{random}, indi-1017 cating that the generated reasoning path is indeed 1018 strongly correlated with the test sample. 1019

	2	4	6	8
Top-k-Consistency	68.0	68.3	68.5	68.4
Top-k-Consistency IDS	69.4	69.9	69.9	69.7

Table 9: Accuracy (%) of Top-k-Consistency and IDS with different numbers of demonstrations k.

BoolQ CommonsenseQA GSM8K					
Top-k-Consistency	86.0	75.4	75.8		
IDS	87.2	78.0	77.6		

Table 10: Accuracy (%) of different methods with OpenAI embedding model (text-embedding-ada-002) on three datasets.

A.5 Different Numbers of Demonstrations

1020

1021

1022

1023

1024 1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1036

1037

1038

1039

1040

1041

1042 1043

1044

1045

1046

1047 1048

1049

1050

1051

While we use k = 4 demonstration examples for all experiments, we also evaluate the effectiveness of IDS with different k. We randomly choose one seed for experiments and report the average results of the 6 datasets in Table 9. We can see that IDS consistently outperforms Top-k-Consistency with different numbers of demonstrations. In addition, more demonstrations do **not** guarantee better ICL performance, which is consistent with the observation in Wang et al. (2023b).

A.6 Robustness to Embedding Models

Instead of using Sentence-BERT, we also explore adopting the OpenAI embedding model (textembedding-ada-002) as the encoder. Specifically, we conduct experiments on 3 datasets: BoolQ, CommonsenseQA and GSM8K. For each dataset, we randomly sample 500 test examples and compare IDS with the baseline Top-*k*-Consistency. The results reported in Table 10 demonstrate IDS's robustness to different embedding models.

A.7 Robustness to Zero-shot-CoT Triggers

To verify the robustness of IDS to Zero-shot-CoT triggers, we conduct controlled experiments with two new triggers: "Let's work this out in a step by step way to be sure we have the right answer." (Trigger1) and "Let's solve this problem step by step" (Trigger2). Specifically, we randomly sample 500 test examples per dataset for experiments and report the average results in Table 11, which demonstrates that IDS is indeed robust to different Zero-shot-CoT triggers.

Default	Trigger1	Trigger2
IDS 70.1	70.3	70.0

Table 11: Accuracy (%) of IDS with different Zero-shot-CoT triggers.