
Neural MJD: Neural Non-Stationary Merton Jump
Diffusion for Time Series Prediction

Yuanpei Gao1,2

yuanpeig@student.ubc.ca
Qi Yan1,2

qi.yan@ece.ubc.ca

Yan Leng3
yan.leng@mccombs.utexas.edu

Renjie Liao1,2,4
rjliao@ece.ubc.ca

1University of British Columbia; 2Vector Institute
3University of Texas at Austin; 4Canada CIFAR AI Chair

Abstract

While deep learning methods have achieved strong performance in time series
prediction, their black-box nature and inability to explicitly model underlying
stochastic processes often limit their robustness handling non-stationary data, es-
pecially in the presence of abrupt changes. In this work, we introduce Neural
MJD, a neural network based non-stationary Merton jump diffusion (MJD) model.
Our model explicitly formulates forecasting as a stochastic differential equation
(SDE) simulation problem, combining a time-inhomogeneous Itô diffusion to cap-
ture non-stationary stochastic dynamics with a time-inhomogeneous compound
Poisson process to model abrupt jumps. To enable tractable learning, we intro-
duce a likelihood truncation mechanism that caps the number of jumps within
small time intervals and provide a theoretical error bound for this approxima-
tion. Additionally, we propose an Euler-Maruyama with restart solver, which
achieves a provably lower error bound in estimating expected states and reduced
variance compared to the standard solver. Experiments on both synthetic and
real-world datasets demonstrate that Neural MJD consistently outperforms state-
of-the-art deep learning and statistical learning methods. Our code is available at
https://github.com/DSL-Lab/neural-MJD.

1 Introduction

Real-world time series often exhibit a mix of continuous trends and abrupt changes (jumps) [1, 2].
For example, stock prices generally follow steady patterns driven by macroeconomic factors but can
experience sudden jumps due to unexpected news or policy shifts [3, 4]. Similarly, retail revenue may
rise seasonally but jump abruptly due to sales promotions or supply chain disruptions [5, 6]. These
discontinuous changes pose significant challenges for temporal dynamics modeling.

Classical statistical models, e.g., Merton jump diffusion (MJD) [3] or more general Lévy processes [7],
provide a principled approach for modeling such data with jumps. They are effective for small datasets
with well-understood statistical properties [8–10]. However, their assumptions—such as independent
and stationary increments—often fail in real-world non-stationary settings. Additionally, these
models struggle to capture interdependencies across multiple time series, such as competition effects
among colocated businesses [11] or spillover dynamics in stock markets driven by investor attention
shifts [12, 13]. As a result, they are difficult to scale effectively to large datasets. In contrast, deep
learning approaches have demonstrated strong empirical performance by effectively learning time-
varying patterns from data [14–19]. Despite their success, these models are often black-box in nature
and lack explicit mathematical formulations to describe the underlying dynamics. This limits their
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/DSL-Lab/neural-MJD

interpretability and often results in poor generalization to non-stationary data with jumps. Notably,
in previous deep learning time-series studies, “non-stationarity” typically refers to distributional
shifts in the data over time. These works focus on mitigating such shifts using techniques like
input-level normalization (e.g., DAIN [20], ST-norm [21], RevIN [22]), or domain adaptation (e.g.,
DDG-DA [23]). In contrast, our notion of “non-stationarity” centers on modeling a MJD process
with parameters that evolve over time.

To address these limitations, we propose Neural MJD, a neural parameterization of the non-stationary
Merton jump diffusion model that combines the advantages of statistical and learning-based ap-
proaches. In particular, our contributions are as follows:

• Our Neural MJD integrates a time-inhomogeneous Itô diffusion to capture non-stationary
stochastic dynamics and a time-inhomogeneous compound Poisson process to model abrupt
jumps. The parameters of the corresponding SDEs are predicted by a neural network
conditioned on past data and contextual information.

• To enable tractable learning, we present a likelihood truncation mechanism that caps the
number of jumps within small time intervals and provide a theoretical error bound for
this approximation. Additionally, we propose an Euler-Maruyama with restart solver for
inference, which achieves a provably lower error bound in estimating expected states and
reduced variance compared to the standard solver.

• Extensive experiments on both synthetic and real-world datasets show that our model
consistently outperforms deep learning and statistical baselines under both stochastic and
deterministic evaluation protocols.

2 Related work

Many neural sequence models have been explored for time series prediction, e.g., long short-term
memory (LSTM) [24], transformers [25], and state space models (SSMs) [26]. These models [27–36]
have shown success across domains, including industrial production [37], disease prevention [38, 39],
and financial forecasting [40, 31]. To handle more contextual information, extensions incorporating
spatial context have been proposed, e.g., spatio-temporal graph convolutional networks (STGCN) [41],
diffusion convolutional recurrent neural networks (DCRNN) [42], and graph message passing net-
works (GMSDR) [43]. However, these models remain fundamentally deterministic and do not
explicitly model stochastic temporal dynamics. Generative models, e.g., deep auto-regressive mod-
els [44] and diffusion/flow matching models [45–47], provide probabilistic modeling of the time
series and generate diverse future scenarios [48–53]. However, these models often face computational
challenges, as either sampling or computing the likelihood can be expensive. Additionally, they do not
explicitly model abrupt jumps, limiting their generalization ability to scenarios with discontinuities.

Another line of research integrates classical mathematical models, such as ordinary and stochastic
differential equations (ODEs and SDEs), into deep learning frameworks [33, 54–59]. In financial
modeling, physics-informed neural networks (PINNs) [60] have been explored to incorporate hand-
crafted Black-Scholes (BS) and MJD models as guidance to construct additional loss functions [61,
62]. However, these approaches differ from ours, as we directly parameterize the non-stationary MJD
model using neural networks rather than imposing predefined model structures as constraints. Neural
jump diffusion models have also been explored in the context of temporal point processes (TPPs),
such as Hawkes and Poisson processes [63, 64]. However, these methods primarily focus on event-
based modeling, where jumps are treated as discrete occurrences of events, thus requiring annotated
jump labels during training. In contrast, our approach aims to predict time series values at any give
time, irrespective of whether a jump occurs, without relying on labeled jump events. Moreover, since
jump events are unknown in our setting, our likelihood computation is more challenging since it
requires summing over all possible number of jumps.

Finally, various extensions of traditional MJD have been proposed in financial mathematics to
handle non-stationary data [65, 66], such as the stochastic volatility jump (SVJ) model [67], affine
jump models [68], and the Kou jump diffusion model [69]. However, these models rely on strong
assumptions for analytical tractability, requiring manual design of parameter evolution and often being
computationally expensive [70]. For example, the SVJ model combines Heston’s stochastic volatility
with MJD under the assumption that volatility follows the Cox-Ingersoll-Ross (CIR) process, meaning
it reverts to a fixed long-term mean. Despite this, it lacks a closed-form likelihood function. Moreover,

2

variants with time-dependent parameters require calibrations on market data to obtain the functions
of parameters [71]. In contrast, our model directly learns the parameters of the non-stationary MJD
from data, which is similar to the classical SDE calibration for financial modeling, but provides better
expressiveness and flexibility while still permitting closed-form likelihood evaluation.

3 Background

To better explain our method, we first introduce two prominent models in mathematical finance, the
Black-Scholes model and the Merton jump diffusion model.

Black-Scholes (BS) model. The Black-Scholes model was developed by Fischer Black and Myron
Scholes, assuming that asset prices follow a continuous stochastic process [72]. Specifically, the
dynamics of asset price St at time t is described by the following SDE:

dSt = St(µdt+ σdWt), (1)
where µ is the drift rate, representing the expected return per unit of time, and σ is the volatility,
indicating the magnitude of fluctuations in the asset price. Wt refers to a standard Wiener process.

Merton jump diffusion (MJD) model. To account for discontinuities in asset price dynamics, Robert
C. Merton extended the BS model by introducing the MJD model [3]. This model incorporates an
additional jump process that captures sudden and significant changes in asset prices, which cannot be
explained by continuous stochastic processes alone.

The dynamics of the asset price St in the MJD model are described by the following SDE:
dSt = St((µ− λk)dt+ σdWt + dQt), (2)

where Qt follows a compound Poisson process and captures the jump part. Specifically, Qt =∑Nt

i=1(Yi − 1), where Yi is the price ratio caused by the i-th jump event occurring at the time ti,
i.e., Yi = Sti/St−i

and Nt is the total number of jumps up to time t. Sti and St−i
are the prices

after and before the jump at time ti, respectively. Yi captures the relative price jump size since
dSti/Sti = (Sti − St−i

)/St−i
= Yi − 1. The price ratio Yi follows a log-normal distribution, i.e.,

lnYi ∼ N (ν, γ2), where ν and γ2 are the mean and the variance respectively. Nt denotes the number
of jumps that occur up to time t and follows a Poisson process with intensity λ, which is the expected
number of jumps per unit time. To make the expected relative price change E[dSti/Sti] remain the
same as in the BS model in Eq. (1), MJD introduces an additional adjustment in the drift term of the
diffusion, i.e., −λkdt in Eq. (2). In particular, we have,

E[dQt] = E[(YNt
− 1)dNt] = E[YNt

− 1]E[dNt],

where we use the assumption of MJD that “how much it jumps" (captured by YNt) and “when it
jumps" (captured by Nt) are independent. For the log-normal distributed YNt

, we can compute
the expected jump magnitude E[YNt

− 1] = exp (ν + γ2/2) − 1. To simplify the notation, we
define k := E[YNt

− 1]. For the Poisson process Nt, we have E[dNt] = λdt. Therefore, we have
E[dQt] = λkdt, which justifies the adjustment term −λkdt in Eq. (2).

The MJD model has an explicit solution for its asset price dynamics, given by:

ln
St

S0
=

(
µ− λk − σ2

2

)
t+ σWt +

Nt∑
i=1

lnYi. (3)

Based on this solution, the conditional probability of the log-return at time t, given the initial price
S0 and the number of jumps Nt = n, can be derived as:

P (lnSt|S0, Nt = n) = N
(
an, b

2
n

)
, (4)

where an = lnS0+
(
µ− λk − σ2

2

)
t+nν and b2n = σ2t+γ2n. Therefore, we obtain the likelihood,

P (lnSt|S0) =

∞∑
n=0

P (Nt = n)P (lnSt|S0, Nt = n) =

∞∑
n=0

(λt)n

n!

1√
2πb2n

exp

(
− (lnSt − an)2

2b2n

)
. (5)

Here we use the fact that P (Nt = n) follows a Poisson distribution. One can then perform the
maximum likelihood estimation (MLE) to learn the parameters {µ, σ, λ, ν, γ}. Additionally, the
conditional expectation has a closed-form,

E [St|S0] = S0 exp(µt). (6)
The derivations of the above formulas are provided in App. A.

3

Sampling Time

Simulation

Past Sequence

Real Sequence
…

Ground Truth
Prediction

Neural MJD
JumpContextual

Information

Figure 1: The overview of Neural MJD. Our model captures discontinuous jumps in time-series data
and uncovers the underlying non-stationary SDEs from historical sequences and context information.
Our method enables numerical simulations for future forecasting along time.

4 Methods

We consider the general time series prediction problem where, given the observed past data
{S0, S−1, . . . , S−Tp}, and optional contextual information (e.g., additional features) C, the goal is to
predict the future values {S1, . . . , STf

}. Here Tp and Tf denote the past and future time horizons,
respectively. While we use integer indices for denoting time, sampling time is not restricted to
integers. Our model is built upon a diffusion process, which is inherently continuous in time and
compatible with arbitrary sampling mechanism. An overview of our method is shown in Fig. 1.

4.1 Neural Non-Stationary Merton Jump Diffusion

In the vanilla MJD model, the increments from the Wiener and Compound Poisson processes are
independent and stationary, i.e., σdWt

iid∼ N (0, σ2dt), dNt
iid∼ Pois(λdt), and lnYi

iid∼ N (ν, γ2).
The stationary assumption may be too strong in the real-world applications. For example, the stock
prices of certain companies, such as Nvidia, experienced significantly larger jumps in the past decade
compared to the previous one. Specifically, we allow independent but non-stationary increments in
MJD by introducing time-inhomogeneous parameters {µt, σt, λt, γt, νt}0≤t≤Tf

in the original SDE.
Thus, at any future time t, the modified SDE follows

dSt = St

(
(µt − λtkt)dt+ σtdWt +

∫
Rd

(y − 1)N(dt,dy)

)
. (7)

Here λt ∈ R+ and σt, µt, kt ∈ Rd, while Wt denotes a d-dimensional standard Wiener process. With
a slight abuse of notation, σtdWt means element-wise product between two size-d vectors. N(dt,dy)
is a Poisson random measure on [0, Tf] × Rd, which encodes both the timing and magnitude of
jumps. Intuitively, a Poisson random measure extends the idea of a Poisson process to random
events distributed over both time and magnitude spaces, and N(dt,dy) counts the number of jumps
occurring within the infinitesimal time interval [t, t + dt] whose sizes fall within [y, y + dy]. The
jump component St

∫
Rd(y−1)N(dt,dy) introduces abrupt discontinuities in the process, accounting

for sudden shifts in data.

The statistical properties of the Poisson random measure are uniquely determined by its intensity
measure λtfY (t, y)dydt. In our model, the intensity measure controls time-inhomogeneous jump
magnitudes and frequencies. Namely, jump times follow a Poisson process with time-dependent
intensity λt and jump magnitudes follow a time-dependent log-normal distribution, i.e., a jump Yt at
time t follows lnYt ∼ N (νt, γ

2
t), where we denote the log-normal density of Yt as fY (t, y). Similarly,

we define kt := E[Yt − 1] = exp(νt +
γ2
t

2) − 1 in the drift term. This makes Eq. (7) equivalent
to using the compensated Poisson measure Ñ(dt, dy) := N(dt, dy) − λtfY (t, y)dydt to remove
the expected contribution of jumps. Note Eq. (7) includes kt, so that

∫
Rd(y − 1)λtfY (t, y)dydt =

λtE[Yt − 1]dt = λtktdt. Namely, it can be rewritten as,

dSt = St

(
µtdt+ σtdWt +

∫
Rd

(y − 1)Ñ(dt, dy)

)
.

This preserves the martingale property of the process induced by Ñ(dt,dy), e.g., E[dSt/St] matches
the drift term in the non-stationary Black–Scholes model without jumps.

4

More importantly, inspired by the amortized inference in VAEs [73], we use neural networks to predict
these time-inhomogeneous parameters based on the historical data and the contextual information C,

µt, σt, λt, γt, νt = fθ(S0, S−1, . . . , S−Tp
, C, t), (8)

where f is a neural network parameterized by θ. To simplify the notation, we denote the set of all
observed data as C := {S0, S−1, . . . , S−Tp , C} from now on. Importantly, we only train a single
network across all series and optimize the conditional log-likelihood as the training objective, which
differs from standard statistical inference. At test time, the network produces context-dependent
estimates (µt, σt, λt, νt, γt) across all future time in a single forward pass.

The stochastic process described by the SDE in Eq. (7) is formally an instance of an additive
process [65, Ch. 14], characterized by independent but non-stationary increments. If σt, µt ∈ L2, i.e.,
they are square-integrable functions, and maxτ (

∫
Rd |y2|λτfY (τ, y)dy) <∞, then our non-stationary

MJD has a unique solution for every S0 > 0 [65, Theorem 14.1]. As our prediction time horizon is a
closed domain t ∈ [0, Tf], these conditions are easily satisfied as long as the neural network fθ does
not produce unbounded values. At any future time T , the explicit solution of the SDE is given by,

ln
ST

S0
=

∫ T

0

(µt − λtkt −
σ2
t

2
)dt+

∫ T

0

σtdWt +

∫ T

0

∫
Rd

ln yN(dt, dy). (9)

Next, we model the conditional probability of log-return lnSt given initial price S0 and past data C,

P (lnST |S0, C) =
∞∑

n=0

exp(−
∫ T

0
λtdt)

n!
Φn, (10)

where

Φn =

∫
· · ·

∫
[0,T]

Πn
i=1λtiϕ(lnST ; an, b

2
n) dt1 · · ·dtn,

an = lnST +

∫ T

0

(
µt − λtkt −

σ2
t

2

)
dt+

n∑
i=1

νti , b
2
n =

∫ T

0

σ2
t dt+

n∑
i=1

γ2
ti .

Here ϕ(lnST ; an, b
2
n) is the density of a normal distribution with mean an and variance b2n. t1:n

denote the timing of n jumps. Further, we compute the conditional expectations as,

E [ST |C] = S0 exp(

∫ T

0

µtdt). (11)

Please refer to App. B for derivations. Evaluating Eq. (9) and Eq. (10) is non-trivial due to time
inhomogeneity and jumps, typically requiring Monte Carlo methods or partial integro-differential
equation techniques for approximate solutions [65, Ch. 6, Ch. 12].

4.2 Tractable Learning Method

While Eq. (10) provides the exact likelihood function, evaluating it precisely is impractical due to
1) integrals with time-dependent parameters lacking closed-form solutions and 2) the infinite series
over the number of jumps. To learn the model via the maximum likelihood principle, we propose a
computationally tractable learning objective with parameter bootstrapping and series truncation.

First, given a finite number of future time steps {1, . . . , Tf}, we discretize the continuous time in
SDEs to construct a piecewise non-stationary MJD. Our model predicts time-varying parameters
{µτ , στ , λτ , γτ , ντ}

Tf

τ=1. For any time t ≤ Tf , we map it to an integer index via ρt := ⌊t⌋+ 1. Thus,
the likelihood of the data at t+ δ given the data at t, where ρt − 1 ≤ t < t+ δ < ρt, is given by:

P (lnSt+δ|St, C) =
∞∑

n=0

P (∆N = n)P (lnSt+δ|St, C,∆N = n)

=

∞∑
n=0

exp (−λρt
δ)λnρt

δn

n!
ϕ
(
lnSt+δ; an,δ, b

2
n,δ

)
, (12)

5

Algorithm 1 Neural MJD Training
1: repeat
2: (C, S1:Tf) ∼ Dtrain,

with C = [S−Tp:0, C]

3: {µτ , στ , λτ , ντ , γτ}
Tf

τ=1 ← fθ(C)
4: Ŝ0 ← S0

5: for τ = 1, · · · , Tf do
6: ψτ ← lnP (lnSτ | Sτ−1 = Ŝτ−1, C)

▷ Eq. (12)
7: Ŝτ ← E[Sτ | C] ▷ Eq. (13)
8: Update θ via

−∇θ

∑Tf

τ=1

(
−ψτ + ω∥Sτ − Ŝτ∥2

)
9: until converged

Algorithm 2 Euler-Maruyama with Restart Inference

Require: Solver step size 1/M
1: C ∼ Dtest, with C = [S−Tp:0, C]

2: {µτ , στ , λτ , ντ , γτ}
Tf

τ=1 ← fθ(C)
3: t0 ← 0, N ←M × Tf

4: for i = 1, · · · , N do
5: ti ← ti−1 + 1/M, ρti ← ⌊ti⌋+ 1
6: αi ← (µρti

− λρti
kρti − σ

2
ρti
/2)/M ▷ Drift

7: βi ← σρti
z1/
√
M , with z1 ∼ N (0, 1) ▷ Diffusion

8: ζi ← κνρti +
√
κγρti z2

with κ ∼ Pois(λρti
/M), z2 ∼ N (0, 1) ▷ Jump

9: if (i− 1) mod M = 0 then
10: ln S̄ti ← E[lnSρti−1 | C] +αi + βi + ζi ▷ Restart
11: else
12: ln S̄ti ← ln S̄ti−1 + αi + βi + ζi
13: return {S̄ti}Ni=1

where an,δ = lnSt + (µρt
− λρt

kρt
− σ2

ρt
/2)δ + nνρt

and b2n,δ = σ2
ρt
δ + γ2ρt

n. This approach
eliminates the need for numerical simulation to compute the integrals in Eq. (10) and has been widely
adopted for jump process modeling [66, 74].

As for the conditional expectation, we have

E [St|C] = S0 exp(

ρt−1∑
j=1

µj + (t− ρt + 1)µρt
). (13)

Derivation details are shown in App. B. Further, we jointly consider the likelihood of all future data:

P (lnS1, · · · , lnSTf
|C) =

Tf∏
τ=1

P (lnSτ |{lnSj}j<τ , C) =
Tf∏
τ=1

P (lnSτ |Sτ−1, C),

where we use the Markov property and the fact that ln(·) is bijective.

Therefore, the MLE objective is given by:

lnP (lnS1, . . . , lnSTf
| C) =

Tf∑
τ=1

lnP
(
lnSτ | Sτ−1, C

)︸ ︷︷ ︸
Eq. (12)

. (14)

The training algorithm of our neural non-stationary MJD model is shown in Alg. 1. In computing the
term lnP (lnSτ |Sτ−1, C) of Eq. (14), instead of doing teacher forcing, we replace the ground truth
Sτ−1 with the conditional mean prediction E[Sτ−1 | C] from Eq. (13). This design mitigates the dis-
crepancy between training and inference while reducing error accumulation in sequential predictions,
especially for non-stationary data. As shown in the ablation study in Sec. 5.3, this approach improves
performance effectively. To further improve accuracy, we introduce an additional regularization term
that encourages the conditional mean to remain close to the ground truth. Additionally, the for loop in
Alg. 1 can be executed in parallel, as the conditional mean computation does not depend on sequential
steps, significantly improving efficiency. Notably, our model imposes no restrictions on the neural
network architecture, and the specific design details are provided in App. D.1.

Truncation error of likelihood function. Exact computation of P (lnSτ | Sτ−1, C) in Eq. (14)
requires evaluating an infinite series, which is infeasible in practice. To address this, we truncate the
series at order κ ∈ N+, i.e., limiting the maximum number of jumps between consecutive time steps.
We establish the following theoretical result to characterize the decay rate of the truncation error:
Theorem 4.1. Let the likelihood approximation error in Eq. (12), truncated to at most κ jumps, be

Ψκ(t, δ) :=
∑∞

n=κ+1 P (∆N = n)P (lnSt+δ | St, C,∆N = n) .

Then, Ψκ(t, δ) decays at least super-exponentially as κ→∞, with a convergence rate of O(κ−κ).

The proof is provided in App. C.1. The truncation error is dominated by κ, with other time-dependent
parameters absorbed into the big-O notation. We set κ to 5 to achieve better empirical performance.

6

Uncertainty
Prediction

Uncertainty
Prediction

Inference with Restart Inference without Restart

… …

Restart time

Expected Mean

Inferencing results

Figure 2: Comparison of numerical simulations with and without restart strategy during inference.

4.3 Inference based on Euler Scheme

Once trained, our Neural MJD model enables simulations following Eq. (7) by computing the non-
stationary SDE parameters with a single neural function evaluation (NFE) of fθ. Unlike models
limited to point-wise predictions, Neural MJD supports continuous-time simulation across the entire
future horizon. Although the training data consists of a finite set of time steps, S1:Tf

, the learned
model can generate full trajectories from t = 0 to t = Tf at arbitrary resolutions.

The standard Euler-Maruyama (EM) method provides a general-purpose approach for simulating
SDEs with simple implementation and proven convergence [75, 76]. However, MJD SDEs exhibit
analytically derived variance that grows over time (see App. B), and the simulated trajectories
produced using the vanilla EM, assuming sufficiently small error, reflect this growth as well. Notably,
the resulting high-variance simulations can undermine the empirical reliability of future forecasts.

In our MJD model, it is possible to compute closed-form expressions for statistical properties such
as the mean and variance at any point in time [65]; for instance, the analytical mean can be derived
from Eq. (13). Building on this insight, we propose a hybrid analytic-simulation solver, the Euler-
Maruyama with restart method, which periodically injects the exact analytical mean to improve
accuracy and enhance stability, as shown in Alg. 2 and Fig. 2. Specifically, we discretize time using a
uniform step size 1/M for simulation and set the restart points as the target times {1, · · · , Tf}. The
solver follows the standard EM method for Eq. (7) whenever a restart is unnecessary. Otherwise, it
resets the state using the conditional expectation from Eq. (13).

Further, we prove that this restart strategy has a tighter weak-convergence error, particularly helpful
for empirical forecasting tasks where the mean estimation is critical. Let ϵt := |E[g(S̄t)]− E[g(St)]|
be the standard weak convergence error [75], where St is the ground truth state, S̄t is the estimated
one using certain sampling scheme and g is a K-Lipschitz continuous function. We denote the weak
convergence errors of our restarted solver and the standard EM solver by ϵRt and ϵEt , respectively.

Proposition 4.2. Let 1/M be the step size. Both standard EM and our solver exhibit a weak
convergence rate of O(1/M). Specifically, the vanilla EM has a weak error of ϵEt ≤ K exp(Lt)/M
for some constant L > 0, while ours achieves a tighter weak error of ϵRt ≤ K exp(L(t− ⌊t⌋))/M .

The proof and details are left to App. C.2. Our sampler is in the same spirit as the Parareal simulation
algorithms [77–80]: it first obtains estimates at discrete steps and then runs fine-grained simulations
for each interval. By resetting the state to the true conditional mean at the start of each interval, our
sampler reduces mean estimation error and prevents error accumulation over time. Notably, the SDE
simulation requires no additional NFEs and adds negligible computational overhead compared to
neural-network inference, since it involves only simple arithmetic operations that can be executed
efficiently on CPUs. For reference, we also present the standard EM solver in App. D.5.

5 Experiments

In this section, we extensively examine Neural MJD’s performance on synthetic and real-world
time-series datasets, highlighting its applicability in business analytics and stock price prediction.

7

Table 1: Quantitative results on the synthetic dataset.

Mean Winner-takes-all Probabilistic

Model MAE↓ R2↑ minMAE↓ maxR2↑ p-MAE↓ p-R2↑
ARIMA 0.29 –0.15 N/A N/A
BS 0.25 0.02 0.20 0.12 0.22 0.08
MJD 0.21 0.08 0.18 0.15 0.20 0.09

XGBoost 0.18 0.17 N/A N/A
MLP 0.14 0.21 N/A N/A
NJ-ODE 0.15 0.20 N/A N/A

Neural BS 0.15 0.25 0.10 0.35 0.14 0.29
Neural MJD (ours) 0.09 0.32 0.07 0.39 0.09 0.34

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
Time index

0.20

0.22

0.24

0.26

0.28
Past Sequence
Ground Truth
Neural MJD
ARIMA
MLP

Figure 3: Qualitative result on the synthetic
dataset.

Baselines. We evaluate Neural MJD against a wide range of competitors, including statistical
methods such as ARIMA [81], the BS model, and the MJD model. Additionally, we compare against
learning-based approaches, including supervised learning models such as XGBoost [82], MLPs,
GCNs [83], as well as denoising diffusion models like DDPM [45], EDM [84], and flow matching
(FM) [47]. We include recent neural ODE or SDE based learning methods such as NeuralCDE [33]
and LatentSDE [59] for comparisons. NJ-ODE [85] was further included on the S&P 500 dataset.
We also design a baseline model, Neural BS, which shares the same architecture as Neural MJD
but omits the jump component. For DDPM, EDM, FM, Neural BS, and Neural MJD, we share
the same transformer-based backbone to ensure a fair comparison. Since some datasets contain
graph-structured data as seen in the following section, we incorporate additional graph encoding steps
based on Graphormer [86] to capture spatial features, which also justifies the inclusion of GCN as a
baseline. Further details are provided in App. D.

Evaluation metrics. We employ Mean Absolute Error (MAE), Mean Squared Error (MSE), and the
R-squared (R2) score as the primary evaluation metrics. To account for stochastic predictions, we run
each stochastic models 10 times and report results across three types of metrics: 1) Mean Metrics:
used for deterministic models or to average the results of stochastic models; 2) Winner-Takes-All
Metrics: we select the best prediction from ten stochastic samples to compute minMAE, minMSE,
and maxR2; 3) Probabilistic Metrics: these metrics assess the likelihood of stochastic predictions
and select the most probable outcome to calculate p-MAE, p-MSE, and p-R2. We mark N/A for
inapplicable metrics for certain methods. Please refer to App. D for more details.

5.1 Synthetic Data

Data generation. We evaluate our algorithm on a scalar Merton jump diffusion model. The dataset
consists of N = 10, 000 paths, generated using the standard EM scheme with 100 time steps. Using
a sliding window with stride 1, we predict the next 10 frames from the past 10. The data is split into
60% training, 20% validation, and 20% testing. Refer to App. D for details.

Results. Tab. 1 reports quantitative results on the jump-driven synthetic dataset. Learning-based
methods outperform traditional statistical models (ARIMA, BS, and MJD), and our Neural MJD tops
all three evaluation protocols, surpassing Neural BS thanks to its explicit jump modeling objective.
Qualitatively, as shown in Fig. 3, our Neural MJD generates larger, realistic jumps, while the baselines
produce smoother but less accurate trajectories.

5.2 Real-World Business and Financial Data

Business analytics dataset. The SafeGraph&Advan business analytics dataset combines proprietary
data from Advan [87] and SafeGraph [88] to capture daily customer spending at points of interest
(POIs) in Texas, USA. It includes time-series features (e.g., visits, spending) and static features (e.g.,
parking availability) for each POI, along with ego graphs linking each POI to its 10 nearest neighbors.
Using a sliding window of 14 input days to predict the next 7, the dataset spans Jan.–Dec. 2023 for
training, Jan. 2024 for validation, and Feb.–Apr. 2024 for testing.

Stock price dataset. The S&P 500 dataset [89] is a public dataset containing historical daily prices
for 500 major US stocks. It comprises time-series data without additional contextual information.
We construct a simple fully connected graph among all listed companies. Similarly to the business
analytics dataset, we employ a sliding window approach with a stride of 1, using the past 14 days as
input to predict the next 7 days. The dataset is divided into training (Jan.–Dec. 2016), validation (Jan.
2017), and testing (Feb.–Apr. 2017) sets. Refer to App. D for further details about the datasets.

8

Table 2: Quantitative results on the SafeGraph&Advan business analytics dataset.

Metrics Mean Winner-takes-all Probabilistic

Model MAE↓ MSE↓ R2↑ minMAE↓ minMSE↓ maxR2↑ p-MAE↓ p-MSE↓ p-R2↑
ARIMA 152.6 1.66e05 -0.183 N/A N/A
BS 135.5 1.05e05 0.102 112.8 9.01e04 0.159 121.5 9.87e04 0.138
MJD 131.8 9.98e04 0.127 109.6 8.48e04 0.169 117.6 9.02e04 0.144

XGBoost 124.0 9.76e04 0.303 N/A N/A
MLP 109.5 8.18e04 0.416 N/A N/A
GCN 95.2 7.12e04 0.432 N/A N/A

DDPM 68.5 4.75e04 0.501 58.9 4.48e04 0.529 N/A
EDM 57.6 4.35e04 0.525 49.4 3.76e04 0.556 N/A
FM 54.5 4.32e04 0.540 47.8 3.58e04 0.552 N/A
NeuralCDE 94.6 7.09e04 0.425 N/A N/A
LatentSDE 75.7 5.26e04 0.487 66.5 4.58e04 0.498 N/A

Neural BS 56.4 4.17e04 0.539 45.6 3.45e04 0.561 55.9 4.16e04 0.538
Neural MJD (ours) 54.1 4.18e04 0.549 42.3 3.19e04 0.565 53.0 4.10e04 0.550

Table 3: Quantitative results on the S&P 500 stock dataset.

Metrics Mean Winner-takes-all Probabilistic

Model MAE↓ MSE↓ R2↑ minMAE↓ minMSE↓ maxR2↑ p-MAE↓ p-MSE↓ p-R2↑
ARIMA 62.1 3.67e04 -0.863 N/A N/A
BS 65.1 4.01e04 0.052 44.6 1.79e04 0.145 52.8 2.03e04 0.105
MJD 64.3 3.58e04 0.092 40.7 1.22e04 0.235 49.7 1.67e04 0.112

XGBoost 44.3 1.64e04 0.170 N/A N/A
MLP 44.4 1.57e04 0.205 N/A N/A
GCN 44.7 1.53e04 0.224 N/A N/A
NJ-ODE 46.8 1.69e04 0.208 N/A N/A

DDPM 42.2 1.88e04 0.235 36.8 8.42e03 0.470 N/A
EDM 37.1 1.68e04 0.249 27.6 5.01e03 0.542 N/A
FM 34.9 8.47e03 0.368 19.8 3.59e03 0.625 N/A
NeuralCDE 42.8 1.46e04 0.201 N/A N/A
LatentSDE 39.8 1.44e04 0.212 20.8 3.49e03 0.617 N/A

Neural BS 31.6 4.32e03 0.781 12.6 8.04e02 0.959 22.3 2.19e03 0.889
Neural MJD (ours) 15.4 1.36e03 0.953 4.3 1.46e02 0.995 13.6 1.08e03 0.963

Results. Tab. 2 reports results on the SafeGraph&Advan dataset covering POIs revenue prediction,
which is measured in dollars. Denoising generative models (e.g., DDPM, EDM, FM) show strong
performance, significantly outperforming simple supervised baselines like GCN. Neural MJD further
improves upon the strong FM baseline, especially in winner-takes-all metrics, indicating better diver-
sity and accuracy in generating plausible outcomes through simulated jumps. While denoising models
support likelihood evaluation, their high computational cost—requiring hundreds of NFEs—makes
them unsuitable for large datasets. In contrast, Neural MJD enables fast likelihood evaluation without
such overhead, which enables the computation of probabilistic metrics.

Tab. 3 shows similar results on the S&P 500 dataset. FM again outperforms conventional baselines,
including ODE based NJ-ODE and NeuralCDE, and Neural MJD achieves the best overall perfor-
mance, effectively capturing volatility and discontinuities in stock time-series data. For completeness,
we also report results for additional deterministic time-series baselines in Appendix D.3.

Table 4: Ablation study on the effect of teacher forcing
(TF) and Euler–Maruyama (EM).

Mean Winner-takes-all Probabilistic

Model MAE↓ R2 ↑ minMAE↓ maxR2 ↑ p-MAE↓ p-R2 ↑
Ours 66.7 0.495 57.4 0.511 64.5 0.499
w. TF 101.5 0.325 85.6 0.331 99.8 0.324
w. EM 85.6 0.397 79.4 0.423 84.4 0.405

Table 5: Runtime comparison.

Model Train (ms) 1-run (ms) 10-run (ms)

MLP 65.2 52.2 N/A
GCN 271.3 250.7 N/A
FM 184.6 275.4 2696.3
Ours 183.5 166.8 179.2

9

5.3 Ablation Study

We perform ablation studies to evaluate (i) the training algorithm described in Alg. 1 and (ii) the
Euler-Maruyama with restart solver introduced in Sec. 4.3. For the ablations, we use 10% of the
SafeGraph&Advan business analytics training set for training and evaluate on the full validation set.

The results are presented in Tab. 4. Our training algorithm computes the MLE loss using the model
predictions instead of ground truth, unlike teacher forcing. This improves training stability and
reduces the generalization gap. Additionally, we empirically show that the vanilla EM solver results
in higher variance and worse performance compared to our solver.

Additionally, we compare the runtime of our method against various baselines in Tab. 5. Thanks to
the efficient numerical simulation-based forecasting framework that does not increase NFEs, our
models are particularly well-suited for efficient multi-run stochastic predictions.

6 Conclusion

We introduced Neural MJD, a neural non-stationary Merton jump diffusion model for time series
forecasting. By integrating a time-inhomogeneous Itô diffusion and a time-inhomogeneous compound
Poisson process, our approach captures non-stationary time series with abrupt jumps. We further
proposed a likelihood truncation mechanism and an improved solver for efficient training and
inference respectively. Experiments demonstrate that Neural MJD outperforms state-of-the-art
approaches. Future work includes extending to more challenging data types like videos.

Acknowledgments and Disclosure of Funding

This work was funded, in part, by the NSERC DG Grant (No. RGPIN-2022-04636), the Vector
Institute for AI, Canada CIFAR AI Chair, a Google Gift Fund, and the CIFAR Pan-Canadian AI
Strategy through a Catalyst award. Resources used in preparing this research were provided, in part, by
the Province of Ontario, the Government of Canada through the Digital Research Alliance of Canada
alliance.can.ca, and companies sponsoring the Vector Institute www.vectorinstitute.ai/
#partners, and Advanced Research Computing at the University of British Columbia. Additional
hardware support was provided by John R. Evans Leaders Fund CFI grant. Y.L. and Y.G. are
supported by the NSF grant IIS-2153468. Q.Y. is supported by UBC Four Year Doctoral Fellowship.

10

alliance.can.ca
www.vectorinstitute.ai/##partners
www.vectorinstitute.ai/##partners

References
[1] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change point detection,”

Knowledge and information systems, vol. 51, no. 2, pp. 339–367, 2017.

[2] M. Short, “Improved inequalities for the poisson and binomial distribution and upper tail
quantile functions,” International Scholarly Research Notices, vol. 2013, no. 1, p. 412958, 2013.

[3] R. C. Merton, “Option pricing when underlying stock returns are discontinuous,” Journal of
financial economics, vol. 3, no. 1-2, pp. 125–144, 1976.

[4] T. G. Andersen, T. Bollerslev, and F. X. Diebold, “Roughing it up: Including jump components
in the measurement, modeling, and forecasting of return volatility,” The review of economics
and statistics, vol. 89, no. 4, pp. 701–720, 2007.

[5] M. C. Wilson, “The impact of transportation disruptions on supply chain performance,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 43, no. 4, pp. 295–320,
2007.

[6] H. J. Van Heerde, P. S. Leeflang, and D. R. Wittink, “Decomposing the sales promotion bump
with store data,” Marketing Science, vol. 23, no. 3, pp. 317–334, 2004.

[7] S. Ken-Iti, Lévy processes and infinitely divisible distributions, vol. 68. Cambridge university
press, 1999.

[8] R. G. Brown, Smoothing, forecasting and prediction of discrete time series. Courier Corporation,
2004.

[9] T. W. Anderson, The statistical analysis of time series. John Wiley & Sons, 2011.

[10] A. A. Ariyo, A. O. Adewumi, and C. K. Ayo, “Stock price prediction using the arima model,”
in 2014 UKSim-AMSS 16th international conference on computer modelling and simulation,
pp. 106–112, IEEE, 2014.

[11] E. L. Glaeser, Agglomeration economics. University of Chicago Press, 2010.

[12] S. C. Lera and Y. Leng, “Beyond pairwise network interactions: Implications for information
centrality,” Available at SSRN 4708802, 2024.

[13] M. S. Drake, J. Jennings, D. T. Roulstone, and J. R. Thornock, “The comovement of investor
attention,” Management Science, vol. 63, no. 9, pp. 2847–2867, 2017.

[14] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,” Philosophical
Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200209, 2021.

[15] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecasting with
deep learning: A systematic literature review: 2005–2019,” Applied soft computing, vol. 90,
p. 106181, 2020.

[16] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, “A review of deep learning models for time
series prediction,” IEEE Sensors Journal, vol. 21, no. 6, pp. 7833–7848, 2019.

[17] P. Lara-Benítez, M. Carranza-García, and J. C. Riquelme, “An experimental review on deep
learning architectures for time series forecasting,” International journal of neural systems,
vol. 31, no. 03, p. 2130001, 2021.

[18] K. Benidis, S. S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix, C. Turkmen, J. Gasthaus,
M. Bohlke-Schneider, D. Salinas, L. Stella, et al., “Deep learning for time series forecasting:
Tutorial and literature survey,” ACM Computing Surveys, vol. 55, no. 6, pp. 1–36, 2022.

[19] A. Mahmoud and A. Mohammed, “A survey on deep learning for time-series forecasting,”
Machine learning and big data analytics paradigms: analysis, applications and challenges,
pp. 365–392, 2021.

11

[20] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Deep adaptive input
normalization for time series forecasting,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 9, pp. 3760–3765, 2019.

[21] J. Deng, X. Chen, R. Jiang, X. Song, and I. W. Tsang, “St-norm: Spatial and temporal normal-
ization for multi-variate time series forecasting,” in Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, pp. 269–278, 2021.

[22] T. Kim, J. Kim, Y. Tae, C. Park, J.-H. Choi, and J. Choo, “Reversible instance normalization
for accurate time-series forecasting against distribution shift,” in International conference on
learning representations, 2021.

[23] W. Li, X. Yang, W. Liu, Y. Xia, and J. Bian, “Ddg-da: Data distribution generation for predictable
concept drift adaptation,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, pp. 4092–4100, 2022.

[24] S. Hochreiter, “Long short-term memory,” Neural Computation MIT-Press, 1997.

[25] A. Vaswani, “Attention is all you need,” Advances in Neural Information Processing Systems,
2017.

[26] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with structured state spaces,”
arXiv preprint arXiv:2111.00396, 2021.

[27] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond
efficient transformer for long sequence time-series forecasting,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 35, pp. 11106–11115, 2021.

[28] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting,” in International conference on
machine learning, pp. 27268–27286, PMLR, 2022.

[29] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 37, pp. 11121–11128,
2023.

[30] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The performance of lstm and bilstm in
forecasting time series,” in 2019 IEEE International conference on big data (Big Data), pp. 3285–
3292, IEEE, 2019.

[31] I. E. Livieris, E. Pintelas, and P. Pintelas, “A cnn–lstm model for gold price time-series forecast-
ing,” Neural computing and applications, vol. 32, pp. 17351–17360, 2020.

[32] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “Enhancing the locality and
breaking the memory bottleneck of transformer on time series forecasting,” Advances in neural
information processing systems, vol. 32, 2019.

[33] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled differential equations for
irregular time series,” Advances in Neural Information Processing Systems, vol. 33, pp. 6696–
6707, 2020.

[34] J. Morrill, C. Salvi, P. Kidger, and J. Foster, “Neural rough differential equations for long time
series,” in International Conference on Machine Learning, pp. 7829–7838, PMLR, 2021.

[35] C. Zhang, Q. Yan, L. Meng, and T. Sylvain, “What constitutes good contrastive learning in
time-series forecasting?,” arXiv preprint arXiv:2306.12086, 2023.

[36] Q. Yan, R. Seraj, J. He, L. Meng, and T. Sylvain, “Autocast++: Enhancing world event prediction
with zero-shot ranking-based context retrieval,” arXiv preprint arXiv:2310.01880, 2023.

[37] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production using deep lstm
recurrent networks,” Neurocomputing, vol. 323, pp. 203–213, 2019.

[38] A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, “Deep learning methods for forecasting covid-19
time-series data: A comparative study,” Chaos, solitons & fractals, vol. 140, p. 110121, 2020.

12

[39] V. K. R. Chimmula and L. Zhang, “Time series forecasting of covid-19 transmission in canada
using lstm networks,” Chaos, solitons & fractals, vol. 135, p. 109864, 2020.

[40] J. Cao, Z. Li, and J. Li, “Financial time series forecasting model based on ceemdan and lstm,”
Physica A: Statistical mechanics and its applications, vol. 519, pp. 127–139, 2019.

[41] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting,” arXiv preprint arXiv:1709.04875, 2017.

[42] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting,” arXiv preprint arXiv:1707.01926, 2017.

[43] D. Liu, J. Wang, S. Shang, and P. Han, “Msdr: Multi-step dependency relation networks
for spatial temporal forecasting,” in Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pp. 1042–1050, 2022.

[44] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic forecasting
with autoregressive recurrent networks,” International journal of forecasting, vol. 36, no. 3,
pp. 1181–1191, 2020.

[45] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural
information processing systems, vol. 33, pp. 6840–6851, 2020.

[46] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based
generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456,
2020.

[47] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le, “Flow matching for generative
modeling,” arXiv preprint arXiv:2210.02747, 2022.

[48] N. Nguyen and B. Quanz, “Temporal latent auto-encoder: A method for probabilistic multivari-
ate time series forecasting,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 35, pp. 9117–9125, 2021.

[49] K. Rasul, A.-S. Sheikh, I. Schuster, U. Bergmann, and R. Vollgraf, “Multivariate probabilistic
time series forecasting via conditioned normalizing flows,” arXiv preprint arXiv:2002.06103,
2020.

[50] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf, “Autoregressive denoising diffusion models
for multivariate probabilistic time series forecasting,” in International Conference on Machine
Learning, pp. 8857–8868, PMLR, 2021.

[51] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adversarial networks,”
Advances in neural information processing systems, vol. 32, 2019.

[52] Y. Tashiro, J. Song, Y. Song, and S. Ermon, “Csdi: Conditional score-based diffusion models
for probabilistic time series imputation,” Advances in Neural Information Processing Systems,
vol. 34, pp. 24804–24816, 2021.

[53] J. M. L. Alcaraz and N. Strodthoff, “Diffusion-based time series imputation and forecasting
with structured state space models,” arXiv preprint arXiv:2208.09399, 2022.

[54] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” Advances in neural information processing systems, vol. 31, 2018.

[55] R. Chowdhury, M. Mahdy, T. N. Alam, G. D. Al Quaderi, and M. A. Rahman, “Predicting
the stock price of frontier markets using machine learning and modified black–scholes option
pricing model,” Physica A: Statistical Mechanics and its Applications, vol. 555, p. 124444,
2020.

[56] C. Qiao and X. Wan, “Enhancing black-scholes delta hedging via deep learning,” arXiv preprint
arXiv:2407.19367, 2024.

[57] S. Zuo, H. Jiang, Z. Li, T. Zhao, and H. Zha, “Transformer hawkes process,” in International
conference on machine learning, pp. 11692–11702, PMLR, 2020.

13

[58] P. Seifner and R. J. Sánchez, “Neural markov jump processes,” in International Conference on
Machine Learning, pp. 30523–30552, PMLR, 2023.

[59] X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud, “Scalable gradients for stochastic differen-
tial equations,” in International Conference on Artificial Intelligence and Statistics, pp. 3870–
3882, PMLR, 2020.

[60] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learning of linear differential equations
using gaussian processes,” Journal of Computational Physics, vol. 348, pp. 683–693, 2017.

[61] Y. Bai, T. Chaolu, and S. Bilige, “The application of improved physics-informed neural network
(ipinn) method in finance,” Nonlinear Dynamics, vol. 107, no. 4, pp. 3655–3667, 2022.

[62] Q. Sun, H. Huang, X. Yang, and Y. Zhang, “Jump diffusion-informed neural networks with
transfer learning for accurate american option pricing under data scarcity,” arXiv preprint
arXiv:2409.18168, 2024.

[63] J. Jia and A. R. Benson, “Neural jump stochastic differential equations,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[64] S. Zhang, C. Zhou, Y. A. Liu, P. Zhang, X. Lin, and Z.-M. Ma, “Neural jump-diffusion temporal
point processes,” in Forty-first International Conference on Machine Learning, 2024.

[65] P. Tankov, Financial modelling with jump processes. Chapman and Hall/CRC, 2003.

[66] L. Andersen and J. Andreasen, “Jump-diffusion processes: Volatility smile fitting and numerical
methods for option pricing,” Review of derivatives research, vol. 4, pp. 231–262, 2000.

[67] D. S. Bates, “Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark
options,” The Review of Financial Studies, vol. 9, pp. 69–107, 1996.

[68] D. Duffie and N. Garleanu, “Risk and valuation of collateralized debt obligations,” Financial
analysts journal, vol. 57, pp. 41–59, 2001.

[69] S. G. Kou, “A jump-diffusion model for option pricing,” Management science, vol. 48, pp. 1086–
1101, 2002.

[70] Y. Aït-Sahalia and R. Kimmel, “Maximum likelihood estimation of stochastic volatility models,”
Journal of financial economics, vol. 83, no. 2, pp. 413–452, 2007.

[71] “The time-dependent black–scholes model and calibration to market.” Master’s Lecture Notes,
Option Pricing, HSRM Mathematik (WS 2015/16), 2015. Accessed: May 15, 2025.

[72] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of political
economy, vol. 81, no. 3, pp. 637–654, 1973.

[73] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.

[74] R. Cont and P. Tankov, “Nonparametric calibration of jump-diffusion option pricing models.,”
The Journal of Computational Finance, vol. 7, pp. 1–49, 2004.

[75] P. E. Kloeden, E. Platen, P. E. Kloeden, and E. Platen, Stochastic differential equations. Springer,
1992.

[76] P. Protter and D. Talay, “The euler scheme for lévy driven stochastic differential equations,” The
Annals of Probability, vol. 25, no. 1, pp. 393–423, 1997.

[77] J.-L. Lions, Y. Maday, and G. Turinici, “Résolution d’edp par un schéma en temps «pararéel»,”
Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, vol. 332, no. 7, pp. 661–668,
2001.

[78] G. Bal, “Parallelization in time of (stochastic) ordinary differential equations,” Math. Meth.
Anal. Num.(submitted), 2003.

14

[79] G. Bal and Y. Maday, “A “parareal” time discretization for non-linear pde’s with application
to the pricing of an american put,” in Recent developments in domain decomposition methods,
pp. 189–202, Springer, 2002.

[80] I. Bossuyt, S. Vandewalle, and G. Samaey, “Monte-carlo/moments micro-macro parareal method
for unimodal and bimodal scalar mckean-vlasov sdes,” arXiv preprint arXiv:2310.11365, 2023.

[81] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

[82] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

[83] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[84] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space of diffusion-based
generative models,” Advances in neural information processing systems, vol. 35, pp. 26565–
26577, 2022.

[85] C. Herrera, F. Krach, and J. Teichmann, “Neural jump ordinary differential equations: Con-
sistent continuous-time prediction and filtering,” in International Conference on Learning
Representations, 2021.

[86] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu, “Do transformers really
perform badly for graph representation?,” Advances in Neural Information Processing Systems,
vol. 34, pp. 28877–28888, 2021.

[87] Advan, “Advan research,” 2025. Accessed: Jan. 30, 2025.

[88] SafeGraph, “Safegraph: Places data curated for accurate geospatial analytics,” 2025. Accessed:
Jan. 30, 2025.

[89] C. Nugent, “S&p 500 stock data - kaggle,” 2018. Accessed: Jan. 30, 2025.

[90] R. Cont and P. Tankov, “Calibration of jump-diffusion option pricing models: a robust non-
parametric approach,” SSRN, 2002.

[91] A. M. Zubkov and A. A. Serov, “A complete proof of universal inequalities for the distribution
function of the binomial law,” Theory of Probability & Its Applications, vol. 57, no. 3, pp. 539–
544, 2013.

[92] R. D. Gordon, “Values of mills’ ratio of area to bounding ordinate and of the normal probability
integral for large values of the argument,” The Annals of Mathematical Statistics, vol. 12, no. 3,
pp. 364–366, 1941.

[93] K. Bichteler, “Stochastic integrators with stationary independent increments,” Probability
Theory and Related Fields, vol. 58, no. 4, pp. 529–548, 1981.

[94] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, vol. 37. Springer Science &
Business Media, 2006.

[95] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting,” Advances in neural information processing systems,
vol. 34, pp. 22419–22430, 2021.

[96] A. Das, W. Kong, A. Leach, S. Mathur, R. Sen, and R. Yu, “Long-term forecasting with tide:
Time-series dense encoder,” arXiv preprint arXiv:2304.08424, 2023.

[97] C. Challu, K. G. Olivares, B. N. Oreshkin, F. G. Ramirez, M. M. Canseco, and A. Dubrawski,
“Nhits: Neural hierarchical interpolation for time series forecasting,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 37, pp. 6989–6997, 2023.

15

Appendix

TABLE OF CONTENTS

A Derivations of the Stationary Merton Jump Diffusion Model 17

A.1 MJD and Lévy Process . 17

A.2 Explicit Solution to MJD . 17

A.3 Likelihood Function of MJD . 18

B Derivations of the Non-stationary Merton Jump Diffusion Model 19

B.1 Non-stationary MJD and Additive Process . 19

B.2 Explicit Solution to Non-stationary MJD . 19

B.3 Likelihood Function of Non-stationary MJD . 20

C Proofs of Theorem and Proposition 22

C.1 Proof of Theorem 4.1 . 22

C.2 Proof of Proposition 4.2 . 24

D Experiment Details 25

D.1 Baseline, Model Architecture, and Experiment Settings 25

D.2 Datasets Details . 25

D.3 Additional Deterministic Time-Series Baselines (Third-Party Implementations) . . 27

D.4 Limitations . 27

D.5 Vanilla Euler Solver . 27

E Impact Statement 28

16

A Derivations of the Stationary Merton Jump Diffusion Model

In this section, we briefly review the mathematical derivations from classical textbooks to ensure the
paper is self-contained. Our primary focus is on the case where the state variable S is scalar, as is
common in many studies. However, in Sec. 4, we extend our analysis to the more general Rd setting.
Notably, in our framework, we do not account for correlations among higher-dimensional variables.
For instance, the covariance matrix of the Brownian motion is assumed to be isotropic, meaning all
components have the same variance. To maintain clarity and consistency with standard textbook
conventions, we adopt scalar notations throughout this section for simplicity.

A.1 MJD and Lévy Process

Definition A.1. Lévy process [65, Definition 3.1] A càdlàg (right-continuous with left limits)
stochastic process (Xt)t≥0 on (Ω,F ,P) with values in Rd such that X0 = 0 is called a Lévy process
if it possesses the following properties:

1. Independent increments: For every increasing sequence of times t0, t1, . . . , tn, the random
variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent.

2. Stationary increments: The law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: For all ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

A Lévy process (Xt)t≥0 is a stochastic process that generalizes jump-diffusion dynamics, incorporat-
ing both continuous Brownian motion and discontinuous jumps. The Merton Jump Diffusion (MJD)
model given by,

dSt = St((µ− λk)dt+ σdWt + dQt), (15)

is a specific example of a Lévy process, as it comprises both a continuous diffusion component and a
jump component. According to the Lévy–Itô decomposition [65, Proposition 3.7], any Lévy process
can be expressed as the sum of a deterministic drift term, a Brownian motion component, and a pure
jump process, which is represented as a stochastic integral with respect to a Poisson random measure.

A.2 Explicit Solution to MJD

To derive the solution to MJD in Eq. (2), based on [65, Proposition 8.14], we first apply Itô’s formula
to the SDE:

df(St, t) =
∂f(St, t)

∂t
dt+ bt

∂f(St, t)

∂St
dt+

ω2
t

2

∂2f(St, t)

∂S2
t

dt+ ωt
∂f(St, t)

∂St
dWt

+ [f(St)− f(St−)], (16)

where bt = (µ− λk)St, ωt = σSt, and St− represents the value of S before the jump at time t.

By setting the function f(St, t) = lnSt, the formula can be rearranged as:

d lnSt =
∂ lnSt

∂t
dt+ (µ− λk)St

∂ lnSt

∂St
dt+

σ2S2
t

2

∂2 lnSt

∂S2
t

dt+ σSt
∂ lnSt

∂St
dWt

+ [ln(St)− ln(St−)]

= (µ− λk)St
1

St
dt+

σ2S2
t

2
(

1

−S2
t

)dt+ σSt(
1

St
)dWt + [ln(St)− ln(St−)]

= (µ− λk)dt− σ2

2
dt+ σdWt + [ln(St)− ln(St−)] (17)

From the definition of the Compound Poisson process, we have that St = YiSt− , such that ln(St)−
ln(St−) = lnYi. Here, Yi is the magnitude of the multiplicative jump. Therefore, integrating both
sides of Eq. (17), we get the final explicit solution for MJD model:

lnSt − lnS0 = (µ− λk − 1

2
σ2)t+ σWt +

Nt∑
i=1

lnYi. (18)

17

We can reorganize the explicit solution as:

St = S0 exp

((
µ− λk − σ2

2

)
t+ σWt +

Nt∑
i=1

lnYi

)
, (19)

since the drift term, diffusion term and jump term are independent, we can derive the mean of St

conditional on S0:

E[St|S0] =S0E

[
exp

((
µ− λk − σ2

2

)
t+ σWt +

Nt∑
i=1

lnYi

)]

=S0E
[
exp

((
µ− λk − σ2

2

)
t

)]
· E [exp (σWt)] · E

[
exp

(
Nt∑
i=1

lnYi

)]

=S0 exp

((
µ− λk − σ2

2

)
t

)
· exp

(
σ2

2
t

)
· exp (λkt)

=S0 exp (µt) (20)

A.3 Likelihood Function of MJD

For the log-likelihood derivation, given the conditional probability in Eq. (4), the log-likelihood of
the MJD model can be expressed as:

logP (lnSt|S0) = log

∞∑
n=0

P (Nt = n)P (lnSt|S0, Nt = n)

= log

∞∑
n=0

exp (−λt) (λt)
n

n!

1√
2πb2n

exp

(
− (lnSt − an)2

2b2n

)

= log

∞∑
n=0

exp

(
−λt+ log

(λt)
n

n!
+ log

1√
2πb2n

+

(
− (lnSt − an)2

2b2n

))

= log

∞∑
n=0

exp

(
−λt+ n log (λt)− log n!

√
2π − log b2n

2
− (lnSt − an)2

2b2n

)
,

(21)

where an = lnS0+
(
µ− λk − σ2

2

)
t+nν and b2n = σ2t+γ2n. In maximum likelihood estimation

(MLE), the initial asset price S0 is assumed to be constant (non-learnable) and can therefore be ex-
cluded from optimization. The objective of MLE is to estimate the parameter set Θ = {µ, σ, λ, γ, ν}
by maximizing the likelihood of the observed data under the estimated parameters. For the MJD
model, the MLE objective is to determine the optimal parameters Θ̂. By omitting constant terms and
expanding sn and an, the final expression of the MLE objective can be simplified as:

Θ̂ = argmax
Θ

logP (lnSt|S0)

= argmax
Θ

log

∞∑
n=0

exp
(
−λt+ n log (λt)−

log
(
σ2t+ nγ2

)
2

−
(lnSt − lnS0 −

(
µ− σ2

2 − λk
)
t− nν)2

2 (σ2t+ nγ2)

)
(22)

According to [90], the Fourier transform can be applied to the Merton Jump Diffusion log-return
density function. The characteristic function is then given by:

ϕc(ω) =

∫ ∞

−∞
exp(iωx)P (x)dx

=exp

[
λt

{
exp

(
iων +

γ2ω2

2

)
− 1

}
+ iω

((
µ− σ2

2
− λk

)
t

)
− σ2ω2

2
t

]
, (23)

18

where x = ln St

S0
.

With simplification ϕc(ω) = exp [tg(ω)], we can find the characteristic exponent, namely, the
cumulant generating function (CGF):

g(ω) = λ

{
exp

(
iων +

γ2ω2

2

)
− 1

}
+ iω

(
µ− σ2

2
− λk

)
− σ2ω2

2
, (24)

where k = exp (ν + γ2/2)− 1.

The series expansion of CFG is:

g(ω) = iωk1 −
ω2k2
2

+
ω3k3
6

... (25)

According to [65, Proposition 3.13], the cumulants of the Lévy distribution increase linearly with t.
Therefore, the first cumulant k1 is the mean of the standard MJD:

k1(t) = E
[
ln
St

S0

]
= (µ− λk − σ2/2 + λν)t (26)

The second cumulant k2 is variance of the standard MJD, which is:

k2(t) = Var
[
ln
St

S0

]
=
(
σ2 + λ(γ2 + ν2)

)
t (27)

The corresponding higher moments can also be calculated as:
Skewness = k3(t) =λ(3γ

2ν + ν3)t (28)

Excess Kurtosis = k4(t) =λ(3γ
4 + 6ν2γ2 + ν4)t (29)

B Derivations of the Non-stationary Merton Jump Diffusion Model

B.1 Non-stationary MJD and Additive Process

Definition B.1. Additive process [65, Definition 14.1] A stochastic process (Xt)t≥0 on Rd is called
an additive process if it is càdlàg, satisfies X0 = 0, and has the following properties:

1. Independent increments: For every increasing sequence of times t0, t1, . . . , tn, the random
variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent.

2. Stochastic continuity: For all ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

In the non-stationary MJD model, given by,

dSt = St((µt − λtkt)dt+ σtdWt +

∫
Rd

(y − 1)N(dt,dy)), (30)

the parameters governing drift, volatility, and jump intensity evolve over time, resulting in non-
stationary increments. This violates the key stationarity property required for Lévy processes,
as discussed in App. A. Consequently, the non-stationary MJD no longer falls within the Lévy
process framework. Instead, according to the definition above, a stochastic process with independent
increments that follow a non-stationary distribution is classified as an additive process. Similar to
the relationship between the stationary MJD and the Lévy process, the non-stationary MJD can be
viewed as a specific instance of an additive process. Thus, we can apply corresponding mathematical
tools for additive processes to study the non-stationary MJD.

B.2 Explicit Solution to Non-stationary MJD

To derive the explicit solution to the non-stationary MJD, according to [65, Proposition 8.19], we
have the Itô formula for semi-martingales:

f(t,Xt)− f(0, X0) =

∫ t

0

∂f(s,Xs)

∂s
ds+

∫ t

0

∂f(s,Xs−)

∂x
dXs +

1

2

∫ t

0

∂2f(s,Xs−)

∂x2
d[X,X]cs

+
∑

0≤s≤t,△Xs ̸=0

[f(s,Xs)− f(s,Xs−)−△Xs
∂f(s,Xs−)

∂x
]. (31)

19

According to [65, Remark 8.3], for a function independent of time (i.e., f(t,Xt) = f(Xt)), when we
have finite number of jumps, we can rewrite the above equation as:

f(Xt)− f(X0) =

∫ t

0

f ′(Xs−)dX
c
s +

1

2

∫ t

0

f ′′(Xs−)d[X,X]cs +
∑

0≤s≤t,△Xs ̸=0

[f(Xs)− f(Xs−)],

where Xc
s is the continuous part of Xs, and [X,X]cs is the continuous quadratic variation of X over

the interval [0, s].

In our case, let Xt = St, and define f(t,Xt) = lnSt, the corresponding derivatives are ∂f(t,Xt)
∂Xt

=
∂ lnSt

∂St
= 1

St
, and ∂2f(t,Xt)

∂X2
t

= 1
−S2

t
. The dynamics of non-stationary MJD is defined by:

dSt = St

(
µtdt− λtktdt+ σtdWt +

∫
Rd

(y − 1)N(dt,dy)

)
.

The continuous part of the quadratic variation of St is d[S, S]cs = S2
t σ

2
t dt. A jump at time s is mod-

eled as a multiplicative change Ss = ySs−. Thus, the jump contribution is
∑

0≤s≤t,△Xs ̸=0[f(Xs)−
f(Xs−)] =

∑
0≤s≤t,△Xs ̸=0[ln(ySs−)− ln(Ss−)] =

∑
0≤s≤t,△Xs ̸=0[ln y]. Since the jump process

is driven by a Poisson random measure N(dt, dy) on [0, t] × Rd, we can rewrite the sum over all
jump times as an integral with respect to this measure. When there are finitely many jumps on [0, t],
we have

∑
0≤s≤t,△Xs ̸=0[ln y] =

∫ t

0

∫
Rd ln yN(ds,dy).

Based on [65, Ch. 14], even when the parameters (drift, volatility, jump intensity, etc.) are time-
dependent, the non-stationary MJD remains a semi-martingale. Therefore, we can simplify the
equation as follows for time t:

lnSt − lnS0 =

∫ t

0

1

Ss
Ss (µs − λsks) ds−

1

2

∫ s

0

1

S2
s

S2
sσ

2
sds+

∫ t

0

σsdWs

+

∫
[0,t]×Rd

ln yN(ds,dy) (32)

Therefore, the explicit solution is:

ln
St

S0
=

∫ t

0

(µs − λsks −
σ2
s

2
)ds+

∫ t

0

σsdWs +

∫ t

0

∫
Rd

ln yN(ds,dy). (33)

The only assumption needed for the derivation is the finite variation condition:
∫ t

0

∫
R |y|N(ds,dy) <

∞. Based on the explicit solution for St, we can easily compute the conditional expectations as,

E [ln(St/S0)] =

∫ t

0

(µs − λsks −
σ2
s

2
)ds+

∫ t

0

∫
Rd

ln yλsfY (s, y)dyds. (34)

and

E [St|S0] = S0 exp(

∫ t

0

µsds), (35)

The variance can also be calculated as,

Var [ln(St/S0)] =

∫ t

0

σ2
sds+

∫ t

0

∫
Rd

(ln y)2λsfY (s, y)dyds. (36)

Given the results for the general time-inhomogeneous system, one can directly substitute the coeffi-
cients into the discrete formulation implemented in Sec. 4.2 to obtain the corresponding results.

B.3 Likelihood Function of Non-stationary MJD

Let Xt = lnSt/ lnS0, t ≥ 0 be the log-return of the asset price St. Under the non-stationary MJD
settings, Xt is an additive process, therefore by the general property of additive process [65, Ch 14],
the law of Xt is infinitely divisible and its characteristic function is given by the Lévy–Khintchine
formula:

E[exp(iu ·Xt)] = expψt(u),

20

where
ψt(u) = −

1

2
u ·Atu+ iu · Γt +

∫
Rd

η(dy)
(
eiu·x − 1− iu · x

)
, (37)

where we have the integrated volatility term At =
∫ t

0
σsds, the integrated drift term Γt =

∫ t

0
(µs −

λsks)ds, and the Lévy measure η(dy) = λtfY (t, y).

Since the jumps follow a time-inhomogeneous Poisson random measure and the process is additive,
we can denote the integrated intensity of jumps by Λ(t) =

∫ t

0
λsds, then the number of jumps Nt

in the time range [0, t] is a Poisson distribution with this integrated jump intensity Λ(t). When
conditioning on Nt, we will have:

P (Nt = n) =
exp(−Λ(t))Λ(t)n

n!
(38)

We now derive the conditional density P (lnSt|Nt = n, S0), and here we can start with the case of
one jump. When there is exactly one jump in [0, t], the jump time s1 is random. Given jump time s1,
in a time-inhomogeneous setting, the instantaneous probability of a jump at time s1 is proportional
to λs1 . According to the dynamics of non-stationary MJD, the continuous part of the log-return
leads to a normal distribution with mean being a1 = lnS0 +

∫ s1
0

(
µs − λsks − σ2

s

2

)
ds+ νs1 , and

variance being b21 =
∫ s1
0
σ2
sds+ γ2s1 . Thus, the conditional density of lnSt given one jump at time

s1 is ϕ(lnSt; a1, b
2
1), where ϕ(·; a1, b21) denotes the Gaussian density with mean a1 and variance b21.

Since the jump could have occurred at any time in [0, t], we must integrate over the possible jump
time s1. Therefore, the conditional density given Nt = 1 is:

P (lnSt|Nt = 1, S0) =
1

Λ(t)

∫ t

0

λs1ϕ(lnSt; a1, b
2
1) ds1, (39)

where 1
Λ(t) normalizes the density.

When generalizing to the case of N t = n, the conditional density P (lnSt|Nt = n, S0) is defined via
an integration over the n jump times, with the jump times denoted by 0 ≤ s1, ..., sn ≤ t.
Because the process is time-inhomogeneous, the probability density that a jump occurs at a specific
time si is given by the instantaneous rate λsi , therefore for a given set of jump times, the joint density
for the jumps is proportional to Πn

i=1λsi . The conditional density can be written as:

P (lnSt|Nt = n, S0) =
1

Λ(t)n

∫
· · ·
∫
[0,t]

Πn
i=1λsiϕ(lnSt; an, b

2
n) ds1 · · · dsn (40)

Here ϕ(lnSt; an, b
2
n) is the density of a normal distribution with mean an and variance b2n, which are

defined by:

an = lnS0 +

∫ t

0

(
µs − λsks −

σ2
s

2

)
ds+

n∑
i=1

νsi

b2n =

∫ t

0

σ2
sdt+

n∑
i=1

γ2si

For convenience, we may write the mixture term as

Φn =

∫
· · ·
∫
[0,t]

Πn
i=1λsiϕ(lnSt; an, b

2
n) ds1 · · · dsn (41)

Therefore, for the time-varying SDEs, the conditional probability of lnSt is given by,

P (lnSt|S0) =

∞∑
n=0

exp(−Λ(t))
n!

Φn. (42)

21

C Proofs of Theorem and Proposition

C.1 Proof of Theorem 4.1

Theorem 4.1. Let the likelihood approximation error in Eq. (12), truncated to at most κ jumps, be

Ψκ(t, δ) :=
∑∞

n=κ+1 P (∆N = n)P (lnSt+δ | St, C,∆N = n) .

Then, Ψκ(t, δ) decays at least super-exponentially as κ→∞, with a convergence rate of O(κ−κ).

Before diving into the proof, we first introduce two important lemmas.

Lemma C.1 (Theorem 2 in [2]). Let Y ∼ Pois(m) be a Poisson-distributed random variable with
mean m. Its distribution function is defined as P (Y ≤ k) := exp(−m)

∑k
i=0

mi

i! , with integer
support k ∈ {0, 1, . . . ,∞}. For k = 0 and k =∞, one has P (Y ≤ 0) = exp(−m), P (Y ≤ ∞) =
1. For every other k ∈ {1, 2, 3, . . . }, the following inequalities hold:

Φ
(
sign(k −m)

√
2H(m, k)

)
< P (Y ≤ k) < Φ

(
sign(k + 1−m)

√
2H(m, k + 1)

)
,

where H(m, k) is the Kullback-Leibler (KL) divergence between two Poisson-distributed random
variables with respective means m and k:

H(m, k) = DKL (Pois(m)∥Pois(k)) = m− k + k ln

(
k

m

)
.

And Φ(x) is the cumulative distribution function (CDF) of the standard normal distribution and
sign(·) is the signum function.

Lemma C.1 is particularly helpful in our proof below. We also acknowledge its foundation in an
earlier work [91], which provides many insights and a profound amount of valuable knowledge on its
own.

Lemma C.2 (Bounds on the Standard Normal CDF). The following upper bound for Φ(·) holds
when x < 0:

Φ(x) <
ϕ(x)

|x|
,

where ϕ(x) = exp(−x2/2)√
2π

is the probability density function of the standard normal distribution.

Proof. By the Mills’ ratio inequality for the Gaussian distribution [92], we have 1 − Φ(x) <
ϕ(x)
x ,∀x > 0. Using the identity Φ(−x) = 1− Φ(x) for x > 0, we immediately obtain: Φ(−x) <

ϕ(x)
x ,∀x > 0. For x < 0, substituting −x into the previous bound and noting that ϕ(−x) = ϕ(x),

we obtain Φ(x) < ϕ(x)
|x| ,∀x < 0.

Proof of Theorem 4.1.

Proof. The original likelihood objective in Eq. (12) is as follows:

P (lnSt+δ|St, C) =
∞∑

n=0

P (∆N = n)P (lnSt+δ|St, C,∆N = n)

=

∞∑
n=0

exp (−λρt
δ)

(λρt
δ)n

n!
ϕ
(
lnSt+δ; an,δ, b

2
n,δ

)
=

∞∑
n=0

exp (−λρt
δ)

(λρtδ)
n

n!

1√
2πb2n,δ

exp

(
− (lnSt+δ − an,δ)2

2b2n,δ

) (43)

where δ is a small time change so that ρt − 1 ≤ t < t + δ < ρt, an,δ = lnSt + (µρt − λρtkρt −
σ2
ρt
/2)δ + nνρt

and s2n,δ = σ2
ρt
δ + γ2ρt

n.

22

We define the truncation error with a threshold κ as:

Ψκ(t, δ) :=

∞∑
n=κ+1

P (∆N = n)P (lnSt+δ | St, C,∆N = n) . (44)

The second term P (∆N = n)P (lnSt+δ | St, C,∆N = n) is a Gaussian density function and upper
bounded by 1√

2πb2n,δ

, so the truncation error Ψκ(t, δ) is bounded by:

Ψκ(t, δ) ≤
∞∑

n=κ+1

1√
2πb2n,δ

P (∆N = n) (Gaussian density bound)

≤ 1√
2πb2κ+1,δ

∞∑
n=κ+1

P (∆N = n) (bκ,δ increases as κ goes up)

=
1√

2πb2κ+1,δ

(1−
κ∑

n=0

P (∆N = n)) (property of Poisson CDF)

<
1√

2πb2κ+1,δ

(
1− Φ(sign(κ− λρt

δ)
√

2DKL(Pois(λρt
δ)∥Pois(κ)))

)
(Lemma C.1)

=
1√

2πb2κ+1,δ

Φ(sign(λtδ − κ)
√
2DKL(Pois(λρtδ)∥Pois(κ))) (Gaussian CDF)

As stated above, the KL divergence between two Poisson distributions follows

DKL (Pois(a)∥Pois(b)) = a− b+ b ln(
b

a
)

Therefore,

Ψκ(t, δ) <
1√

2πb2κ+1,δ

Φ

(
sign(λρtδ − κ)

√
2DKL(Pois(λρtδ)∥Pois(κ))

)
,

=
1√

2π(σ2
ρt
δ + γ2ρt

(κ+ 1))
Φ

(
sign(λρt

δ − κ)
√
2(λρt

δ − κ+ κ ln(
κ

λρt
δ
))

)

=
1√

2π(σ2
ρt
δ + γ2ρt

(κ+ 1))
Φ

(
sign(

λρtδ

κ
− 1)

√
2(λρt

δ − κ− κ ln(λρtδ

κ
))

)

Intuitively, the truncation error decreases to zero as κ approaches infinity. Below, we analyze the
convergence rate. When κ is sufficiently large, the term sign

(
λρtδ

κ − 1
)

is negative. Consequently,
the upper bound becomes:

Ψκ(t, δ) <
1√

2π(σ2
ρt
δ + γ2ρt

(κ+ 1))
Φ

(
−
√
2(λρtδ − κ− κ ln(

λρt
δ

κ
))

)

<
1√

2π(σ2
ρt
δ + γ2ρt

(κ+ 1))

ϕ

(
−
√
2(λρt

δ − κ− κ ln(λρtδ

κ)

)
√
2(λρtδ − κ− κ ln(

λρtδ

κ))
(Lemma C.2)

=
exp (−λρt

δ + κ+ κ ln(
λρtδ

κ))

2π
√
2(σ2

ρt
δ + γ2ρt

(κ+ 1))(λρt
δ − κ− κ ln(λρtδ

κ))

As κ→∞, the numerator is dominated by exp(−κ lnκ), which decays super-exponentially (faster
than any polynomial or exponential decay). The denominator consists of two components:

23

• The first term,
√
σ2
ρt
δ + γ2ρt

(κ+ 1), scales asymptotically as γρt

√
κ.

• The second term,
√(

λρt
δ − κ− κ ln

(
λρtδ

κ

))
, scales as

√
κ lnκ.

Combining all terms, the upper bound scales as:

1

2π
√
2γρt

· exp(−κ lnκ)
κ
√
lnκ

∼ κ−κ

κ
√
lnκ

.

The term κ−κ decays super-exponentially, while the denominator grows algebraically (as κ
√
lnκ).

The rapid decay of κ−κ dominates the polynomial growth in the denominator. The overall convergence
rate is super-exponentially fast, at the rate of O(exp(−κ lnκ)) or equivalently O(κ−κ).

Since the upper bound of Ψκ(t, δ) decays at the rate of O(κ−κ) and Ψκ(t, δ) is strictly positive,
this implies that the original quantity Ψκ(t, δ) must decay at least as fast as the upper bound. This
completes the proof.

C.2 Proof of Proposition 4.2

Proposition C.3. Let 1/M be the step size. Both standard EM and our solver exhibit a weak
convergence rate of O(1/M). Specifically, the vanilla EM has a weak error of ϵEt ≤ K exp(Lt)/M
for some constant L > 0, while ours achieves a tighter weak error of ϵRt ≤ K exp(L(t− ⌊t⌋))/M .

Proof. Here, we prove that this restart strategy has a tighter weak-convergence error than the standard
EM solver. Recall that we let ϵt := |E[g(S̄t)]−E[g(St)]| be the standard weak convergence error [75],
where St is the ground truth state, S̄t is the estimated one using certain sampling scheme and g is a
K-Lipschitz continuous function. We denote the weak convergence errors of our restarted solver and
the standard EM solver by ϵRt and ϵEt , respectively.

Step 1: Standard EM Results on Time-Homogeneous MJD SDEs

Early works on jump-diffusion SDE simulations explored the weak error bounds, which we summarize
as follows. For time-homogeneous MJD SDEs, the error term ϵEt of the standard EM method is
dominated by ϵEt ≤ K exp(Lt)/M . This is supported by the following: (a) Theorem 2.2 in [76]
establishes the O(1/M) rate; (b) Sec. 4-5 of [76] and Theorem 2.1 of [93] shows that ϵEt grows
exponentially regarding time with a big-O factor O(eKp(t)). In particular, the time-dependent term in
the error bound eKp(t) used in the proof of [76] is rooted in their Lemma 4.1, which can be proven in
a more general setting in [93]; e.g., Eq. (2.16) in [93] discusses concrete forms of Kp(t), which can
be absorbed intoO(eLt) for some constant L > 0. Lastly, theK-Lipschitz condition of the function g
provides the coefficient K in the bound. For a detailed proof—which is more involved and not central
to the design and uniqueness of our algorithm—we refer the reader to [75, 94]. When combining the
above existing results from the literature, we can derive the error bound of ϵEt ≤ K exp(Lt)/M .

Step 2: Standard EM Results on Time-Inhomogeneous MJD SDEs

Our paper considers time-inhomogeneous MJD SDEs, with parameters fixed within each interval
[τ − 1, τ) (τ ∈ N, τ ≥ 1). This happens to align with the Euler-Peano scheme for general time-
inhomogeneous SDEs approximation. As a specific case of time-varying Lévy processes, our MJD
SDEs retain the same big-O bounds as the time-homogeneous case. Namely, the standard EM solver
has the same weak convergence error ϵEt ≤ K exp(Lt)/M , as in the time-homogeneous MJD SDEs.
This can be justified by extending Section 5 of [76] that originally proves the EM’s weak convergence
for time-homogeneous Lévy processes. Specifically, the core technique lies in the Lemma 4.1 of [76],
which, based on [93], is applicable to both time-homogeneous and Euler-Peano-style inhomogeneous
settings (see Remark 3.3.3 in [93]). Therefore, equivalent weak convergence bounds could be attained
by extending Lemma 4.1 of [76] with proofs from [93] thanks to the Euler-Peano formulation.

24

Neural MJD

Past data

Contextual
Information

…… S−1 S0S−Tp

…
…

MJD parameters

…
…

…
…

Ground truth
……

MLE

+

Reg term

Training Loss

Figure 4: Neural MJD training pipeline. The symbol ρ represents the MJD parameters
{µτ , στ , λτ , ντ , γτ} in our model.

Step 3: Our Restarted EM Solver Error Bound

We now discuss the error bound for the restarted EM solver, ϵRt . Thanks to explicit solutions for future
states {S1, S2, . . . , STf

}, we can analytically compute their mean E[Sτ |C], τ ≥ 1, based on Eq. (13),
which greatly simplifies the analysis. Using the restart mechanism in line 10 of Alg. 2, we ensure
that E[S̄τ |C] from our restarted EM solver closely approximates the true E[Sτ |C] at restarting times.
ϵRt is significantly reduced when restart happens (when t is an integer in our context for simplicity),
then it grows again at the same rate as the standard EM method until the next restart timestep. This
explains the O(et−⌊t⌋) difference in the error bounds of ϵRt and ϵEt , where ⌊t⌋ is the last restart time.
Note that we could make the restart timing more flexible to potentially achieve a tighter bound in
terms of weak convergence. However, this may affect the diversity of the simulation results, as the
fidelity of path stochasticity could be impacted.

D Experiment Details

D.1 Baseline, Model Architecture, and Experiment Settings

For the statistical BS and MJD baselines, we assume a stationary process and estimate the parameters
using a numerical MLE objective based on past sequences. For the other deep learning baselines,
including DDPM, EDM, FM, Neural BS, and Neural MJD, we implement our network using the
standard Transformer architecture [25]. All baseline methods are based on the open-source code
released by their authors, with minor modifications to adapt to our datasets. Note that the technical
term diffusion in the context of SDE modeling (e.g., Merton jump diffusion) should not be conflated
with diffusion-based generative models [45]. While both involve SDE-based representations of data,
their problem formulations and learning objectives differ significantly.

We illustrate the training loss computation pipeline for Neural MJD in Fig. 4. Notably, the loss
computation can be processed in parallel across the future time-step horizon, eliminating the need for
recursive steps during training. We normalize the raw data into the range of [0, 1] for stability and
use a regularization weight ω = 1.0 during training. All experiments were run on NVIDIA A40 and
A100 GPUs (48 GB and 80 GB VRAM, respectively).

D.2 Datasets Details

For all datasets, we normalize the input data using statistics computed from the training set. For
non-denoising models, normalization maps the data to the range [0, 1]. In contrast, for denoising
models (DDPM, EDM, FM), we scale the data to [−1, 1] to align with standard settings used in image
generation. Importantly, normalization coefficients are derived solely from the training set statistics.
Further details on this process are provided below.

25

Figure 5: Visualization of Ego Graph Dataset Construction in Austin, Texas

Synthetic Data. We generate synthetic data using a scalar Merton Jump Diffusion model. The
dataset consists of N = 10, 000 paths over the interval [0, 1], simulated using the Euler scheme with
100 time steps. To facilitate time-series forecasting, we employ a sliding window approach with a
stride of 1, where the model predicts the next 10 frames based on the previous 10. The dataset is
divided into 60% training, 20% validation, and 20% testing. For each simulation, model parameters
are randomly sampled from uniform distributions: µ ∼ U(0.1, 0.5), σ ∼ U(0.1, 0.5), λ ∼ U(3, 10),
ν ∼ U(−0.1, 0.1), and γ ∼ U(0.5, 1.0). These parameter choices ensure the presence of jumps,
capturing the stochastic nature of the process.

SafeGraph&Advan Business Analytics Data. The SafeGraph&Advan business analytics dataset
is a proprietary dataset created by integrating data from Advan [87] and SafeGraph [88] to forecast
daily customer spending at points of interest (POIs) across Texas, USA. Both datasets are licensed
through Dewey Data Partners under their proprietary commercial terms, and we comply fully with the
terms. For each POI, the dataset includes time-series data with dynamic features and static attributes.
Additionally, ego graphs are constructed based on geodesic distances, where each POI serves as a
central node connected to its 10 nearest neighbors. An visualization is shown in Fig. 5. Specifically,
we use POI area, brand name, city name, top and subcategories (based on commercial behavior),
and parking lot availability as static features. The dynamic features include spending data, visiting
data, weekday, opening hours, and closing hours. These features are constructed for both ego and
neighboring nodes. Based on the top category, we determine the maximum spending in the training
data and use it to normalize the input data for both training and evaluation, ensuring a regularized
numerical range. For training stability, we clip the minimum spending value to 0.01 instead of 0 to
enhance numerical stability for certain methods.

We adopt a sliding window approach with a stride of 1, using the past 14 days as input to predict
spending for the next 7 days. The dataset spans multiple time periods: the training set covers
January–December 2023, the validation set corresponds to January 2024, and the test set includes
February–April 2024. This large-scale dataset consists of approximately 3.9 million sequences for
training, 0.33 million for validation, and 0.96 million for testing.

S&P 500 Stock Price Data. The S&P 500 dataset [89] is a publicly available dataset from Kaggle
that provides historical daily stock prices for 500 of the largest publicly traded companies in the
U.S (CC0 1.0 Universal license). It primarily consists of time-series data with date information
and lacks additional contextual attributes. We include all listed companies and construct a simple
fully connected graph among them. Therefore, for models capable of handling graph data, such as
GCN, our implemented denoising models, and Neural MJD, we make predictions for all companies
(represented as nodes) simultaneously. This differs from the ego-graph processing used in the
SafeGraph&Advan dataset, where predictions are made only for the central node, while neighbor
nodes serve purely as contextual information. To normalize the data, we determine the maximum
stock price for each company in the training data, ensuring that input values fall within the [0, 1]
range during training.

Following the approach used for the business analytics dataset, we apply a sliding window method
with a stride of 1, using the past 14 days as input to predict stock prices for the next 7 days. The
dataset is split into training (Jan.–Dec. 2016), validation (Jan. 2017), and testing (Feb.–Apr. 2017)

26

sets. In total, it contains approximately 62K sequences for training, 5K for validation, and 15K
for testing. To better distinguish the effects of different methods on the S&P 500 dataset, we use a
adjusted R2 score R2 = 1− (1−R2

reg) · n−1
n−p−1 , where n is the sample size and we set the number

of explanatory variables p to be (k − 1)(n− 1)/k, where k = 70.0.

D.3 Additional Deterministic Time-Series Baselines (Third-Party Implementations)

For completeness, we also report results from third-party implementations of Autoformer [95],
TiDE [96], and N-HiTS [97], provided by the NeuralForecast library (NIXTLA). Results
in the table were produced with the publicly available NeuralForecast package on the same
train/validation/test splits and identical data input (e.g. exogenous stock ticker information) as our
main experiments, using the package’s default training settings without modification.

Table 6: Quantitative results from NeuralForecast (NIXTLA) implementations on the S&P 500
stock dataset.

Model MAE ↓ MSE ↓ R2 ↑
Autoformer 81.0 2.73e04 0.061
TiDE 27.7 7.28e03 0.750
N-HiTS 15.5 1.86e03 0.936

D.4 Limitations

Our approach explicitly models discontinuities (jumps) in the time series. Consequently, if the
underlying data lack such jump behaviors—i.e., if they are extremely smooth and exhibit no abrupt
shifts—our jump component may be inaccurately estimated or effectively unused. In these scenarios,
the model can underperform compared to simpler or purely continuous alternatives that do not rely
on capturing sudden changes. For applications where jumps are absent or extremely rare, users
should first verify the presence (or likelihood) of discontinuities in their dataset before adopting
our framework. Additionally, one potential extension is to design an adaptive mechanism that can
automatically deactivate or regularize the jump component when the data do not exhibit significant
jump behavior, thereby reducing unnecessary complexity and improving general performance on
smooth series.

D.5 Vanilla Euler Solver

Algorithm 3 Vanilla Euler-Maruyama Method

Require: Total solver steps M
1: C ∼ Dtest, with C = [S−Tp:0, C]

2: {µτ , στ , λτ , ντ , γτ}
Tf

τ=1 ← fθ(C)

3: ∆← Tf

M ▷ Solver time-step
4: for i = 0, · · · ,M − 1 do
5: ti ← i∆, ti+1 ← (i+ 1)∆, ρti ← ⌊ti⌋+ 1
6: αi ← (µρti

− λρti
kρti
− σ2

ρti
/2)∆ ▷ Drift

7: βi ← σρti

√
∆z1, with z1 ∼ N (0, 1) ▷ Diffusion

8: ζi ← κνρti
+
√
κγρti

z2
with κ ∼ Pois(λρti

∆), z2 ∼ N (0, 1) ▷ Jump
9: ln S̄ti+1 ← ln S̄ti + αi + βi + ζi

10: return {S̄ti}Mi=1

We present the standard Euler–Maruyama solver in Alg. 3, which is used in the ablation study for
comparison with our restarted Euler solver.

27

E Impact Statement

This paper introduces Neural MJD, a learning-based time series modeling framework that integrates
principled jump-diffusion-based SDE techniques. Our approach effectively captures volatile dynam-
ics, particularly sudden discontinuous jumps that govern temporal data, making it broadly applicable
to business analytics, financial modeling, network analysis, and climate simulation. While highly
useful for forecasting, we acknowledge potential ethical concerns, including fairness and unintended
biases in data or applications. We emphasize responsible deployment and continuous evaluation to
mitigate inequalities and risks.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect our three main contribution, i.e.,
the time-inhomogeneous Neural MJD model, the ability of tractable learning, and empirical
validation on synthetic and real-world datasets. The supporting theoretical derivations are
provided in Sections 3, 4 and appendix (for long proofs), and the empirical results are
provided in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The "Limitations" subsection is included in Appendix D.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

29

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Every novel theorem provides its full set of assumptions, and complete proofs
are provided in the appendix. The theorems drawn from standard textbooks are explicitly
cited.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly stated the training (Algorithm 1) and sampling (Algorithm
2) procedure in algorithm boxes, and the modeling and dataset details are described in
both Section 5 and the appendix. Additionally, we will release our code once the paper is
accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

30

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our code once the paper is accepted. For the dataset, the
synthetic and S&P 500 dataset are publicly accessible, while the anonymized and aggregated
SafeGraph&Advan data can be publicly purchased through Dewey platform.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include full procedure for training (Algorithm 1) and sampling (Algorithm
2), outlining every step of our procedure. In Section 5 and Appendix D, we describe our
dataset preprocessing in full—including the data-splitting strategy, normalization steps, and
relevant hyperparameter settings—to ensure that our experimental setup can be replicated.
Upon acceptance, we will release our source code and reproducible scripts.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]
Justification: Rather than conventional error bars, we report winner-takes-all and probabilis-
tic metrics computed over multiple inference runs in Section 5, which capture the model’s
predictive variability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include a detailed runtime comparison Tab. 5, and the specific GPU types
used are listed in the Appendix D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work fully conforms with the NeurIPS ethics guidelines, using commer-
cially licensed data responsibly, and ensuring no privacy, fairness, or other concerns arise
from our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

32

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts are discussed as a separate section in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work involves standard time-series forecasting on commercially licensed
and public anonymized and aggregate datasets, and does not release any high-risk generative
models or scraped data, so no special safeguards are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

33

Answer: [Yes]
Justification: Our models are clearly cited in both main text and the appendix, and dataset
licenses are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release our code once the paper is accepted, which will be documented.
For the dataset, the synthetic and S&P 500 dataset are publicly accessible, while the
anonymized and aggregate SafeGraph&Advan data can be publicly purchased through
Dewey platform (https://www.deweydata.io).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This project does not involve any crowdsourcing or human-subject experi-
ments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

34

paperswithcode.com/datasets
https://www.deweydata.io

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This project does not involve any human-subject experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This project does not involve LLMs in any core method developments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Background
	Methods
	Neural Non-Stationary Merton Jump Diffusion
	Tractable Learning Method
	Inference based on Euler Scheme

	Experiments
	Synthetic Data
	Real-World Business and Financial Data
	Ablation Study

	Conclusion
	Derivations of the Stationary Merton Jump Diffusion Model
	MJD and Lévy Process
	Explicit Solution to MJD
	Likelihood Function of MJD

	Derivations of the Non-stationary Merton Jump Diffusion Model
	Non-stationary MJD and Additive Process
	Explicit Solution to Non-stationary MJD
	Likelihood Function of Non-stationary MJD

	Proofs of Theorem and Proposition
	Proof of.
	Proof of.

	Experiment Details
	Baseline, Model Architecture, and Experiment Settings
	Datasets Details
	Additional Deterministic Time-Series Baselines (Third-Party Implementations)
	Limitations
	Vanilla Euler Solver

	Impact Statement

