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Abstract
In recent years, there has been a growing inter-
est in visualizing the loss landscape of neural
networks. Linear landscape visualization meth-
ods, such as principal component analysis, have
become widely used as they intuitively help re-
searchers study neural networks and their train-
ing process. However, these linear methods suf-
fer from limitations and drawbacks due to their
lack of flexibility and low fidelity at represent-
ing the high dimensional landscape. In this
paper, we present a novel auto-encoder-based
non-linear landscape visualization method called
Neuro-Visualizer that addresses these shortcom-
ing and provides useful insights about neural net-
work loss landscapes. To demonstrate its poten-
tial, we run experiments on a variety of problems
in two separate applications of knowledge-guided
machine learning (KGML). Our findings show
that Neuro-Visualizer outperforms other linear
and non-linear baselines and helps corroborate,
and sometime challenge, claims proposed by ma-
chine learning community. All code and data used
in the experiments of this paper can be found at
the link below 1.

1. Introduction
Understanding the loss landscape of deep neural network
has attracted much attention in recent years, both from theo-
retical and visualization standpoints. In this work, we focus
on the problem of loss landscape visualization, which is
the practice of plotting a neural network’s loss function
w.r.t its high-dimensional model parameters (i.e., weights
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and biases) on a low-dimensional embedding space, usually
1-D (Goodfellow et al., 2014) or 2-D (Li et al., 2018), to
qualitatively assess generalization performance and training
convergence. A seminal work that established loss land-
scape visualization as an investigative tool in the field is
that by (Li et al., 2018). This work introduced the approach
of projecting model parameters to random planes in low
dimensions (usually 2D), to visualize and assess the quality
of the loss surface at the vicinity of a converged model, in-
cluding whether the loss surface is ill-regularized and filled
with local minima.

However, when it comes to visualizing multiple models
(e.g., the set of models forming a training trajectory), the
selection of the projection plane becomes more challenging
as the chosen plane should capture “interesting” properties
of the loss landscape for the entire set of models, not just
a single one. Naturally, the most common way for finding
this plane is by performing a Principal Component Anal-
ysis (PCA) on the set of models, selecting the two main
principal components, and visualizing the landscape on that
2D plane such that it passes through the trajectory’s final
model (Li et al., 2018). Another approach is to use the two
eigenvectors with the highest eigenvalues (Chatzimichailidis
et al., 2019; Yao et al., 2020). Despite how helpful these
projections can be, each of these practices have their own
advantages and disadvantages, as detailed below.

First, since training trajectories do not necessarily fit on a
2-D plane, the use of linear projection methods such as PCA
yield loss surfaces that are mostly accurate at the point of
intersection, which is generally the trajectory’s final model,
but drop in accuracy as we move away from that point.
Second, while some previous works on loss landscape vi-
sualization have used non-linear methods such as UMAP
and t-SNE (Huang et al., 2020), SHEAP (Shires & Pickard,
2021), and PHATE (Horoi et al., 2022), these methods are
more suitable for visualizing the relationship between mod-
els (e.g., model clustering) instead of visualizing landscapes
of model trajectories. Third, other non-linear approaches
such as Locally Linear Embeddings (LLE) (Roweis & Saul,
2000), and Laplacian Eigen-maps (Wang, 2012) suffer from
the lack of an inverse transform, making them unsuitable
for landscape visualization because constructing the loss
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landscape requires calculating the loss value at each grid
point. Therefore, the chosen method must be capable of
projecting points from the low-dimensional representation
back into the original space of model parameters.A fourth
issue with landscape visualization methods is the scale at
which the loss surface is visualized. While the most com-
mon practice is to use ‘filter normalization’ (Li et al., 2018)
to make the visualization scale invariant, this approach only
works when visualizing the loss landscape at the vicinity
of a single model, and is not applicable when visualizing
training trajectories.

To mitigate the aforementioned shortcomings, this paper fo-
cuses on answering the question: can we devise a non-linear
projection method for loss landscape visualization that: (1)
faithfully captures training trajectories and loss land-
scapes in their vicinity, thus improving model optimiza-
tion understanding, and (2) adaptively scales the projection
space based on problem requirements?

In response to the question above, we propose a novel auto-
encoder-based non-linear loss landscape visualization ap-
proach called Neuro-Visualizer. While our proposed ap-
proach can be applied to any general problem, we specifi-
cally demonstrate its potential in the context of two appli-
cations in the field of knowledge-guided machine learning
(KGML) (Karpatne et al., 2017): solving the Schrodinger’s
equation in quantum mechanics using the framework of
physics-guided neural networks with competing physics
(CoPhy-PGNN) (Elhamod et al., 2022), and solving generic
partial differential equations (PDEs) using the framework
of physics-informed neural networks (PINNs) (Raissi et al.,
2017a). While these applications in KGML have received
considerable attention in recent years, what is missing in
the field is a comprehensive understanding of the effects
of adding physics-guided loss functions on the loss land-
scape of neural networks. By using Neuro-Visualizer, we
are able to visualize and discover novel insights about the
performance of competing KGML approaches proposed
for the two applications, corroborating, and in some places
even challenging, optimization claims proposed in previous
KGML literature. Our work thus forges a novel “collab-
orative bridge” between two sub-fields of AI: neural loss
landscape visualization and KGML. We anticipate our work
to serve as a starting point for other researchers to develop
novel visualization approaches for KGML in the future.

2. Related Works
Though qualitative in nature, the analysis of neural loss
landscapes through visualization approaches (Li et al., 2018)
is becoming a more common practice (Garipov et al., 2018;
Mei et al., 2018; Nguyen et al., 2018) as an alternative to
quantitative methods such as the Fisher information matrix
(FIM) analysis (Karakida et al., 2019) and Hessian analysis

(Ma et al., 2022; Guiroy et al., 2019). An example use-case
of using visualization tools is to determine the impact of the
loss landscape structure (e.g., flatness, valleys, and basins)
on model generalization and overfitting (Huang et al., 2020;
Sypherd et al., 2020; Yang et al., 2021; Prabhu et al., 2019;
Xu et al., 2019). Other examples include understanding
model optimization (Huang et al., 2020; Ma et al., 2022;
Keskar et al., 2017; Sun et al., 2020; Yang et al., 2021),
assessing the generalization of Model-Agnostic Multi-task
Learning (MAML) (Guiroy et al., 2019), investigating the
smoothing effect of noise over sharp minima (Wen et al.,
2018), and studying the effectiveness of skip connections
in removing bad valleys with sub-optimal minima during
optimization (Nguyen, 2019).

3. Proposed Method: Neuro-Visualizer

As we have discussed the drawbacks of existing loss land-
scape visualization methods in Section 1, it is appropriate to
echo (Shires & Pickard, 2021)’s thoughts on finding a non-
linear manifold “such that the source data lie on, or close
to, some low-dimensional manifold embedded within the
original high-dimensional space”. Hence, we propose using
a neural auto-encoder, dubbed Neuro-Visualizer, to learn a
non-linear manifold that embeds the points of interest (i.e.,
models) in the high-dimensional loss landscape.

3.1. Formal Definition

Let’s assume that we have a trajectory T that consists of a
set of models MT ⊂ Rn where Rn is the n-dimensional
model parameter space. We want to learn a 2-D manifold
L such that MT ⊂ L. This manifold is to be scaled and
visualized as a grid G ⊂ R2. For convenience, and with-
out the loss of generality, we standardize the grid to be
strictly G = [−1,+1]× [−1,+1]. This task naturally poses
itself to be solved by auto-encoders, which generally are
known for first learning a manifold L that captures the data
in Rn and then re-parametrizing that manifold in a lower-
dimentional space Rd. In that sense, during its training,
our auto-encoder is learning a manifold L ⊂ Rn that con-
tains trajectory points in the high-dimensional input space,
and then reparametrizing it as a low-dimensional space R2

(Bengio et al., 2009). Mathematically, we propose learn-
ing a Neuro-Visualizer auto-encoder N : Rn → Rn which
consists of an encoder EN and a decoder DN , such that
z = EN (m ∈ L) ∈ G and m′ = DN (z ∈ G). The visual-
ized grid G results from sampling points (or coordinates) in
the predefined area of interest [−1,+1] × [−1,+1] ⊂ R2.
Of course, to calculate the loss at a grid point, the sampled
coordinates are decoded back to the input space where the
manifold lies.

To train the parameters of the auto-encoder θN , a recon-
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struction loss is minimized:

Lrec = MSEMT [mi,N (mi)] (1)

As N gets optimized, it learns a manifold that contains
the training data points (e.g., the trajectory models MT
sampled at equal intervals of epochs ).

3.2. Additional Constraints in Neuro-Visualizer

While the reconstruction loss is sufficient to guarantee learn-
ing a manifold that embeds the trajectory models, it does
not guarantee any other properties of this manifold beyond
continuity. However, this turns out to be a feature, not a bug,
as additional desired properties of the embedding space can
be imposed by adding other constraints in the form of loss
functions. This is in contrast to baseline linear methods (e.g.,
PCA), where once the projection method is selected, there
is little control over the properties of the resultant plane or
manifold. Here, we list some interesting and useful con-
straints that we later adopt in our experiments in Section 4.
This list, however, is not exhaustive; Neuro-Visualizer is
flexible and can be customized with many other possible
constraints. These constraints can also be combined as a
weighted sum in a multi-task learning formulation. Thus,
the total loss would be Ltotal = crecLrec +

∑
i ciLi. In Ta-

ble 2 in Appendix A, we provide the values of the weighing
coefficients, along with the rest of the hyper-parameters, for
each experiment. These hyper-parameter were tuned such
that when minimizing the total loss, the individual losses
are also to minimized appropriately.

3.2.1. LOCATION ANCHORING CONSTRAINTS:

This type of constraints anchors a set of points (e.g., trajec-
tory models) onto certain locations on the grid. This helps
orient the training trajectory such that certain aspects of the
optimization process are highlighted. The general form of a
location anchoring constraint is:

Lanch = MSEMT ′⊆MT [EN (mi),Ai] , (2)

where A ⊂ G is the set of desired anchoring points on the
grid and MT

′ is the set of models that correspond to those
anchoring points. In this work, we chose to demonstrate
three examples of anchoring constraints as detailed below
(see Appendix A for further details):

• Polar pinning (Lanch1) : This constraint places the
trajectory’s first and last models at the bottom left and
top right corners of the grid, respectively. This helps
stretch the trajectory across the grid and utilize the
entire space.

• Center pinning (Lanch2) : This constraint positions
the last model at the center of the grid—a perspective

suitable for showing the final stages of optimization in
detail.

• Circle pinning (Lanch3) : This constraint positions the
trajectory models at equal distant from each other on a
circle with a specified radius.

3.2.2. GRID SCALING CONSTRAINTS:

Another type of constraints can be devised to ensure the grid
has a certain scale. Unlike PCA, Neuro-Visualizer’s grid
does not generally have a uniform and linear scale. Rather,
it is more flexible with a variable scaling factor across the
grid, allowing it to show more details at certain areas while
zooming out on the rest. To capitalize on this property, we
construct a constraint to capture and control the zooming
behavior as follows. We scale the grid such that vicinity
of trajectory models, an area which of particular interest
and importance, has a relatively higher density relative to
the rest of the grid. To formalize this, we construct the
following grid scaling loss:

Lgrid = MSEm∈MG [log (dm)− lm, log (dmax)− lmax]
(3)

where dm is the distance between a grid mesh-point m
and the closest trajectory point to it in the parameter space,
dmax is the distance between the first and last model on
the trajectory, and lm is the distance equivalent to dm
in the grid space. Finally, lmax is a hyper-parameter chosen
based on the desired scaling factor. By minimizing Lgrid, a
constant logarithmic scale between grid space and parameter
space distances is enforced. More formally, the function of
Lgrid is to maintain a proportional relationship between the
distance lm in the 2D-grid space, from a grid mesh-point to
its nearest trajectory point, and the corresponding distance
dm in the original parameter space. This proportionality is
maintained by setting the ratio log(dm)

lm
equal to log(dmax)

lmax ,
where dmax represents the distance between the first and
last points on the trajectory in the original parameter space,
and lmax is a hyper-parameter chosen to control the scaling
factor. The logarithmic form of this ratio is used to ensure
computational feasibility. The larger the value of lmax, the
greater the emphasis or ‘zooming effect’.

4. Results and Applications
While assessing the “correctness” of loss landscape vi-
sualization methods is non-trivial (see Appendix B), we
demonstrate the usefulness of Neuro-Visualizer in discov-
ering novel insights and its advantages compared to ex-
isting loss landscape visualization methods in the context
of two KGML applications. While we focus mainly on
KGML applications in this paper, we also demonstrate
Neuro-Visualizer’s usefulness beyond KGML applications
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in Appendix D

4.1. Applying Neuro-Visualizer on CoPhy-PGNN

To show the effectiveness of Neuro-Visualizer, we take Co-
Phy-PGNN (Elhamod et al., 2022) in quantum mechanics
as a use-case application. Within the Knowledge-Guided
Machine Learning (KGML) framework (Karpatne et al.,
2017), CoPhy-PGNN is a neural network that is trained
with adaptively balanced physics loss terms in order to
solve eigen-value problems with better generalization than
a purely data-driven neural network (see Appendix C for
details).

4.1.1. QUALITATIVE AND QUANTITATIVE
ASSESSMENTS OF Neuro-Visualizer AGAINST
OTHER BASELINES.

Figure 1 compares Neuro-Visualizer’s and other baselines’
overall physics loss landscapes for CoPhy-PGNN. Note that
the contours in all sub-figures have been scaled equally
for fair comparison. Zoomed-in perspectives of the same
landscapes are shown in Figure 2. We make the following
observations.

First, Neuro-Visualizer shows richer details. In Figure 1,
both PCA and Neuro-Visualizer show that, due to optimizing
multiple conflicting loss terms, the training took a detour be-
fore descending into a terminal minima. Neuro-Visualizer’s
story in Figure 1b, however, is much richer. Here, we can
see that the “terminal” minima is not truly a simple minima,
but rather a basin of a complex surface and with many local
minima, causing the model to bounce around during the
final stages of its optimization. This observation becomes
even clearer as we zoom into the convergence area (see Fig-
ure 2b). Being able to observe such complexity of the loss
landscape is crucial for determining how well-designed the
loss terms are.

Second, Neuro-Visualizer’s manifold fits the trajectory
models better. Looking at the model colors, which corre-
sponds to their loss values, in Figure 1 and Figure 2, we can
see that the actual model loss values for PCA (Figure 2a)
do not quite match with their corresponding locations on
the learned manifold (i.e., point and contour colors do not
generally match at their corresponding locations). The ex-
planation for this discrepancy is that PCA is a linear method
that only intersects with the high-dimensional trajectory
at one point. This is unlike Neuro-Visualizer (Figures 1b
and 2b) where the points match in color with their under-
lying contours because the learned 2-D manifold passes
through all the trajectory models, with good approximation.

To compare Neuro-Visualizer to other non-linear methods,
we visualize the same trajectory using UMAP (McInnes
et al., 2018) and Kernel-PCA (Schölkopf et al., 1997) with

Metric Neuro-
Visualizer

PCA Kernel-
PCA

UMAP

erelative 0.0095 1.6782 4.7250 0.4295
eproj 0.0005 0.2832 0.0865 0.2307

Table 1. A quantitative comparison of Neuro-Visualizer against
other baselines in terms of average relative physics loss error
erelative and average projection error eproj. Neuro-Visualizer outper-
forms all other baselines across the board.

an RBF kernel in Figure 1. Compared to Neuro-Visualizer,
we make two observations. First, UMAP (Figure 1d) uses
almost the entire grid to show the local minima at which
the model arrives, with little attention to the initial stage of
optimization. Thus, UMAP fails to give the full picture of
the training trajectory when compared to Neuro-Visualizer.
Similarly, while Kernel-PCA is a non-linear method, its
landscape visualization (Figure 1c) looks too simplistic with
little insight to provide beyond that of PCA’s, even when
zoomed in (Figure 2c). Appendix E provides more visualiza-
tions on the projection and loss errors of Neuro-Visualizer
compared to the other baselines. For a more quantitative
assessment, however, we provide some comparative met-
rics in Table 1. By looking at both the average relative
error in loss values, erelative = 1

n

∑n
i=1

(
|Lmi

−LN(mi)
|

Lmi

)
,

and the average projection error in the parameter space,
eproj = 1

n

∑n
i=1 |mi − N(mi)|, we can see that Neuro-

Visualizer outperforms all the other methods by orders of
magnitude. Here, mi denotes the ith sampled model on the
learning trajectory, and N(mi) represents the reconstruction
of mi obtained using the auto-encoder in our method, or the
inverse transform in other baseline methods such as PCA.
Lmi is the original loss of mi, while LN(mi) is the loss of
the reconstructed model.

4.1.2. USING Neuro-Visualizer TO STUDY THE
ADVANTAGES OF THE CoPhy-PGNN APPROACH.

We here show Neuro-Visualizer’s usefulness for compar-
ing different models by plotting the trajectories of CoPhy-
PGNN and its baseline Black-box Neural Network in Fig-
ure 3. Both trajectories start from the same model initial-
ization (marked with a thick border). Figures 3a and 3c
use PCA to visualize Test-MSE and the spectrum loss, S-
Loss, respectively, where S-Loss is one of the two physics
losses used to train the model. Figures 3b and 3d show the
corresponding loss landscapes for Neuro-Visualizer. We
notice that PCA utterly fails at capturing Black-box Neu-
ral Network’s critical points (Figure 3c), PCA not only
misses Black-box Neural Network’s minima, but also shows
inconsistency in its loss values (i.e., the model colors indi-
cate that it is descending, while the contours indicate the
opposite). This is in contrast to Neuro-Visualizer, where
Black-box Neural Network’s and CoPhy-PGNN’s minima
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Figure 1. A comparison of Neuro-Visualizer and other baselines in terms of the consistency of CoPhy-PGNN’s overall physics loss values
between trajectory models and their corresponding manifold projections. Clearly, Neuro-Visualizer shows richer details and a manifold
that better fits the trajectory models.
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(a) PCA (zoomed-in)
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(b) Neuro-Visualizer (zoomed-in)
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(c) Kernel-PCA (zoomed-in)

Figure 2. A zoomed-in perspective of the landscapes visualized in Figure 1

are distinctly visualized with high consistency in terms of
loss values. Another inconsistency is found by looking at
Black-box Neural Network’s trajectory in Figure 3a. Here,
PCA shows that it crosses the 2.28e−02 contour twice, im-
plying that the trajectory descends and then ascends again.
This, however, is false as can be verified by looking at the
trajectory model colors and how they become darker as the
final model is approached, suggesting that the loss mono-
tonically decreases. This contradiction leads to confusion
that is not present in Neuro-Visualizer’s case in Figure 3b,
making the latter more useful.

4.2. Applying Neuro-Visualizer on PINNs

We here explore Neuro-Visualizer’s usefulness in studying
Physics-Informed Neural Networks (PINNs), which have
been widely and successfully used by many researchers in
recent years to solve partial differential equations (PDEs),
which appear in many real-world engineering and scientific
applications. Moreover, PINNs present themselves as a
convenient test-bed for our proposed landscape visualization
method due to the significant effect of varying optimization
hyper-parameters on PINN performance.

For training PINNs, the loss terms that play a role are the
residual loss Lr, the initial condition loss Lic, and the bound-

ary condition loss Lbc. The total loss being optimized is:

Ltotal = cr × Lr + cic × Lic + cbc × Lbc. (4)

See Appendix F for a detailed literature review on PINNs.

4.2.1. DEMONSTRATING Neuro-Visualizer’S
FLEXIBILITY WITH DIFFERENT CONSTRAINTS.

As discussed in Section 3.2, one of Neuro-Visualizer’s ad-
vantages is its ability to warp the learned manifold to satisfy
certain constraints. To demonstrate this, we use PINN for
the Convection equation as a target application. We set
β = 30, a high value, making the PDE harder to solve and
the loss landscape more complex and interesting to visualize
(see Appendix F for details).

Figure 4 shows a progression of Neuro-Visualizer mod-
els visualizing Ltest (i.e., the prediction error at test do-
main points) of the same PINN model. However, these
Neuro-Visualizer models are trained with different con-
straints. First, Figure 4a shows the loss landscape with
no constraints. Subsequent sub-figures show the different
manifolds obtained by varying the Neuro-Visualizer’s train-
ing constraints. Figure 4b uses Lanch1. As a result, the
trajectory stretches almost perfectly across the grid between
two opposite corners. Alternatively, to show the effect of
Lgrid, we use a large lmax = 8 to impose high grid den-
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(d) Neuro-Visualizer - S−Loss

Figure 3. The loss landscapes of CoPhy-PGNN and Black-box
Neural Network for different loss terms using PCA and Neuro-
Visualizer. Comparing the two, it is clear that Neuro-Visualizer
tells a more accurate and insightful story.

sity at the vicinity of the trajectory models. As expected,
Figure 4c shows a grid that zooms almost entirely onto the
vicinity of the trajectory, highlighting more details of that
area compared to the previous sub-figures.

We further study the effect of Lgrid by varying lmax, the
hyper-parameter that correlates with the grid density near
trajectory models. Figure 5 shows the density landscape
(i.e., the color-coding indicates grid density and not loss
values) for two different values of lmax. We use a CKA-
similarity-based density that is defined as:

ρm∈MG =
∑

m′∈MG\{m}

CKA(m′,m), (5)

where CKA(m′,m) is the CKA similarity measure between
two neural networks as defined in (Kornblith et al., 2019).
As can be seen in Figure 5, the density of the grid especially
near trajectory models increases with lmax. This shows
that Lgrid can be a vital tool for engineering the manifold
visualization through the appropriate choice of lmax.

4.2.2. USING Neuro-Visualizer TO STUDY PINNS’
TRAINING PATHOLOGIES.

Next, we use Neuro-Visualizer to visually verify (Wang
et al., 2022)’s findings on PINNs through the lens of Neural
Tangent Kernel (NTK). In their work, the authors hypoth-
esize that PINN training pathologies result from a discrep-
ancy in the convergence rate of the different loss compo-
nents. More precisely, they show that the PDE’s residual
loss (Lr) converges faster than the boundary condition loss
(Lbc), leading to a sub-optimal model. To verify this claim,
we train a Neuro-Visualizer to visualize the loss landscape
for the two different optimization approaches considered
in (Wang et al., 2022). Namely, an approach that trains
with constant loss weighting, and another with NTK-based
adaptive loss weighting. An Lanch3 pinning constraint is
imposed to place the models over the perimeter of a circle,
making it easy to compare the two approaches. As can be
seen in Figure 6, the authors’ claim is easily verifiable using
our proposed visualization method. First, in line with the
authors’ hypothesis, while the terminal Lr and Lic are rela-
tively worse for the NTK-based approach, its terminal Lbc

is much better, indicating that an optimal Lbc is essential
for obtaining a well-trained PINN. Another observation we
make in accordance with their paper is that the NTK-based
approach reaches flat minima for all losses at a somewhat
similar cadence. This is in contrast to the baseline model
where the different losses converge at variable rates, travers-
ing loss landscapes that are less flat and of variable slopes.
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(c) with Lanch2 and Lgrid

Figure 4. A series of Neuro-Visualizer landscape visualizations of Lr with different constraints. Notice the versatility of the proposed
method and its ability to learn the desired manifold by employing appropriate constaints.
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(b) lmax = 8

Figure 5. A comparison of two Neuro-Visualizer density landscape
visualizations as a result of using Lgrid with two different lmax

values. As can be seen, through this constraint, Neuro-Visualizer
grants its user greater flexibility to decide the appropriate zooming
factor.

4.2.3. USING Neuro-Visualizer TO STUDY PINNS’
FAILURE MODES.

Inspired by (Krishnapriyan et al., 2021)’s work on under-
standing the effect of the PDE’s complexity and PINN’s
regularization on the loss landscape and optimization out-
come, we use Neuro-Visualizer to study PINN performance
on the convection equation. Namely, we want to validate
whether a higher β parameter in a convection PDE or an in-
crease in PINN regularization (i.e., an increase in the value
of cr) leads to a more complex loss landscape that is harder
to optimize. As such, we run an experiment where we train
PINNs with varying β values, and then compare their loss
landscapes using Neuro-Visualizer. A similar experiment
on cr can be found in Appendix G.

Looking at Figure 7, it is easy to verify that an increase in β
renders the loss landscape more non-convex and harder to
optimize. This agrees with the authors’ findings. However,
it is worth noting that the loss landscape visualizations pre-
sented in (Krishnapriyan et al., 2021) used linear methods.
When Figure 7 is compared to its counterpart (i.e., Figure 3
in (Krishnapriyan et al., 2021)), it is evident that their loss
landscape visualizations are less intuitive and hard to visu-
ally interpret without the authors’ commentary, indicating
that our proposed method is more effective.

4.2.4. INVESTIGATING DIFFERENT LOSS BALANCING
TECHNIQUES.

Balancing different loss terms in frameworks such as multi-
task learning (MTL) or KGML can be a daunting task (Wang
et al., 2022; 2021; Elhamod et al., 2022). Thus, the ability
to compare different loss balancing techniques is an im-
portant research effort. Generally, different loss balancing
techniques are compared based on the final model’s accu-
racy. However, this metric does not provide a fundamental
understanding of the optimization process and whether a
loss balancing algorithm is more suitable for one specific
task than another.
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Figure 6. A comparison of the two optimization approaches studied
by (Wang et al., 2022) using Neuro-Visualizer. This visualization
verifies the authors’ claims and shows that an NTK-based adaptive
approach emphasizes on a better optimization of the boundary
condition loss and reaches flatter minima across all losses.
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(b) β = 10
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(c) β = 30

Figure 7. A comparison of PINNs solving convection PDEs of
varying βs. Neuro-Visualizer verifies the claim of (Krishnapriyan
et al., 2021) that increasing β causes Ltotal’s landscape to become
more non-convex and difficult to optimize.
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Here, we consider six different loss balancing methods that
are commonly used in the literature; namely Equal Weights
(EW), Constant Weights (CW), Dynamic Weight Averag-
ing (DWA), Learning Rate Annealing (Wang et al., 2021)
(LRannealing), Gradient Normalization (Chen et al., 2018)
(GradNorm), and Random Loss Weighting (Lin et al., 2022)
(RLW). Appendix I gives a detailed account of these algo-
rithms.

To compare these algorithms, starting from the same model
initialization, we train multiple PINNs with the listed algo-
rithms to solve the Convection problem with β = 10.

In Figure 8, we inspect the landscapes of two loss terms: Lr

and Ltest. Using Neuro-Visualizer, the different trajectories
and minima can be easily found and compared. In particular,
it is clear that while GradNorm and EW take slightly differ-
ent trajectories, they converge to the same minima. On the
other hand, DWA converges to the same basin as GradNorm
and EW w.r.t Lr, but not the same minima. Additionally,
looking at Figure 8b, it is clear that LRannealing’s trajectory
is nowhere near a minima w.r.t Ltest. This is surprising
since LRannealing has shown success at solving the Helmholtz
equation and the Klein Gordon equation as demonstrated in
(Wang et al., 2021), implying that not all PINN tasks benefit
from this method. The valuable insight that was visually,
easily, and intuitively inferred from Neuro-Visualizer in Fig-
ure 8 would not have been possible with a baseline method
such as PCA due to its linear scale and planar manifold.
Appendix H compares our results to those obtained using
PCA, further verifying our claim.

5. Conclusions and Future Work
In this paper, we have shown that our proposed auto-encoder-
based method, Neuro-Visualizer, is capable of learning non-
linear manifolds in the input model parameter space and
mapping such manifolds onto a 2-D grid for loss landscape
visualization. Additionally, we have demonstrated that
Neuro-Visualizer surpasses many other linear and non-linear
landscape visualization approaches in terms of representa-
tion accuracy and malleability to learning manifolds with
user-defined properties. Finally, we used two applications,
CoPhy-PGNN (Elhamod et al., 2022) and PINNs (Raissi
et al., 2017a), to derive insightful findings, including the
importance of certain hyper-parameters for neural network
training and the efficacy of different deep learning frame-
works such as Multi-Task Learning (MTL) and Knowledge-
Guided Machine Learning (KGML). Future work could
explore the full potential of Neuro-Visualizer by using it
to study other deep learning phenomena, such as the rela-
tionship between landscape sharpness and generalizability
(Huang et al., 2020).

One of Neuro-Visualizer’s limitations is the lack of scala-

bility for large input parameter spaces. For example, the
PINNs studied in this paper have an input dimensionality of
the order of 10, 000 parameters, which is relatively small. In
contrast, computer vision applications generally use much
larger models (e.g., a VQ-GAN (Esser et al., 2021) has
approximately 88 million parameters). Such a large input
space would be prohibitively difficult for Neuro-Visualizer
to encode directly. A future research direction could inves-
tigate appropriate ways to encode and visualize such large
models effectively.

Finally, despite the impressive results achieved with Neuro-
Visualizer in comparison to current state-of-the-art meth-
ods, we find that the implicit assumption baked into auto-
encoders have not been fully studied yet. Some literature
(Qian et al., 2019; Berthelot* et al., 2019) shows that in-
terpolation in the learned manifold of an auto-encoder is a
complex research topic and depends on several factors, such
as the data itself and the architecture of the auto-encoder.
As such, in this work, we make no concrete assumptions in
regards to interpolations in the learned manifold. We look
forward to further investigating this area theoretically and
empirically in future work.
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Figure 8. Neuro-Visualizer’s loss landscapes of PINN models with
different loss balancing methods intuitively and visually provide
valuable insights that would otherwise be hard to extract.
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A. Hyper-parameter Selection and Additional Implementation Details
In all our experiments, the Neuro-Visualizer is a vanilla multi-layer perceptron (MLP) architecture. This MLP maps the
weights of neural network models to 2D-manifolds and subsequently decodes points from these manifolds back into neural
network weights. For specifics on the MLP configurations used across different experiments, please refer to Table 2 below.

To guarantee that an input model m ∈ L is encoded into z ∈ [−1,+1]× [−1,+1], a tanh activation function is appended to
the output of the encoder EN . Also, m is normalized for an easier training of N .

In terms of trajectories, they are sampled at equal intervals of epochs. These intervals are adjusted based on the complexity
of the model and the computational resources available. You can refer to Table 2 for details on the number of models
sampled per trajectory in each experiment.

With regards to location anchoring constraints Lanch, we here define the three different examples mentioned in Section 3.2.1
more rigorously:

• Polar pinning (Lanch1) : This can be formally defined by setting MT
′ = {m0,m|MT |} (i.e., the set that contains the

first and last models in the trajectory), and A = {(−r,−r), (r, r)}, with an r = 0.8.

• Center pinning (Lanch2) : It is formally defined with MT
′ = {m|MT |} and A = {(0, 0)}.

• Circle pinning (Lanch3) : It is formally defined with MT
′ = {m|MT |} and A = {(r ·sin( 2πkn ), r ·cos( 2πkn )) where k ∈

{0, 1, ..., n− 1}}

It is worth mentioning that we use another constraint, Ltraj , in some of our experiment to help space the trajectory models
equally so that they are spread out across the grid. The loss term for this constraint penalizes for the differences in step sizes
in the latent grid space between consecutive trajectory models.

Table 2 shows the hyper-parameters used to train Neuro-Visualizer for both CoPhy-PGNN and PINNs.

Finally, the experiments in this paper were run on Nvidia DGX A100 GPUs. Each experiment needed a single GPU and 8
CPU cores.

B. On the “Correctness” of Loss Landscape Visualization Methods
Loss landscape visualization is a subjective tool that provides a qualitative and holistic description of the landscape, rather
than a quantitative one. As such, the notion of “correctness” is not the best vantage point from which this tool can be
appreciated. One analogy that clarifies this point is map projections. Earth map projections represent the 3-D Earth surface
on a 2-D plane. Different projection methods have different advantages and limitations; each method makes certain features
or characteristics of the Earth surface more or less prominent. Thus, there are many valid projections, each useful for
different purposes. One popular method is the Mercator projection (Snyder, 1997), which is useful for navigation because it
preserves angles and directions. However, it distorts the size and shape of objects near the poles. Another method is the
Robinson projection (Snyder, 1990), which balances distortions of size and shape, making it a good all-purpose projection.
A third method is the Winkel tripel projection (Snyder, 1997) which accurately shows the relative sizes and shapes of
landmasses, but still distorts the shapes of some landmasses and oceans.

Similarly, a non-linear loss landscape visualization method will produce a non-linear manifold that gets distorted when
visualized on a 2-D planar grid. . Thus, while the user should be aware of these distortions and understand the visualization
accordingly, the method is still valid and useful for understanding the properties of the loss surface. And while there are
infinitely many manifolds that could contain a set of points in the parameter space (i.e., models), it is important to select the
manifold(s) that exhibits the desired user-defined criteria, such as the scaling factors at different parts of the manifold.

C. A Brief Description of CoPhy-PGNN
CoPhy-PGNN (Elhamod et al., 2022), short for Competing Physics Physics-Guided Neural Networks, is a model uniquely
tailored to solve eigenvalue problems, which are prevalent in scientific domains such as quantum mechanics and electro-
magnetic propagation. In addition to the data-drive Train-Loss, two physics-guided (PG) loss terms are used: C-Loss and
S-Loss.C-Loss is designed to enforce the eigen-equation, and its minimization can lead to multiple solutions that satisfy the
physical constraints of the problem. However, these multiple solutions may correspond to different energy levels. Generally,
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Encoder hidden-
Layer sizes Batch size Epochs LR

Models sampled
per trajectory Notes

CoPhy-PGNN. Sec-
tion 4.1

3141, 270, 23 32 40, 000 10−4 500

PINNs - ”Inves-
tigating Different
Loss Balancing
Techniques”. Sec-
tion 4.2.4

991, 125, 15 32 600, 000 5× 10−4 300 crec = 104

PINNs - ”Using
Neuro-Visualizer To
Study PINNs’ Train-
ing Pathologies”.
Section 4.2.2

1000, 500, 100 32 100, 000 10−5 800 canch3 = 104

PINNs - ”Using
Neuro-Visualizer
To Study PINNs’
Failure Modes”.
Section 4.2.3

991, 125, 15 32 600, 000 5× 10−4

Varies between
228 and 1678
(Early-stopping
used)

ctraj = 1

PINNs - ”Demon-
strating Neuro-
Visualizer’s Flexibil-
ity With Different
Constraints”. Sec-
tion 4.2.1

991, 125, 15 32 80, 000 10−4 300

canch1 = 102

canch2 = 102,
cgrid = 1

Table 2. A table of the hyper-parameter values used to train Neuro-Visualizer for each experiment.

only one solution is desired. This is where S-Loss comes into play. S-Loss guides the network towards the specific energy
level of interest by minimizing the difference between the predicted and target eigenvalues

The overall learning objective of CoPhy-PGNN is:

E(t) = Train-Loss + λC(t) C-Loss + λS(t) S-Loss (6)

The methodology of CoPhy-PGNN involves adaptively tuning the coefficients of these loss functions by annealing λS so as
to steer the model towards the correct energy level in the initial stages of training. Conversely, λC is cold started, allowing
the physical constraints to be gradually enforced and ensuring that the solution adheres to the underlying physics.

Using two applications – predicting the ground-state wave function of an Ising chain model in quantum mechanics, and
modeling electromagnetic wave propagation in periodically stratified layer stacks – the authors demonstrate the effectiveness
and extrapolative power of CoPhy-PGNN

D. An Application of Neuro-Visualizer in Computer Vision
While the aim of this paper is to specifically study the properties of different deep learning models within the KGML
framework using Neuro-Visualizer, it is important to note that our proposed method is generally applicable to deep learning
models of any type. To substantiate this claim, we visualize the test loss landscapes of two models trained on CIFAR-10
(Krizhevsky et al.), a computer vision task: (1) a CNN model of 3 convolutional layers, and (2) an MLP model with 1 hidden
layer of 16 nodes.

Figure 9 provides a comparative analysis of the test loss landscapes for these models, utilizing both Neuro-Visualizer
and PCA. With Neuro-Visualizer, as shown in Figure 9a, the MLP’s loss landscape appears fragmented, exhibiting many
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sub-optimal local minima that could potentially impede optimization. In contrast, Figure 9c demonstrates that the CNN’s
landscape features a single valley of minima with notably low test losses. More importantly, while Neuro-Visualizer
effectively highlights the distinct loss landscapes of the CNN and MLP, PCA fails to capture these nuances, portraying a
misleadingly smooth surface around the converged trajectory points for both models, as shown in Figures 9b and 9d.
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(a) MLP using Neuro-Visualizer
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(b) MLP using PCA
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(c) CNN using Neuro-Visualizer
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(d) CNN using PCA

Figure 9. A comparison of Neuro-Visualizer and PCA in terms of visualizing the test loss landscapes of CNN and MLP models trained on
CIFAR-10. Unlike PCA, Neuro-Visualizer is able to show the significant differences in optimization landscapes, highlighting the CNN’s
more favorable loss landscape compared to the MLP.

E. Loss Landscapes Error Plots For CoPhy-PGNN
Following up on Figure 1, and to visually illustrate the results of Table 1, Figures 10 and 11 show the absolute loss error (i.e.,
the error between model loss and the loss at its projection on the learned manifold) in the first row, and the distance between
the models and the manifold in the parameter space in the second row. In both cases, the “hot” model colors of baseline
methods, compared to Neuro-Visualizer, indicate that the resulting manifold or plane is not a good fit for the trajectory.

F. Solving Partial Differential Equations with Physics-Informed Neural Networks (PINNs)
Solving partial differential equations (PDEs) is a fundamental problem in many areas of science and engineering. Traditional
numerical methods, such as finite element and finite difference methods, require a discretization of the domain and the
PDEs, which can lead to high-dimensional and computationally expensive systems. Physics-informed neural networks
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(b) Neuro-Visualizer
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(c) PCA
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(d) Neuro-Visualizer

Figure 10. A comparison of PCA and Neuro-Visualizer in terms of the error in CoPhy-PGNN’s total physics loss values (top two
sub-figures) as well as projection errors (bottom two sub-figures). Note that the contour colors still refer to the loss values, similar to
Figure 1. Neuro-Visualizer has lower error levels than PCA.
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(b) Kernel-PCA
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(c) UMAP
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(d) Kernel-PCA

Figure 11. A comparison of UMAP and Kernel-PCA in terms of the error in CoPhy-PGNN’s total physics loss errors (top row) and
projection errors (bottom row). Compared to Figure 10, neither UMAP nor Kernel-PCA look favorable against Neuro-Visualizer. Note
that the contour colors still refer to the loss values, similar to Figure 1.
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(PINNs) (Raissi et al., 2017b; 2019; 2017a; Gao et al., 2021) have emerged as an alternative approach to solving PDEs,
leveraging the representational power of neural networks and the structure of the underlying physics to learn a solution
without discretization.

PINNs have shown great promise in solving various types of PDEs, including elliptic, parabolic, and hyperbolic problems.
The main idea behind PINNs is to parameterize the solution of a PDE with a neural network and enforce the governing
equations as constraints in the training process. This is achieved by incorporating the PDEs as a loss function that is
minimized during training, along with a data-driven loss term that incorporates observed data.

PINNs’ optimization objective comes in a number of different forms. Generally, however, there are three main losses that
are present. The residual loss, Lr, is the most important term and ensures that the neural network satisfies the PDE at every
point in the domain. It is calculated as the mean squared difference between the residual of the PDE and the output of the
neural network at each point. Lic ensures that the neural network satisfies the PDE at the initial condition. It is calculated as
the mean squared difference between the output of the neural network at the initial time and the true initial condition. Lbc

ensures that the neural network satisfies the PDE at the boundary conditions. It is calculated as the mean squared difference
between the output of the neural network at each boundary point and the true boundary condition. Together, these three loss
terms provide a comprehensive approach to training PINNs to solve PDEs. By balancing these terms, the neural network
can learn the underlying physics of the problem and provide accurate solutions.

PINNs have been shown to be effective in solving a wide range of partial differential equations (PDEs). For example, in
fluid mechanics, PINNs have been used to solve problems related to incompressible Navier-Stokes equations (Jin et al.,
2021). Similarly, PINNs have also been used to solve the Schrödinger equation in quantum mechanics (Li & Li, 2022).

This paper has targeted a certain type of PDEs called the “convection equation” to illustrate the usefulness and superiority of
the proposed model. The convection problem is a type of partial differential equation that arises in fluid mechanics and heat
transfer. It models the transport of a quantity (such as mass, energy, or momentum) by a moving fluid, which can induce a
net flow in the direction of the transport. The convection equation is:

f = ut − βux (7)

where the parameter β is the convection coefficient which represents the tendency of the substance to move with the fluid
flow.

While PINNs have been useful at solving PDEs, the application of PINNs is not without challenges (Wang et al., 2022; 2021).
In terms of the convection problem, one major challenge is the presence of the convection term β in the governing equations,
which is highly nonlinear and can result in optimization difficulties, especially for higher values. Another challenge is the
presence of multiple scales in convection problems, which can lead to numerical instability and slow convergence.

G. The Pathological Effect of Increasing Regularization in PINNs
Similar to Figure 7 where the pathological effect of increasing β is displayed, Figure 12 shows the effect of increasing cr.
Clearly, increasing the regularization factor also leads to an increase in loss landscape complexity.

H. A PCA Loss Landscape Analysis of Loss Balancing Methods
Figure 13 shows the PCA loss landscape for the same models in the loss balancing experiment outlined in Section 4.2.4 and
visualized in Figure 8. As can be seen, PCA fails at delineating whether most models converge at all, converge to the same
minima, converge to several minima in the same basin, or different basins altogether.

I. Description of Different Loss Balancing Algorithms
Table 3 expands on the different loss balancing algorithms that were used in Section 4.2.4 and shown in Figure 8.
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Method Abbreviation Brief description
Equal Weights EW All loss terms have a coefficient of 1.0.
Constant Weights CW Different constants are used to balance the loss terms. In the context of this

section, the following values where used based on some hyper-parameter tuning:
cr = 1.0, cic = cbc = 100.0.

Dynamic Weight Aver-
aging

DWA The weight of each task’s loss is adjusted based on the relative improvement of
that task’s performance compared to the performance of the other tasks.

Learning Rate Anneal-
ing (Wang et al., 2021)

LRannealing Gradient statistics are utilized during model training to balance the interplay
between the losses.

Gradient Normaliza-
tion (Chen et al., 2018)

GradNorm Normalizes the gradients across tasks so that they have similar scales, encouraging
the model to focus on the tasks with the most informative gradients.

Random Loss Weight-
ing (Lin et al., 2022)

RLW The weight of each task is randomly updated each epoch.

Table 3. A list of the loss balancing algorithms considered in Section 4.2.4. More details on each algorithm can be found in (Liang &
Zhang, 2020).
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(c) L = 10−1

Figure 12. A comparison of convection-PDE-solving PINNs with different degrees of soft regularization. Neuro-Visualizer verifies the
authors’ claim (Krishnapriyan et al., 2021) that increasing cr leads to an Ltotal’s landscape that is more non-convex and difficult to
optimize.
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Figure 13. PCA’s loss landscapes of multiple PINN models with different loss balancing methods. Clearly, it is hard to make useful or
accurate inferences from this plot compared to the insights found through Figure 8.
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