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Abstract

Diffusion Language Models decouple infer-001
ence cost from sequence length, achieving lin-002
ear computational complexity compared to the003
quadratic complexity of autoregressive models,004
while providing self-correction via iterative de-005
coding. However, few-step sampling in text006
diffusion suffers from a training–inference mis-007
match in the self-conditioning mechanism, akin008
to exposure bias, and from underexposure to009
high-noise regimes under uniform scheduling.010
We propose FastDiSS, a unified framework that011
boosts the sampling efficiency by bridging the012
self-conditioning training-inference mismatch013
and improves the training process through an014
adaptive model-aware noise scaling. Exten-015
sive results show that FastDiSS achieves higher016
BLEU scores on conditional generation bench-017
marks while achieving a four times speed-018
up over standard diffusion models. FastDiSS019
considerably narrows the performance gap be-020
tween few and many-step diffusion, demon-021
strating quality and inference speed improve-022
ments over current state-of-the-art methods.023

1 Introduction024

The parallel nature of the diffusion models (Li et al.,025

2022; Lou et al., 2024) makes them a strong candi-026

date for fast text generation. Coupled with parallel027

decoding, diffusion language models achieve lin-028

ear complexity in sequence length, significantly029

faster than the quadratic complexity of autoregres-030

sive models (Radford et al., 2018, 2019; Brown031

et al., 2020). Specifically, the training and inference032

processes simultaneously generate every token fol-033

lowing the forward and reverse processes. In the034

forward process, each token in a sample z0 is inde-035

pendently perturbed in T steps with Gaussian noise.036

After obtaining the series z0, ...,zt/T , ...,z1, the037

denoising network Dθ is trained to reverse this038

process ẑ(t−1)/T = Dθ(ẑt/T , t), starting from z1,039

following univariate Gaussian distributions (Sec-040

tion 2).041

To ensure that the reverse trajectory closely fol- 042

lows the forward process, a sufficiently large decod- 043

ing step T is required, imposing a computational 044

burden despite parallel decoding. To maintain a 045

small T , several works explicitly utilized the esti- 046

mation from the previous step to refine the current 047

prediction, known as the self-conditioning mecha- 048

nism (Chen et al., 2023b; Yuan et al., 2024; Gulra- 049

jani and Hashimoto, 2023). Although this method 050

may not produce significant gains in image gener- 051

ation, it is highly effective for text generation, as 052

the natural sparsity of language makes denoising 053

predictions nearly accurate (Gao et al., 2024; Ye 054

et al., 2023). 055

In this work, we propose Fast Diffusion Se- 056

quence to Sequence (FastDiSS), a novel diffusion 057

training method, combining a training-sampling 058

alignment method and a model-aware noise aug- 059

mentation to enhance sampling efficiency. 060

First, we discover that the training posterior mis- 061

matches of self-conditioning (Section 3) result in 062

the exposure bias issues (Schmidt, 2019; Ning et al., 063

2024), potentially impeding the generation quality. 064

We propose Leakage-informed Noise Scheduler 065

(SNL), a novel scheduler that simulates the self- 066

conditioning behavior during inference to close the 067

training-inference gap. With this modified sched- 068

uler, our model achieves competitive performance 069

against DiffuSeq (Gong et al., 2023a), using only 070

two sampling steps. Our method also outperforms 071

DiffuSeq-v2 (Gong et al., 2023b), a strong state-of- 072

the-art baseline for fast text generation. 073

We then notice that the unbiased training of the 074

diffusion language network slows down conver- 075

gence and potentially destabilizes it. Due to the 076

significant influence of high noise levels on text 077

quality (Li et al., 2022), we introduce Model-Aware 078

Noise Scaling (MANS), a selective training augmen- 079

tation strategy that progressively increases the to- 080

ken noise level to accelerate convergence and avoid 081

trivial learning from low-noise inputs. 082
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Experimental results across diverse conditional083

generation tasks demonstrate that our method con-084

sistently narrows the performance gap between085

few-step and many-step sampling. Moreover, it086

surpasses existing text diffusion models in gener-087

ation quality, while preserving high diversity. For088

example, on the Machine Translation task (Cet-089

tolo et al., 2014; Bojar et al., 2014), with only 5090

sampling steps, FastDiSS achieves a higher BLEU091

score (Papineni et al., 2002) than baselines with 20092

and 1000 decoding steps, corresponding to a 4×093

and 200× speed up.094

In summary, our contributions are as follows:095

• We reveal the limitations of the self-096

conditioning mechanism and underscore the097

critical role of high-level noise in enabling098

robust diffusion model learning, thereby moti-099

vating improved training strategies.100

• We propose FastDiSS, a novel training101

method, which consists of (1) a modified102

noise scheduler (SNL) to effectively mitigate103

the exposure bias of self-conditioning and (2)104

a model-aware mechanism (MANS), which105

gradually increases the token noise level to106

avoid trivial training.107

• Experiments on various benchmarks show that108

our proposed method significantly boosts the109

generation quality and drastically speeds up110

the inference process.111

2 Background112

Denoising Diffusion Models. We revisit Gaussian113

diffusion process in its continuous-time formula-114

tion (Song et al., 2021; Kingma et al., 2021), which115

defines a trajectory {zt}1t=0 of increasing noise116

starting from the clean data z0 ∼ p(z0) and ending117

with z1 ∼ N (0, I). For any t, the noise schedule118

comprises the decay factor αt and the diffusion rate119

σt, which are strictly positive and monotonic over120

time.121

Given that q(zt|z0) satisfies the Markovian prop-122

erty, the forward process is formulated as:123

q(zt|z0) = N (zt;αtz0, σ
2
t I), (1)124

q(zt|xs) = N (zt; (αt/αs)zs, σ
2
t|sI), (2)125

where 0 ≤ s < t ≤ 1 and σ2
t|s = σ2

t − (α2
t /α

2
s)σ

2
s .126

As t → 1, αt → 0 and σt → 1, so the endpoint127

almost surely follows a Gaussian distribution.128

The goal of the diffusion model is to denoise 129

z0 ∼ p(z0|zt) through a neural network Dθ(zt) ≈ 130

z0, which is trained using a mean-squared error 131

loss 132

Ldiffusion = Ez0,t∼U [0,1][||Dθ(zt)− z0||2]. (3) 133

Reverse sampling zs from zt can be viewed as 134

approximating p(zs|zt). To do so, we leverage the 135

posterior distribution q(zs|zt, z0) defined by the 136

forward process, which eventually formulates the 137

sampling distribution by 138

p(zs|zt) = Ep(z0|zt)[q(zs|zt, z0)], (4) 139

with z0 is replaced by the output of the denoising 140

network Dθ(zt). Note that the posterior distribu- 141

tion is tractable and can be expressed as 142

q(zs|zt, z0) 143

= N (zs;
αt

αs

σ2
s

σ2
t

zt + αs

σ2
t|s

σ2
t

z0,
σ2
s

σ2
t

σ2
t|sI). (5) 144

Full derivation is shown in Appendix A.1. Re- 145

cursive sampling with this schedule, starting at 146

z1 ∼ N (0, I), enables generating data from p(z0). 147

Conditional Sequence Modeling with Diffusion 148

Models. Diffusion models rely on a continu- 149

ous space where Gaussian noise can be smoothly 150

added and subtracted. Text, however, is com- 151

posed of discrete tokens with no inherent notion 152

of “small changes” between them. To address this, 153

DiffusionLM (Li et al., 2022) maps the text se- 154

quence x ∈ {0, 1}L×V , where each token is rep- 155

resented as a one-hot vector, into a continuous la- 156

tent space z0 ∈ RL×H , with sequence length L, 157

hidden dimension H , vocabulary size V . Hence, 158

z0 ∼ q(z0|x) is the embedding codebook of x. 159

The reverse process aims to generate z0, which 160

is then mapped back to x. The diffusion model is 161

trained on the latent space with the objective 162

Ltotal = Ldiffusion + Lrounding 163

= Ez0,t[||Dθ(zt)− z0||2] + Ez0 [− log pθ(x|z0)] ,
(6)

164

where Lrounding is the reconstruction loss mapping 165

from the latent to the discrete space. 166

To extend the model for conditional sequence 167

generation, a simple yet effective approach is to 168

incorporate the conditioning sequence c as an ad- 169

ditional input to the denoising network Dθ(zt, c). 170

The target sequence length L can be inferred from 171

the conditioning context via a learned prior L ∼ 172

p(L|c). Aside from this conditioning, the diffusion 173

process remains unchanged as in Eq. 4. 174
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3 Self-conditioning Diffusion Language175

Model176

Definition. The sampling target is denoted as177

z̄s to distinguish it from the training targets zs.178

Subsequently, they are sampled from q(z̄s|z̄t, z̄
tu
θ )179

and q(zs|zt, z̄
t
θ), where z̄tu

θ = Dθ(z̄t, z̄
uk
θ ) and180

z̄t
θ = Dθ(zt, ẑ

t
θ) for any 0 < s < t < u <181

k ≤ 1. The initial guess ẑt
θ can be expressed as182

ẑt
θ = Dθ(zt, 0), where 0 implies uncondition. We183

omit the source condition c since the main focus is184

on the self-conditioning.185

Training procedure. The initial forward predic-186

tion ẑt
θ acts as an auxiliary condition, which is187

then fed back into the denoising model. The z0-188

prediction becomes z̄t
θ = Dθ(zt, sg(ẑ

t
θ)), where189

sg(·) denotes the stop gradient operation, ensuring190

that gradients are not propagated back through ẑt
θ.191

The new training objective becomes:192

Lsc = Ez0,t[||Dθ(zt, sg(ẑ
t
θ))− z0||2]. (7)193

The training process alternates between optimizing194

Ldiffusion and Lsc.195

Speed up sampling. At each step, estimating ẑt
θ196

followed by z̄t
θ double the inference time. There-197

fore, previous works reused the previous step pre-198

diction z̄uk
θ to avoid additional inference overhead.199

3.1 Challenges and Drawbacks200

Distribution mismatch. Since q(z̄s|z̄t, z̄
tu
θ ) =201

q(zs|zt, z̄
t
θ) holds only if z̄tu

θ = z̄t
θ, this requires202

the network to make no prediction error between203

z̄tu
θ and z̄t

θ. However, z̄tu
θ − z̄t

θ is practically non-204

zero, so we claim that this prediction error needs to205

be considered to bridge the training-inference gap.206

To measure both local (per-step) and global (cu-207

mulative) prediction error, we modify the sampling208

process by substituting the previous estimate z̄tu
θ209

with the current-step estimate ẑt
θ of z̄t. Local es-210

timation error (vertical direction) is quantified by211

comparing the training distribution q(z̄0) with the212

sampling distribution q(z0) using BLEU scores213

at t-step reverse process. Total estimation error214

(horizontal direction) is assessed across different215

numbers of denoising steps (NFEs). The results are216

shown in Table 1.217

The table shows that the original self-218

conditioning leads to the trend: the smaller the219

NFEs, the lower the BLEU scores, which implies220

greater impact of local approximation error as t221

decreases. These results reveal a training and sam-222

pling empirical gap.223

Model Number of denoising steps (NFEs)

5 20 50 100 1,000

Original 27.85 29.83 29.97 30.10 30.12
Correct 29.70 30.21 30.34 30.20 30.23
Sup E 0.047 0.008 0.009 0.010 -

Table 1: BLEU scores and average estimation gap (∀t)
on the original and corrected self-condition on baselines
trained with T = 2000, evaluated on IWSLT14 De-En.

3.2 Potential Benefits 224

Increasing the number of denoising steps de- 225

creases prediction error. In contrast to prior stud- 226

ies, which suggested that error could accumulate 227

across steps (Ning et al., 2023), we observed that 228

the estimation gap decreases as NFEs increase. 229

This implies that, given a sufficiently large num- 230

ber of denoising steps, the discretization errors be- 231

tween t and u become small enough for the model 232

to estimate the correct self-condition, as shown in 233

the following theorem: 234

Theorem 1 Let t0, t1, ..., tn ∈ [ϵ, 1] such that t0 < 235

t1 < ... < tn = 1; ∆t := maxi∈[1,n−1]{|ti+1 − 236

ti|}. Assume Dθ satisfies the Lipschitz condition: 237

there exists K > 0 such that for all t ∈ [ϵ, 1], 238

x, and y, we have ||Dθ(zt,x) − Dθ(zt,y)||2 ≤ 239

K||x−y||2. Assume further that for all i ∈ [0, n− 240

1], the denoising estimation at ti+1 has local error 241

uniformly bounded by O((ti+1 − ti)
p+1) with p ≥ 242

1. Then, the supremum of local error expectation: 243

sup E
i∼[0,n−1]

[
∥Dθ(zti , z̄

ti+1ti+2

θ )−Dθ(zti , ẑ
ti
θ )∥

]
244

= O((∆t)p). (8) 245

246

Theorem 1 suggests that the self-condition es- 247

timation can become arbitrarily accurate, as long 248

as the number of sampling steps T , or NFEs cor- 249

respondingly, are large enough (we provide the 250

full proof in Appendix A.2). Table 1 (third row) 251

shows that the empirical bound in Eq. 8 is smaller 252

as NFE increases, further confirm NFE = 20 is 253

sufficient to close the training-inference gap, while 254

performance gains diminished after NFE > 20. 255

Few match Many-step sampling. Table 1 (second 256

row) shows that the BLEU score of the corrected 257

self-condition slightly drop when NFE is reduced 258

from 20 to 5, compared to the original version. This 259

observation highlights the importance of a training 260

design that aligns with the inference process, en- 261

abling optimal inference efficiency. 262
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Figure 1: Overall pipeline of FastDiSS, including
Leakage-informed Noise Scheduler and Model-Aware
Noise Scaling.

4 FastDiSS263

In this section, we introduce FastDiSS, a novel264

modular training framework to improve text dif-265

fusion training (Figure 1). In Section 4.1, we in-266

troduce Leakage-informed Noise Scheduler (SNL)267

that bridges the training-inference gap. In Sec-268

tion 4.2, we interpret this design via robustness269

analysis, revealing that the forward perturbation270

resembles empirical inference behavior. In Sec-271

tion 4.3, we propose Model-Aware Noise Scaling272

(MANS), which dynamically adjusts token-level273

noise based on model confidence, effectively tailor-274

ing training difficulty to token-level denoising.275

4.1 Leakage-informed Noise Scheduler (SNL)276

Our objective is to address exposure bias arising277

from the training-sampling mismatch, thereby im-278

proving sampling efficiency. Our approach em-279

phasizes an end-to-end training pipeline, without280

modification to the sampling stage. Specifically,281

we modify the forward process with a new leakage282

schedule, with the implication that it captures the283

inference estimation z̄uk
θ (u > t):284

z′
t = αtλtz0 + σt

√
1 + γ2t ϵt. (9)285

The two terms λt and γt are linear functions,286

defined as λt = (λmin − λmax)t + λmax and287

γt = (γmin − γmax)t + γmax, which also de-288

crease/increase monotonically. This setup ensures289

that the noising process for z′
t is faster than zt,290

allowing it to approximate the denoising process291

from z̄u (u > t). We discuss this in more detail in292

Section 4.2. The proposed training procedure for293

SNL is presented in Algorithm 1.294

In general, a closer approximation to z̄u leads295

to better performance. However, there is no uni-296

versally optimal scheduling function, as respace297

Algorithm 1 Training with Leakage-informed
Noise Scheduler
Input: Text sequence x, denoising network Dθ

1: while not converged do
2: z0 ∼ qθ(z0|x)
3: t ∼ U(ϵ, 1), ϵ ∼ N (0, I)
4: z′

t = αtλtz0 + σt
√
1 + γ2t ϵ

5: ẑt
θ ← Dθ(z

′
t, 0)

6: r ∼ U(0, 1)
7: zt

θ ← Dθ(z
′
t, ẑ

t
θ) if r < 0.5 else ẑt

θ

8: Ltotal = ||zt
θ − z0||2 − log pθ(x|z0)

9: θ ← θ −∇θLtotal
10: end while

sampling (Nichol and Dhariwal, 2021) allows dif- 298

ferent choices for the number of denoising steps, 299

with each choice requiring a different set of opti- 300

mal hyperparameters. Essentially, we only align 301

the early phase (large t, see Figure 2), since im- 302

proving learning at smaller t does not significantly 303

improve performance (Ye et al., 2023; Gao et al., 304

2024). 305

4.2 Leakage Noise Robustness 306

In this section, we show that the modified training 307

process with SNL aligns with the inference process 308

by facilitating the estimation of z̄uk
θ ≈ Dθ(z

′
t). 309

We also verify that the linear design for λt and γt 310

is reasonable. Akin to Section 3, we trained the 311

standard text diffusion model on the IWSLT14 De- 312

En dataset. At test time, we applied the original 20- 313

step denoising process to the validation set. At each 314

step t, we preserved the previous step’s estimation 315

z̄uk
θ and also computed the corrected self-condition 316

ẑt
θ = Dθ(z̄t, 0). We empirically found that z̄uk

θ is 317

normally distributed around ẑt
θ: 318

z̄uk
θ ∼ N (µ̂utẑ

t
θ, σ̂

2
utI), (10) 319

with mean vector µ̂ut and standard deviation vec- 320

tor σ̂ut (see Appendix B). From this indication, we 321

derive a side-by-side connection with z′
t. Consider- 322

ing at testing, suppose that ẑt
θ fully denoise z̄t, we 323

substitute ẑt
θ by z̄uk

θ as: 324

z̄t = αtẑ
t
θ + σtϵt = αt

z̄uk
θ − σ̂utϵu

µ̂ut

+ σtϵt 325

= αt
1

µ̂ut

z̄uk
θ + σt

√
1 +

(
αt

σt

σ̂ut

µ̂ut

)2

ϵ 326

= αtλ̂utz̄
uk
θ + σt

√
1 + γ̂2

utϵ, (11) 327

4



0 200 400 600 800 1000
timestep

0.70

0.75

0.80

0.85

0.90

0.95

1.00

u
t

5 steps
20 steps
100 steps

t

0 200 400 600 800 1000
timestep

1.0

1.5

2.0

2.5

3.0

3.5

u
t

5 steps
20 steps
100 steps

1 + 2
t

1.006

1.031

Figure 2: Mean (top) and variance (bottom) ratio differ-
ences measured at different denoising steps. We man-
ually select hyperparameters of the scaling terms to fit
20-step sampling.

where λ̂ut = 1/µ̂ut, γ̂t = (αt/σt)(σ̂ut/µ̂ut), and328

ϵ ∼ N (0, I) is obtained using the reparametriza-329

tion trick on the terms containing ϵu and ϵt. Since330

µ̂ut and σ̂ut vary linearly and independently across331

dimensions, all operations remain element-wise.332

Apparently, we observed a similar pattern between333

Eq. 9 and 11, as well as the empirically estimation334

between Figure 2 and 3. This indicates that SNL335

explicitly informs the training process of z̄uk
θ .336

In principle, empirical schedules {λ̂ut, γ̂ut}Tt=1337

could be derived from Eq.11. However, the depen-338

dence on discretization steps, along with the linear339

and dimension-wise variation of λ̂ut and γ̂ut, pre-340

cludes expression through a single global function.341

To avoid complicated hyperparameter searches,342

we instead select anchor points (λmin, λmax) and343

(γmin, γmax) independently of feature space. This344

approach enables an end-to-end training procedure345

that preserves the original dynamics without incur-346

ring additional training complexity.347

4.3 Model-Aware Noise Scaling (MANS)348

Due to the sparsity of the text embedding space,349

continuous text diffusion models can easily recon-350

struct clean embeddings from noises without learn-351

ing the meaning of the whole sequence. This limits352

the learning capability of continuous text diffusion353

models, leading to underfitting. Previous research354

commonly addressed this issue in two ways: (1)355

0 150 300 450 600 750 900
timestep

0.992

0.993

0.994

0.995

0.996

0.997

t

32nd dim
122nd dim

0 150 300 450 600 750 900
timestep

0.001

0.002

0.003

0.004

0.005

0.006

0.007

t

16th dim
32nd dim

Figure 3: Inference mean λ̂t (top) and variance γ̂t (bot-
tom) scaling factors of prediction mismatch in a pre-
trained network, plotted across timestep t for randomly
selected embedding dimensions.

reformulating the forward process (through αt and 356

σt) (Li et al., 2022) and (2) modifying the standard 357

uniform t-sampling distribution (Tang et al., 2023; 358

Ye et al., 2023; Chen et al., 2023a). These schedul- 359

ing strategies are designed to ensure that training 360

remains nontrivial, i.e., each noise level contributes 361

to generation quality. However, most existing meth- 362

ods assess importance by averaging training losses 363

across the entire batches, accidentally neglecting 364

high-impact tokens. Recent studies have attempted 365

to incorporate token-level awareness through man- 366

ually designed time sampling schemes (Wu et al., 367

2023; Yuan et al., 2024). 368

We hypothesize that during the initial stages of 369

training, the model quickly learns to predict easy 370

tokens (common patterns) (Chen et al., 2023a; Ou 371

and Jian, 2024), while harder tokens (uncommon 372

patterns) remain underfit due to the model’s lim- 373

ited capacity to capture them early on. In the later 374

phases, as predictions for easy tokens become triv- 375

ial, the model tends to overfit on the minority to- 376

kens. This is reflected in marginal reductions in 377

loss, while the performance plateaus (Figure 4). 378

We refer to this as the memorization issues of deep 379

networks (Zhang et al., 2016; Bai et al., 2021). 380

To balance the learning contribution across to- 381

kens, we selectively apply higher noise levels to 382

easy tokens. Token importance is quantified based 383

on the model’s reconstruction confidence, mea- 384

sured by the likelihood P [Dθ(z
k
t ) = k], where zkt 385
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Method LB NB NFE IWSLT14 WMT14 WMT16
DE→EN EN→DE DE→EN EN→DE RO→EN EN→RO

Transformer 5 - 33.61 28.30 30.55 26.85 33.08 32.86

CMLM 5 - 29.41 24.34 28.71 23.22 31.13 31.26

DiffusionLM‡ 5 10 20 29.11 22.91 19.69 17.41 30.17 29.39
Diffomer‡ 7 3 20 28.01 23.31 25.30 23.80 29.37 29.20
DINOISER 5 10 20 31.61 25.70 29.05 24.26 31.22 31.08
DiffuSeq 1 10 2000 29.43 - 22.72 - - -
SeqDiffuSeq 1 10 2000 30.45 22.12 23.93 19.76 - -
AR-Diffusion 1 10 20 31.80 26.01 - - - -

FastDiSS 10 1 5 32.46 25.73 29.54 24.33 31.55 30.88
FastDiSS 10 2 5 32.70 26.02 29.75 24.69 31.81 30.90
FastDiSS 10 1 20 32.81 26.29 29.47 24.50 31.89 31.37
FastDiSS 10 2 20 32.88 26.39 29.83 24.57 31.99 31.44

Table 2: Main results on Machine Translation. The best NAR results are bold and the second-best results are
underlined. ‡ indicates results reported by Ye et al. (2023). Other results are from their original papers.

represents the noisy embedding of token k ∈ [V ]386

at time t, and V denotes the vocabulary size. Based387

on this evaluation metric, we propose a noise scal-388

ing schedule that progressively increases the de-389

noising difficulty of zt. Specifically, for each token390

k that is fully reconstructed to match the ground391

truth, we scale its noise level by incrementing the392

corresponding time step tk according to a model-393

aware scaling function β(n) at iteration n,394

tθk =

{
β(n) · tk if Dθ(z

k
t ) = k,

tk otherwise.
(12)395

The β-function divides training into several phases,396

and we apply a fixed scale for each phase. Es-397

sentially, MANS leverages the instant feedback at398

every training iteration to ensure effective training.399

5 Experiments400

5.1 Settings401

Datasets. For Machine Translation, we follow pre-402

vious works with benchmark datasets IWSLT14403

(En-De/De-En) (Cettolo et al., 2014), WMT14 (En-404

De/De-En), and WMT16 (En-Ro/Ro-En) (Bojar405

et al., 2014). For Text Summarization, experi-406

ments are conducted on Gigaword (Narayan et al.,407

2018). For Question Paraphrase, experiments are408

conducted on QQP from the community question409

answering forum Quora. For Text Simplification,410

we follow DiffuSeq (Gong et al., 2023a) and con-411

duct experiments on Wiki-Auto.412

Evaluation Metrics. We report the SacreBLEU413

for Machine Translation, following Ye et al.414

(2023); Gong et al. (2023a). We follow Qi et al.415

(2020) and report the Rouge-1/2/L for the sum-416

marization task. For Question Paraphrase and417

Text Simplification, we follow DiffuSeq to em- 418

ploy sentence-level BLEU under the tokenizer of 419

bert-base-uncased, Rouge-L, and BERTScore 420

(Zhang et al., 2019) for quality assessment, and 421

sentence-level self-BLEU (Zhu et al., 2018) for 422

diversity assessment. 423

Baselines. We include three groups of base- 424

lines: (1) The autoregressive models with Trans- 425

former (AR) (Vaswani et al., 2017), GRU with at- 426

tention, and the fine-tuned GPT2-large; (2) The 427

non-autoregressive model (NAR) with CMLM 428

(Ghazvininejad et al., 2019) and LevT (Gu et al., 429

2019); (3) Continuous diffusion-based language 430

models (Continuous DLM) include DiffusionLM 431

(Li et al., 2022), Difformer (Gao et al., 2024), DI- 432

NOISER (Ye et al., 2023), DiffuSeq (Gong et al., 433

2023a), SeqDiffuSeq (Yuan et al., 2024), and AR- 434

Diffusion (Wu et al., 2023). For Text Summariza- 435

tion, we also include LSTM (Greff et al., 2016) for 436

AR, NAG-BERT (Su et al., 2021) for NAR. For 437

Question Paraphrase, we include Discrete DLM 438

with RDM (Zheng et al., 2023). 439

Training and Inference. During training, we 440

adopt sqrt noise schedule (Li et al., 2022) with 441

T = 2000 diffusion steps. The anchor points 442

(λmin, λmax) and (γmin, γmin) are (0.9, 0.95) and 443

(0.15, 0.35), respectively. MANS is randomly ap- 444

plied with 50% probability to ensure that the model 445

experiences noise at every level, including low- 446

level noise. The detailed scaling settings are speci- 447

fied in Appendix E.1. Our implementation is based 448

on Difformer, using fairseq, with Transformer 449

and sampling configurations from prior work, with 450

NFE = 2, 5, 20. For every task, the vocabulary is 451

constructed based on Byte Pair Encoding (BPE) 452

(Kudo and Richardson, 2018). Further details are 453
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Method LB NB NFE QQP Wiki-Auto
BLEU↑ Rouge-L↑ BertScore↑ BLEU↑ Rouge-L↑ BertScore↑

Transformer‡ - - - 27.22 57.48 83.81 26.93 49.07 73.81
GPT2-large FT‡ - - - 20.59 54.15 83.63 26.93 51.11 78.82

CMLM× - - 10 21.78 56.12 - 35.26 58.46 81.83
LevT‡ - - - 22.68 57.95 83.44 20.52 44.02 72.54

Difformer∗ 1 10 20 27.95 59.24 82.97 34.78 54.55 78.86
DINOISER† 1 10 20 19.49 53.16 80.36 23.88 48.21 67.87
DiffuSeq 1 10 2000 24.13 58.80 83.65 36.22 58.49 81.26
SeqDiffuSeq 1 10 2000 24.34 - 84.00 37.12 - 82.14

FastDiSS 10 1 2 27.94 58.47 81.81 40.23 59.10 81.60
FastDiSS 10 1 5 28.88 59.34 82.58 40.90 59.64 82.16
FastDiSS 10 1 20 28.32 58.88 82.62 40.81 59.64 82.17

Table 3: Main results on QQP and Wiki-Auto. The best NAR results are bold and the second-best results are
underlined. ‡, ×, and † indicate results reported by Gong et al. (2023a), Tang et al. (2023), and Chuang et al. (2024),
respectively. ∗ indicates reproduced results. Other results are from their original papers.

Method LB NB NFE Rouge-1 Rouge-2 Rouge-L
(↑) (↑) (↑)

LSTM 5 - 34.2 16.0 31.8

CMLM - - - 34.4 15.6 32.2
NAG-BERT - - - 35.1 16.5 33.3

Difformer* 5 2 20 34.9 17.0 32.4
DiffuSeq 1 10 2000 31.2 12.2 29.2
SeqDiffuSeq 1 10 2000 31.9 12.4 29.2

FastDiSS 5 2 5 34.9 16.9 32.5
FastDiSS 5 2 20 35.3 17.3 32.8

Table 4: Main results on Text Summarization. The best
NAR results are bold and the second-best results are
underlined. Baseline results are from Difformer (Gao
et al., 2024). ∗ indicates reproduced results.

described in Appendix E. We also apply Minimum454

Bayes Risk (MBR) (Kumar and Byrne, 2004) fol-455

lowing previous works (Li et al., 2022; Gong et al.,456

2023a; Dieleman et al., 2022) with different length457

beam (LB) and noise beam (NB).458

5.2 Main Results459

Overall performance. The results of different460

datasets are shown in Table 2, 3, and 4. FastDiSS461

outperforms both DLM and NAR baselines on most462

datasets with different choices of beam size and463

NFEs, and even performs comparably with AR. In464

some cases, such as in WMT14, the 5-step even sur-465

passes 20-step sampling, demonstrating that SNL466

effectively bridges the gap between few and many-467

step sampling. With SNL training, the sampling468

speed is 4× faster than DINOISER and Difformer.469

Training Convergence. Figure 4 compares the470

validation loss during training when not applying471

scaling (1.0), applying fixed scaling (2.0), and adap-472

tive scaling. Fixed scaling does not improve per-473
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Figure 4: Loss curve and BLEU score follow the train-
ing iterations. The dashed line represents the estimated
BLEU score, with colors corresponding to the loss
curves for each respective setting.

formance, while adaptive scaling continues to im- 474

prove performance and reduce the loss. The result 475

confirms that gradually increasing the noise scale 476

allows the model to converge better, even with high 477

noise levels in the late training phase. 478

Accelerated sampling comparison. We compare 479

our method with DiffuSeq-v2 (Gong et al., 2023b) 480

to showcase the setting in a practical application. 481

Figure 6 shows that FastDiSS dominates DiffuSeq- 482

v2 at every NFEs, with optimal performance achiev- 483

ing at low NFE values. 484

Sampling Diversity. Figure 5 shows the diversity 485

and quality correlations. FastDiSS-2NFE matches 486

the performance of the best baseline, Difformer- 487

20NFE, with only 2 sampling steps. Increasing 488

the number of denoising steps trades the inference 489

speed for quality. FastDiss-5NFE is slower than 490

FastDiss-2NFE but has significantly higher BLEU 491

and about the same Self-BLEU scores. 492

5.3 Ablation Studies 493

Effect of different components. As can be seen 494

from Table 5, both MANS and SNL enhance the 495
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Figure 6: Generation speed and quality with different
NFE. The speed is averaged over 3 runs.

SNL MANS NFE=5 NFE=20 ∆NFE

27.98 29.78 1.80
✓ 29.64 30.36 0.72

✓ 30.77 31.49 0.72
✓ ✓ 31.17 31.66 0.49

Table 5: Ablation on each component of the proposed
methods. Results are reported on IWSLT14 De-En with
LB = 2, NB = 2.

performance. Notably, combining MANS with496

SNL narrows the performance gap between 5 and497

20 steps.498

Comparison between different numbers of de-499

noising steps. Figure 7 illustrates the effectiveness500

of our proposed method with few-step denoising.501

Our method outperforms the 20-step baseline af-502

ter only 3 sampling steps, yielding ∼ 7× speedup.503

Additionally, our sampling method converges after504

only 7 steps, at a significantly higher BLEU score505

than the 20-step baseline.506

Other noise schedulers. Table 6 demonstrates the507

performance on popular noise schedules, includ-508

ing linear (Ho et al., 2020) and cosine (Nichol509

and Dhariwal, 2021). The linear schedule is less510

sensitive to the NFE value. Our method strongly511

boosts the score in the few-step settings.512

Parameters of the noise scaling terms γt and λt.513

In Table 7, we show the performance with different514

2 5 10 15 20
Denoising step

22
24
26
28
30
32

BL
EU

 (
)

Original
Ours

Figure 7: Performance difference between the origi-
nal and our proposed method. Results are reported on
IWSLT14 De-En with the same seed.

Noise Schedule NFE=2 NFE=5 NFE=20

Linear Orig. 26.50 27.17 27.54
Ours 26.84 27.52 27.54

Cosine Orig. 25.43 27.05 27.57
Ours 27.32 27.77 27.94

Table 6: BLEU Score on QQP with different noise
schedules. Results are reported with LB = 2, NB = 1.

Steps 5 20 100 Fixed
λ (0.60,0.85) (0.90,0.95) (0.98,0.99) 0.85
γ (0.25,0.90) (0.15,0.35) (0.05,0.15) 0.50

BLEU 25.48 26.35 25.70 25.84
R-L 57.29 57.47 56.82 57.18

Table 7: Performance on QQP with different variants
of SNL. Results are reported with NFE = 2, LB = 5,
NB = 1.

variants of SNL, including both dynamics and fixed 515

schedules, where we set λt and γt to be constant, 516

instead of a linear-time function. The results indi- 517

cate that the best performance lies in the leakage- 518

informed level at 20-step denoising. Hence, we use 519

this setting for the remaining benchmarks. 520

6 Conclusion 521

In this paper, we propose FastDiSS, an improved 522

training framework for diffusion-based language 523

models that (1) addresses the training–inference 524

mismatch inherent in self-conditioning mecha- 525

nisms, while (2) accelerates convergence in the 526

later training phases, which are typically slow and 527

difficult to optimize. Experimental results on vari- 528

ous benchmarks indicate that the training is more 529

effective and the gap between few and many-step 530

decoding is bridged. While we believe that our 531

work has a substantial impact on the real-world ap- 532

plication of diffusion language models, we encour- 533

age a better method for aligning self-conditioning 534

to approach the performance of autoregressive mod- 535

els. This study offers a promising perspective on 536

the development of few-step language models. 537
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Limitation538

In this study, since we aim to align training to infer-539

ence, the proposed techniques are constrained by540

the goodness of the previous self-conditioning pre-541

diction. Hence, it would be more promising if we542

approached the problem from the opposite direc-543

tion, as refining the prediction to be more accurate544

would significantly boost the performance. On the545

other hand, our current noise scaling strategy relies546

on predefined values at each training phase, which547

may be suboptimal when earlier scaling stages are548

insufficiently trained. A more adaptive scaling549

function could further enhance performance.550
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Following the Bayes rule, the posterior equals to867

q(zt|zs)q(zs|z0)/q(zt|z0). Given that every term868

is a Gaussian likelihood (Eq. 1 and 2), we plug869

this into the posterior, which yields:870

q(zs|zt, z0) = N (zs; µ̃(zt, z0), σ̃
2
t I) (13)871

where µ̃(zt, z0) =
αt

αs

σ2
s

σ2
t

zt + αs

σ2
t|s

σ2
t

z0 (14)872

and σ̃t =
σs
σt

σt|s. (15)873

A.2 Proof of Theorem 1874

Because Dθ(zti , ·) is K-Lipschitz, we have875

E
i∼[0,n−1]

∥Dθ(zti , z̄
ti+1ti+2

θ )−Dθ(zti , ẑ
ti
θ )∥876

≤ K E
i∼[0,n−1]

∥z̄ti+1ti+2

θ − ẑti
θ ∥877

Furthermore, from our assumption that the local878

error is bounded by O((ti+1 − ti)
p+1), which is879

partially observed from the empirical estimation in880

Eq. 10, we have881

K E
i∼[0,n−1]

∥z̄ti+1ti+2

θ − ẑti
θ ∥882

(i)

≤ K

n
·
n−1∑
i=0

O((ti+1 − ti)
p+1)883

≤
n−1∑
i=0

O((ti+1 − ti)
p+1)884

=
n−1∑
i=0

(ti+1 − ti)O((ti+1 − ti)
p)885

≤ O((∆t)p)
n−1∑
i=0

(ti+1 − ti)886

= O((∆t)p)(tn − t0)887

≤ O((∆t)p)(1− ϵ)888

≤ O((∆t)p)889

where (i) holds due to the uniform sampling distri-890

bution of t. Our proof builds on the error bounds891

for the ODE Solver in Consistency Models (Song892

et al., 2023), but it is different since we provide the893

total local error bounds rather than targeting the894

empirical approximation bounds.895

B Estimate the Self-condition Gaussian896

Distribution Error897

In this section, we conduct experiments on898

IWSLT14 De-En to empirically show that z̄uk
θ ∼899

N (µ̂tẑ
t
θ, σ̂

2
t I) (Sec. 4.2), i.e., the prediction error900

of the previous step is nearly Gaussian distributed 901

around current predictions. To do so, we need 902

to prove that, for each t and each word embed- 903

ding dimension i ∈ {1, ...,H}, the dimension- 904

wise error (ϵit) follows ϵit ∼ N (0, (σ̂i
t)

2), where 905

ϵt = z̄uk
θ − µ̂tẑ

t
θ. To test this hypothesis, we uni- 906

formly select 20 values of t in [ϵ, 1] using a 0.05 907

discretization step size, then perform a denoising 908

process through these selected t, then record the 909

value of z̄t
θ and ẑt

θ in each t. Then, for each t, 910

we use 1,000 sentences z ∈ D and flatten every 911

token in each sentence to compute the dimension 912

independent mean µ̂i
t and standard deviation σ̂i

t of 913

the error, which we use to standardize the error 914

values for all the dimension ϵit (i.e., ϵ̄it =
ϵit−µt

σ̂i
t

). 915

Estimating µ̂i
t can be considered as solving a linear 916

regression problem, using ordinary least squares 917

(OLS): µ̂i
t =

∑
z∈D z̄iuẑ

i
t∑

z∈D(ẑit)
2 . For σ̂i

t, it is simply cal- 918

culating the standard deviation of the residuals: 919

σ̂i
t =

√
1
|D|

∑
z∈D(z̄

i
u − µ̂i

tẑ
i
t)

2. Then, for each 920

i, we use 50 randomly selected values and the 921

Shapiro–Wilk test (Shapiro and Wilk, 1965) to ver- 922

ify that they follow a standard normal distribution. 923

The confidence level is set at 95% and we reject the 924

null hypothesis if the p-value is less than 0.05. The 925

null hypothesis was rejected only in a small minor- 926

ity of cases, confirming our assumption. Figure 8 927

shows a few histogram examples for ϵit computed 928

at different dimensions. 929

C Related Works 930

Non-autoregressive Language Generation. Non- 931

autoregressive (NAR) models, introduced by Gu 932

et al. (2017), aim to accelerate text generation com- 933

pared to autoregressive counterparts. To improve 934

performance, subsequent works adopt iterative re- 935

finement strategies (Gu et al., 2019; Ghazvinine- 936

jad et al., 2019). However, due to the indepen- 937

dence assumption between tokens, NAR models 938

often struggle with multi-modality. Efforts to miti- 939

gate this include structured prediction techniques 940

(Zhang et al., 2022; Ran et al., 2020; Huang et al., 941

2022), data selection through reference rephrasing 942

(Shao et al., 2022, 2023), and model distillation to 943

enhance learning (Guo et al., 2021; Qi et al., 2022; 944

Liu et al., 2023). 945

Diffusion Models for Language Generation. 946

Text diffusion tackle multi-modality in text gen- 947

eration and fall into two main categories: contin- 948

uous and discrete. In continuous models, tokens 949
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Figure 8: The empirical distribution of ϵit with different random values of t and i.

are mapped to latent embeddings where diffusion950

operates. DiffusionLM (Li et al., 2022) pioneered951

this approach, enabling conditional generation with952

a Transformer-based encoder-decoder architecture.953

Subsequent works, Difformer (Gao et al., 2024) and954

DINOISER (Ye et al., 2023), improve generation955

quality by addressing representation sparsity, while956

SeqDiffuSeq (Yuan et al., 2024), AR-Diffusion957

(Wu et al., 2023), Masked-Diffuse (Chen et al.,958

2023a)) introduce token-dependent noise schedules.959

DiffuSeq (Gong et al., 2023a) adopts a decoder-960

only design for better LLM alignment. In contrast,961

discrete models define transitions over token space,962

with early works like D3PM (Austin et al., 2021)963

and Analog-bits (Chen et al., 2023b) define dis-964

crete diffusion via absorbing or uniform transitions,965

while more recent methods (e.g., MDLM (Sahoo966

et al., 2024), RDM (Zheng et al., 2023)) adopt967

masking strategies that have been scaling to LLMs968

(Arriola et al., 2025).969

Accelerating the Diffusion Language Model.970

While much of the existing literature focuses on971

improving generation quality and model scalability,972

fewer studies address the challenge of inference973

efficiency. In image generation, methods such as974

DDIM (Song et al., 2020) and Progressive Dis-975

tillation have demonstrated success in reducing976

the number of denoising steps. Advances in ODE977

solvers (Lu et al., 2022a,b) and second-order tra-978

jectory approximations like EDM (Karras et al.,979

2022) have further enhanced the efficiency of the 980

reverse process. More recently, Consistency Mod- 981

els (Song et al., 2023; Song and Dhariwal, 2023) 982

enable high-quality generation with just a single 983

sampling step. In the context of text, DiffuSeq-v2 984

(Gong et al., 2023b) improves inference by inte- 985

grating continuous and masked denoising, while 986

Tang et al. (2023) address training–inference dis- 987

crepancies to enhance generation speed. Our work 988

advances this line by promoting fast, adaptable, 989

and few-step generation, aiming to make diffusion- 990

based language models more viable for real-world 991

applications. 992

D Comparison with Other Methods 993

SeqDiffuSeq introduces adaptive token-level noise 994

scaling based on positional importance, assuming 995

that token position, rather than token identity, de- 996

termines difficulty. In contrast, Masked-Diffuse 997

(Chen et al., 2023a) estimates token importance via 998

linguistic rarity. Our approach differs by directly 999

leveraging model confidence to assess token dif- 1000

ficulty, with the hypothesis that models perceive 1001

language differently from humans. 1002

Tang et al. (2023) also addresses exposure bias 1003

in text diffusion. Although their method shares con- 1004

ceptual similarities with ours, it does not incorpo- 1005

rate self-conditioning. Moreover, their noise-aware 1006

strategy, Distance Penalty, applies a fixed penalty 1007
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Configurations WMT14 WMT16 IWSLT14 Gigaword QQP Wiki-Auto

Split
Training 4,500,966 608,319 160,215 3,803,957 144,715 677,751
Validation 3,000 1,999 7,282 189,651 2,048 2,048
Test 3,003 1,999 6,750 1,951 2,500 5,000

Preprocess
BPE 40,000 30,000 10,000 60,000 15,000 40,000
Vocab 40,624 34,976 15,480 56,392 15,136 45,376

Architecture
dmodel 512 512 512 512 768 768
dffn 2048 2048 1024 2048 3072 3072
Heads 8 8 4 8 12 12

Training
GPUs 2 2 2 2 2 4
Steps 600K 150K 300K 300K 50K 30K
Tokens/GPU 32K 32K 4K 32K 4K 8K
Phase [100K,200K,600K] [50K,100K,150K] [100K,200K,300K] [100K,200K,300K] [10K,20K,30K] [5K,10K,30K]
Scaling [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,4.0,8.0]

Table 8: The dataset details, model architectures, and hyperparameters used in our experiments.

across all steps, which, similar to the fixed schedule1008

demonstrated in Table 7, is sub-optimal compared1009

to our adaptive linear scheduling.1010

E Experimental Settings1011

For data preprocessing, we follow the instruc-1012

tions in fairseq for IWSLT14 and use the pre-1013

processed data by Fully-NAT (Gu and Kong, 2021)1014

for WMT14 and WMT161. For Wiki and QQP,1015

we use preprocessed data provided by DiffuSeq2.1016

For Gigaword, we use preprocessed data provided1017

by huggingface3. These 3 datasets are tokenized1018

with byte-pair encoding (BPE) and vocabularized1019

with fairseq-preprocess. The BPEs and vocab-1020

ulary size are specified in Table 8.1021

All our implementations are based on1022

Transformer-base (Vaswani et al., 2017) for all1023

datasets with 6 Encoder and 6 Decoder layers.1024

The number of attention heads, model hidden1025

dimension size, and other hyperparameters are1026

specified in Table 8. The embedding dimension1027

for the diffusion model is 128. The anchor points1028

(λmin, λmax) and (γmin, γmin) are designed to1029

fit 20-step sampling, particularly (0.9, 0.95) and1030

(0.15, 0.35), respectively.1031

For training, all experiments are trained with1032

fp16. We used inverse-sqrt learning rates with1033

10,000 warmup steps, lrmax = 5× 10−4 for every1034

benchmark except Quasar-T with lrmax = 3 ×1035

10−4, norm clipping 1.0, dropout 0.1, and label1036

1https://github.com/shawnkx/Fully-NAT
2https://github.com/Shark-NLP/DiffuSeq
3https://huggingface.co/datasets/Harvard/gigaword

smoothing 0.1. 1037

All training is conducted on 4 NVIDIA H100 1038

GPUs. It takes approximately 8.5 hours for the 1039

WMT and Gigaword datasets, and around 4 hours 1040

on average for the other datasets. 1041

During inference, the reverse process remains as 1042

in Eq. 4. The self-conditioning techniques reuse 1043

previous estimation, similar to previous works. We 1044

follow previous work (Li et al., 2022; Gong et al., 1045

2023a; Dieleman et al., 2022) and apply Minimum 1046

Bayes-Risk (MBR) decoding (Kumar and Byrne, 1047

2004). We mainly vary the length beam size since 1048

it often yields better results. 1049

E.1 MANS Settings 1050

We divide the training process into 3 uniform 1051

phases, we gradually increase the scaling value 1052

throughout the training process. The MANS phases 1053

and corresponding scaling values are specified 1054

in Table 8, for example, in WMT14, we apply 1055

β(n) = 2.0 for n < 100K, β(n) = 3.0 for 1056

100K ≤ n < 200K, and β(n) = 4.0 other- 1057

wise. Empirically, we observe that this modifi- 1058

cation slightly increases the overall training time 1059

by under 5%. 1060

F On the Effectiveness of Minimum 1061

Bayesian Risk (MBR) Decoding 1062

MBR decoding is known to enhance the perfor- 1063

mance of text diffusion models by improving both 1064

output quality and diversity. As shown in Table 2, 1065

increasing either the length beam or the noise beam 1066

leads to higher BLEU scores. In Figure 9, we con- 1067
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Figure 9: SacreBLEU score on IWSLT14 De-En with
various length beams and noise beams.

duct a more thorough evaluation to determine how1068

far BLEU can be improved across different search1069

space configurations. The results indicate that scal-1070

ing the length beam size (vertical axis) yields faster1071

performance gains than scaling the noise beam size1072

(horizontal axis). This is likely due to our method’s1073

ability to reduce faulty predictions during inference.1074

Search with a larger length beam allows the model1075

to better handle errors in length prediction and facil-1076

itates exploration of more diverse output sequences.1077

While increasing the total beam size consistently1078

improves performance, the most efficient approach1079

is to first scale the length beam and only minimally1080

increase the noise beam.1081

Unlike DINOISER, which uses high noise levels1082

solely to leverage source conditioning, potentially1083

limiting diversity, FastDiSS incorporates noise at1084

every step. This allows it to maintain diversity with-1085

out suffering from the marginal distribution predic-1086

tion issue. Overall, FastDiSS delivers high-quality1087

and diverse outputs while avoiding significant com-1088

putational overhead.1089

G Qualitative Results1090

To qualitatively examine instance-level generation1091

dynamics, we provide several case studies in Ta-1092

ble 9. In the first example, the baseline fails to1093

leverage the previously generated sequence, result-1094

ing in grammatical artifacts (e.g., “is” should be1095

“are”). In contrast, our method is aware of the faulty1096

prediction and is able to correct it in the following1097

step, demonstrating the effectiveness of SNL. In1098

the second example, the baseline largely copies the1099

source sequence, leading to lower output diversity.1100

By contrast, the improved learning process enables1101

the model to generate a more fluent and accurate 1102

hypothesis that better aligns with the reference, 1103

highlighting the strengths of MANS training. 1104
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Wiki-Auto QQP

Example 1

Source He also twice participated in the Which is best gadget?
Summer Olympics, starting in 1996.

Target He was also in the 1996 Which is your best gadget?
Summer Olympics.

Step Baseline

2 He also twice in the Summer Summer Which is the best gadgets?
Olympics 1996 Summer 1996.

1 He also twice in the Summer Summer Which is the best gadgets?
in the in 1996.

Step FastDiSS

2 He also twice twice in in Summer What are best best gadgets?
Summer Olympics, starting in 1996.

1 He also twice twice in the Summer What are the best gadgets?
Olympics, starting in 1996.

Example 2

Source Whedon served as an executive producer, Can we create free energy?
along with Tim Minear.

Target Whedon was the executive producer, How do we make free energy?
along with Tim Minear.

Step Baseline

2 Whedon was an an executive producer Can I create free energy?
with Tim Minear.

1 He was an an executive producer Can I create free energy?
with Tim Minear.

Step FastDiSS

2 Whedon was an executive producer How can I create a free energy?
with Tim Minear.

1 He was an executive producer How can I make a free energy?
with Tim Minear.

Table 9: Wiki-Auto and QQP Generation with NFE = 2, using MBR decoding with LB = 5 and NB = 1.
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