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Abstract

Diffusion Language Models decouple infer-
ence cost from sequence length, achieving lin-
ear computational complexity compared to the
quadratic complexity of autoregressive models,
while providing self-correction via iterative de-
coding. However, few-step sampling in text
diffusion suffers from a training—inference mis-
match in the self-conditioning mechanism, akin
to exposure bias, and from underexposure to
high-noise regimes under uniform scheduling.
We propose FastDiSS, a unified framework that
boosts the sampling efficiency by bridging the
self-conditioning training-inference mismatch
and improves the training process through an
adaptive model-aware noise scaling. Exten-
sive results show that FastDiSS achieves higher
BLEU scores on conditional generation bench-
marks while achieving a four times speed-
up over standard diffusion models. FastDiSS
considerably narrows the performance gap be-
tween few and many-step diffusion, demon-
strating quality and inference speed improve-
ments over current state-of-the-art methods.

1 Introduction

The parallel nature of the diffusion models (Li et al.,
2022; Lou et al., 2024) makes them a strong candi-
date for fast text generation. Coupled with parallel
decoding, diffusion language models achieve lin-
ear complexity in sequence length, significantly
faster than the quadratic complexity of autoregres-
sive models (Radford et al., 2018, 2019; Brown
etal., 2020). Specifically, the training and inference
processes simultaneously generate every token fol-
lowing the forward and reverse processes. In the
forward process, each token in a sample zg is inde-
pendently perturbed in 1" steps with Gaussian noise.
After obtaining the series 2o, ..., 2T, .-, 21, the
denoising network Dy is trained to reverse this
process Z(;_1)/7 = Dg(2¢/7,t), starting from z1,
following univariate Gaussian distributions (Sec-
tion 2).

To ensure that the reverse trajectory closely fol-
lows the forward process, a sufficiently large decod-
ing step 7' is required, imposing a computational
burden despite parallel decoding. To maintain a
small T', several works explicitly utilized the esti-
mation from the previous step to refine the current
prediction, known as the self-conditioning mecha-
nism (Chen et al., 2023b; Yuan et al., 2024; Gulra-
jani and Hashimoto, 2023). Although this method
may not produce significant gains in image gener-
ation, it is highly effective for text generation, as
the natural sparsity of language makes denoising
predictions nearly accurate (Gao et al., 2024; Ye
et al., 2023).

In this work, we propose Fast Diffusion Se-
quence to Sequence (FastDiSS), a novel diffusion
training method, combining a training-sampling
alignment method and a model-aware noise aug-
mentation to enhance sampling efficiency.

First, we discover that the training posterior mis-
matches of self-conditioning (Section 3) result in
the exposure bias issues (Schmidt, 2019; Ning et al.,
2024), potentially impeding the generation quality.
We propose Leakage-informed Noise Scheduler
(SNL), a novel scheduler that simulates the self-
conditioning behavior during inference to close the
training-inference gap. With this modified sched-
uler, our model achieves competitive performance
against DiffuSeq (Gong et al., 2023a), using only
two sampling steps. Our method also outperforms
DiffuSeq-v2 (Gong et al., 2023b), a strong state-of-
the-art baseline for fast text generation.

We then notice that the unbiased training of the
diffusion language network slows down conver-
gence and potentially destabilizes it. Due to the
significant influence of high noise levels on text
quality (Li et al., 2022), we introduce Model-Aware
Noise Scaling (MANS), a selective training augmen-
tation strategy that progressively increases the to-
ken noise level to accelerate convergence and avoid
trivial learning from low-noise inputs.



Experimental results across diverse conditional
generation tasks demonstrate that our method con-
sistently narrows the performance gap between
few-step and many-step sampling. Moreover, it
surpasses existing text diffusion models in gener-
ation quality, while preserving high diversity. For
example, on the Machine Translation task (Cet-
tolo et al., 2014; Bojar et al., 2014), with only 5
sampling steps, FastDiSS achieves a higher BLEU
score (Papineni et al., 2002) than baselines with 20
and 1000 decoding steps, corresponding to a 4 x
and 200x speed up.

In summary, our contributions are as follows:

* We reveal the limitations of the self-
conditioning mechanism and underscore the
critical role of high-level noise in enabling
robust diffusion model learning, thereby moti-
vating improved training strategies.

* We propose FastDiSS, a novel training
method, which consists of (1) a modified
noise scheduler (SNL) to effectively mitigate
the exposure bias of self-conditioning and (2)
a model-aware mechanism (MANS), which
gradually increases the token noise level to
avoid trivial training.

» Experiments on various benchmarks show that
our proposed method significantly boosts the
generation quality and drastically speeds up
the inference process.

2 Background

Denoising Diffusion Models. We revisit Gaussian
diffusion process in its continuous-time formula-
tion (Song et al., 2021; Kingma et al., 2021), which
defines a trajectory {zt}%zo of increasing noise
starting from the clean data zg ~ p(zo) and ending
with z1 ~ N(0,I). For any ¢, the noise schedule
comprises the decay factor o; and the diffusion rate
o, which are strictly positive and monotonic over
time.

Given that ¢(z|z¢) satisfies the Markovian prop-
erty, the forward process is formulated as:

)
2

q(z¢|z0) = N(z4; arzo, o21),

Q(zt‘xs) = N(Zt; (at/as)zs; 0'152|SI)7
where 0 < s <t < land ojy = 0} — (af /a3)o3.
Ast = 1, 4 — 0 and oy — 1, so the endpoint
almost surely follows a Gaussian distribution.

The goal of the diffusion model is to denoise
zo ~ p(zo|z¢) through a neural network Dy(z;) ~
z0, which is trained using a mean-squared error
loss

Liftusion = Ezo,t~u[0,1][HD9(zt) - ZOHZ]- 3)

Reverse sampling z; from z; can be viewed as
approximating p(zs|z¢). To do so, we leverage the
posterior distribution ¢(zs|z¢, zo) defined by the
forward process, which eventually formulates the
sampling distribution by

p(zslzt) = Epag)zp [a(25] 2, 20)], ()

with z is replaced by the output of the denoising
network Dg(z;). Note that the posterior distribu-
tion is tractable and can be expressed as

Q(ZS’Ztazo)
2 o2 2
at 0 ts 05 9
:N(Zs;i%zlf‘f'asizzo,%gt‘s ) (5)
o 0f o} o

Full derivation is shown in Appendix A.l. Re-
cursive sampling with this schedule, starting at
z1 ~ N(0,1), enables generating data from p(zo).
Conditional Sequence Modeling with Diffusion
Models. Diffusion models rely on a continu-
ous space where Gaussian noise can be smoothly
added and subtracted. Text, however, is com-
posed of discrete tokens with no inherent notion
of “small changes” between them. To address this,
DiffusionLM (Li et al., 2022) maps the text se-
quence = € {0,1}%*Y, where each token is rep-
resented as a one-hot vector, into a continuous la-
tent space zg € RY*H  with sequence length L,
hidden dimension H, vocabulary size V. Hence,
zo ~ q(zo|x) is the embedding codebook of x.
The reverse process aims to generate zg, which
is then mapped back to . The diffusion model is
trained on the latent space with the objective

£total = Ediffusion + Erounding

= Ez [l Do(21) — 20|[’] + Ez, [~ log pg(|20)]
(6)

where L;ounding s the reconstruction loss mapping
from the latent to the discrete space.

To extend the model for conditional sequence
generation, a simple yet effective approach is to
incorporate the conditioning sequence c as an ad-
ditional input to the denoising network Dy(z;, c).
The target sequence length L can be inferred from
the conditioning context via a learned prior L ~
p(L|c). Aside from this conditioning, the diffusion
process remains unchanged as in Eq. 4.



3 Self-conditioning Diffusion Language
Model

Definition. The sampling target is denoted as
z to distinguish it from the training targets z;.
Subsequently, they are sampled from ¢(Z;| 2, Z5*)
and q(zs|z, 25), where 5% = Dy(z4, Z4%) and
z = Dg(z¢,2)) forany 0 < s < t < u <
k < 1. The initial guess 25 can be expressed as
2% = Dy(z1,0), where 0 implies uncondition. We
omit the source condition ¢ since the main focus is
on the self-conditioning.

Training procedure. The initial forward predic-
tion 2}, acts as an auxiliary condition, which is
then fed back into the denoising model. The z,-
prediction becomes 2}, = Dy(z¢,sg(2})), where
sg(-) denotes the stop gradient operation, ensuring
that gradients are not propagated back through 5.
The new training objective becomes:

ﬁsc - EZO,th0<ztv Sg(ﬁé)) - ZOHQ]' (7)

The training process alternates between optimizing
L dgiffusion and Lgc.

Speed up sampling. At each step, estimating 2},
followed by Eg double the inference time. There-
fore, previous works reused the previous step pre-
diction Z”;k to avoid additional inference overhead.

3.1 Challenges and Drawbacks

Distribution mismatch. Since ¢(Z|z¢, 2}") =
q(zs|zt, Z5) holds only if Zi* = Z!, this requires
the network to make no prediction error between
ZZ“ and Zé. However, 2@“ — Zé is practically non-
zero, so we claim that this prediction error needs to
be considered to bridge the training-inference gap.

To measure both local (per-step) and global (cu-
mulative) prediction error, we modify the sampling
process by substituting the previous estimate Z}"
with the current-step estimate 2 of Z;. Local es-
timation error (vertical direction) is quantified by
comparing the training distribution ¢(Z() with the
sampling distribution ¢(z() using BLEU scores
at t-step reverse process. Total estimation error
(horizontal direction) is assessed across different
numbers of denoising steps (NFEs). The results are
shown in Table 1.

The table shows that the original self-
conditioning leads to the trend: the smaller the
NFEs, the lower the BLEU scores, which implies
greater impact of local approximation error as ¢
decreases. These results reveal a training and sam-
pling empirical gap.

Number of denoising steps (NFEs)
5 20 50 100 1,000

Original 27.85 29.83 29.97 30.10 30.12
Correct 29.70 30.21 30.34 30.20 30.23
SupE  0.047 0.008 0.009 0.010 -

Model

Table 1: BLEU scores and average estimation gap (Vt)
on the original and corrected self-condition on baselines
trained with 7" = 2000, evaluated on IWSLT14 De-En.

3.2 Potential Benefits

Increasing the number of denoising steps de-
creases prediction error. In contrast to prior stud-
ies, which suggested that error could accumulate
across steps (Ning et al., 2023), we observed that
the estimation gap decreases as NFEs increase.
This implies that, given a sufficiently large num-
ber of denoising steps, the discretization errors be-
tween ¢ and u become small enough for the model
to estimate the correct self-condition, as shown in
the following theorem:

Theorem 1 Letty,ty,...,t, € [€,1] suchthatty <
< ... <t, =1 At := maxz‘e[17n_1]{|ti+1 —
ti|}. Assume Dy satisfies the Lipschitz condition:
there exists K > 0 such that for all t € [e, 1],
x, and y, we have ||Dg(z¢, @) — Dg(z¢,y)||2 <
K||x —y||2. Assume further that for all i € [0,n —
1], the denoising estimation at t; 1 has local error
uniformly bounded by O((t;41 — t;)P*1) with p >
1. Then, the supremum of local error expectation:

SupiN[O]};l—l] ||D6(zt“ 22i+1ti+2) - DG(Ztia 2;)“
= O((At)P). "

Theorem 1 suggests that the self-condition es-
timation can become arbitrarily accurate, as long
as the number of sampling steps I', or NFEs cor-
respondingly, are large enough (we provide the
full proof in Appendix A.2). Table 1 (third row)
shows that the empirical bound in Eq. 8 is smaller
as NFE increases, further confirm NFE = 20 is
sufficient to close the training-inference gap, while
performance gains diminished after NFE > 20.
Few match Many-step sampling. Table 1 (second
row) shows that the BLEU score of the corrected
self-condition slightly drop when NFE is reduced
from 20 to 5, compared to the original version. This
observation highlights the importance of a training
design that aligns with the inference process, en-
abling optimal inference efficiency.
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Figure 1: Overall pipeline of FastDiSS, including
Leakage-informed Noise Scheduler and Model-Aware
Noise Scaling.

4 FastDiSS

In this section, we introduce FastDiSS, a novel
modular training framework to improve text dif-
fusion training (Figure 1). In Section 4.1, we in-
troduce Leakage-informed Noise Scheduler (SNL)
that bridges the training-inference gap. In Sec-
tion 4.2, we interpret this design via robustness
analysis, revealing that the forward perturbation
resembles empirical inference behavior. In Sec-
tion 4.3, we propose Model-Aware Noise Scaling
(MANS), which dynamically adjusts token-level
noise based on model confidence, effectively tailor-
ing training difficulty to token-level denoising.

4.1 Leakage-informed Noise Scheduler (SNL)

Our objective is to address exposure bias arising
from the training-sampling mismatch, thereby im-
proving sampling efficiency. Our approach em-
phasizes an end-to-end training pipeline, without
modification to the sampling stage. Specifically,
we modify the forward process with a new leakage
schedule, with the implication that it captures the
inference estimation ng (u>1t):

Z; = at)\t20+0t\/1+’71526t. (9)

The two terms A; and ~; are linear functions,
defined as Ay = (Amin — Amax)t + Amax and
Y = (Ymin — Ymax)t + Ymax> Which also de-
crease/increase monotonically. This setup ensures
that the noising process for 2z is faster than z,
allowing it to approximate the denoising process
from z,, (u > t). We discuss this in more detail in
Section 4.2. The proposed training procedure for
SNL is presented in Algorithm 1.

In general, a closer approximation to z,, leads
to better performance. However, there is no uni-
versally optimal scheduling function, as respace

Algorithm 1 Training with Leakage-informed
Noise Scheduler
Input: Text sequence x, denoising network Dy

while not converged do

1:

2: zo ~ QQ(ZQ|£L')

3 t~Ule 1), e~ N(0,T)

4: Z;:Oét)\tZQ—FO't\/l""YtzE

5: 29 < DQ(Z;, 0)

6 1~ U0,1)

7. 2h < Dy(z, 2p) if2r < 0.5 else 2}
8: Liotal = Hzé - ZOH - 10gp9(.’13’Z0)

9: 0« 0— VG/Ctotal
10: end while

sampling (Nichol and Dhariwal, 2021) allows dif-
ferent choices for the number of denoising steps,
with each choice requiring a different set of opti-
mal hyperparameters. Essentially, we only align
the early phase (large ¢, see Figure 2), since im-
proving learning at smaller ¢ does not significantly
improve performance (Ye et al., 2023; Gao et al.,
2024).

4.2 Leakage Noise Robustness

In this section, we show that the modified training
process with SNL aligns with the inference process
by facilitating the estimation of z4¥ ~ Dy(z}).
We also verify that the linear design for \; and ~;
is reasonable. Akin to Section 3, we trained the
standard text diffusion model on the IWSLT14 De-
En dataset. At test time, we applied the original 20-
step denoising process to the validation set. Ateach
step t, we preserved the previous step’s estimation
zu* and also computed the corrected self-condition
2 = Dy(2+,0). We empirically found that z4¥ is
normally distributed around 25:
2"~ N (fu2p, 60 ), (10)
with mean vector f,,, and standard deviation vec-
tor &, (see Appendix B). From this indication, we
derive a side-by-side connection with z}. Consider-
ing at testing, suppose that 22 fully denoise z;, we

substitute 2} by ng as:

—u A

_ ~t Zp T Oyt€qy

Zt=tzy t o6 = p—————
Mot

~ 2
1 _ Qi Oyt

= Ot ng+0't 1+ 7Au €
ut Ot Mooyt

= atﬂutib"“ +o\/1+ ’A)’itev

+ 01€

(11
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Figure 2: Mean (top) and variance (bottom) ratio differ-
ences measured at different denoising steps. We man-
ually select hyperparameters of the scaling terms to fit
20-step sampling.

where Ay = 1/fuyy, ¥y = (t/01)(6ut/ ), and
e ~ N(0,1I) is obtained using the reparametriza-
tion trick on the terms containing €,, and €;. Since
ft,,; and &, vary linearly and independently across
dimensions, all operations remain element-wise.
Apparently, we observed a similar pattern between
Eq. 9 and 11, as well as the empirically estimation
between Figure 2 and 3. This indicates that SNL
explicitly informs the training process of ng.

In principle, empirical schedules {Xur, 40}y
could be derived from Eq.11. However, the depen-
dence on discretization steps, along with the linear
and dimension-wise variation of A,; and Yuts PrE-
cludes expression through a single global function.
To avoid complicated hyperparameter searches,
we instead select anchor points (Apyin, Amax) and
(Ymins Ymax) independently of feature space. This
approach enables an end-to-end training procedure
that preserves the original dynamics without incur-
ring additional training complexity.

4.3 Model-Aware Noise Scaling (MANS)

Due to the sparsity of the text embedding space,
continuous text diffusion models can easily recon-
struct clean embeddings from noises without learn-
ing the meaning of the whole sequence. This limits
the learning capability of continuous text diffusion
models, leading to underfitting. Previous research
commonly addressed this issue in two ways: (/)
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Figure 3: Inference mean ;\t (top) and variance 4, (bot-
tom) scaling factors of prediction mismatch in a pre-
trained network, plotted across timestep ¢ for randomly
selected embedding dimensions.

reformulating the forward process (through oy and
o) (Li et al., 2022) and (2) modifying the standard
uniform t-sampling distribution (Tang et al., 2023;
Ye et al., 2023; Chen et al., 2023a). These schedul-
ing strategies are designed to ensure that training
remains nontrivial, i.e., each noise level contributes
to generation quality. However, most existing meth-
ods assess importance by averaging training losses
across the entire batches, accidentally neglecting
high-impact tokens. Recent studies have attempted
to incorporate token-level awareness through man-
ually designed time sampling schemes (Wu et al.,
2023; Yuan et al., 2024).

We hypothesize that during the initial stages of
training, the model quickly learns to predict easy
tokens (common patterns) (Chen et al., 2023a; Ou
and Jian, 2024), while harder tokens (uncommon
patterns) remain underfit due to the model’s lim-
ited capacity to capture them early on. In the later
phases, as predictions for easy tokens become triv-
ial, the model tends to overfit on the minority to-
kens. This is reflected in marginal reductions in
loss, while the performance plateaus (Figure 4).
We refer to this as the memorization issues of deep
networks (Zhang et al., 2016; Bai et al., 2021).

To balance the learning contribution across to-
kens, we selectively apply higher noise levels to
easy tokens. Token importance is quantified based
on the model’s reconstruction confidence, mea-
sured by the likelihood P[Dy(zF) = k|, where zF



IWSLT14 WMT14 WMT16

Method ‘LB NB NFE‘DE%EN EN—DE DE—EN EN—DE RO—EN EN—RO
Transformer | 5 - | 3361 28.30 30.55 26.85 33.08 32.86
CMLM | 5 - | 2941 2434 2871 2322 3113 3126
DiffisionLM* | 5 10 20 | 29.11 2291  19.69 1741 3017  29.39
Diffomert |7 3 20 | 2801 2331 2530 2380 2937 290
DINOISER |5 10 20 | 31.61 2570 2905 2426 3122  31.08
DiffuSeq 110 2000| 29.43 i 27 - . i
SeqDiffuseq | 1 10 2000 3045 2212 2393 1976 . .
AR-Diffusion | 1 10 20 31.80 26.01 - - - -
FastDiSS |10 1 5 | 3246 2573 2954 2433 3155 3088
FastDiSS |10 2 5 | 3270 2602 2975 2469 3181 3090
FastDiSS |10 1 20 | 3281 2629 2947 2450 3189  31.37
FastDiSS |10 2 20 | 3288 2639 2983 2457 3199 3144

Table 2: Main results on Machine Translation. The best NAR results are bold and the second-best results are

underlined. I indicates results reported by Ye et al. (2023). Other results are from their original papers.

represents the noisy embedding of token k € [V/]
at time ¢, and V' denotes the vocabulary size. Based
on this evaluation metric, we propose a noise scal-
ing schedule that progressively increases the de-
noising difficulty of z;. Specifically, for each token
k that is fully reconstructed to match the ground
truth, we scale its noise level by incrementing the
corresponding time step ¢, according to a model-
aware scaling function 3(n) at iteration n,

0 _ {5(") t, if Dg(zf) =k,

. (12)
tr otherwise.

The S-function divides training into several phases,
and we apply a fixed scale for each phase. Es-
sentially, MANS leverages the instant feedback at
every training iteration to ensure effective training.

5 Experiments

5.1 Settings

Datasets. For Machine Translation, we follow pre-
vious works with benchmark datasets IWSLT14
(En-De/De-En) (Cettolo et al., 2014), WMT14 (En-
De/De-En), and WMT16 (En-Ro/Ro-En) (Bojar
et al., 2014). For Text Summarization, experi-
ments are conducted on Gigaword (Narayan et al.,
2018). For Question Paraphrase, experiments are
conducted on QQP from the community question
answering forum Quora. For Text Simplification,
we follow DiffuSeq (Gong et al., 2023a) and con-
duct experiments on Wiki-Auto.

Evaluation Metrics. We report the SacreBLEU
for Machine Translation, following Ye et al.
(2023); Gong et al. (2023a). We follow Qi et al.
(2020) and report the Rouge-1/2/L for the sum-
marization task. For Question Paraphrase and

Text Simplification, we follow DiffuSeq to em-
ploy sentence-level BLEU under the tokenizer of
bert-base-uncased, Rouge-L, and BERTScore
(Zhang et al., 2019) for quality assessment, and
sentence-level self-BLEU (Zhu et al., 2018) for
diversity assessment.

Baselines. We include three groups of base-
lines: (1) The autoregressive models with Trans-
former (AR) (Vaswani et al., 2017), GRU with at-
tention, and the fine-tuned GPT2-large; (2) The
non-autoregressive model (NAR) with CMLM
(Ghazvininejad et al., 2019) and LevT (Gu et al.,
2019); (3) Continuous diffusion-based language
models (Continuous DLM) include DiffusionLM
(Li et al., 2022), Difformer (Gao et al., 2024), DI-
NOISER (Ye et al., 2023), DiffuSeq (Gong et al.,
2023a), SeqDiffuSeq (Yuan et al., 2024), and AR-
Diffusion (Wu et al., 2023). For Text Summariza-
tion, we also include LSTM (Greff et al., 2016) for
AR, NAG-BERT (Su et al., 2021) for NAR. For
Question Paraphrase, we include Discrete DLM
with RDM (Zheng et al., 2023).

Training and Inference. During training, we
adopt sqrt noise schedule (Li et al., 2022) with
T = 2000 diffusion steps. The anchor points
(Amins Amax) and (Ymin, Ymin) are (0.9,0.95) and
(0.15,0.35), respectively. MANS is randomly ap-
plied with 50% probability to ensure that the model
experiences noise at every level, including low-
level noise. The detailed scaling settings are speci-
fied in Appendix E.1. Our implementation is based
on Difformer, using fairseq, with Transformer
and sampling configurations from prior work, with
NFE = 2,5, 20. For every task, the vocabulary is
constructed based on Byte Pair Encoding (BPE)
(Kudo and Richardson, 2018). Further details are



QQpP Wiki-Auto
Method LB NB NFE|p; BUt Rouge-Lt BertScorel | BLEUT Rouge-L1 BertScorel
Transformer? - - - 27.22 57.48 83.81 26.93 49.07 73.81
GPT2-large FT! | - - - | 2059  54.15 83.63 | 2693  5Ll11 78.82
CMLM* S - 10| 2178 5612 : 3526 5846 81.83
LevT? - - - | 268 5795 8344 | 2052 44.02 72.54
Difformer* 110 20 | 2795  59.4 8297 | 3478  54.55 78.86
DINOISER | 1 10 20 | 1949  53.16 8036 | 2388 4821 67.87
DiffuSeq 110 2000| 2413 5880 83.65 | 3622 5849 81.26
SeqDiffuSeq | 1 10 2000| 24.34 : 84.00 | 37.12 : 82.14
FastDiS$ 10 1 2 | 2794 5847 8181 | 4023  59.10 81.60
FastDiSS 10 1 5 | 2888  59.34 8258 | 4090  59.64 82.16
FastDiS$ 10 1 20| 2832 5888 8262 | 40.81  59.64 82.17

Table 3: Main results on QQP and Wiki-Auto. The best NAR results are bold and the second-best results are
underlined. I, X, and { indicate results reported by Gong et al. (2023a), Tang et al. (2023), and Chuang et al. (2024),

respectively. * indicates reproduced results. Other results are from their original papers.

Rouge-1 Rouge-2 Rouge-L

Method LB NB NFE

(1) (1) 1)
LSTM | 5 - | 342 16.0 31.8
CMLM - - - 344 15.6 32.2
NAG-BERT | - - - 35.1 16.5 333
Difformer* | 5 2 20 349 17.0 32.4
DiffuSeq 1 10 2000, 31.2 12.2 29.2
SegDiffuSeq| 1 10 2000| 31.9 12.4 29.2
FastDiSS 5 2 5 34.9 16.9 325
FastDiSS 5 2 20 353 17.3 32.8

Table 4: Main results on Text Summarization. The best
NAR results are bold and the second-best results are
underlined. Baseline results are from Difformer (Gao
et al., 2024). * indicates reproduced results.

described in Appendix E. We also apply Minimum
Bayes Risk (MBR) (Kumar and Byrne, 2004) fol-
lowing previous works (Li et al., 2022; Gong et al.,
2023a; Dieleman et al., 2022) with different length
beam (LB) and noise beam (NB).

5.2 Main Results

Overall performance. The results of different
datasets are shown in Table 2, 3, and 4. FastDiSS
outperforms both DLM and NAR baselines on most
datasets with different choices of beam size and
NFEs, and even performs comparably with AR. In
some cases, such as in WMT14, the 5-step even sur-
passes 20-step sampling, demonstrating that SNL
effectively bridges the gap between few and many-
step sampling. With SNL training, the sampling
speed is 4 x faster than DINOISER and Difformer.
Training Convergence. Figure 4 compares the
validation loss during training when not applying
scaling (1.0), applying fixed scaling (2.0), and adap-
tive scaling. Fixed scaling does not improve per-

1.0 30
24
0.8
0 185
20.6 4
S 123
0.4 — 10
2.0 6
0.2 —— Adaptive
0 50 100 150 200 250

Training Iteration (thousand)

Figure 4: Loss curve and BLEU score follow the train-
ing iterations. The dashed line represents the estimated
BLEU score, with colors corresponding to the loss
curves for each respective setting.

formance, while adaptive scaling continues to im-
prove performance and reduce the loss. The result
confirms that gradually increasing the noise scale
allows the model to converge better, even with high
noise levels in the late training phase.
Accelerated sampling comparison. We compare
our method with DiffuSeq-v2 (Gong et al., 2023b)
to showcase the setting in a practical application.
Figure 6 shows that FastDiSS dominates DiffuSeq-
v2 at every NFEs, with optimal performance achiev-
ing at low NFE values.

Sampling Diversity. Figure 5 shows the diversity
and quality correlations. FastDiSS-2NFE matches
the performance of the best baseline, Difformer-
20NFE, with only 2 sampling steps. Increasing
the number of denoising steps trades the inference
speed for quality. FastDiss-bNFE is slower than
FastDiss-2NFE but has significantly higher BLEU
and about the same Self-BLEU scores.

5.3 Ablation Studies

Effect of different components. As can be seen
from Table 5, both MANS and SNL enhance the
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Figure 5: Diversity and quality comparison between
baseline and FastDiSS. The results are from DiffuSeq
(Gong et al., 2023a).
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Figure 6: Generation speed and quality with different
NFE. The speed is averaged over 3 runs.

SNL MANS | NFE=5 NFE=20 ANFE

27.98 29.78 1.80

v 29.64  30.36 0.72
v 30.77 31.49 0.72

v v 31.17 31.66 0.49

Table 5: Ablation on each component of the proposed
methods. Results are reported on IWSLT14 De-En with
LB=2,NB =2.

performance. Notably, combining MANS with
SNL narrows the performance gap between 5 and
20 steps.

Comparison between different numbers of de-
noising steps. Figure 7 illustrates the effectiveness
of our proposed method with few-step denoising.
Our method outperforms the 20-step baseline af-
ter only 3 sampling steps, yielding ~ 7x speedup.
Additionally, our sampling method converges after
only 7 steps, at a significantly higher BLEU score
than the 20-step baseline.

Other noise schedulers. Table 6 demonstrates the
performance on popular noise schedules, includ-
ing linear (Ho et al., 2020) and cosine (Nichol
and Dhariwal, 2021). The 1inear schedule is less
sensitive to the NFE value. Our method strongly
boosts the score in the few-step settings.
Parameters of the noise scaling terms ; and \,.
In Table 7, we show the performance with different

32
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Figure 7: Performance difference between the origi-
nal and our proposed method. Results are reported on
IWSLT14 De-En with the same seed.

Noise Schedule NFE=2 NFE=5 NFE=20

L Orig. 2650 27.17  27.54
mear  ours  26.84 27.52  27.54

Cosi Orig. 2543  27.05  27.57
OSINC  Ours 2732 2777 2794

Table 6: BLEU Score on QQP with different noise
schedules. Results are reported with LB = 2, NB = 1.

Steps 5 20 100 Fixed
A (0.60,0.85) (0.90,0.95) (0.98,0.99) 0.85
~y (0.25,0.90) (0.15,0.35) (0.05,0.15) 0.50

BLEU 2548 26.35 25770  25.84
R-L 57.29 57.47 56.82 57.18

Table 7: Performance on QQP with different variants
of SNL. Results are reported with NFE = 2, LB = 5,
NB =1.

variants of SNL, including both dynamics and fixed
schedules, where we set A\; and -4 to be constant,
instead of a linear-time function. The results indi-
cate that the best performance lies in the leakage-
informed level at 20-step denoising. Hence, we use
this setting for the remaining benchmarks.

6 Conclusion

In this paper, we propose FastDiSS, an improved
training framework for diffusion-based language
models that (1) addresses the training—inference
mismatch inherent in self-conditioning mecha-
nisms, while (2) accelerates convergence in the
later training phases, which are typically slow and
difficult to optimize. Experimental results on vari-
ous benchmarks indicate that the training is more
effective and the gap between few and many-step
decoding is bridged. While we believe that our
work has a substantial impact on the real-world ap-
plication of diffusion language models, we encour-
age a better method for aligning self-conditioning
to approach the performance of autoregressive mod-
els. This study offers a promising perspective on
the development of few-step language models.



Limitation

In this study, since we aim to align training to infer-
ence, the proposed techniques are constrained by
the goodness of the previous self-conditioning pre-
diction. Hence, it would be more promising if we
approached the problem from the opposite direc-
tion, as refining the prediction to be more accurate
would significantly boost the performance. On the
other hand, our current noise scaling strategy relies
on predefined values at each training phase, which
may be suboptimal when earlier scaling stages are
insufficiently trained. A more adaptive scaling
function could further enhance performance.
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A Theoretical Details
A.1 Derivation of the posterior distribution
q(2s| 21, z0)

Since the forward process is a Markov chain, for
t > s, we have q(zs, 2¢|z0) = q(2s|20)q(zt|25).
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Following the Bayes rule, the posterior equals to
q(zt|zs)q(zs|z0)/q(z|z0). Given that every term
is a Gaussian likelihood (Eq. 1 and 2), we plug
this into the posterior, which yields:

(25|21, 20) = N (zs; fu(zt, 20), 521) (13)
2

N oy o2 s
where fi(z¢,20) = — 52t +as—520 (14)
50 Oy
- Os
and Ot = —Oy|s- (15)
Ot

A.2 Proof of Theorem 1

Because Dy(z¢,, -) is K-Lipschitz, we have

—_tiv1t; ~t;
iN[Oﬂi_”HDG(wazaJrl 7L2) - D9(zthgl)”
<K E Zti+1tz‘+2 N éti
o z’w[(),n—l]” 0 ol

Furthermore, from our assumption that the local
error is bounded by O((t;41 — t;)PT!), which is
partially observed from the empirical estimation in
Eq. 10, we have

_ti+1t; at;
K B A =5
() K &
< 20Y Of(ti - )
1=0
n—I1
<Y O((tigr — )P
1=0
n—1
= (tig1 — t)O((tix1 — t:)P)
1=0
n—1
< O((AP) » (tiv1 —ti)
1=0
= O((At)?)(tn — to)
< O((At)P)(1 — )
< O((At)P

where (7) holds due to the uniform sampling distri-
bution of £. Our proof builds on the error bounds
for the ODE Solver in Consistency Models (Song
et al., 2023), but it is different since we provide the
total local error bounds rather than targeting the
empirical approximation bounds.

B Estimate the Self-condition Gaussian
Distribution Error

In this section, we conduct experiments on
IWSLT14 De-En to empirically show that ng ~

N oAt oA

N (f1,25, 621) (Sec. 4.2), i.e., the prediction error
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of the previous step is nearly Gaussian distributed
around current predictions. To do so, we need
to prove that, for each ¢ and each word embed-
ding dimension i € {1,..., H}, the dimension-
wise error (€}) follows €. ~ N(0, (61)?), where
€ = ng — f1,25. To test this hypothesis, we uni-
formly select 20 values of ¢ in [e, 1] using a 0.05
discretization step size, then perform a denoising
process through these selected ¢, then record the
value of 2, and z} in each ¢. Then, for each ¢,
we use 1,000 sentences z € D and flatten every
token in each sentence to compute the dimension
independent mean i} and standard deviation &} of
the error, which we use to standardize the error
Spity

Ot
Estimating /i can be considered as solving a linear
regression problem, using ordinary least squares

2eD Zu?i

(OLS): iy = S8

z€D\*t
culating the standard deviation of the residuals:
6 = \/‘%‘ > .ep(Zh — [iz])?. Then, for each
7, we use 50 randomly selected values and the
Shapiro—Wilk test (Shapiro and Wilk, 1965) to ver-
ify that they follow a standard normal distribution.
The confidence level is set at 95% and we reject the
null hypothesis if the p-value is less than 0.05. The
null hypothesis was rejected only in a small minor-
ity of cases, confirming our assumption. Figure 8
shows a few histogram examples for €; computed
at different dimensions.

values for all the dimension € (i.e., € =

. For 6%, it is simply cal-

C Related Works

Non-autoregressive Language Generation. Non-
autoregressive (NAR) models, introduced by Gu
et al. (2017), aim to accelerate text generation com-
pared to autoregressive counterparts. To improve
performance, subsequent works adopt iterative re-
finement strategies (Gu et al., 2019; Ghazvinine-
jad et al., 2019). However, due to the indepen-
dence assumption between tokens, NAR models
often struggle with multi-modality. Efforts to miti-
gate this include structured prediction techniques
(Zhang et al., 2022; Ran et al., 2020; Huang et al.,
2022), data selection through reference rephrasing
(Shao et al., 2022, 2023), and model distillation to
enhance learning (Guo et al., 2021; Qi et al., 2022;
Liu et al., 2023).

Diffusion Models for Language Generation.
Text diffusion tackle multi-modality in text gen-
eration and fall into two main categories: contin-
uous and discrete. In continuous models, tokens
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Figure 8: The empirical distribution of ¢! with different random values of ¢ and i.

are mapped to latent embeddings where diffusion
operates. DiffusionL.M (Li et al., 2022) pioneered
this approach, enabling conditional generation with
a Transformer-based encoder-decoder architecture.
Subsequent works, Difformer (Gao et al., 2024) and
DINOISER (Ye et al., 2023), improve generation
quality by addressing representation sparsity, while
SegDiffuSeq (Yuan et al., 2024), AR-Diffusion
(Wu et al., 2023), Masked-Diffuse (Chen et al.,
2023a)) introduce token-dependent noise schedules.
DiffuSeq (Gong et al., 2023a) adopts a decoder-
only design for better LLM alignment. In contrast,
discrete models define transitions over token space,
with early works like D3PM (Austin et al., 2021)
and Analog-bits (Chen et al., 2023b) define dis-
crete diffusion via absorbing or uniform transitions,
while more recent methods (e.g., MDLM (Sahoo
et al., 2024), RDM (Zheng et al., 2023)) adopt
masking strategies that have been scaling to LLMs
(Arriola et al., 2025).

Accelerating the Diffusion Language Model.
While much of the existing literature focuses on
improving generation quality and model scalability,
fewer studies address the challenge of inference
efficiency. In image generation, methods such as
DDIM (Song et al., 2020) and Progressive Dis-
tillation have demonstrated success in reducing
the number of denoising steps. Advances in ODE
solvers (Lu et al., 2022a,b) and second-order tra-
jectory approximations like EDM (Karras et al.,
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2022) have further enhanced the efficiency of the
reverse process. More recently, Consistency Mod-
els (Song et al., 2023; Song and Dhariwal, 2023)
enable high-quality generation with just a single
sampling step. In the context of text, DiffuSeq-v2
(Gong et al., 2023b) improves inference by inte-
grating continuous and masked denoising, while
Tang et al. (2023) address training—inference dis-
crepancies to enhance generation speed. Our work
advances this line by promoting fast, adaptable,
and few-step generation, aiming to make diffusion-
based language models more viable for real-world
applications.

D Comparison with Other Methods

SeqDiffuSeq introduces adaptive token-level noise
scaling based on positional importance, assuming
that token position, rather than token identity, de-
termines difficulty. In contrast, Masked-Diffuse
(Chen et al., 2023a) estimates token importance via
linguistic rarity. Our approach differs by directly
leveraging model confidence to assess token dif-
ficulty, with the hypothesis that models perceive
language differently from humans.

Tang et al. (2023) also addresses exposure bias
in text diffusion. Although their method shares con-
ceptual similarities with ours, it does not incorpo-
rate self-conditioning. Moreover, their noise-aware
strategy, Distance Penalty, applies a fixed penalty



Configurations WMT14 WMT16 IWSLT14 Gigaword QQpP Wiki-Auto
Split

Training 4,500,966 608,319 160,215 3,803,957 144,715 677,751
Validation 3,000 1,999 7,282 189,651 2,048 2,048
Test 3,003 1,999 6,750 1,951 2,500 5,000
Preprocess

BPE 40,000 30,000 10,000 60,000 15,000 40,000
Vocab 40,624 34,976 15,480 56,392 15,136 45,376
Architecture

dmodel 512 512 512 512 768 768

dffn 2048 2048 1024 2048 3072 3072
Heads 8 8 4 8 12 12
Training

GPUs 2 2 2 2 2 4
Steps 600K 150K 300K 300K 50K 30K
Tokens/GPU 32K 32K 4K 32K 4K 8K
Phase [100K,200K,600K] [S0K,100K,150K] [100K,200K,300K] [100K,200K,300K] [10K,20K,30K] [5K,10K,30K]
Scaling [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,3.0,4.0] [2.0,4.0,8.0]

Table 8: The dataset details, model architectures, and hyperparameters used in our experiments.

across all steps, which, similar to the fixed schedule
demonstrated in Table 7, is sub-optimal compared
to our adaptive linear scheduling.

E Experimental Settings

For data preprocessing, we follow the instruc-
tions in fairseq for IWSLT14 and use the pre-
processed data by Fully-NAT (Gu and Kong, 2021)
for WMT14 and WMT16'. For Wiki and QQP,
we use preprocessed data provided by DiffuSeq?.
For Gigaword, we use preprocessed data provided
by huggingf ace’. These 3 datasets are tokenized
with byte-pair encoding (BPE) and vocabularized
with fairseq-preprocess. The BPEs and vocab-
ulary size are specified in Table 8.

All our implementations are based on
Transformer-base (Vaswani et al., 2017) for all
datasets with 6 Encoder and 6 Decoder layers.
The number of attention heads, model hidden
dimension size, and other hyperparameters are
specified in Table 8. The embedding dimension
for the diffusion model is 128. The anchor points
(Amins Amax) and (Ymin, Ymin) are designed to
fit 20-step sampling, particularly (0.9,0.95) and
(0.15,0.35), respectively.

For training, all experiments are trained with
fp16. We used inverse-sqrt learning rates with
10,000 warmup steps, [7max = 5 x 1074 for every
benchmark except Quasar-T with lrp,, = 3 X
10~%, norm clipping 1.0, dropout 0.1, and label

"https://github.com/shawnkx/Fully-NAT
*https://github.com/Shark-NLP/DiffuSeq
3https://huggingface.co/datasets/Harvard/gigaword
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smoothing 0.1.

All training is conducted on 4 NVIDIA H100
GPUs. It takes approximately 8.5 hours for the
WMT and Gigaword datasets, and around 4 hours
on average for the other datasets.

During inference, the reverse process remains as
in Eq. 4. The self-conditioning techniques reuse
previous estimation, similar to previous works. We
follow previous work (Li et al., 2022; Gong et al.,
2023a; Dieleman et al., 2022) and apply Minimum
Bayes-Risk (MBR) decoding (Kumar and Byrne,
2004). We mainly vary the length beam size since
it often yields better results.

E.1 MANS Settings

We divide the training process into 3 uniform
phases, we gradually increase the scaling value
throughout the training process. The MANS phases
and corresponding scaling values are specified
in Table 8, for example, in WMT14, we apply
B(n) 2.0 for n < 100K, B(n) 3.0 for
100K < n < 200K, and S(n) = 4.0 other-
wise. Empirically, we observe that this modifi-
cation slightly increases the overall training time
by under 5%.

F On the Effectiveness of Minimum
Bayesian Risk (MBR) Decoding

MBR decoding is known to enhance the perfor-
mance of text diffusion models by improving both
output quality and diversity. As shown in Table 2,
increasing either the length beam or the noise beam
leads to higher BLEU scores. In Figure 9, we con-



33.0

~- 30.30 31.02 31.26 31.32
32.5
% n 32.0
o
S
=) -31.5
g2
-
-31.0
n
—
-30.5
2 5 10 15
Noise Beam

Figure 9: SacreBLEU score on IWSLT14 De-En with
various length beams and noise beams.

duct a more thorough evaluation to determine how
far BLEU can be improved across different search
space configurations. The results indicate that scal-
ing the length beam size (vertical axis) yields faster
performance gains than scaling the noise beam size
(horizontal axis). This is likely due to our method’s
ability to reduce faulty predictions during inference.
Search with a larger length beam allows the model
to better handle errors in length prediction and facil-
itates exploration of more diverse output sequences.
While increasing the total beam size consistently
improves performance, the most efficient approach
is to first scale the length beam and only minimally
increase the noise beam.

Unlike DINOISER, which uses high noise levels
solely to leverage source conditioning, potentially
limiting diversity, FastDiSS incorporates noise at
every step. This allows it to maintain diversity with-
out suffering from the marginal distribution predic-
tion issue. Overall, FastDiSS delivers high-quality
and diverse outputs while avoiding significant com-
putational overhead.

G Qualitative Results

To qualitatively examine instance-level generation
dynamics, we provide several case studies in Ta-
ble 9. In the first example, the baseline fails to
leverage the previously generated sequence, result-
ing in grammatical artifacts (e.g., “is” should be
“are”). In contrast, our method is aware of the faulty
prediction and is able to correct it in the following
step, demonstrating the effectiveness of SNL. In
the second example, the baseline largely copies the
source sequence, leading to lower output diversity.
By contrast, the improved learning process enables
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the model to generate a more fluent and accurate
hypothesis that better aligns with the reference,
highlighting the strengths of MANS training.



Wiki-Auto QQpP
Example 1

Source He also twice participated in the Which is best gadget?
Summer Olympics, starting in 1996.

Target He was also in the 1996 Which is your best gadget?
Summer Olympics.

Step Baseline

2 He also twice in the Summer Summer Which is the best gadgets?
Olympics 1996 Summer 1996.

1 He also twice in the Summer Summer Which is the best gadgets?
in the in 1996.

Step FastDiSS

2 He also twice twice in in Summer What are best best gadgets?
Summer Olympics, starting in 1996.

1 He also twice twice in the Summer What are the best gadgets?
Olympics, starting in 1996.

Example 2

Source Whedon served as an executive producer, | Can we create free energy?
along with Tim Minear.

Target Whedon was the executive producer, How do we make free energy?
along with Tim Minear.

Step Baseline

2 Whedon was an an executive producer Can I create free energy?
with Tim Minear.

1 He was an an executive producer Can I create free energy?
with Tim Minear.

Step FastDiSS

2 Whedon was an executive producer How can I create a free energy?
with Tim Minear.

1 He was an executive producer How can I make a free energy?

with Tim Minear.
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Table 9: Wiki-Auto and QQP Generation with NFE = 2, using MBR decoding with LB = 5 and NB = 1.
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