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ABSTRACT

The Traveling Salesman Problem (TSP) is a fundamental challenge in combina-
torial optimization, known for its NP-hard complexity. Reinforcement Learning
(RL) has proven to be effective in managing larger and more complex TSP in-
stances, yet it encounters challenges such as training instability and necessity for
a substantial amount of training resources. Diffusion models, known for iteratively
refining noisy inputs to generate high-quality solutions, offer scalability and ex-
ploration capabilities for TSP but may struggle with optimality in complex cases
and require large, resource-intensive training datasets. To address these limita-
tions, we propose DDRL (Diffusion-Driven Reinforcement Learning), which in-
tegrates diffusion models with RL. DDRL employs a latent vector to generate an
adjacency matrix, merging image and graph learning within a unified RL frame-
work. By utilizing a pre-trained diffusion model as a prior, DDRL exhibits strong
scalability and enhanced convergence stability. We also provide theoretical anal-
ysis that training DDRL aligns with the diffusion policy gradient in the process of
solving the TSP, demonstrating its effectiveness. Additionally, we introduce novel
constraint datasets—obstacle, path, and cluster constraints—to evaluate DDRL’s
generalization capabilities. We demonstrate that DDRL offers a robust solution
that outperforms existing methods in both basic and constrained TSP problems.
The code used for our experiments is available anonymously for review1.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a classical problem in combinatorial optimization and
theoretical computer science. Given a set of cities and a distance function that determines the dis-
tance between each pair of cities, the objective is to find an order in which to visit these cities that
minimizes the total tour length. Despite its straightforward definition, the TSP is renowned for its
computational complexity, classified as NP-hard, which has led to extensive research in developing
algorithms and optimization methods (Cheikhrouhou & Khoufi, 2021).

In recent years, machine learning techniques, including deep neural networks, have gained atten-
tion for addressing complex optimization problems like the TSP. Reinforcement Learning (RL) has
shown promise in solving sequential decision-making tasks Sutton & Barto (2018), with efforts to
combine RL with models like Graph Neural Networks (GNNs) (Kool et al., 2018) and Transform-
ers (Bresson & Laurent, 2021) to enhance performance. However, these approaches have limited
effectiveness in handling larger and more complex TSP instances, particularly in terms of autore-
gressive decoding and generalization. Additionally, RL models often suffer from instability, requir-
ing extensive training to achieve optimal solutions (Bresson & Laurent, 2021), highlighting the need
for further refinement to tackle more challenging TSP cases.

Diffusion models, a type of generative models, iteratively refine noisy inputs to produce high-quality
solutions (Ho et al., 2020). These models are effective in exploring diverse solution spaces, avoiding
local minima, and consistently generating near-optimal solutions across TSP instances of varying
sizes. Their iterative process provides scalability and robustness. However, diffusion models have

1Anonymous code repository: https://anonymous.4open.science/r/diffusion_rl_tsp
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Figure 1: Comparison of traditional TSP methods and our proposed DDRL framework. Tradi-
tional methods (left) face two main limitations: they rely on autoregressive inference, which leads
to increasing computational costs as the number of cities grows, and they struggle to effectively
handle constraints, such as avoiding restricted zones shown in the figure. In contrast, DDRL (right)
generates solutions at the image level, making inferences independent of the number of cities, and
effectively handles constraints by leveraging visual features. By integrating both the graph and im-
age domains, DDRL enhances both efficiency and solution quality.

limitations—they may struggle to find optimal solutions in complex cases, rely on large training
datasets, and exhibit reduced performance when applied to TSP instances that differ significantly
from the training data.

To address the limitations of previous approaches, we propose a new framework called Diffusion-
Driven Reinforcement Learning (DDRL), which leverages the complementary relationship between
images and graphs to solve the TSP. DDRL reinterprets the problem in the image domain by inte-
grating graph structure-based RL with the connection between the Markov Decision Process (MDP)
and the diffusion process. This approach reduces vulnerability to scalability issues from increasing
instance sizes, as it maps the problem to an image space independent of the number of nodes. Fur-
thermore, we utilize pre-trained diffusion models on image data as prior knowledge, significantly
enhancing the convergence stability of the learning process. The integration of RL with diffusion
models further improves resource efficiency, reduces data dependency, and increases scalability and
robustness, enabling more efficient and adaptive solutions to complex optimization problems. As
shown in Figure 1, traditional graph-only approaches rely on autoregressive inference, leading to
higher computational costs as the number of cities increases and difficulty in handling constraints
such as restricted zones. In contrast, DDRL integrates both graph and image levels, making it in-
dependent of the number of cities while effectively addressing constraints through the use of visual
features. This combined approach leads to enhanced efficiency and solution quality.

We validate the effectiveness of our proposed methodology through extensive experiments, com-
paring it with state-of-the-art baseline models. We assess its scalability across a diverse range of
instances, from small sets to large-scale problems. In addition, we evaluate its performance on three
hand-conditioned visually evident constraint datasets (Obstacle, Path, and Cluster) featuring novel
constraints. These datasets, which are visually intuitive and simple, are very challenging for con-
ventional methods. The results indicate that DDRL not only provides more accurate solutions but
also achieves more efficient and robust learning than existing approaches.

The main contributions of this research can be summarized as follows:

• To the best of our knowledge, we first integrate a diffusion model into the RL approach,
leveraging visual capabilities to solve the TSP problem.

• We demonstrate the theoretical basis of DDRL and its robustness and scalability across a
range of problem sizes.

• We introduce novel, visually intuitive constraint datasets, showing that DDRL outperforms
a wide range of TSP algorithms, excelling both in standard TSP settings and in handling
complex constraint conditions.

2
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Figure 2: Overall process of the proposed method integrating diffusion models with RL for solving
the TSP. It illustrates the integration of a learned latent vector, prior knowledge from a pre-trained
diffusion model, and the RL framework to achieve high-quality TSP solutions. The process starts
with random noise combined with location information to form the initial latent image xT . This
image is iteratively refined through a sequence of denoising steps, guided by the pre-trained diffusion
model ϵprior, until it transforms into the final generated image x0. A reward function, based on the
total tour length derived from the generated image, is then used to optimize the latent vector ϕ over
multiple epochs.

2 RELATED WORK

2.1 TSP

The TSP involves finding the shortest route that visits a set of cities exactly once before returning to
the start. Exact methods, such as Dynamic Programming (Held & Karp, 1962) and Integer Program-
ming, guarantee optimal solutions but become infeasible for large instances. Heuristic approaches,
including the Christofides Algorithm (Christofides, 2022), 2-Opt (Lin, 1965), and LKH-3 (Hels-
gaun, 2017), trade optimality for efficiency but still require significant computational resources as
the problem size increases. In other words, heuristic methods face performance limitations and be-
come excessively slow as the number of cities, N , increases. On the other hand, our DDRL reduces
training time and enhances performance by integrating graph and visual information, making it more
scalable to larger instances of TSP.

2.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a framework for solving sequential
decision-making problems through the optimization of a policy using MDPs (Puterman, 1990). Re-
cent advancements in RL have improved its application to TSP by incorporating models like Graph
Neural Networks (GNNs) (Kool et al., 2018) and Transformers Bresson & Laurent (2021). How-
ever, RL faces challenges such as instability during training and the need for substantial training
resources (Bresson & Laurent, 2021). DDRL addresses these challenges by stabilizing convergence
and enhancing efficiency through the use of pre-trained diffusion models as prior knowledge.

2.3 DIFFUSION MODELS

Diffusion models, such as Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and
Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020), excel at generating high-quality

3
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outputs by iteratively refining noisy inputs. Applied to combinatorial optimization problems like
TSP, diffusion models improve solution quality by leveraging iterative refinement processes (Sun
& Yang, 2024), although they often require extensive labeled datasets and face trade-offs between
efficiency and solution accuracy. In this work, we integrate RL with pre-trained diffusion models,
like Stable Diffusion (Rombach et al., 2022), to improve stability and generalization in TSP solutions
while reducing reliance on large training datasets.

3 METHOD

In this section, we present a methodology based on RL and diffusion models to solve the TSP.
Section 3.1 outlines the problem definition as a multi-step MDP. Section 3.2 details the structure
and function of the policy network. Finally, Section 3.3 describes the DDRL optimization process.
The entire workflow is visualized in Figure 2.

3.1 MULTI-STEP MDP FOR SOLVING TSP PROBLEM

The denoising diffusion process is reformulated as a multi-step MDP in RL (Black et al., 2023;
Zhang et al., 2024). The following definitions clarify the connection between these two distinct
approaches. As the time step τ in the MDP increases, the denoising step t decreases, where τ and
t are related by the equation τ = T − t. The crucial elements for defining an MDP are the state,
action, and policy, specified as follows:

sτ := (t, xt)

aτ := xt−1

π(aτ |sτ ) := pϕ(xt−1|xt).

Here, the action in RL at time step τ is defined as the one-step denoised image xt−1 in the diffusion
process. This definition allows the policy π in the MDP to represent the probability of a denoising
step, parameterized by ϕ ∈ RN×N . The matrix ϕ is a latent vector normalized (non-diagonal, sym-
metric, etc.) to obtain an adjacency matrix. This adoption of ϕ enables the estimation of paths and
computation of TSP rewards in terms of the graph structure. The sampling process, which generates
the sampled data x0 from pure noise xT , consists of a sequence of denoising steps. Namely, the pol-
icy at time step τ corresponds to the generative process at denoising step t, transforming the image
xt into the one-step refined image xt−1. Inspired by DDIM (Song et al., 2020), which introduces
a non-Markovian framework conditioned on x0, we adopt this non-Markovian setting and estimate
x0 using f(ϕ). This conditioning modifies the denoising function as follows:

pϕ(xt−1|xt) :=

{
N (f(ϕ), σ2

t I) if t = 1

qσ(xt−1|xt, f(ϕ)) otherwise

where qσ(xt−1|xt, f(ϕ)) = N (µ(xt, ϕ), σ
2
t I). (1)

In this setting, σ2
t denotes the variance of the noise at time step t. The function f , in the same

manner as Graikos et al. (2022) encodes image, deterministically maps a latent vector ϕ to a refined
image which also serves as an estimate of x0. This approach is valid for two reasons: First, the
upscaling process preserves the probability distribution of the adjacency matrix, effectively translat-
ing the graph structure into an image domain. Second, the mapping of this image-form probability
distribution corresponds to the most probable adjacency matrix state, thus predicting x0.

µ(xt, ϕ) =
√
αt−1f(ϕ) +

√
1− αt−1 − σ2

t ϵprior(xt),

where αt is a noise schedule parameter at time step t that controls the amount of noise added or
removed. ϵprior is a pre-trained diffusion model constructed in a deterministic way. The final
denoising process is as follows:

xt−1 =
√
αt−1f(ϕ) +

√
1− αt−1 − σ2

t ϵprior(xt) + σtϵ, (2)

where ϵ is sampled from N (0, I) and the pre-trained diffusion model ϵprior (referred to as prior
knowledge) guides the denoising process. This prior knowledge, trained on TSP labeled data, trans-
forms a noisy image xT with random city connections into an image x0 with optimal connections.

4
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Unlike typical fine-tuning, the prior knowledge remains fixed during RL training, providing consis-
tent directional guidance for path connections.

Given the inherent complexity of combinatorial optimization problems, such as the TSP, utilizing
a multi-step MDP framework that decomposes the problem into smaller sub-tasks is more advan-
tageous than attempting to solve it with a single action in a one-step MDP. Accordingly, this paper
employs the multi-step MDP approach as its primary methodology.

3.2 POLICY GRADIENT AS A DENOISING PROCESS

Designing an appropriate reward to solve combinatorial problems in image domains presents a sig-
nificant challenge, as detecting paths within the denoising process is demanding. To overcome this,
we introduce the latent vector ϕ at the graph level, where edge values are more manageable. A
reward signal r(ϕ), defined at time step τ = T − 1, is calculated as the negative total length of the
tour derived from ϕ.

Based on this calculation, the reward R(sτ , aτ ) is defined as the reward signal r when the time step
τ = T − 1 in RL nearly reaches the final time step, while the diffusion step t approaches one as
follows:

R(sτ , aτ ) :=

{
r(ϕ) if τ = T − 1

0 otherwise.
(3)

The definition is straightforward, as the tour is calculated at the stage when the image has been
refined through T times. The return in RL, which is the sum of future rewards in a simple way,
precisely corresponds to r(ϕ). This correspondence implies that solving the multi-step MDP is
equivalent to maximizing an objective function. To train the diffusion model within the RL frame-
work, we define the objective function based on the diffusion model’s sampling process. Using the
sampling distribution pϕ(xt), we set the RL objective function to maximize the reward signal r,
which is based on the sample xt as follows:

J(ϕ) = Ext∼pϕ(xt)[r(ϕ)]. (4)

This loss function also addresses the problem of constrained TSP, where r(ϕ) is subject to certain
constraints, such as requiring some elements of ϕ to be zero. It is essential to ensure that the objective
function, derived from our custom-designed reward with ϕ, aligns with the direction of learning in
the diffusion policy. This alignment allows our loss gradient to be calculated as the diffusion policy
gradient, with the policy defined by the diffusion-generating process. The following proposition,
based on the researches (Fan & Lee, 2023; Black et al., 2023), demonstrates this alignment.

Proposition 1 The gradient of our objective function defined in Equation 4 is equivalent to a diffu-
sion policy gradient update: ∇ϕJ(ϕ) = Es0:T

[
r(ϕ)

∑T−1
τ=0 ∇ϕ log π(aτ |sτ )

]
.

The theoretical equivalence established by the proposition allows effective learning, even when dif-
ferent techniques are applied. Specifically, the proposition ensures that the direction of the diffusion
policy gradient aligns with the goal of policy gradient learning. The policy is optimized to reduce
the loss function, which is parameterized by ϕ. Our method operates at the image level through dif-
fusion denoising while implicitly learning at the graph level by optimizing latent vectors, which also
serve as adjacency matrices. This approach reduces the number of parameters, simplifies the learn-
ing process, and offers tailored solutions for each problem. By calculating the tour length directly
from the learned adjacency matrix ϕ, we can compute rewards without the complications of blur or
noise often encountered in image-level methods. Integrating diffusion model-based learning with an
RL framework, our approach delivers superior results for TSP compared to existing methods. The
detailed derivation of the proposition and its theoretical foundation are provided in the appendix.

3.3 DDRL OPTIMIZATION

In this section, we outline the overall process of DDRL, focusing on how the combination of diffu-
sion models and RL optimizes solutions for the TSP. The core of our method is the Diffusion-Driven
RL optimization, which consists of two key phases: the sampling phase, where tours are generated
and evaluated, and the policy update phase, where the latent vector ϕ is refined using gradient-based

5
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optimization. The process starts with initializing the latent vector ϕ, which is done by minimizing
the diffusion loss using prior knowledge ϵprior. This initialization step enhances the stability of the
optimization process and reduces variance by leveraging pre-trained diffusion models to provide a
reliable starting point.

Sampling Phase: During this phase, DDRL generates tours by iteratively sampling latent vectors
ϕi and applying the diffusion process. The sequence of images {xT , xT−1, . . . , x0} is produced
following the denoising process described in Equation 2, where ϕ guides the refinement of noisy
inputs. Each final image x0 represents a Hamiltonian graph corresponding to a potential solution
for the TSP. The solution is expressed as a tour, denoted by Ti, a list of city indices representing the
order in which the cities are visited. A 2-opt local search is applied to improve the generated tour Ti

and further optimize the total tour length while adhering to any problem-specific constraints. After
each tour Ti is computed, the reward r(ϕi), based on the negative tour length, is calculated. The
advantage Ai = ri − r̄, where r̄ is the mean reward across all samples, helps quantify the quality of
the sampled tours.

Initialization (diffusion loss minimization) Proper initialization is crucial for the convergence of
our algorithm. We employ a specialized method using prior knowledge ϵprior and diffusion loss to
enhance initial stability. Initialize the latent vector ϕ by minimizing the diffusion loss gradient:

ϕ← ϕ− λ∇ϕ

∣∣∣ϵ− ϵprior

(√
αtif(ϕ) +

√
1− αtiϵ, ti

)∣∣∣2
2
, (5)

where αti is a modified cumulative product over time steps ti, ϵ represents the noise in the diffusion
process, and λ is the learning rate. ϕ is optimized for each timestep t using the gradient in Equation 5.
DDRL performs multiple initialization attempts to secure the best possible latent vector for the given
TSP instance.

Policy Update Phase: After calculating the rewards, the policy parameters ϕ are updated using
gradient ascent:

ϕ← ϕ+ α∇ϕJ(ϕ), (6)
where J(ϕ) denotes the expected reward and α is the learning rate. This update step refines the
policy by adjusting the latent vector ϕ to maximize the reward, leading to progressively improved
solutions over iterations. The optimization alternates between the sampling and policy update phases
across multiple epochs until the maximum number of epochs is reached. This iterative process en-
ables DDRL to generate high-quality TSP solutions by combining the strengths of diffusion models
and reinforcement learning.

In this framework, the latent vector ϕ contributes to generating TSP solution images via the diffu-
sion denoising process described in Equation Equation 2. Simultaneously, ϕ defines an adjacency
matrix that determines the final tour as a sequence of city indices. Throughout the diffusion de-
noising trajectory, the policy is updated to minimize the total tour length. Figure 3 illustrates this
process, highlighting the interaction between diffusion-based denoising and RL-based policy opti-
mization, which leads to increasingly optimized solutions. The complete procedure is described in
Algorithm 1.

4 EXPERIMENTS

We conducted experiments across various city sizes, specifically N = 20, 50, 100, and 200, to vali-
date the generalization capability of our model. Using the Concorde solver as an Oracle for compar-
ison, we evaluated DDRL against several baselines: a heuristic 2-opt algorithm, a transformer-based
RL model (Kool et al., 2018; Bresson & Laurent, 2021), a GNN model trained with supervised
learning (Joshi et al., 2019), and a diffusion-based method, Diffusion 50 (Graikos et al., 2022). We
report results using objective values (Obj) and percentage gaps (Gap%), with Oracle exhibiting zero
gaps as a benchmark.

4.1 BASIC TSP

As shown in Table 1, DDRL consistently achieves superior performance across all problem sizes
in the Basic TSP setting. For N = 20, DDRL obtains an objective value of 3.84 with a minimal
gap of 0.10%, effectively matching Oracle’s solution. This high performance is sustained as the

6
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Figure 3: The visualization of (Top) the image-level view where diffusion denoising constructs the
RL trajectory, and (Bottom) the graph-level perspective where RL optimization refines the latent
vector ϕ. This optimized ϕ generates an adjacency matrix, allowing optimization of both f(ϕ) and
the graph tour.

Algorithm 1 DDRL Optimization

1: Input: Latent vector ϕ, prior knowledge ϵprior, city positions P ∈ R2, constraints c
2: Output: Optimized tour solution T ∗

3: xT ∼ N (0, I)
4: for epoch E = 1 to Emax do
5: Sampling Phase:
6: for sample i = 1 to Nsamples do
7: ϕ← argminϕ ∥ϵ− ϵprior(xt, ϕ)∥2 ▷ Initialization (Equation 5)
8: γi = {xT , xT−1, . . . , x0} ▷ Compute trajectory (Equation 2)
9: Apply 2-opt local search to further refine Ti

10: r(ϕi) = reward function(Ti, P, c) ▷ Calculate reward (Equation 3)
11: end for
12: Compute advantage Ai = ri − r̄, where r̄ is the mean reward
13: Policy Update Phase:
14: for inner epoch Einner = 1 to Einner max do
15: for sample i = 1 to Nsamples do
16: ϕ← ϕ+ α∇ϕJ(ϕ) ▷ Update policy parameters (Equation 6)
17: end for
18: end for
19: end for

problem size increases, with objective values of 5.70, 7.83, and 10.94 for N = 50, N = 100,
and N = 200, respectively. The results illustrate DDRL’s robust generalization capability and
scalability, maintaining gaps below 2.02% across all problem sizes. In contrast, supervised learning
methods like Diffusion 50 (Graikos et al., 2022) struggle with larger problem sizes, highlighting
DDRL’s adaptability to varying environments.

4.2 CONSTRAINT SETTING

We generated TSP datasets for evaluation and created additional constraint-based datasets inspired
by VanDrunen et al. (2023). These constraint datasets were designed to be visually intuitive yet
challenging for conventional algorithms. As shown in Figure 4, we categorized the tasks into four
types: basic TSP, Obstacle constraints, Path constraints, and Cluster constraints. In the Basic TSP,
the goal is to find the shortest distance between cities without any constraints. For the Obstacle
Constraint, penalties are imposed when paths are created within a rectangular area that violates

7
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(a) Basic TSP (b) Obstacle Const. (c) Path Const. (d) Cluster Const.

Figure 4: Examples of basic and constraint datasets. The green points represent city locations,
and the black lines indicate connections between cities. (a) Basic TSP: No constraints; the goal
is to find the shortest tour that visits all cities. (b) Obstacle Constraint: The red box represents a
restricted area where no connections can be formed. (c) Path Constraint: The red lines represent
predetermined paths that must be part of the tour. (d) Cluster Constraint: Cities are grouped by
color, with the constraint that connections between clusters can occur only once, and round trips
between clusters are not allowed.

Algorithms N = 20 N = 50 N = 100 N = 200

Obj Gap(%) Obj Gap(%) Obj Gap(%) Obj Gap(%)

Oracle 3.84 0 5.69 0 7.759 0 10.72 0
2-opt 3.93 2.24 5.86 2.95 8.03 3.54 11.69 9.07

Transformer (Kool et al., 2018) 3.85 0.24 5.80 1.76 8.12 4.53 11.24 7.18
GNN (Joshi et al., 2019) 3.86 0.60 5.87 3.10 8.41 8.38 13.45 25.52

Transformer (Bresson & Laurent, 2021) 3.85 0.29 5.71 0.31 7.88 1.42 12.38 15.50
Diffusion 50 (Graikos et al., 2022) 3.89 1.16 5.76 1.28 7.92 2.13 11.21 4.64

DDRL 3.84 0.10 5.70 0.13 7.83 0.87 10.94 2.02

Table 1: Performance Comparison of TSP Algorithms Across Different Problem Sizes (Basic).
DDRL consistently achieves the lowest gaps across all problem sizes, indicating its strong general-
ization capability. Values are rounded to two decimal places. For N = 20, DDRL’s objective value
matches Oracle’s, but a gap is still present due to slight differences in the values beyond the second
decimal place.

specified conditions. The Path Constraint requires traversal through predetermined paths with a
range of 1 to 4, meaning no other path can pass through them. Lastly, the Cluster Constraint
prioritizes connections within clusters before allowing inter-cluster connections, with the restriction
that inter-cluster links can only occur once.

For the baseline models, additional rules were applied as they could not infer constraint conditions
under the default settings. In the transformer-based models (Kool et al., 2018; Bresson & Laurent,
2021), the autoregressive decoding process was adjusted to ensure that constraints were satisfied.
In the GNN-based model (Joshi et al., 2019), we modified the beam search by setting the path
connection probabilities to 1 or 0, depending on the constraint, to ensure compliance. Similarly,
for the diffusion-based model (Graikos et al., 2022), we added rules during the 2-opt optimization
process, as was done with DDRL, to meet the constraint conditions. Under the constraint conditions,
the cost is calculated as the sum of the total path length and the penalty cost. The penalty cost is
computed as the product of the penalty constant and the penalty violation count, with the penalty
constant set to one in this experiment.

The experimental results indicate that DDRL outperforms existing approaches in both basic TSP
problems and under the diverse constraint conditions described. It shows that DDRL is versatile and
robust, capable of effectively addressing TSP problems with complex constraints.

4.3 OBSTACLE CONSTRAINT

Table 2 demonstrates DDRL’s ability to handle TSP instances with obstacle constraints effectively.

8
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Algorithms N = 20 N = 50 N = 100 N = 200

Obj Gap(%) Obj Gap(%) Obj Gap(%) Obj Gap(%)

Oracle 4.16 0 5.89 0 7.87 0 10.77 0
2-opt 14.56 250.55 32.93 460.28 62.06 689.16 118.83 1004.00

Transformer (Kool et al., 2018) 6.39 53.51 9.97 69.42 12.83 63.01 20.09 86.61
GNN (Joshi et al., 2019) 4.72 13.24 7.01 19.04 9.48 20.43 20.85 93.35

Transformer (Bresson & Laurent, 2021) 6.74 62.05 7.82 32.86 10.53 33.77 26.25 143.75
Diffusion 50 (Graikos et al., 2022) 5.09 22.21 7.02 19.23 8.91 13.23 12.30 14.18

DDRL 4.21 1.07 5.94 0.96 8.08 2.65 11.15 3.53

Table 2: Performance comparison of TSP algorithms with Obstacle Constraints across different
problem sizes. DDRL consistently outperforms other models, demonstrating superior handling of
geometric constraints and effectively avoiding overlaps. This highlights the strength of DDRL in
solving visually complex TSP instances.

Algorithms N = 20 N = 50 N = 100 N = 200

Obj Gap(%) Obj Gap(%) Obj Gap(%) Obj Gap(%)

Oracle 4.32 0 6.18 0 8.01 0 10.72 0
2-opt 5.85 34.15 7.09 14.47 15.69 95.81 107.31 881.81

Transformer (Kool et al., 2018) 4.62 7.00 7.46 20.49 11.03 37.61 21.07 92.75
GNN (Joshi et al., 2019) 6.57 51.34 8.63 39.10 10.02 24.33 19.55 80.34

Transformer (Bresson & Laurent, 2021) 4.86 12.05 6.91 11.42 9.00 11.04 18.03 67.93
Diffusion 50 (Graikos et al., 2022) 5.47 25.84 7.22 16.45 8.67 8.20 11.91 9.19

DDRL 4.57 5.33 6.40 3.50 8.12 1.31 11.17 2.59

Table 3: Performance comparison of TSP algorithms with Path Constraint across various problem
sizes. DDRL excels at generating accurate solutions while satisfying path constraints and achieving
lower gaps compared to baseline models. These results emphasize DDRL’s effectiveness in handling
predefined route conditions.

Figure 5: Comparison of inference
processes. Each row is a sample
from a basic TSP, Obstacle Con-
straint, and Path Constraint, in that
order. The below numbers are Obj
with a penalty of 1.

DDRL consistently outperforms baseline methods, achiev-
ing a low objective value of 5.94 and a gap of 0.96% for
N = 50. Unlike 2-opt and Transformer-based models
(Kool et al., 2018), (Bresson & Laurent, 2021), which suf-
fer from significant performance degradation as the problem
size grows, DDRL maintains strong scalability and accuracy.
Even when compared to diffusion-based methods like Diffu-
sion 50 (Graikos et al., 2022), DDRL delivers better overall
results, showing that it leverages visual constraints effectively
while retaining high performance across all problem sizes.

4.4 PATH CONSTRAINT

In Table 3, DDRL demonstrates its versatility by achieving
competitive performance under path constraints, especially in
larger-scale problems. For N = 50, DDRL produces an ob-
jective value of 6.40 with a gap of only 3.50%, outperform-
ing both transformer-based (Kool et al., 2018), (Bresson &
Laurent, 2021) and GNN models (Joshi et al., 2019) as the
problem size increases. DDRL’s generalization capability is
evident as it maintains low gaps even with larger city sizes
(N = 100 and N = 200), while other models exhibit sub-
stantial declines in performance. DDRL’s ability to navigate
predefined path conditions further emphasizes its adaptability
and efficiency.
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Algorithms N = 20 N = 50 N = 100 N = 200

Obj Gap(%) Obj Gap(%) Obj Gap(%) Obj Gap(%)

Oracle 3.91 0 5.82 0 7.97 0 11.03 0
2-opt 4.67 19.33 8.42 44.60 12.09 51.89 15.97 45.35

Transformer (Kool et al., 2018) 4.96 26.69 10.18 74.75 20.72 160.22 27.20 147.51
GNN (Joshi et al., 2019) 4.56 16.59 8.68 49.09 16.70 109.72 25.64 133.25

Transformer (Bresson & Laurent, 2021) 4.16 6.48 7.19 23.43 12.68 59.22 24.07 119.00
Diffusion 50 (Graikos et al., 2022) 4.57 16.57 7.89 35.29 11.49 44.26 15.69 43.00

DDRL 4.05 3.54 6.51 11.69 10.52 32.05 15.56 41.55

Table 4: Performance comparison of TSP algorithms with Cluster Constraint across different prob-
lem sizes. DDRL achieves the best performance, especially for larger instances, demonstrating its
scalability and robustness in handling clustered constraints, where baseline models struggle to main-
tain effectiveness as city counts increase.

4.5 CLUSTER CONSTRAINT

As seen in Table 4, DDRL excels in TSP problems with cluster constraints, consistently outper-
forming other models, particularly as problem complexity increases. For N = 200, DDRL achieves
the best performance with an objective value of 15.44 and a gap of 40.38%, demonstrating superior
scalability compared to GNN (Joshi et al., 2019) and transformer models (Kool et al., 2018), (Bres-
son & Laurent, 2021), which struggle under these conditions. While diffusion-based models like
Diffusion 50 (Graikos et al., 2022)show competitive performance, DDRL continues to outperform
them in handling inter-cluster complexity, showcasing its robustness and ability to handle clustered
constraints effectively in larger-scale problems.

4.6 QUALITATIVE ANALYSIS

Figure 6: Ablation study showing the
impact of prior knowledge and initial-
ization on the convergence speed in
DDRL training.

Figure 5 visualizes the inferred solution of the baseline
method (Bresson & Laurent, 2021), DDRL, and Oracle.
Each row denotes the baseline TSP, Obstacle Constraint,
and Path Constraint, respectively. DDRL shows superior
performance on all tasks without obstacles and path con-
straints. We performed an ablation study to analyze the
impact of prior knowledge and initialization techniques
on DDRL’s performance. Figure 6 demonstrates that
when both elements are applied, the model converges sig-
nificantly faster than when either one or both are omitted.
The pre-trained diffusion model, serving as prior knowl-
edge, effectively guides the connections between cities,
while the initialization technique ensures a well-formed
adjacency matrix from the start. These combined factors
enhance the early-stage learning stability, enabling faster
convergence and improved overall performance.

5 CONCLUSION

This paper introduced DDRL, a novel approach integrating diffusion models with RL to address the
TSP. By leveraging the strengths of both graph and image representations, DDRL effectively handles
both basic and complex constraint-based TSP instances. Our method demonstrates superior scala-
bility, generalization, and convergence stability compared to state-of-the-art algorithms, benefiting
from the incorporation of pre-trained diffusion models as prior knowledge. Extensive experiments
show that DDRL achieves state-of-the-art performance, making it a promising solution for large-
scale combinatorial optimization problems. Additionally, DDRL proves effective across various
TSP variants with different constraints, demonstrating its adaptability and robustness in handling
complex and diverse optimization tasks.
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Supplementary Materials for
DDRL: A Diffusion-Driven Reinforcement Learning Approach

for Enhanced TSP Solutions

A ADDITIONAL QUALITATIVE ANALYSIS

In this section, we present detailed visualizations of the TSP solutions generated under various con-
ditions: Basic, Obstacle constraint, Path constraint and Cluster constraint. These visualizations are
provided for different city sizes (N = 20, 50, 100). Figures 7 to 9 showcase the visual representa-
tions of TSP instances produced by the DDRL model.

Each figure is structured into four main columns corresponding to the constraint types:

• Basic: Visualizes the basic TSP solution without any additional constraints.

• Obstacle: Illustrates the TSP solution under an obstacle constraint, requiring the solution
to navigate around specific blocked areas or paths.

• Path: Displays the TSP solution under a path constraint, where the tour must pass through
specific points or follow a particular route.

• Cluster: Demonstrates the TSP solution under a cluster constraint, where cities are grouped
into clusters, and the solution must visit each cluster exactly once.

For each constraint type, the visualizations are further divided into four key elements:

1. Ground Truth: The leftmost image represents the ground truth of the city distribution and
the optimal TSP tour.

2. Latent(xt): The second image from the left shows the image xt, obtained during the diffu-
sion denoising process.

3. Encoding(f(ϕ)): The third image from the left visualizes the encoding of the features f(ϕ),
capturing the problem’s structural information.

4. Solved Tour: The rightmost image represents the TSP solution output by the model under
the given constraints.

These visualizations collectively demonstrate the DDRL model’s capability to generalize across
different problem sizes and conditions, not only solving the basic TSP but also adapting to more
complex scenarios with obstacles, path and cluster constraint. This generalization is crucial for
real-world applications where additional constraints often complicate routing problems.

Moreover, the figures illustrate that the model can effectively infer solutions under various constraint
conditions, maintaining near-optimal performance even in the presence of significant obstacles or
mandatory paths or clustered cities. This robustness highlights the model’s potential for broader
applicability beyond traditional TSP scenarios.

B HYPERPARAMETER DESCRIPTION

In this section, we detail the key hyperparameters used in the DDRL model, focusing on their deriva-
tion, role, and usage within the model.

B.1 NOISE SCHEDULE PARAMETER (αt)

The αt used in DDRL follows the definition from DDIM Song et al. (2020). In DDIM, αt is defined
as the product of 1− β:

αt =

t∏
s=1

(1− βs)

12
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Figure 7: Visualization of outputs for Basic, Obstacle, Path and Cluster scenarios when N = 20.
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Figure 8: Visualization of outputs for Basic, Obstacle, Path and Cluster scenarios when N = 50.
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Figure 9: Visualization of outputs for Basic, Obstacle, Path and Cluster scenarios when N = 100.
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As in DDIM, αt in DDRL plays a crucial role in balancing noise introduction during the forward
process and its removal during the reverse process. By adjusting αt, DDRL effectively transitions
from noisy data to high-quality images, enabling efficient sampling and ensuring robust performance
across various scenarios.

B.2 NOISE VARIANCE (σ2
t )

The noise variance σ2
t in the diffusion process is directly related to the αt parameter defined earlier.

It quantifies the uncertainty during the denoising process and is crucial for managing the trade-off
between exploration and exploitation. Specifically, σ2

t is derived from the relationship between the
αt values at consecutive timesteps:

σ2
t = η2 ·

(
(1− αt−1)

(1− αt)

)
·
(
1− αt

αt−1

)
Here, αt represents the cumulative product of (1 − βs) up to timestep t, as defined earlier. The
noise variance σ2

t plays a crucial role in the denoising process by allowing the model to introduce
controlled randomness during each diffusion step. This helps the model explore diverse solutions
while progressively refining the quality of the generated samples, ensuring effective and robust per-
formance across different scenarios.

B.3 MODIFIED CUMULATIVE NOISE SCHEDULE (αti )

In DDRL, the modified cumulative noise schedule αti is derived from the noise variance βt and is
calculated as the cumulative product of 1− βs across all timesteps s up to ti:

αti =

ti∏
s=1

(1− βs)

While this formula is mathematically similar to the αt defined in subsection B.1, the role of αti in
DDRL is distinct. Specifically, αti is used during the initialization phase to stabilize the latent vector
ϕ by leveraging a pretrained diffusion model (prior knowledge) and diffusion loss. This contrasts
with the use of αt in the RL-based denoising process, where αt manages the noise introduction and
removal during sampling. By distinguishing αti from αt, DDRL effectively handles the different
demands of initialization and sampling, ensuring robust and efficient performance across various
scenarios.

C DATASET GENERATION PROCESS

The goal of generating these datasets is to evaluate the performance of TSP-solving algorithms in
the presence of additional constraints, beyond the basic TSP problem. By incorporating constraint
conditions, we can assess how well these algorithms adapt and maintain their efficiency under more
complex scenarios.

Three types of constraint conditions were introduced, and for each of them, the constraints were
applied to the same city locations as those in the basic dataset. These constraints inevitably increase
the overall path length compared to the default setting, providing a basis for comparison between
the results from basic and constrained TSP instances.

The dataset generation process was formulated by adding penalties to the city-to-city distances in
the basic setting. By assigning sufficiently large penalties, the priority between paths is adjusted,
allowing the solver to find solutions that satisfy the constraint conditions. However, adding con-
straints increases the complexity of the TSP problem, which introduces scaling limitations when
using solvers. As the complexity increases with the number of cities and the number of constraints,
the cost of generating valid data also rises significantly. Of course, DDRL and other approximation
algorithms offer the advantage of relatively faster inference, even in large-scale settings.
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C.1 BASIC DATASET

The basic dataset consists of 1,280 instances for each city size. This dataset is sourced from the
repository available at https://github.com/chaitjo/learning-tsp. Additionally, the
prior knowledge used in our approach, specifically the pretrained diffusion model, was obtained
from https://diffusion-priors.s3.amazonaws.com/unet50_64_8.pth.

C.2 OBSTACLE CONSTRAINT DATASET GENERATION FOR TSP

This section outlines the method for generating a dataset with obstacle constraints for the TSP.
The process begins with an existing dataset, Dbasic, which contains N cities with fixed coordinates
P ∈ RN×2 and corresponding ground truth tours TGT. Our goal is to extend this dataset to produce
Dobstacle, which includes the original city information, obstacle information B (defined as a box),
and optimal tours R that respect these obstacle constraints.

For each city in Dbasic, we attempt to find an optimal obstacle box Bopt that maximizes overlap with
the ground truth tour TGT, while ensuring no city points are inside the box. Maximizing this overlap
increases the obstacle’s influence on the tour, allowing us to assess how well models can adapt to the
changes introduced by the obstacle. Once an optimal box is found, we compute the distance matrix
M, which penalizes the distances between city pairs whose connecting paths intersect the obstacle.
Solving the TSP with this modified matrix prevents the solution from passing through the obstacle,
ensuring that the generated dataset respects the obstacle constraints. In this paper, we set the penalty
value to 100.

If the resulting tour S respects the obstacle constraints, it is saved along with the obstacle informa-
tion. If no valid solution is found, random obstacle boxes Brand are generated until a valid tour is
obtained. This ensures that each city in the dataset has an associated tour that adheres to the imposed
constraints. The new dataset, Dobstacle, thus includes the city coordinates, obstacle box coordinates
(top-left and bottom-right), and the optimal tour that respects the constraints. The overall process
for generating the dataset is outlined in Algorithm 2.

Algorithm 2 Obstacle Constraints Dataset Generation for TSP

1: Input: Dbasic (Dataset of N cities containing city coordinates P ∈ RN×2 and ground truth tours
TGT)

2: Output: Dobstacle (Dataset with added obstacle information B and optimal tour information R)
3: for each i ∈ {1, 2, . . . , N} do
4: Pi ← City coordinates from Dbasic (Pi ∈ R2)
5: TGTi

← Ground truth tour from Dbasic
6: Ri ← ∅, Bi ← ∅
7: Bopt ← find optimal box(Pi, TGTi

)
8: if Bopt ̸= ∅ then
9: M← calculate distance matrix(Pi, Bopt)

10: S ← solve tsp(M) ▷ using Concorde solver
11: if is valid(S, Pi, Bopt) then
12: Ri ← S, Bi ← Bopt
13: end if
14: end if
15: while Ri = ∅ do
16: Brand ← generate random box(TGTi

)
17: M← calculate distance matrix(Pi, Brand)
18: S ← solve tsp(M) ▷ using Concorde solver
19: if is valid(S, Pi, Brand) then
20: Ri ← S, Bi ← Brand
21: end if
22: end while
23: Save Pi, Ri, Bi to Dobstacle
24: end for
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Function Descriptions find optimal box: This function finds the obstacle box that maxi-
mizes overlap with the ground truth tour TGT. The purpose of maximizing the overlap is to increase
the influence of the obstacle on the tour, thereby testing the model’s ability to find an optimal so-
lution in a modified setting. The function evaluates possible obstacle boxes based on their overlap
with TGT, selecting the box that maximizes overlap while avoiding city points.

generate random box: This function generates a random obstacle box around a segment of the
ground truth tour, ensuring no city points are inside. It serves as a fallback mechanism when an
optimal box is not found.

calculate distance matrix: This function computes the distance matrix M for city pairs,
with adjustments for obstacle constraints. If a path between two cities intersects the obstacle box,
a penalty of 100 is added to the distance between those cities. This encourages the solver to avoid
obstacle-affected paths, ensuring that the generated solution respects the obstacle constraints.

is valid: This function checks if the computed tour from the new TSP setting (with constraints)
intersects the obstacle box. If any segment of the tour crosses the obstacle, the solution is invalid;
otherwise, it is valid.

C.3 PATH CONSTRAINT DATASET GENERATION FOR TSP

This section outlines the method for generating a dataset with path constraints for the TSP. Starting
with the existing dataset Dbasic, which contains N cities with fixed coordinates P ∈ RN×2 and
corresponding ground truth tours TGT, we extend this dataset to produce Dpath. The output dataset
includes the original city information, sampled path constraint information E (defined as predeter-
mined paths between cities), and optimal tours R that respect these predetermined paths.

For each city in Dbasic, we sample a set of predetermined paths Esample from paths that are not part
of the ground truth tour TGT. These predetermined paths are selected to ensure that there are no
intersections between them. Once valid predetermined paths are found, we compute the distance
matrix M, where penalties are imposed on all paths not included in the predetermined paths. This
encourages the solution to prioritize the use of the predetermined paths when solving the TSP. Solv-
ing the TSP with this modified matrix produces a tour S that respects the path constraints. If the
resulting tour is valid, meaning it does not have any intersections and adheres to the predetermined
paths, it is saved along with the corresponding path information Esample. This ensures that each city
in the dataset has an associated tour that adheres to the imposed path constraints.

The number of predetermined paths depends on the number of cities. As the number of cities in-
creases, the number of predetermined paths also grows, which increases the complexity of dataset
generation. When there are many cities, having too many predetermined paths further complicates
the dataset generation task. Therefore, to manage this complexity, the maximum number of prede-
termined paths is reduced as the number of cities increases. The overall process for generating the
dataset is outlined in Algorithm 3.

Function Descriptions sampling edge: This function samples a set of paths that are not part
of the ground truth tour TGT. The paths are selected to ensure that there are no intersections between
them. The purpose of sampling paths not in the ground truth tour is to evaluate how well models
adapt to new constraints and deviate from the basic TSP setting.

calculate distance matrix: This function computes the distance matrix M for the city
points. Penalties are added to the distances between cities if their connecting path is not part of the
predetermined paths. The penalty ensures that the solver prioritizes the predetermined paths when
computing the optimal tour. In this paper, the penalty value is set to 100.

check tour intersections: This function checks for intersections between the paths in a
given tour. It is not limited to the tours computed by the TSP solver; it can also be applied to any
arbitrary set of tours to check for intersections between paths.

C.4 CLUSTER CONSTRAINT DATASET GENERATION FOR TSP

This section describes the process for generating a dataset with cluster constraints for the TSP. Start-
ing with an existing dataset, Dbasic, which contains N cities with fixed coordinates P ∈ RN×2 and
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Algorithm 3 Path Constraint Dataset Generation for TSP

1: Input: Dbasic (Dataset of N cities containing city coordinates P ∈ RN×2 and ground truth tours
TGT)

2: Output: Dpath (Dataset with path constraint information and optimal tours)
3: for each i ∈ {1, 2, . . . , N} do
4: Pi ← City coordinates from Dbasic (Pi ∈ R2)
5: TGTi

← Ground truth tour from Dbasic
6: S ← ∅, Ei ← ∅
7: while S = ∅ do
8: Esample ← sampling edge(TGTi

, Pi)
9: M← calculate distance matrix(Pi, Esample)

10: S ← solve tsp(M) ▷ using Concorde solver
11: if check tour intersections(S, Pi) then
12: S ← ∅
13: else
14: Ei ← Esample
15: end if
16: end while
17: Save Pi, S, Ei to Dpath
18: end for

corresponding ground truth tours TGT, we extend this dataset to produce Dcluster. The output dataset
includes the original city information, cluster information C (clusters assigned by a clustering algo-
rithm like KMeans), and optimal tours R that respect the cluster constraints.

For each instance in Dbasic, we apply a clustering algorithm (such as KMeans) to assign cities to k
clusters. The value of k is dynamically chosen based on the properties of each instance. Once the
clusters are assigned, we adjust the distance matrix M by adding a penalty to the distances between
cities in different clusters. This penalty encourages the solver to prioritize connections within the
same cluster. Solving the TSP with the adjusted distance matrix generates a tour S that aims to
respect the cluster constraints. The solution is validated by ensuring that it adheres to the cluster
constraints, particularly maintaining the correct in-degree and out-degree for the clusters. Once
a valid tour is obtained, the dataset is saved with the cluster assignments and corresponding tour
information. The overall process is outlined in Algorithm 4.

Algorithm 4 Cluster Constraint Dataset Generation for TSP

1: Input: Dbasic (Dataset of N cities containing city coordinates P ∈ RN×2 and ground truth tours
TGT)

2: Output: Dcluster (Dataset with cluster information C and optimal tours)
3: for each i ∈ {1, 2, . . . , N} do
4: Pi ← City coordinates from Dbasic (Pi ∈ R2)
5: TGTi ← Ground truth tour from Dbasic
6: S ← ∅, Ci ← ∅
7: while S = ∅ do
8: k ← select cluster number(Pi)
9: Csample ← perform clustering(Pi, k) ▷ using KMeans

10: M← calculate distance matrix(Pi, Csample)
11: S ← solve tsp(M) ▷ using Concorde solver
12: if check cluster violations(S, Csample) then
13: S ← ∅
14: else
15: Ci ← Csample
16: end if
17: end while
18: Save Pi, S, Ci to Dcluster
19: end for
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Function Descriptions calculate distance matrix: This function modifies the distance
matrix by adding a penalty to the distances between cities that belong to different clusters. This
encourages the solver to prioritize connections within the same cluster when computing the optimal
tour. In this paper, a penalty of 100 is applied for inter-cluster connections.

check cluster violations: This function verifies that the computed tour adheres to the clus-
ter constraint by checking for violations in the in-degree and out-degree conditions of the clusters.
The tour is considered valid if each cluster has exactly one in-degree and one out-degree connection,
ensuring that no cluster is skipped or revisited unnecessarily.

D DIFFUSION POLICY GRADIENT

The gradient of the loss function is equivalent to the diffusion policy gradient as follows. This
proposition is based on the assumption that pϕ(x0:T )r(ϕ) and its derivative with respect to ϕ are
continuous relative to ϕ and x0:T , which permits the interchange between differentiation and inte-
gration.

∇ϕJ(ϕ) = ∇ϕExt [r(ϕ)]

= ∇ϕ

∫
xt

pϕ(xt)r(ϕ)dxt

= ∇ϕ

∫
· · ·

∫
pϕ(x0:T )r(ϕ)dx0:T

=

∫
· · ·

∫
pϕ(x0:T )r(ϕ)∇ϕ log pϕ(x0:T )dx0:T

= Ex0:T
[r(ϕ)

T−1∑
t=0

∇ϕ log pϕ(xt|xt+1)]

= Ex0:T
[r(ϕ)

T∑
t=1

∇ϕ log pϕ(xt−1|xt)]

= Es0:T [r(ϕ)

T−1∑
τ=0

∇ϕ log π(aτ |sτ )].

E EXPERIMENT DETAILS

This section outlines the key experimental setup used for training and evaluating the DDRL model.

E.1 HARDWARE SETUP

Experiments were conducted on a system with the following specifications:

• CPU: Intel Core i9-10900X, 10 cores, 20 threads

• GPU: 4 x NVIDIA GeForce, RTX 4090 24 GiB VRAM each

• Memory: 188 GiB RAM

• OS: Ubuntu 20.04.6 LTS

• Libraries: PyTorch 2.1.2, CUDA 12.0

E.2 REPRODUCIBILITY

To ensure consistency across all experiments, a fixed random seed was used:

• Random Seed: 2024
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E.3 TRAINING CONFIGURATION

The model was trained under the following conditions:

• Training Epochs: 3, 20, 30, 50
• Inner Epochs per Training Epoch: 3, 10
• Initial Sample Size: 3, 5, 10

These configurations were selected to optimize the balance between training efficiency and model
performance, ensuring robust convergence without overfitting. For instances with relatively lower
complexity, such as N = 20 or N = 50, longer training epochs (30 or more) were used to fully
explore the solution space. In contrast, for more complex instances with N = 100 or higher, shorter
training epochs (20 or fewer) were employed to maintain training efficiency while still achieving
satisfactory performance.
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