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Abstract

Deep Neural Networks (DNNs) are highly sensitive to imperceptible malicious perturba-
tions, known as adversarial attacks. Following the discovery of this vulnerability in real-
world imaging and vision applications, the associated safety concerns have attracted vast
research attention, and many defense techniques have been developed. Most of these defense
methods rely on adversarial training (AT) – training the classification network on images
perturbed according to a specific threat model, which defines the magnitude of the allowed
modification. Although AT leads to promising results, training on a specific threat model
fails to generalize to other types of perturbations. A different approach utilizes a prepro-
cessing step to remove the adversarial perturbation from the attacked image. In this work,
we follow the latter path and aim to develop a technique that leads to robust classifiers
across various realizations of threat models. To this end, we harness the recent advances in
stochastic generative modeling, and means to leverage these for sampling from conditional
distributions. Our defense relies on an addition of Gaussian i.i.d noise to the attacked image,
followed by a pretrained diffusion process – an architecture that performs a stochastic itera-
tive process over a denoising network, yielding a high perceptual quality denoised outcome.
The obtained robustness with this stochastic preprocessing step is validated through ex-
tensive experiments on the CIFAR-10 and CIFAR-10-C datasets, showing that our method
outperforms the leading defense methods under various threat models.

1 Introduction

Deep neural network (DNN) image-classifiers are highly sensitive to malicious perturbations in which the
input image is slightly modified so as to change the classification prediction to a wrong class. Amazingly,
such attacks can be effective even with imperceptible changes to the input images. These perturbations
are known as adversarial attacks Goodfellow et al. (2014); Kurakin et al. (2016); Szegedy et al. (2013).
With the introduction of these DNN classifiers to real-world applications, such as autonomous driving,
this vulnerability has attracted vast research attention, leading to the development of many attacks and
robustification techniques.

Amongst the many types of adversarial attacks, the most common ones are norm-bounded to some radius ϵ,
where the norm Lp and the radius ϵ define a threat model. The attack is posed as an optimization task in
which one seeks the most effective deviation to the input image, δ, in terms of modifying the classification
output, while constraining this deviation to satisfy ∥δ∥p ≤ ϵ. One way to robustify a network against such
attacks is by training it to correctly-classify attacked examples from a specific threat model Madry et al.
(2017); Zhang et al. (2019); Gowal et al. (2020). These methods, known as Adversarial Training (AT), lead
to state-of-the-art performance when trained and tested on the same threat model. However, a well-known
limitation of such methods is their poor generalization to unseen attacks, which is discussed in length in
Hendrycks et al. (2021); Bai et al. (2021) as one of the unsolved problems of adversarial defense.

A different type of robustification techniques proposes a preprocessing step before feeding the image into
the classifier Song et al. (2017); Samangouei et al. (2018); Yang et al. (2019); Grathwohl et al. (2019);
Du & Mordatch (2019); Hill et al. (2020); Yoon et al. (2021). Since an adversarial example can be seen
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Figure 1: Our method flow. In the “Adversarial Attack” block, an attacker calculates the attack “Additive
perturbation” and adds it to the “Original image” in order to create the “Attacked image”. As a preparation
for the diffusion process, in the “Add Noise” block, we add an i.i.d Gaussian noise to the attacked image
according to Equation 3. We proceed by feeding it into the “Diffusion” block, consisting of diffusion steps
that include a denoising and an addition of a Gaussian noise. This effectively samples a new image from
the diffusion model initialized by y, the noisy attacked image (see more in Section 2.2). Lastly, we feed the
preprocessed obtained image to a classifier.

as a summation of an image and an adversarial perturbation δ, using such a procedure to remove or even
attenuate this second term is reasonable. The authors of Song et al. (2017); Samangouei et al. (2018);
Grathwohl et al. (2019); Du & Mordatch (2019); Hill et al. (2020); Yoon et al. (2021) use a generative model
in the preprocessing phase in various ways. They either use the pretrained classifier directly or re-train a
classifier on the generative model’s outputs. In general, these kind of methods are very appealing since they
are capable of robustifying any publicly-available non-robust classifier and do not require a computational
expensive specialized adversarial training. Furthermore, such methods are oblivious of the threat model
being used.

In this work we introduce a novel and highly effective preprocessing robustification method for image clas-
sifiers. We choose a preprocessing-based approach based on a generative model since we aim to remove or
weaken the adversarial perturbation while effectively projecting it onto the learned image manifold, where
the classifier’s accuracy is likely to be high. While a generative model is typically used to sample from p(x),
the probability of images in general, our approach initializes this process with y at the appropriate diffusion
step, where y is the noisy attacked image. This process effectively denoises the attacked image while targeting
perfect perceptual quality Kawar et al. (2021b); Ohayon et al. (2021). More specifically, we use a diffusion
model - an iterative process that uses a pretrained MMSE (Minimum Mean Squared Error) denoiser and
Langevin dynamics. The later involves an injection of Gaussian noise, which helps to robustify our samplers
against attacks, even if they are aware of our defense strategy. Our method relies on a preprocessing model
and a classification one, where both are trained independently on clean images. Hence, our architecture is
inherently threat model agnostic, achieving robustness for unseen attacks. In our experiments we propose
a way to evaluate the threat model-agnostic robustness by presenting two measurements. The first is the
average on a wide range of attacks, and the second is the average across the unseen attacks. We consider
the following threat models: (L∞, ϵ = 8/255), (L∞, ϵ = 16/255), (L2, ϵ = 1), (L2, ϵ = 2). In summary, our
main contributions are:

• A novel stochastic diffusion-based preprocessing robustification is proposed, aiming to be a model-agnostic
adversarial defense.

• The effectivnes of the proposed defense strategy is demonstrated in extensive experiments, showing state-
of-the-art results.
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2 Background

2.1 Adversarial Robustness

Since the discovery of the phenomenon of adversarial examples in neural networks Goodfellow et al. (2014);
Kurakin et al. (2016); Szegedy et al. (2013), classifiers’ robustness has been extensively studied. Numerous
works have been focusing on new methods for constructing adversarial examples and/or defending from
them. In the following we bring the very fundamental results referring to adversarial defense and attack
methods, as a background to our work.

Let us start with how adversarial attacks are created. Given an image x and a classifier f(·), an adversarial
attack is a small norm-bounded perturbation δ, added to the input image x, that leads to its misclassification.
There exist several mainstream settings for crafting adversarial examples that differ from each other in their
assumptions regarding the defense method’s characteristics and the access to the model and its gradients.
We describe below such key attack configurations.

White-Box Attacks are applied when the attacker has full access to the full system architecture (including
both the classifier and the defense mechanism), which is assumed to be differentiable. This is a rich and a
widely used group of attacks that contains some of the most common ones, such as Fast Gradient Signed
Method (FGSM) Goodfellow et al. (2014), Projected Gradient Decent (PGD) Madry et al. (2017) and CW
Carlini & Wagner (2017). While there exist numerous white-box attack strategies, PGD is the cornerstone
of their most modern embodiments. It is an iterative gradient-based algorithm that increases the classifier’s
loss in each step by perturbing the input data. We describe PGD in Algorithm 1 below.

Algorithm 1 L∞-based Projected Gradient Descent
Input classifier f(·), input x, target label y, norm radius ϵ, step size α, number of steps N

1: procedure PGD
2: δ ← 0
3: for i in 1 : N do
4: δ ← Πϵ(δ + α · sign(∇xLoss(f(x + δ), y)))
5: end for
6: end procedure

The operator Πϵ is a projection onto the Lp norm of radius ϵ. In the L∞ case, Πϵ is just the clamp operation
into [−ϵ, ϵ].

Since white-box attacks have assumptions that do not always hold, they can not be used in every setup.
For example, such a setup can be a defense method that relies on a non-differentiable preprocessing. Since
white-box attacks are gradient-based, they are likely to fail in this case. Another example is stochastic
preprocessing, which poses a challenging configuration for white-box attacks. This stems from the fact that
the ideal crafted attack might not be optimal during inference due to randomness. In order to better adjust
gradient-based adversarial attacks to such scenarios, alternative approaches were developed, as we describe
hereafter.

Grey-Box Attack is used when the attacker has access to the classifier but not to the preprocessing model
defending it, g(·). This approach is limited due to the fact that the attack in such a case is constructed upon
f(·) while being evaluated with f(g(·)). As a consequence, the malicious perturbation created is necessarily
sub-optimal and thus less effective.

Backward Pass Differentiable Approximation (BPDA) Attack Athalye et al. (2018) is an attack method for
cases in which the preprocessing function g(·) is non-differentiable or impractical to differentiate, implying
that f(g(·)) is not differentiable as well. In many cases we can invoke the assumption that g(x) ≈ x,
reflecting the fact that preprocessing methods do not perform significant modifications to the input images,
but rather try to remove the already small malicious perturbations. In order to attack such architecture we
use the forward pass of the preprocessing g(·) and approximate its derivative with I, producing ∇xf(g(x)) ≈
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∇g(x)f(g(x)). With this in place, the attacker can perform white-box attacks without completely disregarding
the preprocessing steps.

Expectation-Over-Transformation (EOT) Attack Athalye et al. (2018) is used when the preprocessing step
g(·) is stochastic. Attacking such a method is harder for gradient-based methods, since the crafted deviation
vector δ might not remain optimal during inference due to the randomness. EOT calculates the attack’s
gradients by ∇x E[f(g(x))] = E[∇xf(g(x))], differentiating through both the classifier and preprocessing
with an expectation. In practice, EOT empirically approximates the expectation with a fixed number of
drawn samples from g(x).

We move now to discuss adversarial defense approaches. In the past few years, numerous such methods
were proposed to improve the robustness of classifiers to adversarial attacks. While there are many types of
robustification algorithms, we focus below on two such families.

Adversarial Training (AT) Defense proposes to utilize adversarial examples during the training process of
the classifier. More specifically, the idea is to train the model to classify such examples correctly. Several
recent works Madry et al. (2017); Zhang et al. (2019); Gowal et al. (2020) follow this line of reasoning,
leading to the current state-of-the-art in robustifying classifiers.

Preprocessing is a substantially different type of robustification method that relies on a preceding opera-
tion on the classifier’s input as its name suggests. Since adversarial examples contain small imperceptible
perturbations, using preprocessing steps to “clean” them seems to be an is intuitive step. Many works rely
on various generative models for such preprocessing Song et al. (2017); Samangouei et al. (2018); Du &
Mordatch (2019); Hill et al. (2020); Yoon et al. (2021). More specifically, these models are used to project
the attacked image into a valid clean one in its vicinity, with the hope that the processed image is more
likely to be classified correctly.

2.2 Diffusion Models

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song & Ermon (2019) are Markov Chain
Monte Carlo (MCMC)-based generative techniques, which consist of a chain of images x0, x1, ..., xT of the
same size as the given image x. These methods are based on two closely related processes. The first is the
forward process of gradually adding Gaussian noise to the data according to a decaying variance schedule
parametrized by 1 > α0 > α1 > · · · > αT > 0. The following defines this chain of steps, for t = 1, 2, . . . , T
where x0 is the given clean image x:

q(xt|xt−1) := N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
(1)

Posed differently, the forward process can be described as a simple weighting between the image x0 and a
Gaussian noise vector,

q(xt|x0) = N (√αtx0, (1− αt)I), (2)

so we can express xt as

xt = √αtx0 +
√

1− αtϵ; ϵ ∼ N (0, I). (3)

When αt is close to zero, xt is close to a pure standard Gaussian noise, independent of x0. Thus, we can set
xT ∼ N (0, I) as initialization for the backward process, which is explained next.

The second and the more intricate process is the backward direction, which gradually removes the noise from
the image. Intuitively, this stage denoises the image by pealing layers of noise gradually. A key ingredient in
this process is a pretrained noise estimator neural network, ϵθ(xt, t). This denoiser serves as an approximation
to the score function ∇ log p(x) Kadkhodaie & Simoncelli (2020), bringing the knowledge about the image
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Figure 2: Our method incorporates a diffusion model and a classifier. In every diffusion step, we add
Gaussian noise multiplied by the corresponding σt, which is a user-controlled hyperparameter. The variables
xT ∗ , ..., x1 constitute the MCMC, and the last step’s output of the diffusion model x0, is the final output,
to be sent to the classifier.

statistics into this sampling procedure. The noise estimator is conditioned on the time t, trying to estimate
the noise ϵ of the latent variable xt. Sampling, or generating an image, is performed by iteratively applying
the following update rule for t = T, T − 1, . . . , 0:

xt−1 = √αt−1

(
xt −

√
1− αtϵθ(xt, t)
√

αt

)
+

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt (4)

where the first term is a denoising stage – an estimation of x0, while the second term stands for an attenuated
version of the estimated additive noise in xt. σtϵt is a stochastic addition, where σt is a hyperparameter
controlling the stochasticity of the process, and ϵt ∼ N (0, I).

The sampling process posed in Equation (4) tends to be very slow, requiring T (≈ 1000) passes through the
denoising network. Methods for speeding up this process are discussed in Nichol & Dhariwal (2021); Song
et al. (2020); Kawar et al. (2022). There are various use-cases for diffusion models beyond image synthesis.
The ones relevant to our work are discussed in Meng et al. (2021); Kawar et al. (2021b;a; 2022) where
inverse problems are being considered. Following Meng et al. (2021), instead of sampling from the ideal
image distribution p(x), the diffusion process we implement is initialized with xT ∗ , where xT ∗ 1 is the given
noisy image. Thus, the outcome x0 can be considered as a stochastic high perceptual quality denoising of
xT ∗ .

3 Our Method

In this section we present our adversarial defense method, depicted in Figure 1. We start by adding noise
to the attacked image, and then proceed by preprocessing the obtained image using a generative diffusion
model, effectively projecting it onto the learned image manifold. The outcome of this diffusion is fed into a
vanilla classifier, which is trained on the same image distribution that the diffusion model attempts to sample
from. Thus, our framework is comprised of two main components – a denoiser that drives the diffusion model
and a classifier.

Intuitively, we would like to sample images that are semantically close to an input image x by starting the
diffusion process from some intermediate time step (T ∗ < T ) rather than the beginning (T ∗ = T ). Recall that
xT stands for a pure Gaussian noise, whereas xT ∗ would be the noisy image we embark from. To this end, we
modify the image to fit the diffusion model at this time step by applying Equation 3 – simply multiplying
x by a scalar and adding an appropriate Gaussian noise, resulting in xT ∗ . We feed this processed image into
the diffusion model at time step T ∗ and complete the diffusion process, running with t = T ∗, T ∗ − 1, . . . , 0,
and outputting x0. Such a partial diffusion is similar to the image editing process presented in Meng et al.
(2021), and close in spirit to the posterior sampler that is discussed in Kadkhodaie & Simoncelli (2020).
We provide a comprehensive description of our method in Algorithm 2.

1More on the relation between T and T ∗ is given below.
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Algorithm 2 Our Preprocessing Defense Method
Input image x, maximum depth T ∗, diffusion model denoiser ϵθ(·, ·),
variance schedule [αT , . . . , α0], stochasticity hyperparameters [σT , . . . , σ1],

1: procedure Sampling
2: ϵT ∗ ∼ N (0, I)
3: xT ∗ ← √αT ∗x +

√
1− αT ∗ϵT ∗

4: for t in [T ∗, T ∗ − 1, ..., 1] do
5: x̃t−1 ← xt−

√
1−αtϵθ(xt,t)√

αt

6: ϵt ∼ N (0, I)
7: xt−1 ←

√
αt−1x̃t−1 +

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt

8: end for
9: return x0

10: end procedure

An important hyperparameter for the success of our method is the initial diffusion depth T ∗, since different
values of it yield significant changes in x0. To better understand the importance of a careful choice of T ∗,
we intuitively analyze its effect. On the one hand, when starting from T ∗ = T , we sample a random image
from the generative diffusion model, which obviously eliminates the adversarial perturbation. However, as
the resulting image is independent of x, this will necessarily change class-related semantics of the image,
which in turn would lead to misclassification. On the other hand, choosing T ∗ = 0 results in the same input
image x, which does not remove the perturbation from the image, hence probably leading to misclassification
as well. In other words, we need to choose T ∗ that balances the trade-off between cleaning the adversarial
noise, and keeping the semantic properties of the input image x. Choosing such T ∗ that successfully balances
these properties is crucial to the success of our adversarial defense algorithm.

We utilize the above described sampling algorithm with one goal in mind – sampling an image that is not
contaminated with an adversarial attack while keeping it semantically similar to the original input image x.
We believe that our algorithm is suited for this task because the Gaussian noise injections are much larger
than the adversarial perturbation. Hence, the noise overshadows the adversarial attack, reducing its effect.
This leads to a sampling process that answers both of our demands, removal of the contamination while
remaining semantically close to x.

As mentioned previously, our method is comprised of a diffusion model denoiser and a classifier, both trained
on clean images. This framework is very useful from a practical point of view, since we can utilize publicly
available pretrained models to a completely different task than they were trained on – adversarial defense.
The fact that these models were trained without adversarial attacks in mind gives our method a significant
advantage – it is inherently threat model-agnostic. This essentially avoids the challenged generalization to
unseen attacks problem Hendrycks et al. (2021); Bai et al. (2021), according to which classifiers trained on
a specific adversarial threat model are vulnerable to attacks under a different threat regime.

A method close in spirit to ours is the Adaptive Denoising Purification (ADP) Yoon et al. (2021), which uses
a score-based model as an adversarial defense. Despite this similarity, there are some fundamental differences
that we would like to highlight. ADP suggests a score-based gradient ascent algorithm as a preprocessing
step for robustifying a pretrained classifier. More specifically, they add Gaussian noise to the input image
only at the beginning, and then apply a deterministic gradient ascent process with an adaptive step size.
In contrast, we propose a stochastic diffusion-based preprocessing step, in which we inject noise into every
diffusion iteration. This effectively samples from the learned image distribution, initialized with a noisy
version of the input image. The increased stochasticity is a key property of our method that enables us to
wipe the malicious attack, while effectively projecting the attacked image onto the learned image manifold,
achieving robustness to unseen attacks.
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(a) Original classifier (b) Our method

Figure 3: Decision boundary comparison between a vanilla classifier with and without our method on a 2D
synthetic dataset.

4 Experiments

We proceed by empirically demonstrating the improved performance attained by our proposed adversarial
defense method. First, we provide supporting evidence for our method when applied to a synthetic dataset.
Next, we compare our method with another preprocessing method Yoon et al. (2021) under grey-box,
BPDA+EOT, and white-box attacks. Following, we compare our method to various state-of-the-art (SoTA)
methods on white box attacks, and finally present results over CIFAR-10-C. Additional experiments are
reported in the supplementary material.

Throughout our experiments, we use the pretrained diffusion model from Song et al. (2020) and a vanilla
classifier, both trained on clean images from CIFAR-10 Krizhevsky (2009) train set (50,000 examples). More
specifically, we set the diffusion model maximal depth to T ∗ = 140 and the sub-sequence of the time steps
to τ = {T ∗, T ∗ − 10, . . . , 10, 0}. In addition, we use a WideResNet-28-10 Zagoruyko & Komodakis (2016)
architecture as our classifier and evaluate the performance on the CIFAR-10 test set (10,000 examples).

4.1 Synthetic Dataset Experimets

We create a synthetic 2D dataset (see Figure 3) and investigate the effect of a diffusion process on the decision
boundaries of the classification. The dataset consists of two classes – red and blue points – consisting
altogether of 10, 000 examples, drawn from two mixtures of Gaussians, each consisting of 4 concentrated
groups. We train a fully connected neural network model to classify this data, having 10 layers of width 128.
The training is done via 5, 000 epochs. As for the diffusion preprocess, we use an analytic score-function
∇ log p(x) of the known distribution, following the work of Song & Ermon (2019). We set T ∗ = 10 and
values of α in the range [0.1, 1].

After training the classifier, we calculate its decision rule and present it in Figure 3a, where the background
colors represent the predicted label. As can be seen, the classifier achieves perfect performance, as all the red
points are located in the red zone, and all the blue ones are surounded by a blue background. Nevertheless,
the classifier decision boundaries are very close to the data, which is a well-known phenomenon of vanilla
classifiers Shamir et al. (2021). This illustrates why small perturbations to the data, such as adversarial
attacks, can change the classification decision from the correct to the wrong ones.

When applying our preprocessing scheme, our method leads to a larger margin between the data points and
the decision boundaries, as can be seen in Figure 3b. These results are encouraging because in the adversarial
attack regime, every data point is allowed to perturbed with an ϵ norm ball around it. When the decision
boundaries are far enough from the data points, an ϵ-bounded attack would necessarily fail.
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Table 1: CIFAR-10 robust accuracies of preprocessing methods under the following attack: grey-box, BPDA
+ EOT, white-box PGD. All using the same threat model L∞, ϵ = 8/255.

Defense Attack Base Classifier Preprocessed
Clean Adversarial Clean Adversarial

ADP Yoon et al. (2021) grey-box 95.60 00.00 86.39 80.49
Ours grey-box 95.60 00.00 86.28 82.33
ADP Yoon et al. (2021) BPDA+EOT 95.60 00.00 86.39 44.79
Ours BPDA+EOT 95.60 00.00 86.28 77.65
ADP Yoon et al. (2021) white-box 95.60 00.00 86.39 31.42
Ours white-box 95.60 00.00 86.28 63.40

Table 2: CIFAR-10 robust accuracies under white + EOT attacks. For every compared method, we state
the threat model that was used in training in the first column Trained Threat Model (TTM) column. The
next four columns are the four different threat models used for evaluation. The next two columns are the
two averages that we use for evaluation, Average without Training (AwT), and Average of All (AoA). In the
last column we state the classifier architecture that is used.

Method TTM
Attack

AwT AoA ArchitectureL∞ L2
8/255 16/255 1 2

AT Madry et al. (2017) L∞, ϵ = 8/255 54.23 19.20 32.34 04.99 18.84 27.69 rn-50
L2, ϵ = 0.5 34.25 02.99 41.55 05.72 21.13 21.13 rn-50

Trades Zhang et al. (2019) L∞, ϵ = 8/255 55.79 23.18 32.51 05.01 20.23 29.12 wrn-34-10

Gowal et al. Gowal et al. (2020) L∞, ϵ = 8/255 66.35 34.81 41.87 09.62 28.77 38.16 wrn-28-10
L2, ϵ = 0.5 47.08 13.12 52.71 14.85 31.94 31.94 wrn-70-16

PAT - Laidlaw et al. (2020) 44.07 22.33 46.65 23.33 34.01 34.01 rn-50

Ours 51.05 37.76 50.75 19.23 39.70 39.70 wrn-28-10

4.2 CIFAR-10 Experimets

First, we compare our method to ADP Yoon et al. (2021), a leading preprocessing method, using the following
attacks: grey-box, BPDA+EOT, and white-box, where the EOT is approximated over 20 repetitions. As
can be seen in Table 1, our method outperforms ADP by up to 32.86%. We should note that the results
are lower than presented in Yoon et al. (2021), this was also observed in Croce et al. (2022).

Next, we compare our method to baseline state-of-the-art (SoTA) methods, under PGD attacks using four
different threat models – (L2, ϵ = 1), (L2, ϵ = 2), (L∞, ϵ = 8/255), (L∞, ϵ = 16/255)- more details are
given in supplementary material. To assess the generalization ability to unseen attacks, we average the
results in two ways: (i) Average of All: accuracy average of all the attacks; and (ii) Average of Unseen
Attack: accuracy average of the attacks not seen at training time (if applicable). While the first is a simple
average that also considers the performance on the attack used in training time, the second showcases the
generalization capabilities to unseen attacks. Note that because our method is not trained on any threat
model, (i) and (ii) are the same. As can be seen in Table 2, adversarial training methods excel on the
specific threat model that they trained on. However, they generalize poorly, as discussed in Bai et al. (2021);
Hendrycks et al. (2021), while our method achieves SoTA performance in both of the examined metrics.
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4.3 Robustness to CIFAR-10-C Perturbations

In most of our discussion we focused on a robustness to norm- bounded attacks. We turn now to introduce a
robust classification under attacks that are based on augmentation. These refer to modifications of the image
in various ways such as motion blur, zoom blur, snow, JPEG compression, contrast variation, etc. CIFAR-10-
C Hendrycks & Dietterich (2019) is such a corrupted images dataset that was created by performing numerous
augmentations on CIFAR-10 Krizhevsky (2009) dataset. CIFAR-10-C is commonly used for evaluating the
robustness performance under broad attacks.

As our method is inherently attack agnostic, it is natural to evaluate it on this class of attacks. We compare
our method versus other leading techniques, achieving state-of-the-art results. This experiment requires
adjustment of the diffusion model maximal depth parameter T ∗. When we set T ∗ ∈ [30, 90], we outperform
the other methods, as depicted in Figure 4.
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Figure 4: Robustness accuracy under CIFAR-10-C as a function of the diffusion model maximal depth T ∗.
We compare our method with the results reported in Gowal et al. (2020); Zhang et al. (2019); Madry et al.
(2017); Laidlaw et al. (2020).

4.4 Diffusion Depth and Sampling

When deploying the proposed diffusion defense, two critical parameters should be discussed - the choice of
T ∗ (referred to as depth) and the time-step skips to use. In this Subsection we discuss the effect of both.

We start by showing the influence of the depth of the diffusion model on the robust accuracy. As we change
the maximal depth of the diffusion model T ∗, we depict the robust accuracy obtained by our method, and
present it in Figure 5. As discussed in Section 3, the diffusion depth controls the trade-off between clearing
the attack perturbation and sampling an image that is semantically similar to the input image x. We track
the diffusion model behavior as we increase the diffusion model’s first step. When setting T ∗ to a shallow
diffusion step, we effectively sample images that are closer to the input image x, and since the image is
contaminated by a malicious attack, the classification accuracy is low. As we increase the depth we reach
a sweet-spot in which we clean the malicious perturbation while keeping a small perceptual distance to x,
which leads to the highest accuracy. When the depth is too big, we clear the attack but lose perceptual
similarity to x, and the accuracy is reaching 10%, meaning that we sample random images.
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Figure 5: The obtained robust accuracy under white box attacks as a function of the max depth T ∗ of the
diffusion model. There are two graphs, both are attaked using the same threat model L∞, ϵ = 8/255, the
first is the robust accuracy under white-box attack, and the other refers to a white-box + EOT.

We now move to explore the influence of the skips to the time-steps in the diffusion process. Attacking our
preprocessing method necessarily consumes a lot of time and memory, making it hard to break, as indeed
claimed in Hill et al. (2020). This is due to the fact that an attack process requires keeping a computational
graph of all the time steps of the diffusion process for computing derivatives. In contrast, our defense
mechanism is lighter, as no derivatives are required, and only T ∗ forward passes through the denoiser are
performed.

When evaluating our defense method under the strongest known attack, white-box + EOT, we must lighten
further our protection by reducing the number of diffusion steps. This is done by using only 1/10 of the
DDIM diffusion steps Song et al. (2020), requiring all-together 14 steps. For uniformity of our experiments,
we use this sub-sequence of steps for all attacks.

We should note that if the proposed preprocess diffusion is applied in full (no subsampling), this would
increase both the attack and defense runtime and memory consumptions by a factor of 10. Such an approach
would not worsen the robust accuracy, and perhaps even improve it, as can be seen in the supplementary
material. Both these effects have one clear conclusion – when using our defense in practice, we can increase
the diffusion model sampling, harming the attacker, while preserving the robust accuracy.

5 Related Work

The goal of preprocessing methods is to clean the adversarial attacks from the input images, leading to correct
prediction by deep neural network classifier. Preliminary work on preprocessing defense methods include
rescaling Xie et al. (2017), thermometer encoding Buckman et al. (2018), feature squeezing Xu et al. (2017),
GAN for reconstruction Samangouei et al. (2018), ensemble of transformations Raff et al. (2019), addition
of Gaussian noise Cohen et al. (2019) and mask and reconstruction Yang et al. (2019). It was shown by
Athalye et al. (2018); Tramer et al. (2020) that such preprocessing, even if it includes stochasticity and non-
diferentiability, can be broken when evaluated properly by adjusting the projected-gradient-descent attack,
using backward-pass-differentiable-approximation and expectation-over-transformation algorithms. A new
preprocessing group of work has recently emerged, trying to utilize Energy-Based-Model (EBM) to the task
of cleaning adversarial pertubation from images. The intuition is that generative models are capable of
sampling images from the image manifold, hopefully projecting attacked images that were deviated from the
image manifold, back onto it. To this end, some EBM preprocessing methods were developed: purification
by pixelCNN Song et al. (2017), restore corrupt image with EBM Du & Mordatch (2019) and density aware
classifier Grathwohl et al. (2019). Most recent methods includes: long-run Langevin sampling Hill et al.
(2020) and gradient ascent score based-model Yoon et al. (2021). In contrast to many of these methods
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that require retraining the classifier, our method does not have this requirement, the diffusion model and
classifier are both pretrained on clean images.

Defense to unseen attacks methods: Recently, an attention for defense to unseen attacks has emerged.
Previouse methods that include Adversarial Training (AT) do not generalize well to unseen attacks, as
shown in Hendrycks et al. (2021); Bai et al. (2021). For this end, a new robustness evaluation metric to
unseen attacks was suggested Kang et al. (2019). Moreover, the authors of Laidlaw et al. (2020) suggested
perceptual-adversarial-training, which takes into account the perceptual similarity, leading to a new method
that generalizes to unseen attacks.

6 Conclusion

This work presents a novel preprocessing defense mechanism against adversarial attacks, based on a genera-
tive diffusion model. Since this generative model relies on pretraining on clean images, it has the capability to
generalize to unseen attacks. We evaluate our method across different attacks and demonstrate its superior
performance. Our method can be used to defend against any attack, and does not require retraining the
vanilla classifier.
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