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ABSTRACT

Recent feature contrastive learning (FCL) has shown promising performance in
unsupervised representation learning. For the close-set representation learning
where labeled data and unlabeled data belong to the same semantic space, how-
ever, FCL cannot show overwhelming gains due to not involving the class seman-
tics during optimization. Consequently, the produced features do not guarantee to
be easily classified by the class weights learned from labeled data although they
are information-rich. To tackle this issue, we propose a novel probability con-
trastive learning (PCL) in this paper, which not only produces rich features but
also enforces them to be distributed around the class prototypes. Specifically, we
propose to use the output probabilities after softmax to perform contrastive learn-
ing instead of the extracted features in FCL. Evidently, such a way can exploit the
class semantics during optimization. Moreover, we propose to remove the `2 nor-
malization in the traditional FCL and directly use the `1-normalized probability
for contrastive learning. Our proposed PCL is simple and effective. We conduct
extensive experiments on three close-set image classification tasks, i.e., unsuper-
vised domain adaptation, semi-supervised learning, and semi-supervised domain
adaptation. The results on multiple datasets demonstrate that our PCL can consis-
tently get considerable gains and achieves the state-of-the-art performance for all
three tasks.

1 INTRODUCTION

The goal of representation learning is to extract a compact feature from the raw data, and the
researches in recent decades are mainly carried out under the fully supervised learning frame-
work (Krizhevsky et al., 2012; He et al., 2016; Hu et al., 2018). However, such fully-supervised
learning algorithms are generally data hungry, and the expensive data labeling limits its practical
application in many real-world scenarios.

Therefore, how to utilize some labeled data to assist robust representations learning of unlabeled
data in the target domain attracts a lot of research attentions. To this end, the solutions with dif-
ferent perspectives have been proposed that usually exploit different labeled data. For example,
semi-supervised learning assumes the labeled data and unlabeled data are collected from the same
distribution, and then use both of them during optimization. Domain adaptation leverages a labeled
source domain to aid the unlabeled target domain, where the source and target domains have the
same semantics but different data distributions. Few-shot learning aims to learn a feature extractor
from labeled base set that is expected to be generalizable for new tasks. Zero-shot learning ex-
plores the relationship between attributes and classes, and then recognizes new classes based on the
predicted attributes. In this work, we divide these tasks into two broad categories according to the
consistency of semantic spaces between the labeled and unlabeled (target) data, namely, close-set
representation learning (CLRL) and open-set representation learning (OPRL). Specifically, the se-
mantic space of unlabeled data is defined by labeled data in CLRL, e.g., semi-supervised learning
and domain adaptation. For OPRL, the target tasks have different semantic space from the base data
for learning, e.g., few-shot learning and zero-shot learning. In this paper, we particularly focus on
CLRL where the semantic space is predefined regardless of domain shift of data.

In recent years, the unsupervised techniques represented by contrastive learning (Chen et al., 2020a;
Xu et al., 2020; He et al., 2020) have shown great potentials in representation learning. Gener-
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ally, the normalized features before the classifier are used to calculate the contrastive loss, and so
we call it feature contrast learning (FCL). In FCL, a pair of features from the same image with
different transformations are regarded as positive that would be enforced closer, while all feature
pairs from different images are treated as negative that are expected to be pushed away. Through
such instance contrastive learning, the model can extract rich information of images. Ultimately, the
trained model is used as the feature extractor, and a simple linear classifier (Chen et al., 2020b;c) or a
KNN classifier (Xu et al., 2020) can achieve amazing performance. For example, SimCLRv2 (Chen
et al., 2020b) can achieve over 70% top-1 accuracy with ResNet-50 (He et al., 2016) on the Ima-
geNet (Russakovsky et al., 2015), whereas the full supervised counterpart has an accuracy of 76.6%.
Due to the success of FCL in representation learning, many CLRL methods (Li et al., 2021b; Wang
et al., 2021; Zhang et al., 2021c) introduce the FCL loss represented by infoNCE (Oord et al., 2018)
besides the traditional cross-entropy loss. However, the optimization of FCL does not take into
account the class semantics due to directly operating on the features before class weights. Conse-
quently, the learned class weights in the CLRL tasks are usually deviated from the feature center due
to the small amount or domain shift of labeled data w.r.t. the target data, as shown in Figure 1(b).
To sum up, FCL cannot work well enough for CLRL although it can cluster the image features of
similar semantics.

Labeled data Unlabel data Class weight

(a) Initial Distibution (b) FCL (c) PCL

Figure 1: Feature contrastive learning v.s. Proba-
bility contrastive learning. (a) The distribution of
initial features are relatively scattered. (b) After
FCL, the features of same semantic are clustered,
but the learned class weights are deviated from the
class center. (c) After PCL, the features with sim-
ilar semantics can be not only clustered but also
distributed around the class weights.

To address this problem, we propose a novel ap-
proach named probability contrastive learning
(PCL) in this paper. Apart from the FCL, PCL
use the output probability of classifier with soft-
max to construct positive and negative samples
rather than the widely used features. Intuitively,
the probability contains the information of im-
age features and class weights, and thus PCL
has chance to make the unlabeled features clus-
ter around the class weight as expected. Fig-
ure 1(c) illustrates the results and we will elab-
orate on the details in the section 3. Further-
more, we remove the `2 normalization used in
the traditional feature contrastive learning and
directly use the output of Softmax. Such a
form can further strengthen the similarity of the
learned feature and some class weight due to
the sparsity characteristic of the `1 normaliza-
tion.

Our main contributions are three-folds. First,
we found that the traditional feature contrastive
learning cannot work well in the CLRL tasks
due to not involving the optimization of class
weights. Second, we design a novel probability contrastive learning approach and propose to re-
move the `2 normalization in FCL. As a result, our method can enforce the learned features to be
distributed around the class weights. Third, we conduct extensive experiments on three different
CLRL tasks to verify the effectiveness of our proposed PCL, i.e., SSL, UDA, and SSDA. The results
shows the superiority of our method to previous state-of-art methods in simplicity and performance.

2 RELATED WORK

2.1 CONTRASTIVE REPRESENTATION LEARNING

Contrastive learning (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Caron et al., 2020) is
a framework that learns similar/dissimilar representations from data that are organized into simi-
lar/dissimilar pairs. Since there is no label information, an instance discrimination pretext task (Wu
et al., 2018) is used, where a query and a key form a positive pair if they are data-augmented versions
of the same image. They form a negative pair otherwise. In these works, an effective contrastive
loss function, called InfoNCE (Oord et al., 2018) is widely adopted.
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SimCLR (Chen et al., 2020a) uses self-supervised contrastive learning to first achieve the perfor-
mance of a supervised ResNet-50 with only a linear classifier trained on self-supervised represen-
tations on full ImageNet. He et al. (2020) propose MoCo and Chen et al. (2020c) extends MoCo
to MoCo v2, where a small batch size can also achieve competitive results on full ImageNet (Rus-
sakovsky et al., 2015). In addition, many other methods (Grill et al., 2020; Caron et al., 2020) are
also proposed to further boost performance.

Khosla et al. (2020) introduce supervised contrastive learning to encourage more compact repre-
sentation. Cui et al. (2021) introduce a set of parametric class-wise learnable centers to tackle
long-tailed recognition. All the above works conduct contrastive learning in feature level. In this
work, we propose to use Probability Contrastive Learning (PCL) for the close-set representation
learning tasks.

2.2 SEMI-SUPERVISED LEARNING

Semi-Supervised Learning (SSL) (Berthelot et al., 2019; Li et al., 2017; Dai et al., 2017) aims to
leverage the vast amount of unlabeled data with limited labeled data to improve performance. Yang
et al. (2021) classifies the SSL methods into five categories, i.e., generative methods, consistency
regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Re-
cently, the consistency-based approach has attracted the attention of many reseachers. Mean teacher
(Tarvainen & Valpola, 2017) uses two different models to ensure consistency across similar images.
Mix-Match (Berthelot et al., 2019) and ReMixMatch (Berthelot et al., 2020) use interpolation be-
tween labeled and unlabeled data to generate perturbed features. FixMatch (Sohn et al., 2020a)
achieves impressive performance by generating the confident pseudo labels of the unlabeled sam-
ples and treating them as labels for the perturbed samples. Due to the effectiveness and simplicity
of FixMatch, it is also widely applied in other semi-supervised tasks, such as semantic segmenta-
tion (Chen et al., 2021; Zou et al., 2020) and object detection (Sohn et al., 2020b; Xu et al., 2021a;
Tang et al., 2021). In this work, we consider semi-supervised image classification task and also use
FixMatch as a strong baseline.

2.3 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised Domain Adaptation (UDA) aims to transfer the knowledge from a labeled source do-
main to an unlabeled target domain. The mainstream approaches tend to address UDA by learning
domain-invariant representation. These approaches can be categorized into two categories. One cat-
egory explicitly reduces the domain discrepancy measured by some distribution discrepancy metrics.
Tzeng et al. (2014); Long et al. (2015; 2017); Yan et al. (2017) measure the domain similarity in
terms of Maximum Mean Discrepancy (MMD) (Borgwardt et al., 2006), while Sun et al. (2016);
Sun & Saenko (2016); Peng et al. (2019) introduce metrics based on second- or higher-order statis-
tics. Another popular line learns domain-invariant representation using adversarial training. It has
been widely studied in Ganin & Lempitsky (2015); Tzeng et al. (2017); Liu et al. (2019); Saito et al.
(2018); Cui et al. (2020b).

Different from the seminal UDA framework, where unlabeled target data are utilized to explicitly
minimize the domain divergence, recent UDA methods (Jin et al., 2020; French et al., 2017; Tang
et al., 2020) have been proposed to explore the data structure of unlabeled data. Our proposed
method in this paper belongs to this type of approaches.

2.4 SEMI-SUPERVISED DOMAIN ADAPTATION

Semi-Supervised Domain Adaptation (SSDA) aims to reduce the discrepancy between the source
and target distribution in the presence of limited labeled target samples. Saito et al. (2019) first
proposes to align the distributions using adversarial training on entropy. Kim & Kim (2020) shows
the presence of intra-domain discrepancy in the target distribution and introduced a framework to
mitigate it. Jiang et al. (2020) uses consistency alongside multiple adversarial strategies on top of
MME. Li & Hospedales (2020) presents a meta-learning framework for SSDA. Yang et al. (2020)
breaks down the SSDA problem into two subproblems, namely, SSL in the target domain and UDA
problem across the source and target domains, and then proposes to learn the optimal weights of
the network using co-training. Li et al. (2021a) proposes an adversarial adaptive clustering loss
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to group features of unlabeled target data into clusters and perform cluster-wise feature alignment
across the source and target domains. They also use FixMatch to improve the performance.

3 METHOD

In this section, we first review feature contrastive learning widely used in unsupervised learning,
and then elaborate on our probability contrastive learning for the close-set representation learning.
Formally, let B = {(xi, x̃i)}Ni=1 be a batch of data pairs, where N is the batch size, and xi and x̃i
are two random transformations of a sample. We define the model M = E ◦ F with the feature
extractor E and the classifier F . Here F has the parameters W = (w1, ...,wC), where C is the
number of classes, and wk is the class weights of the k-th class (also called class prototype). We
use the E to extract the features from B, and get F = {(fi, f̃i)}Ni=1.

3.1 FEATURE CONTRASTIVE LEARNING

For a query feature fi, the feature f̃i is the positive and all other samples are the negative. Then the
InfoNCE loss (Oord et al., 2018) has the following form

`fni = − log
exp(sfni

>f̃ni )∑
j 6=i exp(sf

n
i
>fnj ) +

∑
k exp(sf

n
i
>f̃nk )

, (1)

where fn = f
||f ||2 is a standard `2-normalization operation widely used in feature contrastive learn-

ing (Oord et al., 2018; Wang et al., 2021; Chen et al., 2020a), and s is the scaling factor. We can get
the gradient of the loss function `fni with respect to the feature fni as
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exp(sfni

>f̃nj )∑
m 6=i exp(sf

n
i
>fnm) +

∑
k exp(sf
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The first term in (2) indicates that the query fi would be close to f̃i, and the second term indicates that
fi would be far away from all other negative samples. Therefore, we can understand the optimization
process of FCL as reducing the distance between the query feature and the positive sample while
increasing the distance with negative samples. FCL is powerful in extracting the discriminative
features for image classification. Finally, a simple linear classifier or KNN classifier over the self-
supervised features can classify the test samples well (Xu et al., 2020; Chen et al., 2020a).

3.2 PROBABILITY CONTRASTIVE LEARNING

In unsupervised learning, there is no classifier and it aims to learn a task-independent initialization
model on unlabeled data that is expected to be well generalized to downstream tasks. So feature
contrastive learning is a natural choice. However, for the CLRL tasks such as UDA, we need the
unlabeled data to be correctly classified by the classifier learned on the labeled data. Therefore,
the learned features need not only be tightly clustered, but also be distributed around the class
weights W . Observing Equation (2), we find that the optimization process of FCL is only related
to the extracted features and the classifier is not involved. Consequently, FCL can only optimize
the features to cluster together with similar semantics, and cannot guarantee the extracted features
are easily classified. In order to solve this problem, we propose a novel InfoNCE loss based on
probability, namely probability contrastive learning. Specifically, we replace the normalized features
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fni in the Equation (1) with the probability distribution pW
i = softmax(W>fi), which establishes

the association between the features and class weights. Then our proposed loss is defined as

`pW
i

= − log
exp(spW

i
>p̃W

i )∑
j 6=i exp(sp

W
i
>pW

j ) +
∑

k exp(sp
W
i
>p̃W

k )
. (5)

Comparing Equation (1) and Equation (5), we can see two main differences. First, Equation (5)
uses the probability after Softmax for contrastive learning instead of the extracted features. Second,
Equation (5) removes the `2-norm normalization. Evidently, our proposed PCL is quite concise.

3.3 HOW DOES PROBABILITY CONTRASTIVE LEARNING WORK?

𝑙2 − 𝑛𝑜𝑟𝑚𝑙2 − 𝑛𝑜𝑟𝑚
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Figure 2: Framework of FCL and PCL. Differ-
ent from FCL, PCL uses the output of softmax to
perform contrastive learning and removes the `2-
norm normalization.

In this section, we answer a question: how
can PCL make the features closer to the class
weights?

To minimize Equation (5), we need to max-
imize pW
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have a one-hot form. In other words, pW
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pW
i = p̃W

i = (0, ..,

c︷︸︸︷
1 , .., 0), (6)

where c indicates that the probability of the c-
th category is 1. Note that pW

i and p̃W
i are the

probability obtained from the feature fi and f̃i
with the classifier F and softmax. The c-th po-
sition of 1 means that the fi and f̃i are simulta-
neously close to the c-th class weight wc. Compared with FCL, this characteristic benefits PCL to
enforce the features fi and f̃i to cluster around some class weight wc.

Why would wc be the class weight of the category corresponding to fi? Assuming that ci is the
ground-truth category of fi, let Bci denotes the set of all samples in the unlabeled data that belong
to the class ci. Since there is a high semantic similarity between labeled and unlabeled data for the
same class, there are usually more features close to wci in Bci than to the other {wcj}j 6=i. As a
result, the features in Bci tend to cluster around wci , i.e., wc = wci .

3.4 LOSS FUNCTION

Our loss function is defined as:
L = Lori + λLPCL. (7)

Here Lori represents the loss function used by the baseline model and LPCL =
∑

i(`pW
i

+ `p̃W
i
).

4 EXPERIMENTS

In this section, we conduct the experiments on three close-set tasks, namely, unsupervised domain
adaptation, semi-supervised learning, and semi-supervised domain adaptation. As our proposed loss
can be directly applied to any existing methods by adding two augmentations on unlabeled images,
we follow the experimental settings of the baseline methods, and only add the proposed loss for
training.
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4.1 RESULTS ON SEMI-SUPERVISED LEARNING

Setup We conduct experiments on CIFAR-10 and CIFAR-100 datasets. CIFAR-10 (CIFAR-
100) (Krizhevsky et al., 2009) contains 50,000 images of size 32×32 from 10 (100) classes. We vary
the amount of labeled data and focus on the label-scarce scenario where few labels are available. We
take FixMatch (Sohn et al., 2020a) as our baseline, and the backbone and training hyperparameters
are exactly the same with FixMatch. We evaluate on 5 runs with different random seeds, and re-
port the mean and standard variance here. For the experimental details and hyperparameter settings,
please refer to appendix A.1.1.

Comparision to SOTA We compare our method with previous state-of-the-art approaches, including
“ReMixMatch” (Berthelot et al., 2020), “FixMatch” (Sohn et al., 2020a), “CoMatch” (Li et al.,
2021b), “SsCL” (Zhang et al., 2021c), “SemCo” (Nassar et al., 2021), “Dash” (Xu et al., 2021b).

The quantitative evaluation results on the CIFAR-10/100 experiments are reported in Table 1. First,
in the case of extremely limited labeled data (4 samples per class), our method get significant gains
on CIFAR-10 (+4.8%) and CIFAR-100 (+4.0%) compared with the baseline FixMatch. Second, our
method achieves the comparable performance with the baseline method when more labeled data are
used. Actually, for the the case of less labeled data, it is difficult for the class weights to be accu-
rately learned from labeled data. Owing to involving the optimization of class weights during the
training, our proposed PCL can cluster the features of unlabeled samples around the class weights,
and thus bring considerable gains. However, in the case of more labeled data, it is easy to learn
accurate class weights from the labeled data since the labeled data and unlabeled data come from
the same distribution for SSL. Consequently, our method cannot bring significant gains. It is worth
noting that our performance is superior to SsCL and CoMatch that use feature contrast learning.
In particular, CoMatch boosts the original feature contrastive learning through memory-smoothed
pseudo-labeling and graph structure, while our method does not require any additional techniques.
We believe these techniques can further enhance the performance of probability contrastive learning.

Table 1: Accuracy of SSL for CIFAR-10 and CIFAR-100 on 5 different folds. * means our reimplementation.

Method CIFAR-10 CIFAR-100
40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels

ReMixMatch(ICLR’20) 80.90±9.64 94.56±0.05 95.28±0.13 55.72±2.06 72.57±0.31 76.97±0.56
FixMatch(NeurIPS’20) 86.19±3.37 94.93±0.65 95.74±0.05 51.15±1.75 71.71±0.11 77.40±0.12
SemCo(CVPR’21) — 94.88±0.27 96.20±0.08 — 68.07±0.01 75.55±0.12
CoMatch(ICCV’21) 93.09±1.39 95.09±0.33 — — — —
Dash(ICML’21) 86.78±3.75 95.44±0.13 95.92±0.06 55.24±0.96 72.82±0.21 78.03±0.14
SsCL(Arxiv’21) 89.71±2.61 94.88±0.41 95.49±0.13 — — —
FixMatch(NeurIPS’20)* 89.26±3.92 95.46±0.18 96.08±0.13 53.58± 2.09 73.68±0.56 78.84±0.25
+Our PCL 94.12±1.19 95.44±0.05 95.96±0.09 57.62±2.52 73.98±0.49 78.99±0.17

4.2 RESULTS ON UNSUPERVISED DOMAIN ADAPTATION

Setup We evaluated our method in the following two standard benchmarks for UDA. Office-
Home (Venkateswara et al., 2017) consists of images of everyday objects organized into four do-
mains: Artistic (Ar), Clipart (Cl), Product (Pr), and Real-world (Rw). It contains 15,500 images
of 65 classes. VisDA-2017 (Peng et al., 2017) is a large-scale dataset for synthetic-to-real domain
adaptation. It contains 152,397 synthetic images for the source domain and 55,388 real-world im-
ages for the target domain. We take GVB (Cui et al., 2020b) as our baseline. For the experimental
details and hyperparameter settings, please refer to appendix A.1.2.

Table 2: Accuracies (%) of Synthetic
→ Real on VisDA-2017 for unsuper-
vised domain adaptation methods using
ResNet-50.

Method Acc Method Acc
DAN(arxiv’15) 61.6 DANN(ICML’15) 57.4

GTA (CVPR’18) 69.5 MDD (ICML’19) 74.6
CDAN (NeurIPS’20) 70.0 GVB (CVPR’20) 75.3

GVB* 75.0 + FixMatch 80.4
+ Our PCL 80.8 Our PCL + FixMatch 82.5

Comparision to SOTA Here we compare different repre-
sentative methods, including “DAN” (Long et al., 2015),
“DANN” (Ganin & Lempitsky, 2015), “GTA” (Sankara-
narayanan et al., 2018), “MCD” (Saito et al., 2018),
“TAT” (Liu et al., 2019), “SymNet” (Zhang et al.,
2019a), “MDD” (Zhang et al., 2019b), “BNM” (Cui
et al., 2020a), “MetaAlign” (Wei et al., 2021),
“FixBi” (Na et al., 2021), “CAN” Kang et al. (2019), and
“GVB” (Cui et al., 2020b).
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Table 2 and table 3 give the results on VisDA-2017 and
Office-Home. In particular, we first add FixMatch on GVB, and it can achieve remarkable perfor-
mance improvement. Such results are consistent with Zhang et al. (2021b) which reveals that the
semi-supervised models are strong unsupervised domain adaptation learners. We further evaluate
our proposed PCL by adding it to GVB and GVB with FixMatch. It can be seen that our method can
bring consistent improvements and achieve state-of-the-art performance combined with FixMatch.

Table 3: Classification accuracy (%) of different UDAs on Office-Home with ResNet-50 as back-
bone.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
Source-Only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
TAT (ICML’19) 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
SymNet (CVPR’19) 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2
MDD (ICML’19) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
BNM (CVPR’20) 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4
FixBi (CVPR’21) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
GVB (CVPR’20) 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
+ MetaAlign(CVPR’21) 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
+ Our PCL 59.7 75.9 80.4 69.3 75.5 77.1 67.0 58.3 81.0 75.2 63.9 84.6 72.3
+ FixMatch 59.8 78.1 81.3 67.7 78.2 76.7 68.7 60.2 83.9 75.1 65.5 86.4 73.5
+ Our PCL + FixMatch 60.8 79.8 81.6 70.1 78.9 78.9 69.9 60.7 83.3 77.1 66.4 85.9 74.5

4.3 RESULTS ON SEMI-SUPERVISED DOMAIN ADAPTATION

Setup We evaluate the effectiveness of our proposed approach on two SSDA image classification
benchmarks, i.e., DomainNet (Peng et al., 2019) and Office-Home. DomainNet is initially a multi-
source domain adaptation benchmark. Similar to MME (Saito et al., 2019), we only select 4 domains
Real, Clipart, Painting, and Sketch (abbr. R, C, P, and S), each of which contains images of 126
categories. Office-Home is a widely used UDA benchmark and consists of Real, Clipart, Art, and
Product (abbr. R, C, A, and P) domains with 65 classes. For fair comparison, the settings of our
benchmark datasets refer to the existing SSDA approaches (Saito et al., 2019; Qin et al., 2020;
Kim & Kim, 2020), including adaptation scenarios of each dataset, the number of labeled target
data (typically 1-shot or 3-shot per class), sample selection strategies, etc. In particular, we choose
MME (Saito et al., 2019) as our baseline and report the results on ResNet34 (He et al., 2016) and
AlexNet (Krizhevsky et al., 2012). For the experimental details and hyperparameter settings, please
refer to appendix A.1.3.

Table 4: Accuracy(%) on DomainNet under the settings of 1-shot and 3-shot using Alexnet (A) and
Resnet34 (R) as backbone networks. † means using Fixmath and ∗ means our reimplementation.

Net Method R→C R→P P→C C→S S→P R→S P→R Mean
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

A

S+T 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
MME (ICCV’19) 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
Meta-MME (ECCV’20) - 56.4 - 50.2 51.9 - 39.6 - 43.7 - 38.7 - 60.7 - 48.8
BiAT (IJCAI’20) 54.2 58.6 49.2 50.6 44.0 52.0 37.7 41.9 39.6 42.1 37.2 42.0 56.9 58.8 45.5 49.4
APE (ECCV’20) 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
CDAC† (CVPR’21) 56.9 61.4 55.9 57.5 51.6 58.9 44.8 50.7 48.1 51.7 44.1 46.7 63.8 66.8 52.1 56.2
MME∗ 50.8 57.9 48.4 50.6 46.8 54.2 39.5 42.5 40.0 45.0 36.5 40.3 58.9 61.2 45.8 50.2
+ Our PCL 55.1 59.5 54.6 57.2 52.4 56.7 44.2 48.2 49.6 52.6 42.0 46.9 64.2 67.1 51.7 55.5
+ Our PCL + FixMatch 58.2 62.5 55.9 59.3 57.5 60.6 47.1 51.2 51.9 56.0 44.9 48.8 65.2 67.8 54.4 58.0

R

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
MME (ICCV’19) 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
UODA (arXiv 2020) 72.7 75.4 70.3 71.5 69.8 73.2 60.5 64.1 66.4 69.4 62.7 64.2 77.3 80.8 68.5 71.2
Meta-MME(ECCV’20) - 73.5 - 70.3 - 72.8 - 62.8 - 68.0 - 63.8 - 79.2 - 70.1
BiAT (IJCAI’20) 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7
APE (ECCV’20) 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
CDAC† (CVPR’21) 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
MME∗ 71.0 71.4 68.9 70.0 69.2 72.6 59.8 62.7 65.6 68.2 63.2 64.3 77.8 77.9 67.9 69.5
+ Our PCL 74.8 78.1 73.9 76.5 75.5 78.6 67.6 72.5 73.4 75.6 68.9 72.5 80.6 84.6 73.5 76.9
+ Our PCL + FixMatch 78.1 80.5 75.2 78.1 77.2 80.3 68.8 74.1 74.5 76.5 70.1 73.5 81.9 84.1 75.1 78.2

Comparision to SOTA We compare our method with previous state-of-the-art approaches, including
“S+T”, “MME” (Saito et al., 2019), “UODA” (Qin et al., 2020), “BiAT” (Jiang et al., 2020), “Meta-
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Table 5: Accuracy(%) on Office-Home under the setting of 3-shot using Alexnet (A) and Resnet34
(R) as backbone networks. † means using Fixmath and ∗ means our reimplementation.

Net Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

A

S+T 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0
MME (ICCV’19) 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
Meta-MME (ECCV’20) 50.3 - - - 48.3 40.3 - 44.5 - - 44.5 - -
BiAT (IJCAI’20) - - - - - - - - - - - - 56.4
APE (ECCV’20) 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6
CDAC† (CVPR’21) 54.9 75.8 51.8 64.3 51.3 43.6 65.1 47.5 63.1 63.0 44.9 65.6 56.8
MME∗ 44.6 73.0 50.4 62.9 48.3 41.0 63.4 45.4 62.2 60.8 43.3 65.2 55.7
+ Our PCL 51.5 73.6 53.1 64.9 49.3 43.7 66.0 46.7 64.5 63.8 46.0 67.2 57.5
+ Our PCL + FixMatch 55.5 77.4 53.6 67.7 50.9 46.5 69.1 50.7 67.5 66.2 47.3 69.4 60.2

R

S+T 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
MME (ICCV’19) 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
Meta-MME (ECCV’20) 65.2 - - - 64.5 66.7 - 63.3 - - 67.5 - -
APE (ECCV’20) 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
CDAC† (CVPR’21) 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.8
MME∗ 66.0 86.0 72.3 80.4 64.0 67.4 79.8 64.0 77.9 77.1 66.6 80.0 73.5
+ Our PCL 65.4 86.7 74.5 83.1 62.9 71.0 82.8 63.7 81.0 81.1 71.0 83.1 75.5
+ Our PCL + FixMatch 67.6 88.7 75.8 84.1 64.9 73.6 85.7 65.9 82.1 82.3 73.0 82.5 77.2

MME” (Li & Hospedales, 2020), “APE” (Kim & Kim, 2020), and “CDAC” (Li et al., 2021a). Here
the model of the “S+T” method is trained using labeled source and labeled target data only.

Table 4 and Table 5 give the results on DomainNet and Office-Home. It can be seen that our method
on all datasets and all settings can get a significant gain compared with the baseline MME∗. For
DomainNet, under four different settings, our method can obtain a gain of more than 5%. It strongly
proves the effectiveness of our method. Furthermore, our method outperforms other methods ex-
cept CDAC that adopts the FixMatch technique. For fair comparison, we also add FixMatch to our
method. We can see that our method combined with FixMatch can achieve the state-of-art perfor-
mance for all settings.

5 ABLATION STUDY

In this section, we analyze our proposed PCL from the used space and normalization. As SSDA
task combines the characteristics of both SSL and UDA, we particularly choose the SSDA task here.
We conduct the experiments on DomainNet under the setting of 3-shot and adopt Resnet34 as the
backbone.

5.1 FEATURE SPACE V.S. PROBABILITY SPACE

We first investigate the effect of the features at different locations. In particular, we consider the
features before the classifier, which is used in the traditional feature contrastive learning (FCL), and
the features before the softmax after the classifier, which is called logits contrastive learning (LCL).

Table 6: Ablation study on effect of different features on
DomainNet under the setting of 3-shot and Resnet34.

Method R→C R→P P→C C→S S→P R→S P→R Mean
Baseline 71.4 70.0 72.6 62.7 68.2 64.3 77.9 69.5

FCL 72.5 71.6 73.1 66.4 70.2 64.5 80.8 71.3
LCL 72.8 70.6 72.5 66.4 70.5 64.5 81.3 71.2
PCL 78.1 76.5 78.6 72.5 75.6 72.5 84.6 76.9

Following the traditional feature con-
trastive learning, we perform `2-
norm normalization on the features
and logits. Table 6 gives the results
and we have the following observa-
tions. First, the traditional FCL and
LCL can improve the performance of
the baseline. Second, the gain of our
probability contrastive learning over
FCL and LCL is more than 5%, which indicates the importance of applying softmax function, i.e.,
probability contrastive learning is essentially helpful.

5.2 EFFECT OF `2-NORM NORMALIZATION

In this section, we investigate whether our PCL requires `2-norm normalization like the standard
FCL. Talble 7 gives the results. It can be seen that the accuracy would be reduced by 2% if the
probabilities are normalized by the `2-norm. This is because the `2 normalization on the probability
only make a pair of features keep the same direction for the inner product of 1, and it is no longer
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necessary to enforce them keep in the one-hot form. Therefore, the `2-norm normalization reduces
the proximity of the learned features to the class weights.

5.3 t-SNE VISUALIZATION

Table 7: Ablation study on effect of applying `2-norm nor-
malization to probability, where DomainNet under the set-
ting of 3-shot and Resnet34 are used.

Method R→C R→P P→C C→S S→P R→S P→R Mean
Baseline 71.4 70.0 72.6 62.7 68.2 64.3 77.9 69.5
`2-norm 75.1 74.4 76.2 70.3 73.5 69.9 82.5 74.6

w/o `2-norm 78.1 76.5 78.6 72.5 75.6 72.5 84.6 76.9

Figure 3 shows the relationship be-
tween the extracted unlabeled fea-
tures and the class weights for
the three methods, including MME,
MME+FCL, and MME+PCL, re-
spectively. Firstly, compared to
MME, MME+FCL produce more
compact feature clusters for the same
category and more separate feature
distributions for different categories. However, for both MME+FCL and MME, the learned class
weights are deviated from the feature centers. Secondly, the class weights of MME+PCL are closer
to the feature centers than MME+FCL. It demonstrates that probability contrastive learning is effec-
tive in enforcing the features closer to the class weights.

Figure 3: The t-SNE visualization of learned features. We focus on the relationship between features
and class weights on the C→S task of DomainNet dataset with Resnet34 under the setting of 3-shot.
Best viewed in color.

6 CONCLUSION

In this paper, we found that the traditional feature contrastive learning can only cluster the features
of similar semantics and cannot enforce the learned features to be distributed around the class pro-
totypes due to the class weights are not involved during optimization. To solve this problem, we
propose a novel probability contrastive learning. Specifically, we use the probabilities after Softmax
instead of the features, and remove the `2-norm normalization widely used in FCL. We experimen-
tally verified the effectiveness of our proposed methods in three CLRL tasks with multiple datasets.
We believe that our PCL provides an innovative route for representation learning in various visual
tasks.

7 REPRODUCIBILITY STATEMENT

We have submitted the source code as supplementary material to facilitate the verification of the
method’s reproducibility.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS AND MORE RESULTS

A.1.1 SEMI-SUPERVISED LEARNING

Following Berthelot et al. (2019); Sohn et al. (2020a), we report the performance of an EMA model
and use a Wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) for CIFAR-10 and use a WRN-28-
8 for Cifar100. The models are trained using SGD with a momentum of 0.9 and a weight decay
of 0.0005. We follow the original papers Berthelot et al. (2019); Sohn et al. (2020a) and train
all models for 1024 epochs, using an learning rate of 0.03 with a cosine decay schedule. For the
hyperparameters exist in FixMatch, we follow FixMatch and set λcls = 1, τ = 0.95, µ = 7,
B = 64. For the hyper-parameters in PCL, we set s = 4 for CIFAR-10 and s = 7 for CIFAR-100.
For CIFAR-100, we set λ = 0.05 for all setting. For CIFAR-10, we set λ = 0.02 under the setting
of 40 labels and λ = 0.002 under the setting of 250 labels and 4000 labels.

A.1.2 UNSUPERVISED DOMAIN ADAPTATION

Following the standard transductive setting (Zhang et al., 2021b) for UDA, we use all labeled source
data and all unlabeled target data, and test on the same unlabeled target data. We adopt the GVB-
GD Cui et al. (2020b) architecture which means adopt GVB on both the generator and discriminator,
and follow the original experimental settings in GVB-GD. For model selection, we use ResNet-
50 (He et al., 2016) pre-trained on ImageNet as the backbone network for both Office-Home and
VisDA-2017. For training hyper-parameters, we use mini-batch stochastic gradient descent (SGD)
with a momentum of 0.9, a weight decay of 0.001. For Office-Home, the initial learning rate is set
to 0.001. For VisDA-2017, an initial learning rate of 0.0003 is used. The max iteration number is
set to 20k.
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When applying FixMatch in domain adaptation task, there exist wrong predicted high confident tar-
get samples, which can hurt the performance in the target domain. To amend this, we follow (Zhang
et al., 2021a) which uses a regularization term from Zou et al. (2019). It encourages the high confi-
dent output to be evenly distributed to all classes.

`reg = −
N∑
i=1

C∑
j=1

1

C
log p

(i,j)
t . (A.1)

where N denotes for the number of high confident samples, C denotes for the number of classes.

For data augmentation in FixMatch and the proposed PCL, we use the RandAugment (Cubuk et al.,
2020) to generate strong augmented images. For the hyper-parameters in PCL, we set s = 7.0 and
λ = 0.05.

We also consider a small scale dataset Office-31 (Saenko et al., 2010), which is another standard
benchmark for visual domain adaptation. It contains 4652 images in 31 categories, and can be split
into three domains: Amazon (A), DSLR (D) and Webcam (W). For this dataset, we choose a stronger
baseline CAN (Kang et al., 2019), and directly add our proposed PCL in the unlabeled images. The
experimental results are show in Table A.1. Compared with our re-implemented CAN, the proposed
PCL can further boost the accuracy by 0.7%.

Table A.1: Classification accuracy (mean ± std %) of different UDAs on Office31 with ResNet-50
as backbone. ∗ means our reimplementation.

Method A→W A→ D W→ A W→ D D→ A D→W Avg
Source-Only 68.4±0.2 68.9±0.2 60.7±0.3 99.3±0.1 62.5±0.3 96.7±0.1 76.1
SymNet (CVPR’19) 90.8±0.1 93.9±0.5 72.5±0.5 100.0±.0 74.6±0.6 98.8±0.3 88.4
BNM (CVPR’20) 92.8 92.9 73.8 100.0 73.5 98.8 88.6
MDD (ICML’19) 94.5±0.3 93.5±0.2 72.2±0.1 100.0±.0 74.6±0.3 98.4±0.1 88.9
CAN (CVPR’20) 94.5±0.3 95.0±0.3 77.0±0.3 99.8±0.2 78.0±0.3 99.1±0.2 90.6
FixBi (CVPR’21) 96.1±0.2 95.0±0.4 79.4±0.3 100.0±0.0 78.7±0.5 99.3±0.2 91.4

CAN* (CVPR’20) 94.1±0.3 94.4±0.3 75.0±0.3 99.8±0.2 77.5±0.3 98.5±0.2 89.9
+PCL 94.8±0.3 94.8±0.3 77.5±0.3 99.8±0.2 78.6±0.3 98.5±0.2 90.7

A.1.3 SEMI-SUPERVISED DOMAIN ADAPTATION

Following MME (Saito et al., 2019), we remove the last linear layer of AlexNet and ResNet34,
while adding a new classifier F . We also use the model pre-trained on ImageNet to initialize all
layers except F . We adopt SGD with momentum of 0.9 and set the initial learning rate is 0.01 for
fully-connected layers whereas it is set 0.001 for other layers. The max iteration number is set to
50k. For the hyper-parameters in PCL, we set s = 7 in all experiments. In DomainNet, we set
λ = 0.05 under the setting of 1-shot for ResNet34 and AlexNet and set λ = 0.1 under the setting of
3-shot for AlexNet and set λ = 0.2 under the setting of 3-shot for ResNet34. In Office-Home, we
set λ = 0.02 under the setting of 3-shot for AlexNet and set λ = 0.2 under the setting of 3-shot for
ResNet34. In the SSDA task, we also use the regularization term in equation A.1.

Here we report the result on Office-Home under the setting of 1-shot. we set λ = 0.02 under the
setting of 3-shot for AlexNet and set λ = 0.05 under the setting of 3-shot for ResNet34. Table A.2
gives the results. It can be seen that our method can also improve the performance on AlexNet and
ResNet34.

Table A.2: Accuracy(%) on Office-Home under the setting of 1-shot using Alexnet (denote as A)
and Resnet34 (denote as R) as backbone networks. ∗ means our reimplementation.

Net Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

A

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1
MME 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2
BiAT - - - - - - - - - - - - 49.6
MME∗ 44.6 69.2 49.0 60.7 40.0 35.7 56.4 38.7 57.2 56.0 40.4 59.7 50.6
+PCL 43.1 71.1 50.5 61.2 38.4 38.4 61.1 36.3 59.8 58.7 42.1 63.2 52.0

R
MME∗ 62.6 83.1 72.3 78.8 58.5 64.6 75.4 60.5 76.9 73.7 64.9 75.0 70.5
+PCL 59.4 83.7 73.4 80.4 54.9 66.9 77.9 58.1 79.4 77.7 68.7 78.9 71.6
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