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ABSTRACT

Many large and complex deep neural networks have been shown to provide higher
accuracy. However, very little is known about the relationship between the com-
plexity of the input data along with the type of noise and the depth needed for
correct classification. Existing studies do not address the issue of common corrup-
tion adequately, especially in understanding what impact these corruptions leave on
the individual part of a deep neural network. Therefore, we can safely assume that
the classification (or misclassification) might be happening at a particular layer(s)
of a network that accumulates to draw a final correct or incorrect prediction. In
this paper, we introduce a novel concept called corruption depth, which identifies
the location of the network layer/depth until the misclassification persists. We
assert that the identification of such layers will help in better design of the network
by pruning certain layers in comparison to the purification of the entire network
which is computationally heavy to do. Through our extensive experiments, we
present a coherent study in comparison to the existing studies which are diverse in
understanding the processing of examples through the network. Our approach also
illustrates different philosophies of example memorization and a one-dimensional
view of sample or query difficulty. We believe that the understanding of the corrup-
tion depth can open a new dimension of model explainability, where in place of
just visualizing the attention map, the classification progress can be seen throughout
the network.

1 INTRODUCTION

Deep networks are composed of several layers which learn different kinds of features that vary from
the beginning to the end of the network. For instance, generally initial few layers learn the low-level
image features such as edges and lines, middle layers learn the shape and structure of the object,
and deeper layers learn the high-level features which form the entire example/sample Keshari et al.
(2018); Zeiler & Fergus (2014). While these networks yield state-of-the-art performances on cleaner
and good quality images; they are found to be vulnerable to corrupted images Hendrycks & Dietterich
(2019). The corruption often can be caused by a different type of noise in the input. Therefore
an understanding of how the corrupted data passes through these feature processing pipelines is
essential. By understanding the impact of the corruption in data, it will help in reducing the additional
computational load needed to perform the image denoising from complex architectures such as
generative networks Lee et al. (2017); Song et al. (2017) or building a defense where we might not
be required to train the entire new network for attack detection Agarwal et al. (2021a;b). Recent
studies aim to understand the broad behavior of the networks from the point of view of geometry
and Eigenvalues of the Hessian matrix Ghorbani et al. (2019); Yao et al. (2020), generalization
effectiveness Jiang et al. (2019); Unterthiner et al. (2020), and stochastic optimization Smith et al.
(2021). These existing studies aim to find confidence in the prediction when the images are not part
of a training set Jiang et al. (2021) and how complex the clean data is Agarwal et al. (2020b); Baldock
et al. (2021); Hooker et al. (2019); Toneva et al. (2018). Therefore, they only understand the average
behavior of the networks and are not effective in general from a robustness point of view. Based on
the example characteristics, these studies see the understanding of deep neural networks from two
views: (i) statistical and (ii) learning. However, the behavior of the deep networks in presence of the
corruption in the data is not considered and only presents a one-dimensional understanding Carlini
et al. (2019). These existing studies encapsulate that the easier examples exist in domains such as
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Figure 1: We assert that due to the complexity or corruption of the images or continuous improvement
of discriminating features throughout the network, the network utilizes a higher number of layers in
making a correct prediction. The bottom part of the figure depicts the proposed intuition validated
through the extensive experiments as well. Three classes denoted in the shape of ‘heart’, ‘oval’, and
‘cross’ are used. In the early layers, a huge overlap between the classes can be observed leading to
poor classification and as the layers increases, the overlap decreases accuracy improves.

computer vision Baldock et al. (2021); Huang et al. (2018) and natural language processing Liu et al.
(2020); Xin et al. (2020) requires less computational overhead due to their early prediction. However,
they do not formalize the processing of the data (specially modified examples) in the model or do not
characterize the property on what basis an example can be termed as difficult. These studies also do
not take into account the processing of high-resolution images and perturbed images. Our proposed
research overcomes the limitations of the existing studies by presenting a detailed understanding
covering both clean and corrupted samples through the deep model. It also helps in understanding
several open issues such as example difficulty and the impact of hidden layer embeddings on the
image classification.

In this research, we take a step back to effectively understand the network behavior from the
perspective of common noise corruption samples. The behavior of the network is studied from both
the statistical and learning view of the examples. To understand this, we propose a novel index
termed as corruption depth, which captures the average highest depth in the network with the query
image misclassified. To calculate the corruption depth, feature embedding obtained from the hidden
layers of deep networks is utilized. On top of the embedding, several machine learning classifiers are
attached for image classification. We assert that such understanding can help in mitigating the impact
of corruption by either applying the pruning only in the desired area of the network or performing the
weighted ensemble of feature representations from intermediate layers or weak classifiers.

1.1 CORRUPTION DEPTH

We observe that as we move from the input stage to the prediction stage of the network, the classifica-
tion decision of the images whether clean or modified changes significantly. As deep neural networks
are often defined as a stack of layers, our proposed research studies the properties of the hidden
representation computed during the processing of any example in an attempt to define the corruption
depth. The corruption depth is defined as the highest depth layer needed to correctly classify an input.
In other words, corruption depth is the notion used to refer to the highest network layer (number of
layers) till the image in the network remains misclassified.

• The corruption depth is referred to as layer L before which the image in the network remains
misclassified. In other words, if the image after layer L, i.e., L+1 is correctly classified and
its decision match with the final decision of the network, then the layer L is the corruption
depth of that image;

• To perform the image classification at the intermediate layers of the network and learn
the corruption depth, we have used several machine learning classifiers including Neural
Network (NNet), logistic regression (LR), and support vector machine (SVM).

Figure 1 shows the intuition and motivation behind the proposed corruption depth. It is to be noted
that the corruption depth can be related to both clean and corrupted images. In the case of the
clean images, the misclassification might happen due to natural adversaries or data having different
data distribution than training Agarwal et al. (2020a); Carlini et al. (2019); Hendrycks et al. (2021).
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Therefore, understanding their corruption depth is also crucial to improve the network performance
even if there is no attacker tampering with input images. Whereas, in the case of corrupted images,
for an attacker, it is essential to understand, how much difficulty needs to be added to the images to
make them remain misclassified throughout the network. For a defender, this information is important
in a way to understanding, how much and where in the network the pruning is needed so that the
future layers receive the true information and the network can correctly classify even the corrupted
images. Not only the pruning but also the boosting through the ensemble of weak classifiers based on
their effectiveness at a particular layer can be considered for better robustness and accuracy.

1.2 CONTRIBUTIONS

1 We measure a notion of DNN robustness to input data quality termed as corruption depth
which tells when the images in the network remain misclassified. 2 We showcase that even if the
images are clean and of good quality, the corruption depth can be higher due to the complexity of
the images. In other words, as the images pass through the network, the confidence of the network
increases in its prediction. The finding is significantly contradictory to the work Baldock et al.
(2021) which showcases that good quality images (visually) are generally classified early in the
network and evaluated their understanding of low-resolution images only. 3 Our study reveals
the interesting behavior of multiple machine learning classifiers and the importance of intermediate
feature representations regarding their robustness in handling corruptions. We have also demonstrated
how the analysis produced in this research can help improve recognition accuracy (Section 4.1).

2 RELATED WORK

The existing works on understanding the vulnerability or the processing of complex, adversarial,
and corrupted examples Bengio et al. (2009); Ren et al. (2018) think the issue from the side of the
data manifold or global architecture of the network. For instance, it is believed the existence of
manipulated data lies in low probability reasons of the input Gu & Rigazio (2014); Szegedy et al.
(2013), most of the data lies close to the decision boundary Tanay & Griffin (2016), distribution
of manipulated data is different Ghosh et al. (2019); Lee et al. (2017); Song et al. (2017), deep
learning possesses linear hypothesis space when learning a decision boundary Goodfellow et al.
(2014); Tabacof & Valle (2016); Tramèr et al. (2017), and the gradient vanishes during training make
the network vulnerable Rozsa et al. (2016). Based on these understanding, several defense algorithms
are developed which either enhance or generate different distribution of the images Agarwal et al.
(2021d;c); Pérez et al. (2021); Rebuffi et al. (2021); Salman et al. (2020), retouch the entire network
based on its component manipulation or retraining it Abusnaina et al. (2021); Andriushchenko &
Flammarion (2020); Cui et al. (2021); Goswami et al. (2019; 2018); Jordao & Pedrini (2021), or
learn a binary classifier based on training a entirely new end-to-end binary classification network
Abusnaina et al. (2021); Agarwal et al. (2021a;b); Carrara et al. (2018); Yang et al. (2020).

The existing defense algorithms do not take into account the processing of images through the
network, and hence either perform the modification at the entire network or on the whole dataset. For
instance, Goswami et al. Goswami et al. (2019; 2018) have performed the selective dropout at the
entire network or used the intermediate embedding of each layer to build a defense against common
facial corruptions. Similarly, Jordo and Pedrini Jordao & Pedrini (2021) have applied the filter or
layer pruning to the entire network without worrying about whether the images are misclassified
into that layer or not. Similar analysis can be seen for the defense which denoise every sample or
trains the network end-to-end to increase its robustness Salman et al. (2020); Xie et al. (2019). The
significant drawback of lacking such understanding is that in the process of increasing the robustness
of the network, we lose the accuracy of the clean or nonperturbed samples/examples.

Apart from the defense work, several works utilize hidden layer embedding to understand the behavior
of deep neural networks. Cohen et al. Cohen et al. (2018) utilize machine learning classifiers to study
the issue of generalization and memorization. However, the authors have not tackled the issue of
how the individual data points get processed in the network and how easy and difficult they are to
classify at a particular depth. Alain and Bengio Alain & Bengio (2016) claim the increase of linear
separability with the increasing depth in the network embedding. Baldock et al. Baldock et al. (2021)
have introduced the notion of example difficulty and claim that the good quality images are getting
classified earlier in the network and challenging images require more depth. However, the notion of
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Table 1: Parameters used for the different severity levels of each common corruption.

Severity Gaussian
Noise (GN)

Uniform
Noise (UN)

Salt & Pepper
Noise (SPN)

Shot
Noise (SN)

Impulse
Noise (IN)

Speckle
Noise (SPKN)

S1 0.12 0.1 0.3 25 0.06 0.20
S2 0.18 0.3 0.5 12 0.09 0.35

example difficulty is defined based on visual appearance only which is highly preserved in minute
corruption cases. The experiments are performed with low resolution, a single classifier namely
K-nearest neighbor (KNN), and does not take into account the corruptions.

The proposed study can help in overcoming the limitations of these two different schools of study
(defense vs. example difficulty) by learning the processing of images (clean and corrupted) and how
long they remain misclassified into the network. Such study can help in understanding not only
the processing of images based on their complexity but also can help in building fast and effective
defense solutions. For instance, if we are aware that in a particular layer, the network misclassifies
the majority of the images (due to its complexity), the pruning can be applied at that layer only.

3 EXPERIMENTAL SETUP

In this research, we have considered several critical factors to reach any robust conclusion: (i) high-
resolution images; (ii) multiple CNNs, (iii) several machine learning classifiers, and (iv) numerous
corruptions with varying severity. Further, we describe each ingredient used to perform the research
such as dataset, corruptions, CNNs, and machine learning probes for classification.
Dataset: We have used the subset of ImageNet Deng et al. (2009) namely ImageNette ima consisting
of images of 10 different classes. We have used the pre-defined subsets which contains more than
9000 images for training and 3, 000 images for testing.
Common Corruptions: We have used six common corruptions and generated noisy images with
varying levels of severity of the corruptions. The scale parameters of each corruption: Gaussian noise
(GN), Uniform noise (UN), Salt & Pepper noise (SPN), Shot noise (SN), Impulse noise (IN), and
Speckle noise (SPKN) are detailed in Table 1.
CNNs: The experiments are performed using VGG Simonyan & Zisserman (2014), MobileNet
Howard et al. (2017), and Xception Chollet (2017). These networks are heavily used as a backbone
architecture in several computer vision tasks and hence understanding these architectures in terms
of example processing can put a significant step toward robustness. The networks are trained using
Adam optimizer Kingma & Ba (2014) where the batch size is set to 32 and initial learning is set to
1e−3. The networks are trained for 200 epochs or until converged.
Machine Learning Probes: To resolve the shortcomings of the existing studies in the understanding
of the example difficulty, we have used four different machine learning classifiers namely support
vector machine (SVM), logistic regression (LR), K-nearest neighbor (KNN), and neural network
(NNet). In this research, we have used the C-SVM which aims to regularize the classifier to avoid
the overfitting issue. We have used a 50 neighbor to compute the similarity in the KNN algorithm.
However, the findings are consistent with a wide range of values of K. We have also built a deep
neural network architecture of five layers to perform the image classification on the hidden layer
embeddings. The ReLU non-linearity has been used in the hidden layers of the network. The vast
variation among the classifiers ensures the robustness of the study. The scikit-learn Pedregosa et al.
(2011) library along with the default parameters of each classifier are used for image classification.

4 EXPERIMENTAL RESULTS AND ANALYSIS

An extensive experimental evaluation has been performed to study the corruption depth both in terms
of several critical factors including multiple CNNs and machine learning probes. Therefore, the
analysis of the proposed research can be done based on the following terms: i impact on different
CNNs, ii corruption depth of individual corruptions, iii impact of severity of corruptions, iv
machine learning probes, and v role of hidden embedding of the deep CNNs.

Before studying the impact of corruption depth and associated factors, let us first understand, how
successful three CNNs are for the image classification. The VGG network yields an accuracy (final
softmax prediction) of 90.40% on the clean test set of the dataset. The classification performance
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Table 2: Corruption depth is obtained using the hidden embeddings of the VGG architecture coupled
with several machine learning classifiers namely KNN, NNet, LR, and SVM. ‘–’ represents the average
performance across each type of data including real and multiple corruptions. The performances are
reported in terms of image classification accuracy at a particular layer/depth of the network.

Type L3 L9 L15
NNet KNN SVM LR NNet KNN SVM LR NNet KNN SVM LR

Real 51.80 39.06 54.73 50.40 78.50 60.80 79.10 78.66 89.50 87.86 90.10 89.43
GN_S1 28.76 27.50 23.56 25.10 38.40 27.96 42.50 39.40 70.46 56.96 64.36 65.53
GN_S2 21.53 22.26 15.63 15.76 24.93 24.23 29.40 26.70 46.46 28.73 37.43 39.53
IN_S1 24.73 25.13 18.66 19.83 31.16 26.43 33.26 29.56 57.16 39.90 47.56 49.26
IN_S2 21.50 21.93 15.13 15.23 25.60 24.06 27.30 25.16 42.00 24.43 31.13 32.20
SN_S1 30.20 29.36 24.40 26.40 39.56 32.06 43.36 41.06 73.50 58.46 69.43 69.50
SN_S2 24.16 24.03 17.90 18.33 28.26 27.40 31.66 29.73 52.76 34.00 43.90 45.16
SPN_S1 12.96 16.23 12.23 13.13 10.16 18.63 2.60 19.83 17.86 13.20 0.46 13.13
SPN_S2 13.20 14.63 4.00 13.13 9.96 13.00 12.56 18.40 15.26 12.76 0.00 13.13
UN_S1 47.06 38.43 52.80 49.10 73.33 54.80 75.73 74.30 86.43 84.93 87.20 86.43
UN_S2 34.20 28.29 33.96 34.93 51.50 36.06 53.66 50.66 78.96 71.26 76.56 76.73
SPKN_S1 37.36 34.23 35.19 39.13 55.56 38.56 56.80 57.90 82.43 75.06 81.69 80.80
SPKN_S2 27.43 26.40 21.50 22.20 34.73 30.43 37.40 37.73 66.50 48.80 60.80 61.53

– 28.84 26.73 25.36 26.36 38.59 31.88 40.41 40.70 59.94 48.95 53.12 55.57

Table 3: Corruption depth is obtained using the hidden embeddings of the MobileNet architecture
coupled with several machine learning classifiers namely KNN, NNet, LR, and SVM. ‘–’ represents
the average performance across each type of data including real and multiple corruptions. The
performances are reported in terms of image classification accuracy.

Type L3 L9 L15
NNet KNN SVM LR NNet KNN SVM LR NNet KNN SVM LR

Real 30.03 30.03 36.53 28.26 84.43 72.06 85.50 85.10 91.80 91.56 93.30 93.10
GN_S1 30.43 30.76 36.03 28.33 34.23 24.00 32.76 37.43 71.36 65.73 72.76 74.90
GN_S2 30.26 30.43 34.53 28.00 15.33 7.33 16.20 16.93 46.76 32.50 48.36 52.70
IN_S1 30.40 30.83 35.76 27.80 24.36 24.73 28.76 39.20 63.60 50.00 63.86 67.60
IN_S2 30.76 31.03 33.30 27.83 15.20 10.73 15.06 19.23 45.73 31.26 46.66 51.46
SN_S1 30.36 31.20 35.93 28.59 38.36 27.20 34.46 40.96 69.6 62.43 71.00 74.03
SN_S2 30.36 30.93 32.30 28.26 20.36 10.33 20.56 21.56 50.16 34.30 49.80 54.56
SPN_S1 28.10 27.73 18.46 25.23 7.83 0.03 0.16 1.33 15.86 10.20 15.43 16.36
SPN_S2 24.56 25.06 15.23 21.16 10.83 0.00 0.00 0.30 14.26 10.03 11.73 14.53
UN_S1 27.43 29.79 35.50 27.76 78.53 70.06 78.56 81.69 90.96 89.93 92.46 92.13
UN_S2 21.23 21.33 28.06 24.03 51.96 39.16 48.60 52.73 80.30 78.80 83.33 83.76
SPKN_S1 30.33 31.46 36.36 28.23 59.19 48.19 56.20 63.00 79.86 78.30 82.53 83.23
SPKN_S2 30.46 30.40 32.40 28.10 34.80 26.13 29.26 35.90 60.83 50.43 62.76 66.86

– 28.82 29.31 31.57 27.04 36.57 27.69 34.31 38.10 60.08 52.73 61.08 63.48

improves further when MobileNet and Xception architectures are used and they yield an accuracy of
92.80% and 93.90%, respectively. A significant variation in the accuracy and architecture tells that
understanding corruption depth can give a broad view of it.

The corruption depth analysis on VGG is shown in Table 2. The network is divided into multiple
equal spacing parts; however, for simplicity in the paper, the results are reported on the three parts
only referred to as L3, L9, and L15. On the clean/real images, across the depth of the network and
classifiers, monotonically increasing behavior in the accuracy is observed. Interestingly, towards, the
end of the network, the KNN classifier shows a sharp jump which is more than double the jumps
noticed against other classifiers. The other classifiers show this trend when they used the embedding
of the center part of the network as compared to the initial part. In terms of corruption analysis, on
the GN corruption, towards the center of the network, not a significant increment has been noticed.
However, when the embedding at the final layer is used, the accuracy shows significant improvement.
For example, from the initial layer to the center layer, the improvement notice is 9.64% which
increases to 32.04% when moved from center to end of the network. The SPN corrupted images do
not follow monotonically increasing behavior, and on NNet and SVM the network shows a ‘U ’ shape
trend, where the accuracy at the center is lower than the initial and end part of the network. In terms
of classifier, LR follows the reverse trend as NNet and it shows upside down ‘U ’ shape curve (‘∩’),
where the accuracy at the center part increases from the initial part and again decreases at the end
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Table 4: Corruption depth is obtained using the hidden embeddings of the Xception architecture
coupled with several machine learning classifiers namely KNN, NNet, LR, and SVM. ‘–’ represents
the average performance across each type of data including real and multiple corruptions. The
performances are reported in terms of image classification accuracy.

Type L3 L9 L15
NNet KNN SVM LR NNet KNN SVM LR NNet KNN SVM LR

Real 72.63 58.59 75.00 75.00 88.33 79.53 88.70 88.96 89.90 86.23 89.96 89.76
GN_S1 23.30 17.20 15.10 16.96 67.46 50.73 56.30 65.03 75.16 63.56 71.83 69.26
GN_S2 17.33 15.36 8.03 13.36 49.8 31.56 39.80 45.96 59.09 45.00 54.56 50.36
IN_S1 21.00 15.03 16.60 14.76 58.19 38.2 46.33 56.10 68.00 55.90 64.03 60.93
IN_S2 18.16 14.49 11.83 13.26 48.83 29.66 35.86 44.70 57.80 45.13 54.53 50.60
SN_S1 25.33 19.76 17.13 18.36 67.46 49.33 57.69 67.30 74.26 64.00 70.73 66.73
SN_S2 19.06 17.83 12.40 15.36 49.60 31.83 39.83 46.63 58.56 45.26 54.50 49.40
SPN_S1 13.13 13.70 11.76 13.13 20.53 0.33 7.30 15.29 26.66 16.20 18.50 20.06
SPN_S2 13.13 12.80 11.76 13.13 12.80 0.00 0.03 10.43 12.96 13.23 13.06 13.93
UN_S1 60.13 47.26 61.33 59.46 85.83 78.13 85.26 85.90 87.73 82.89 87.16 87.53
UN_S2 31.10 22.96 21.60 29.93 77.16 64.50 70.16 75.63 79.86 71.93 78.40 76.26
SPKN_S1 34.86 24.33 22.93 33.26 77.9 63.13 73.33 78.86 81.66 74.23 79.86 77.53
SPKN_S2 21.83 20.06 15.90 17.06 56.46 40.30 48.73 58.53 65.40 53.73 61.86 57.80

– 28.54 23.03 23.18 25.61 58.49 42.86 49.95 56.87 64.39 55.18 61.46 59.24

Real GN_S1 UN_S1

Initial Layer Initial Layer Initial LayerFinal Layer Final Layer Final Layer

Figure 2: t-SNE Van der Maaten & Hinton (2008) representation of the hidden layers embedding of
the VGG and MobileNet on real and two types of corruptions (GN and UN). Initial layer embedding
is highly cluttered in both CNNs and across data types and shows lower classification accuracy. Final
layer embedding decreases this clutter and hence leads to improved classification performance.

of the network. Except for SPN, image classification accuracy on other corruptions shows upward
trends only with the increase in the depth of the network.

Similar to VGG as shown in Table 3, MobileNet reflects a multifold jump in the classification
accuracy at the center of the network. For instance, the NNet and SVM, and LR yield more than
50% better performance at the center than an initial layer of the network. However, later the accuracy
converges and shows a slight improvement. In contrast to VGG, on a majority of the corrupted images
and classifiers, the ‘U ’ shape accuracy trend is observed except for UN and SPKN. Interestingly,
classification accuracy on SPN images never surpasses the accuracy obtained at initial layers even the
depth of the network increases tremendously. In a unique observation, the initial layers of MobileNet
architecture are found less sensitive against most of the corruptions of low severity (S1) as compared
to the VGG. Even in the majority of the cases, the performance on corrupted images is slightly higher
than the clean images.

The analysis of Xception is shown in Table 4. In contrast to previous architectures, on clean images,
Xception shows significantly higher performance at the beginning of the network itself; hence,
although the accuracy increases with the depth of the network its nature is not as sharp as is for
other networks. Again, the embedding for image classification at the center of the network is found
extremely effective and yields multiple-fold improvement using any classifier. For instance, the LR
classifier on GN corruption shows at least 3 times increment at the center. The performance is in the
sink with the use of any classifier and the majority of corruption types. We assert this understanding
and consistency can help in network pruning and only storing partial network information to reduce
the computational load on mobile devices without sacrificing the accuracy drastically. Whereas,
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Figure 3: Softmax accuracies of multiple CNNs on various corruptions. The accuracies of VGG (left),
MobileNet (center), and Xception (right) networks on the clean test images are 90.40%, 92.80%, and
93.90%, respectively.
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Figure 4: Probability of the prediction of true class of the examples when they are not perturbed and
when they are corrupted using the common corruptions. The findings are reported on VGG (left) and
MobileNet (right).

in terms of corruption depth, the center of the network is critical and the majority of the clean
images find the center of the network as their corruption depth. In a unique analysis of Xception, on
low severity SPN corruption (S1), the NNet and LR show monotonically increasing behavior and
performance even increase from the value obtained at the initial layer embedding of the network.
However, with increased severity trends similar to previous networks are observed.

Figure 2 shows how the separability of both clean and corrupted examples as they progress in the
network. Figure 3 shows the softmax accuracies of the different CNNs across a wide range of
corruption data types. We have observed that the final classification (i.e., softmax accuracies) is
sensitive toward corruptions and yield lower performance than hidden embeddings. The probable
reason might be that the minute noise in the image gets accumulated in the network and leads to
misclassification at the end of the network Amirian et al. (2018); Goswami et al. (2019; 2018); Li &
Li (2017). Interestingly, only in the case of VGG, on the UN corruptions, the performance increases
and surpasses the best performance obtained using the hidden layer embeddings. For instance, on
the clean images, the VGG network yields 90.40% accuracy, which improves to 92.33% when UN
corruption of low severity (S1) is applied to the images. It shows the existing statistical and learning
view based on the visual appearance of clean examples is not sufficient to understand the example
difficulty as claimed in the literature Agarwal et al. (2020b); Baldock et al. (2021); Hooker et al.
(2019).

In contrast to existing studies of understanding the ‘statistical view’ of the example difficulty1, we
present an entirely different view referred to as predicting the probability that the corrupted sample
can be correctly classified as it was classified in the absence of any corruption. This view is more
realistic as compared to the assumption of its presence in the training set, as the model is expected
to be generalized against the unseen test set. The findings of such a view are reported in Figure 4
using VGG and MobileNet. As expected with the increase in the depth, higher examples are correctly
predicted even in the presence of any corruption. In other words, the correctly predicted images when
they are perturbed and not perturbed increase with the increase of the depth of the network. However,
this has an interesting caveat related to the accuracy of the network. For instance, as seen in Table 3,
the accuracies on real and corrupted examples do not vary significantly on the initial layer embedding;
therefore, it is observed that the probability of predicting the correct label of corrupted examples is

1is referred to as predicting the probability of correct label of an example if it not present in the training set
Baldock et al. (2021); Jiang et al. (2021)
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MobileNet VGG16

Figure 5: Samples represent the learning view of the example difficulty. The first row shows the
clean test samples which are incorrectly classified due to their complexity such as low foreground
region and cluttered background. The second row shows the clean and corrupted samples obtained
using any corruption correctly classified by NNet only. The last row shows the samples either clean
or corrupted correctly classified by each classifier (LR, SVM, KNN, and NNet).

high. We want to mention here the accuracy of the network on initial layer embedding is poor. As
soon as the accuracy of the network increases at the later part of the network, the gap between the
clean and corrupt examples’ accuracy widens, and hence, the probability of predicting the true class
on both clean and corrupted examples decreases. Moreover, the VGG and Xception show a significant
difference in the accuracy from the beginning of the network; therefore, the probability keeps on
increasing as the processing of the examples progresses through the network. The observation is
found consistent across the machine learning probes used for image classification on the hidden layer
embeddings of the CNNs.

Similar to the statistical view, in this research, we present a different angle to the ‘learning view’2

of example difficulty presented in the literature Baldock et al. (2021); Toneva et al. (2018). In this
research, at a broad level, we have three parameters: (i) corruption types, (ii) hidden embedding
location, and (iii) machine learning probes. In the first angle of the learning view of example difficulty,
we have to find out the samples (whether perturbed or clean) correctly classified by a machine learning
classifier. For this, we have used initial layer and final layer embeddings and classification has been
done using NNet. The middle part of Figure 5 shows such samples which are correctly identified by
NNet where the images are corrupted using any corruption used in this research or are clean images.
In the bottom part (last row), the samples are shown which are either clean or corrupted using one
noise (say Gaussian) and the images are correctly classified by each machine learning probe used
in this research. The top part of Figure 5 shows the complex clean images which get misclassified
by each classifier and lead to higher corruption depth. The samples presented a wide variation in
terms of contrast, texture, and illumination covering different object classes and raises the question of
understanding existing research about example difficulty.

4.1 DISCUSSION

Corruption depth: We assert that the corruption depth is an intuitive measure to understand the
processing of images in the network. It is highly explanatory as compared to the notion of example
difficulty which take into account only the visual characteristics of images. In this research, in terms
of clean images, we found that the images which have cluttered objects and background, and limited
foreground region as compared to the background have higher corruption depth (first row of Figure 5).
In other words, images with these characteristics can be termed as difficult examples and need a large
number of layers for processing and ground truth label prediction. Apart from these, corruption type
and amount of corruption play an important role in the corruption depth computation. For instance,
the speckle noise (SPKN) follows the uniformly distributed random noise and if the images are
corrupted by this, they have significantly higher classification performance in the initial layer (lower
corruption depth) as compared to other noises such as shot noise (SN) which follows the Poisson
distribution. Another interesting noise called Uniform noise (UN) does not increase the corruption
depth significantly on most of the networks if applied with decent severity (say S1). As soon as the
severity increases or example difficulty increases, it leads to higher corruption depth. Salt&Pepper
noise which is distributed as a Gaussian probability density function and is independent of the image
intensity at a particular location is found to have the highest corruption depth where the corruption
depth does not strictly follow monotonically increase behavior.

2earliest iteration after which the predicted label of the sample remains the same with the true label.
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Table 5: Impact of network pruning and ensemble of robust classifies for improved accuracy (%).
Corruption Type Clean GN IN SN SPN UN SPKN

VGG Original 90.40 73.43 65.93 71.67 14.43 92.33 82.30
Purified 93.57 75.62 66.89 74.56 20.52 93.15 84.69

MobileNet Original 92.80 43.73 38.17 50.17 14.10 79.23 68.50
Purified 95.10 55.42 53.16 57.89 27.13 85.75 70.10

Pertinence to other topics in the field: Curriculum learning and Meta-learning Bengio et al.
(2009); Graves et al. (2017); Ren et al. (2018) is a parallel field of machine learning which handles
the difficult example (not corrupted) from the easy samples separately. Robustness to not only the
difficult examples which might be due to distribution shift or environmental factors but also corruption
examples is a critical component for building a fair machine learning system. In this research, we
showcase several corruptions have different form of difficulty and different depth of the network
treats them differently. Therefore, the proposed research is relevant to such research communities
as well who are actively building fair, robust, and generalized algorithms such as selective dropout
Goswami et al. (2019), guided dropout Keshari et al. (2019), and filter drop Nagpal et al. (2020).

Improving the accuracy: Through extensive experiments, we have observed that the different
classifiers are effective at different depths of the network or can handle different corruption with
varying efficacy. Can this understanding of how different data types and machine learning classifiers
process the data help in building fair and robust models? The preliminary experiments performed
using the prediction probability fusion showcase that it is feasible. For instance, on the Xception
embedding of the initial layer, we have trained the four classifiers used in this research and fused their
prediction probabilities. We have observed an improvement from 0.3% to 2.7% across different types
of data including clean and corrupted. We assert that this hypothesis can be validated further where
in place of combining classifiers trained on the same depth, we must combine classifiers trained on
different depth embeddings. Therefore, we have further performed the aggregation of classifiers by
dropping the neuron information from sensitive layers. The results reported in Table 5 show how the
proposed study can be helpful to improve the accuracy of different types of images. Here purification
refers to the weighted combination of layers (by pruning) and classifiers: w1∗L3+w2∗L9+w3∗L15.
Here wi represents the pruning percentage of the layer and lies in the range of [0, 1] and Li represents
the layer location. wi is learned on the training set of the dataset.

Computational cost: The incorporation of several machine learning classifiers in the hidden embed-
ding of the CNNs does not incur any significant computational cost. For instance, the training of all
four machine learning classifiers on the final layer embeddings of the Xception took 95 seconds on
the NVIDIA GeForce RTX 2080 GPU machines with the CUDA v11+.

Limitations and Societal impact: Through preliminary experiments, we have demonstrated that the
merger of weak classifiers and intermediate feature maps can significantly boost image classification
performance. Robustness through the filtering or dropping of corrupted information from the network
can also be seen as one potential advancement.

5 CONCLUSION

In this research, we have proposed a notion of corruption depth based on the processing of different
types of images in the network. The corruption depth reveals for how long a particular image in the
network might remain misclassified based on its distribution shift or incorporation of any corruption.
Through the extensive use of multiple machine learning classifiers, corruptions, and a variety of
CNNs, several insightful observations have been noticed. It is also found that simple and effective
machine learning classifiers such as logistic regression and K-nearest neighbors can handle the
complexity and difficulty of the examples developed due to corruption in the initial layers more
effectively. We have also shown that a few corruptions such as uniform noise have lower corruption
depth in a particular network in comparison to the other corruptions. On top of that, each network
has a different level of robustness in handling corruption, some have a high impact of corruption such
as MobileNet while others can handle it effectively such as XceptionNet. The behavior of such broad
corruptions throughout the network and the use of several machine learning probes can better help in
building generalized and robust machine learning models. Several interesting shreds of evidence are
also provided in the appendix.
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Gaussian Noise (GN)

Salt & Pepper Noise (SPN)

Impulse Noise (IN)

Speckle Noise (SPKN) Uniform Noise (UN)

Shot Noise (SN)

Figure 6: Images imbued with common corruptions with different severity levels which also changes
their perceptibility from perceptible to quasi-imperceptible.

A IMPACT STATEMENT

This research has a significant impact due to several factors which are still unexplored in the current
literature: (i) first and foremost, the limitations of previous studies are well identified. We believe
highlighting the limitations of current research can pave an effective way for future research. (ii)
processing of different amount of complex images help in “identifying various phenomena that would
be impossible to characterize without the proposed extensive experimentation”. The understanding of
how and why the images get classified correctly or incorrectly helps in building robust and trustworthy
networks. (iii) Trends such as the “U” shaped drop in accuracy with prediction depth in Tables are
interesting and still unknown even though the current deep network architecture has seen tremendous
success. It might be a probable reason for the adversarial sensitivity of current deep networks.

We believe that the understanding of the corruption depth can open a new dimension of model
explainability, where in place of just visualizing the attention map, the classification progress can be
seen throughout the network. It can help in explaining the fact whether the images were correctly
classified at any point of time in the network or remain misclassified throughout the network. Based
on this understanding, feature visualization can be helpful to demonstrate why after a particular depth
network classify/misclassify an image.

B CORRUPTION AND COMPLEXITY OF IMAGES

The corrupted images generated using varying severity levels are also presented in Figure 6. It can
be seen due to the severity level, the added noise is in some cases highly perceptible; while in other
cases it is either quasi-perceptible or imperceptible from the naked eye. For instance, row two of the
salt&pepper corruption shows us that the added noise is highly perceptible and distorts the visual
features of the images. Therefore, when these images pass through the network, at some point noise
gets accumulated (for the majority of the cases, it is the center of the network) and shows a ‘U’ shaped
curve. This observation is consistent across the networks such as VGG, Xception, and ResNet. The
center part of the MobileNet shows the U-shaped curve for the majority of the corruption which is
different from other models such as VGG, Xception, and DensNet. The probable reason might be
that the MobileNet aims to tradeoff between accuracy and latency. Therefore, the model builds are
highly customized and compressed due to the width multiplier factor and resolution multiplier.

C IMPACT ON OTHER FORMS OF CNNS

We have conducted a study on the two CNNs namely DenseNet and ResNet which have different
forms of connections and layers such as bottleneck blocks and residual connections. The experimental
results reflect the similar observation of monotonically increasing behavior of accuracy with the
depth of the network. The behavior of corruption depth analysis on these networks is reported in
Table 6. Apart from that, we have also conducted a study where similar to previously used networks,
we aim to improve the recognition accuracy of these two architectures. By applying the purification
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Table 6: Corruption depth obtained using the intermediate embeddings of the ResNet and DenseNet
architectures coupled with several machine learning classifiers namely KNN, NNet, LR, and SVM.

CNN Type L3 L3 L9 L9 L15 L15
NNet SVM NNet SVM NNet SVM

DenseNet GN 15.56 13.65 25.86 23.25 43.89 45.78
UN 32.86 31.53 56.20 57.95 75.47 73.90

ResNet GN 15.20 14.36 24.89 25.63 42.10 44.25
UN 33.68 32.30 54.29 55.42 77.20 75.26

knowledge obtained using the corruption depth layers, we have observed at least 3% improvement in
accuracy on DenseNet and 3.7% improvement on ResNet.

D CORRUPTION DEPTH ANALYSIS CONCERNING CLASSIFIERS

Table 7: Corruption depth obtained using the intermediate embeddings of the VGG architecture
coupled with several machine learning classifiers namely KNN, NNet, LR, and SVM.

Type NNet KNN SVM LR
L3 L6 L9 L3 L6 L9 L3 L6 L9 L3 L6 L9

Real 51.80 78.50 89.50 39.06 60.80 87.86 54.73 79.10 90.10 50.40 78.66 89.43
GN_S1 28.76 38.40 70.46 27.50 27.96 56.96 23.56 42.50 64.36 25.10 39.40 65.53
GN_S2 21.53 24.93 46.46 22.26 24.23 28.73 15.63 29.40 37.43 15.76 26.70 39.53
IN_S1 24.73 31.16 57.16 25.13 26.43 39.9 18.66 33.26 47.56 19.83 29.56 49.26
IN_S2 21.50 25.60 42.00 21.93 24.06 24.43 15.13 27.3 31.13 15.23 25.16 32.20
SN_S1 30.20 39.56 73.50 29.36 32.06 58.46 24.40 43.36 69.43 26.40 41.06 69.50
IN_S2 24.16 28.26 52.76 24.03 27.40 34.00 17.90 31.66 43.90 18.33 29.73 45.16
SPN_S1 12.96 10.16 17.86 16.23 18.63 13.20 12.23 2.60 0.46 13.13 19.83 13.13
SPN_S2 13.20 9.96 15.26 14.63 13.00 12.76 4.00 12.56 0.00 13.13 18.40 13.13
UN_S1 34.20 51.50 78.96 28.29 36.06 71.26 33.96 53.66 76.56 34.93 50.66 76.73
UN_S2 47.06 73.33 86.43 38.43 54.80 84.93 52.80 75.73 87.20 49.10 74.30 86.43
SPKN_S1 37.36 55.56 82.43 34.23 38.56 75.06 35.19 56.80 81.69 39.13 57.90 80.80
SPKN_S2 27.43 34.73 66.50 26.40 30.43 48.80 21.50 37.40 60.8 22.20 37.73 61.53

Table 8: Corruption depth obtained using the intermediate embeddings of the Xception architecture
coupled with several machine learning classifiers namely KNN, NNet, LR, and SVM.

Type NNet KNN SVM LR
L3 L6 L9 L3 L6 L9 L3 L6 L9 L3 L6 L9

Real 72.63 88.33 89.90 58.59 79.53 86.23 75.00 88.70 89.96 75.00 88.96 89.76
GN_S1 23.30 67.46 75.16 17.20 50.73 63.56 15.10 56.30 71.83 16.96 65.03 69.26
GN_S2 17.33 49.80 59.09 15.36 31.56 45.00 8.03 39.80 54.56 13.36 45.96 50.36
IN_S1 21.00 58.19 68.00 15.03 38.20 55.90 16.60 46.33 64.03 14.76 56.10 60.93
IN_S2 18.16 48.83 57.80 14.49 29.66 45.13 11.83 35.86 54.53 13.26 44.70 50.60
SN_S1 25.33 67.46 74.26 19.76 49.33 64.00 17.13 57.69 70.73 18.36 67.30 66.73
SN_S2 19.06 49.60 58.56 17.83 31.83 45.26 12.40 39.83 54.50 15.36 46.63 49.40
SPN_S1 13.13 20.53 26.66 13.70 0.33 16.20 11.76 7.30 18.50 13.13 15.29 20.06
SPN_S2 13.13 12.80 12.96 12.80 0.00 13.23 11.76 0.03 13.06 13.13 10.43 13.93
UN_S1 60.13 85.83 87.73 47.26 78.13 82.89 61.33 85.26 87.16 59.46 85.90 87.53
UN_S2 31.10 77.16 79.86 22.96 64.50 71.93 21.60 70.16 78.40 29.93 75.63 76.26
SPKN_S1 34.86 77.90 81.66 24.33 63.13 74.23 22.93 73.33 79.86 33.26 78.86 77.53
SPKN_S2 21.83 56.46 65.40 20.06 40.30 53.73 15.90 48.73 61.86 17.06 58.53 57.80

In this research, we have selected the layers which are the best representative of the results. In other
words, the selected layers represent the initial (L3), center (L9), and final part (L15) of the networks.
We have also performed the experiments using the layers which lie between these layers as well.
For example, in the Tables 7, 8, and 9, the results are reported using one of the layers between L3
and L9. We selected L6 at the center of L3 and L9 to avoid any possible bias. As seen earlier, with
the increase of the depth of the network, the accuracy of the clean image monotonically increases.
We want to highlight that the accuracy on L6 embedding is always lower than L9, therefore, the
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Table 9: Corruption depth obtained using the intermediate embeddings of the MobileNet architecture
coupled with several machine learning classifiers namely KNN, NNet, LR, and SVM.

Type NNet KNN SVM LR
L3 L6 L9 L3 L6 L9 L3 L6 L9 L3 L6 L9

Real 30.03 84.43 91.80 30.03 72.06 91.56 36.53 85.50 93.30 28.26 85.10 93.10
GN_S1 30.43 34.23 71.36 30.76 24.00 65.73 36.03 32.76 72.76 28.33 37.43 74.90
GN_S2 30.26 15.33 46.76 30.43 7.33 32.50 34.53 16.20 48.36 28.00 16.93 52.70
IN_S1 30.40 24.36 63.60 30.83 24.73 50.00 35.76 28.76 63.86 27.80 39.20 67.60
IN_S2 30.76 15.20 45.73 31.03 10.73 31.26 33.30 15.06 46.66 27.83 19.23 51.46
SN_S1 30.36 38.36 69.6 31.20 27.20 62.43 35.93 34.46 71.00 28.59 40.96 74.03
SN_S2 30.36 20.36 50.16 30.93 10.33 34.30 32.30 20.56 49.80 28.26 21.56 54.56
SPN_S1 28.10 7.83 15.86 27.73 0.03 10.20 18.46 0.16 15.43 25.23 1.33 16.36
SPN_S2 24.56 10.83 14.26 25.06 0.00 10.03 15.23 0.00 11.73 21.16 0.30 14.53
UN_S1 27.43 78.53 90.96 29.79 70.06 89.93 35.50 78.56 92.46 27.76 81.69 92.13
UN_S2 21.23 51.96 80.30 21.33 39.16 78.80 28.06 48.60 83.33 24.03 52.73 83.76
SPKN_S1 30.33 59.19 79.86 31.46 48.19 78.30 36.36 56.20 82.53 28.23 63.00 83.23
SPKN_S2 30.46 34.80 60.83 30.40 26.13 50.43 32.40 29.26 62.76 28.10 35.90 66.86

utilization of that layer for accuracy improvement does not make sense. Further, we want to highlight
that the analysis is agnostic to CNNs as shown in multiple Tables.

We have performed experiments where we utilize these intermediate layers in the purification process;
however, no improvement in the accuracy is observed. The prime reason can be seen from the fact that
these intermediate layers yield an accuracy lower than the accuracy followed. Further, the inclusion
of more layers will increase the computational cost of the system.
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