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ABSTRACT

Blind face restoration from low-quality (LQ) images is a challenging task that re-
quires not only high-fidelity image reconstruction, but also preservation of facial
identity. Although diffusion models like Stable Diffusion have shown promise
in generating high-quality (HQ) images, their VAE modules are typically trained
only on HQ data, resulting in semantic misalignment when encoding LQ inputs.
This mismatch significantly weakens the effectiveness of LQ conditions during
the denoising process. Existing approaches often tackle this issue by retraining
the VAE encoder, which is computationally expensive and memory intensive. To
address this limitation efficiently, we propose LAFR (Latent Alignment for Face
Restoration), a novel codebook-based latent space adapter that aligns the latent
distribution of LQ images with that of HQ counterparts, enabling semantically
consistent diffusion sampling without altering the original VAE. To further en-
hance identity preservation, we introduce a multilevel restoration loss that com-
bines constraints from identity embeddings and facial structural priors. Further-
more, by leveraging the inherent structural regularity of facial images, we show
that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is
sufficient to achieve results comparable to state-of-the-art methods, reduce train-
ing time by 70%. Extensive experiments on both synthetic and real-world face
restoration benchmarks demonstrate the effectiveness and efficiency of LAFR,
achieving high-quality, identity-preserving face reconstruction from severely de-
graded inputs.

1 INTRODUCTION

Face image restoration is a critical task within the broader domain of image restoration Hu et al.
(2020); Zhao et al. (2022); Yang et al. (2021); Chen et al. (2021); Varanka et al. (2024b), with
applications ranging from photo enhancement to facial forensics Wan et al. (2023); Menon et al.
(2020); Yu et al. (2024). Unlike general images, facial images exhibit highly structured patterns and
identity-sensitive features Varanka et al. (2024a); Hu et al. (2021); Bai et al. (2025), necessitating
tailored solutions to ensure structural fidelity and identity preservation. Recent advances in diffusion
models Ho et al. (2020); Song et al. (2020; 2021); Rombach et al. (2022) have positioned them as
strong generative priors across various restoration tasks, including super-resolution, inpainting, and
deblurring. Among these, latent diffusion models have gained popularity for face image reconstruc-
tion, where inputs are encoded into a latent space before restoration. However, the VAE encoder in
the widely adopted Stable Diffusion Rombach et al. (2022) is trained solely on high-quality (HQ)
images. When applied directly to low-quality (LQ) inputs, it produces misaligned latent codes,
leading to suboptimal restoration performance Wang et al. (2025); Yingqi et al. (2024).

Existing approaches Chen et al. (2025); Wang et al. (2025); Suin & Chellappa (2024) attempt to
correct this by retraining the VAE and incorporating complex alignment modules, but at the cost of
increased computational load and inference latency. Moreover, most diffusion models are pretrained
on general-purpose datasets such as ImageNet Deng et al. (2009), which limits their direct applica-
bility to face-specific tasks. Adapting these models typically requires large-scale datasets such as
FFHQ Karras et al. (2019) or FFHQ-retouched Ying et al. (2023), each comprising 70K high-quality
face images. Training on such datasets demands significant time, memory, and compute resources.
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(a) Comparison of performance and effciency (b) Comparison over different metrics

1st 17.66
2nd 17.74

1st 2.750
2nd 3.024

1st 42.45
2nd 46.79

1st  0.2671
2nd 0.3066

1st  0.7394
2nd 0.7388

1st  0.6172
2nd 0.6151

Figure 1: Comparison of our proposed LAFR with state-of-the-art face restoration methods. (a)
Performance and efficiency across different methods. Bubble size reflects the amount of learnable
parameters. Our LAFR achieves the best balance, delivering superior quality with minimal com-
putational cost and parameter count. (b) Quantitative comparison across multiple metrics. LAFR
outperforms other methods, demonstrating its effectiveness. All metrics are normalized, and for
metrics where lower values indicate better performance, we take their reciprocal to ensure consis-
tent visual interpretation across all axes. * means re-trained on FFHQ Karras et al. (2019).

These challenges motivate two central questions: (1) Given the latent space misalignment between
LQ and HQ domains, how can the diffusion process be more effectively guided to reconstruct faithful
facial details from degraded inputs? (2) Since pretrained diffusion models already capture face-like
distributions, can we adapt them for face restoration by updating only a minimal subset of the large-
scale training set? In this work, we propose a highly efficient solution that requires just 600 training
images (0.9% of FFHQ) and 7.5M trainable parameters to achieve performance comparable to state-
of-the-art face restoration methods, saving 70% training time. Our approach effectively bridges the
gap between general diffusion priors and the specific demands of facial restoration.

To better leverage facial structure and semantic regularity, we introduce two core innovations. First,
we address latent space misalignment with a lightweight codebook-based alignment adapter Van
Den Oord et al. (2017); Preechakul et al. (2022); Liang et al. (2025), which transforms LQ latent
codes to better align with HQ representations. Second, to ensure robust identity preservation, we in-
troduce a multilevel restoration loss that enforces consistency across appearance, semantic features,
identity embeddings, and structural details. Our contributions are summarized as follows:

❑ (1) We propose an efficient strategy that transfers a pretrained diffusion prior to the face restoration
task using only a small number of training samples and parameters.

❑ (2) We introduce a codebook-based alignment adapter to resolve the latent space discrepancy
between the LQ and HQ face images, facilitating accurate semantic conditioning during sampling.

❑ (3) We design a multilevel restoration loss to maintain facial identity through a combination of
appearance, semantics, identity embeddings, and structural alignment.

❑ (4) Extensive experiments on benchmarks for synthetic and real-world face restoration validate
the effectiveness and efficiency of our proposed method.

2 METHOD

2.1 MOTIVATION

The task of restoring a facial image presents unique challenges due to structural regularity and
identity Liu et al. (2025); Ying et al. (2024), specific nature of facial features Gao et al. (2025);
Liang et al. (2024). A central issue lies in the latent space misalignment between LQ and HQ
images. In common diffusion-based approaches, such as Stable Diffusion Rombach et al. (2022),
the latent encoder, typically a VAE Kingma et al. (2013), is trained exclusively on high-quality
images. When LQ inputs are passed through this encoder, the resulting latent representations diverge
from the HQ latent distribution, distorting semantic cues that are crucial for accurate reconstruction.
This misalignment disrupts the denoising trajectory of diffusion models, as the process is driven by
incorrect priors, ultimately compromising the fidelity and consistency of the restored output.

Results in Tab. 7 Appendix indicates that directly using LQ latents into the generation produces
inferior performance, highlighting the need for an effective alignment strategy to reconcile LQ and
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(a) Network Structure of our proposed latent codebook alignment adapter (b) Our alignment adapter usage in SR pipeline
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Figure 2: Comparison of alignment strategies of LQ-HQ code in restoration. (a) Our proposed
lightweight Latent Codebook Alignment Adapter leverages codebook querying and efficient term
mapping, requiring minimal training overhead. (b) Integration of our adapter into our restoration
pipeline, where only the adapter is trained. (c) FaithDiff Chen et al. (2025) alignment module
uses a parameter-heavy structure involving transformer layers, and needs re-train VAE encoder.
(d) OSDFace Wang et al. (2025) retrains a VAE with a VQ embedder and LQ-specific decoder,
incurring substantial computational cost. Our method achieves better alignment with significantly
reduced training cost and parameter amount.

HQ latent distributions. Without such a mechanism, the diffusion models would not have reached
their full potential in face restoration tasks.

At the same time, another important question arises: How much data is truly necessary to adapt
a diffusion model effectively for face restoration? Most existing approaches are based on large-
scale datasets such as FFHQ Karras et al. (2019) and FFHQ-retouched Ying et al. (2023), totaling
140,000 images. This dependency introduces high costs associated with retraining or fine-tuning,
which can be prohibitive in practice.

We argue that such a scale may be excessive. Unlike natural images, facial images exhibit strong
regularities in geometry and layout across identities. To support this claim, we analyze the feature
distributions of face and natural images using ResNet-50 He et al. (2016) embeddings and visual-
ize them via t-SNE Van der Maaten & Hinton (2008). Our analysis reveals that face images (from
CelebA Liu et al. (2015)) form a compact and well-defined cluster, while natural images (from Im-
ageNet Deng et al. (2009)) are widely scattered. Quantitatively, face images show a substantially
lower intraclass distance (13.28 vs. 24.13) and a higher silhouette score (0.18) Rousseeuw (1987);
Shahapure & Nicholas (2020), indicating a high degree of structural coherence. These results sug-
gest that it is feasible to adapt pretrained diffusion models using only a small subset of HQ facial
data. Despite variations in pose, lighting, and background, the inherent regularity of facial structure
remains intact, offering a compelling opportunity for efficient domain-specific fine-tuning.

2.2 OVERVIEW

We propose a diffusion-based framework for blind face restoration, designed for efficient fine-tuning
with only a small-scale training dataset. Despite the limited data requirement, our method achieves
performance comparable to full fine-tuning on large-scale datasets. Starting from a pretrained diffu-
sion prior, we adapt it to the target domain through an efficient and compact fine-tuning process.

In the first stage, we address the domain gap between LQ inputs and HQ training data in latent
space by introducing an alignment adapter, illustrated in Fig. 2. This module is trained to project
LQ images into the VAE’s latent space so that their representations align with those of HQ images.
The adapter ensures that the semantic content of the degraded inputs is consistent with the distribu-
tion expected by the diffusion model. In the second stage, we fine-tune convolutional layers within
the denoising UNet of a pretrained Stable Diffusion model. To reduce model complexity, we prune
the UNet by removing the text and timestep embedding modules, replacing their output with fixed
precomputed tensors. This design significantly reduces the number of trainable parameters and ac-
celerates inference, making our method especially suitable for resource-constrained or data-limited
settings. An overview of the complete inference pipeline is provided in Fig. 3. By combining la-
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Figure 3: Overall pipeline of our proposed LAFR. We keep VAE encoder and decoder frozen, only
training alignment adapter and tuning denoising UNet via LoRA Hu et al. (2022). Tunable parameter
groups in UNet are drawn in orange , and frozen parameter groups are drawn in gray .

tent space alignment with efficient UNet LoRA Hu et al. (2022) fine-tuning, our approach produces
high-quality, identity-preserving results with minimal training overhead.

2.3 LATENT ALIGNMENT ADAPTER FOR LQ IMAGES

In Stable Diffusion, the denoising UNet operates in the latent space, where input images are first
encoded into latent codes by a VAE encoder. However, this encoder is trained exclusively on HQ
images and fails to generalize to heavily degraded LQ inputs. As a result, LQ images are mapped
to semantically distorted latent representations that are misaligned with those of HQ images. This
misalignment significantly hinders the effectiveness of the denoising process, often leading to sub-
optimal restoration outcomes. Several recent works have attempted to address this issue Li et al.
(2020); Suin & Chellappa (2024). OSDFace Wang et al. (2025) retrains a separate visual represen-
tation embedder (VRE) module on LQ data and introduces a learnable codebook to enhance seman-
tic alignment. FaithDiff Chen et al. (2025) jointly trains an additional alignment module alongside
the VAE encoder and denoising UNet to bring LQ representations closer to their HQ counterparts.
While these methods are effective, they often introduce substantial computational overhead or re-
quire large-scale training data.

Our goal is to enable efficient domain adaptation using as few additional parameters as possible.
To this end, we propose a lightweight Latent Alignment Adapter, inspired by adapter-style archi-
tectures. This module aligns LQ latent codes with HQ representations prior to their input to the
denoising UNet. The adapter comprises three key components:

Feature Extractor. Given an input LQ latent code zLQ ∈ RC×H×W , a shallow convolutional
network extracts features f ∈ Rd. This step captures the core semantics of the degraded input.

Codebook Matching. The extracted feature f is used to query a learned codebook Van Den Oord
et al. (2017); Preechakul et al. (2022). We perform a nearest-neighbor search to find the closest
semantic anchor: c∗ = argmin

ci∈C
||f − ci||2, where each ci ∈ Rd is learned from HQ training data.

This step allows the degraded input to borrow high-level semantic guidance from the HQ domain.
Due to default argmin in PyTorch is not differentiable, we implement a differentiable argmin
function to propagate gradient correctly, with details in Sec. A.2.2 of Appendix.

Mapping Network. The matched codebook vector c∗ is then passed through a small mapping
network M that projects it back into the latent space, producing the aligned latent code: zaligned =
M(c∗), which is then used as the input to the diffusion model.

To train the alignment adapter, we minimize the distance between the aligned latent code and the
ground-truth HQ latent code zHQ, obtained by encoding the clean image using the same VAE en-
coder. The training objective is an L1 loss: Lalign = ||zaligned − zHQ||1, which encourages the
aligned code to preserve the semantic structure of the HQ face images, even when derived from
degraded inputs.

Our alignment adapter introduces minimal computational overhead and a small number of param-
eters, aligning well with our goal of efficient diffusion model adaptation under limited data and
resource constraints. Experimental results in Tab. 8 of Appendix demonstrate that this lightweight
design significantly boosts both quantitative and qualitative restoration performance.

2.4 EFFICIENT FINE-TUNING FOR FACE RESTORATION

After the first training stage mentioned above, which aligns the LQ latent code with those of the HQ
images, it is essential to preserve the identity of the input face throughout the restoration process.
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Table 1: Quantitative comparison with previous methods, which include non-diffusion, multi-step,
and single-step diffusion approaches, with 4× up-scaling. Numbers in brackets indicate denois-
ing steps. Methods named with * mean re-trained on the FFHQ dataset. “RF”++ is short for Re-
storeFormer++. The best and second-best results of each metric are highlighted in red and blue
respectively throughout this paper.

Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ M-IQ↑ NIQE↓ Deg.↓ LMD↓ FID-F↓ FID↓ C-IQA↑ M-IQA↑
GFPGAN Wang et al. (2021) 25.04 0.6744 0.3653 0.2106 59.44 4.078 34.67 4.085 52.53 42.36 0.5762 0.5715
RF++ Wang et al. (2023d) 24.40 0.6339 0.4535 0.2301 72.36 3.952 70.50 8.802 57.37 72.78 0.6087 0.6356
3Diffusion (1000) Lu et al. (2024) 22.32 0.6327 0.3304 0.1716 68.54 4.334 51.05 3.482 46.26 19.45 0.5700 0.6114
PGDiff (1000) Sun et al. (2025) 23.87 0.6783 0.3066 0.1794 71.70 4.883 56.07 4.289 79.38 47.01 0.5736 0.6246
DR2 (300) Sun et al. (2025) 26.06 0.7346 0.3131 0.2143 65.27 5.360 48.34 3.334 58.86 30.01 0.5615 0.5989
DifFace (250) Wang et al. (2024b) 26.47 0.7283 0.3721 0.1676 68.98 4.154 65.84 4.963 47.76 23.65 0.5702 0.6111
DiffBIR (50) Xinqi et al. (2024) 27.18 0.7293 0.3503 0.1789 74.30 5.383 55.06 5.259 68.06 27.36 0.6168 0.6648
PiSA-SR* Sun et al. (2025) 26.85 0.7382 0.3254 0.1636 75.07 4.774 46.79 3.024 53.96 17.74 0.6113 0.6701
OSEDiff* Wu et al. (2024a) 25.88 0.7388 0.3496 0.2278 69.98 5.328 67.40 5.408 61.36 27.13 0.6151 0.6497
LAFR (ours) 26.26 0.7394 0.2671 0.1792 69.99 4.715 42.45 2.750 49.20 17.66 0.6172 0.6220

Table 2: Comparison on real-world face restoration benchmarks. C-IQA, M-IQA, and M-IQ stands
for CLIPIQA, MANIQA, MUSIQ. Methods named with * mean re-trained on the FFHQ dataset.
RF++ is short for RestoreFormer++ Wang et al. (2023d).

Wider-Test LFW-Test WebPhoto-TestMethod C-IQA M-IQA M-IQ NIQE FID C-IQA M-IQA M-IQ NIQE FID C-IQA M-IQA M-IQ NIQE FID

GFPGAN 0.6975 0.5205 74.14 3.570 48.57 0.6002 0.6169 73.37 4.299 47.05 0.6696 0.4934 72.69 3.933 98.92
RF++ 0.7159 0.4767 71.33 3.723 45.39 0.7024 0.5108 72.25 3.843 50.25 0.6950 0.4902 71.48 4.020 75.07
3Diffusion (1000) 0.5927 0.5833 64.24 4.489 36.39 0.6148 0.5940 68.69 4.181 47.04 0.5717 0.5775 63.27 4.608 84.45
PGDiff (1000) 0.5824 0.4531 68.13 3.931 35.86 0.5975 0.4858 71.24 4.011 41.20 0.5653 0.4460 68.59 3.993 86.95
DR2 (300) 0.6544 0.5417 67.59 3.250 51.35 0.5940 0.6088 65.57 3.961 50.79 0.6380 0.5452 66.53 4.920 97.45
DifFace (250) 0.5924 0.4299 64.90 4.238 37.09 0.6075 0.4577 69.61 3.901 46.12 0.5737 0.4189 65.11 4.247 79.55
DiffBIR (50) 0.7337 0.4466 72.13 4.525 36.25 0.7266 0.4510 73.66 5.281 46.44 0.6621 0.5799 67.50 5.729 92.04
PiSA-SR* 0.7265 0.5653 70.26 3.211 57.02 0.5892 0.5942 56.35 5.957 91.95 0.6345 0.5551 62.96 4.316 107.50
OSEDiff* 0.6193 0.4752 69.10 5.086 47.88 0.6186 0.4879 71.70 4.800 51.04 0.6254 0.4823 69.81 5.325 109.23
LAFR (ours) 0.6330 0.6099 69.51 4.859 44.69 0.6375 0.6232 69.94 3.681 45.76 0.6956 0.6113 69.21 4.153 98.48

Traditional restoration losses, such as L2 and LPIPS Zhang et al. (2018), primarily enforce image
fidelity and perceptual similarity: Lres = ∥Ires − IGT ∥22 + λLLPIPS(Ires, IGT ), where Ires and
IGT denote the restored and ground-truth images, respectively, LLPIPS is the LPIPS loss function,
and λ is a balancing weight (set to λ = 2 in our implementation). Although these losses promote
visual consistency, they often fail to capture high-level semantic cues, especially those critical to
facial identity. To address this limitation, we design a multilevel loss that incorporates image, iden-
tity, and structural supervision to guide the restoration process. This loss consists of the following
components:

Identity Preserving Loss. To capture high-level identity semantics, we employ a pretrained CLIP
vision encoder to extract feature embeddings from both the restored and ground-truth images. The
identity loss is then defined as the cosine distance between the two embeddings:

Lid = 1− cos(Fclip(Ires),Fclip(IGT )), (1)

where Fclip denotes the CLIP Radford et al. (2021) image encoder. This loss encourages the restored
face to retain the semantic identity features consistent with the HQ image.

Facial Structure Loss. To further enforce structural consistency, we extract spatial structure fea-
tures and minimize their cosine distance:

Lfs = 1− cos(Ffs(Ires),Ffs(IGT )), (2)

where Ffs is a dedicated facial structure extractor. This component ensures that detailed structural
elements, such as contours, pose, and expressions, are faithfully reconstructed.

The final training objective is a weighted sum of the above components:

Ltotal = λresLres + λidLid + λfsLfs, (3)

where we set λres = λid = λfs = 1. Detailed ablation of each term is provided in Tab. 5.

A critical design choice in our framework is that we do not use identity embeddings or structural fea-
tures extracted from LQ inputs as conditioning signals to guide the diffusion process. As discussed
in Sec. A.3.2 of Appendix, such information is often unreliable due to the severe degradation of LQ
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GTLQ RF++ GFPGAN 3Difusion DifFace PGDiff DR2 DiffBIR PiSA-SR* OSEDiff*LAFR(Ours)

Figure 4: Visualized results on CelebA-Test dataset. RF++ is short for RestoreFormer++ Wang et al.
(2023d).

Table 3: Efficiency of our LAFR compared to diffusion-based restoration approaches. Calculation of
best and second-best metrics are from Tab. 1, which second-best results are regard as 0.5. It is noted
that pruning has been performed on the UNet in our method. Therefore, despite the introduction of
the alignment adapter, the inference time required is still less than that of OSEDiff Wu et al. (2024a).

Method Inference Time (s) Trainable Para. (M) Training Time (min) Training Set Size (K) Best & 2nd-Best Metric

PiSA-SR* Sun et al. (2025) 12.373 17.3 3516 70 4.5
PGDiff Yang et al. (2023) 10.504 152.4 6083 70 0.5

DiffBIR Xinqi et al. (2024) 5.826 144.6 1822 15360 2
3Diffusion Lu et al. (2024) 4.374 180.5 2430 70 1
DifFace Yue & Loy (2024) 3.197 175.4 5985 70 0.5
DR2 Wang et al. (2023c) 1.217 179.3 5985 70 0

OSEDiff* Wu et al. (2024a) 0.130 8.5 1440 70 1
LAFR (Ours) 0.121 7.5 411 0.6 5.5

images. Conditioning the model on degraded image could lead to superior restoration quality. In-
stead, by enforcing supervision directly against HQ targets during training, our approach maintains
strong visual fidelity while preserving identity information effectively.

RF++ GFPGAN 3Difusion DifFace PGDiff DR2 DiffBIR PiSA-SR* OSEDiff*LAFR(Ours)LQ

Figure 5: Visualized real-world face restoration. RF++ is RestoreFormer++ Wang et al. (2023d) for
short. LQ in each row is selected from WebPhoto-Test, LFW-Test, and Wider-Test, respectively.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the efficiency of our method under limited supervision, we randomly sample
600 images (just 0.9% of the full FFHQ Karras et al. (2019) dataset) as our training set. For evalua-
tion, we use four widely adopted benchmarks: CelebA-Test Liu et al. (2015), WebPhoto-Test Wang
et al. (2021), LFW-Test Huang et al. (2008), and Wider-Test Zhou et al. (2022). CelebA-Test consists
primarily of synthetically degraded facial images with a 4× downscaling factor, enabling controlled,
quantitative evaluation. In contrast, WebPhoto, LFW, and Wider comprise real-world LQ face im-
ages captured under diverse and unconstrained conditions, offering a robust testbed for assessing
generalization to real-world degradation.

Evaluation Metrics. For the synthetic CelebA-Test Liu et al. (2015), we report a comprehen-
sive suite of metrics to assess different aspects of restoration quality, including PSNR, SSIM Wang
et al. (2004), LPIPS Zhang et al. (2018), DISTS Ding et al. (2020), MUSIQ Ke et al. (2021),
NIQE Zhang et al. (2015), Degree of Degradation (Deg.), Landmark Distance (LMD), FID Heusel
et al. (2017) (computed against both FFHQ and ground truth), CLIPIQA Wang et al. (2023a), and
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MANIQA Yang et al. (2022). Following prior works Gu et al. (2022); Tsai et al. (2024); Wang et al.
(2021), we compute Deg. and LMD using the embedding angle of ArcFace Deng et al. (2019a)
to assess identity preservation and fidelity. For real-world benchmarks where ground-truth images
are unavailable, we rely on no-reference quality metrics: CLIPIQA, MANIQA, MUSIQ, NIQE, and
FID-FFHQ. This combination of full-reference and no-reference metrics enables a comprehensive
and balanced evaluation of both objective fidelity and perceptual quality.

Implementation Details. For the first-stage training of the alignment adapter, we use the same 600
images mentioned above, with a learning rate of 1e-4, batch size of 16, and 100 epochs. The vocab-
ulary size of the codebook in the latent alignment adapter is set to 1024, with hidden dimension of
256. For the second-stage efficient fine-tuning restoration model, following Wang et al. (2021); Gu
et al. (2022); Wang et al. (2025), we build on the pretrained Stable Diffusion v2-1 model Rombach
et al. (2022), adopting OSEDiff Wu et al. (2024a) as our baseline diffusion framework. Fine-tuning
is preformed with a learning rate of 5e-5, a batch size of 2, and 17,000 total steps. All loss terms
are weighted with a coefficient of 1. The identity embedding network Fclip is adapted from IP-
Adapter Ye et al. (2023), while the facial structure extractor Ffs is based on D3DFR Deng et al.
(2019b). To reduce inference-time parameters, we prune denoising UNet by fixing the prompt to
“face, high quality” and removing text and timestep embedding modules, which are precomputed
and saved as static tensors, then loaded during inference to minimize model complexity. For efficient
fine-tuning, we freeze all layers except those named with ”conv” and apply LoRA Hu et al. (2022)
with rank of 4 to these layers. All experiments are performed on a single NVIDIA L40 GPU.

3.2 COMPARISON RESULTS

We evaluate the effectiveness of our proposed method on both synthetic and real-world face restora-
tion benchmarks, and compare it against several state-of-the-art approaches.

Compared Methods. We compare our method with a range of blind face restoration approaches,
including: (1) non-diffusion-based methods: RestoreFormer++Wang et al. (2023d) and GFP-
GANWang et al. (2021); (2) multi-step diffusion-based methods: 3Diffusion Lu et al. (2024),
PGDiff Yang et al. (2023), DR2 Wang et al. (2023c), DifFace Yue & Loy (2024), and DiffBIR Xinqi
et al. (2024); and (3) single-step diffusion-based methods: PiSA-SR Sun et al. (2025) and OSED-
iff Wu et al. (2024a). For fair comparison, PiSA-SR and OSEDiff are re-trained on the FFHQ
dataset Karras et al. (2019).

Synthetic Benchmarks. We use CelebA-Test Liu et al. (2015) as a benchmark, where images are
degraded including 4× downsampling, Gaussian blur, JPEG compression, etc. Quantitative com-
parisons are presented in Tab. 1. Our method achieves comparable or better results than existing
methods in terms of metrics, validating the effectiveness of our efficient tuning strategy. Visual
comparisons in Fig. 4 further show that our method restores finer facial details and produces more
natural-looking outputs than current alternatives, and preserves identity like facial expressions. Be-
yond accuracy, we also evaluate efficiency. As shown in Tab. 3, our proposed LAFR delivers strong
performance while using only 0.9% of the FFHQ training data and 7.5M tunable parameters, reduc-
ing training time by 70%, significantly fewer than competing approaches.

Real-World Benchmarks. For real-world evaluation, we test on LFW Huang et al. (2008),
Wider Zhou et al. (2022), and WebPhoto Wang et al. (2021), which include naturally degraded
faces that are unknown and diverse, and without ground-truth references. The results in Tab. 2 show
that our method achieves a performance comparable to the state-of-the-art methods, demonstrating
a strong generalization to real-world conditions. The qualitative examples in Fig. 5 further illustrate
the visual quality of our results. Our method consistently restores vivid, identity-preserving facial
details with minimal artifacts, even under severe and unknown degradations. These findings val-
idate the effectiveness of our lightweight design, latent alignment strategy, and identity-consistent
supervision in practical face restoration tasks.

3.3 ABLATION STUDIES

Training Set Size. We evaluate the impact of the training set size by varying the number of FFHQ
images used. As shown in Fig. 6, performance improves with more data but exhibits fluctua-
tions under extremely limited supervision. Beyond 600 training images, the improvements become
marginal, indicating that a relatively small dataset is sufficient to effectively adapt the diffusion
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Table 4: Comparison between (1) our proposed alignment adapter and alignment module in FaithD-
iff Chen et al. (2025), (2) our proposed multilevel loss and loss in OSDFace Wang et al. (2025),
which validates efficiency and performance of our proposal, on Celeb-A. “align.” is short for align-
ment, “Para.” for parameter amount (M), and “Infer.” for inference time (s). Best results in bold.

Base model FaithDiff align. Ours align. PSNR↑ FID↓ NIQE↓ CLIPIQA↑ Para.↓ Infer.↓

FaithDiff
✓ × 26.24 41.68 5.233 0.6125 2695.9 4.956
× ✓ 26.28 41.65 5.092 0.6375 2654.6 4.064
✓ ✓ 26.33 38.62 4.855 0.6488 2699.4 5.276

Ours ✓ × 26.29 19.72 5.110 0.5907 1315.8 0.136
× ✓ 26.26 17.66 4.715 0.6120 1302.0 0.121

Base model OSDFace loss Ours loss PSNR↑ FID↓ NIQE↓ CLIPIQA↑ Para.↓ Infer.↓
Ours ✓ × 24.42 26.22 6.108 0.5244 1302.0 0.121

× ✓ 26.26 17.66 4.715 0.6120 1302.0 0.121
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Figure 6: Performance trend on CelebA-Test as the amount of the training images increases. The
model trained on 600 images achieves performance comparable to those trained on larger datasets.
prior to the face domain. To further support our observation that a small training set is sufficient to
achieve competitive performance in the face restoration task, we conducted additional experiments
that evaluated the data efficiency of our approach in Tab. 11 and Tab. 12. We also provide the results
of training on overall FFHQ and FFHQR dataset with proposed techniques, in Tab. 9 and Tab. 10 in
Appendix, to show that this data efficiency is not simple overfitting.

Specifically, we investigate the performance of both OSEDiff Wu et al. (2024a) and our LAFR
when trained on subsets of the FFHQ dataset of varying sizes. As shown in Tab. 12 and Tab. 11
in Appendix, with significantly reduced training data, both models retain comparable restoration
and perceptual quality under data-limited regimes. This supports our claim that (1) high-quality
face restoration does not necessarily require large-scale supervision, and (2) our design choices,
particularly those related to alignment and latent modeling, contribute to improved sample efficiency.
A visualization is shown in Fig. 9 in Appendix. Due to page limitations, we provide additional
ablation of (1) alignment adapter, (2) denoising UNet pruning, (3) LoRA fine-tuning parameters
grouping in Tab. 7 of Appendix.

Loss Function Design. As shown in Tab. 5, comparing #1 and #2 confirms that adding identity
loss improves performance, while #2 vs. #3 shows that cosine distance is more effective than L2

for identity supervision. Similarly, #1 vs. #5 validates the benefit of structure loss, and #4 vs. #5
shows the superiority of its cosine form. The full configuration (#6) achieves the best overall results,
demonstrating the complementary effect of combining identity and structure supervision.

Table 5: Ablation study of multi-level loss on
CelebA-Test. Each option includes Lres. L2 de-
notes the case includes corresponding loss, but
implemented in L2 type.

# Lid Lfs PSNR↑ DISTS↓ NIQE↓ Deg.↓ LMD↓
1 × × 25.99 0.1799 4.861 46.13 2.841
2 ✓ × 26.16 0.1872 4.921 44.87 2.821
3 L2 × 24.75 0.1946 5.333 53.01 3.391
4 × L2 25.26 0.1888 4.818 49.20 3.169
5 × ✓ 26.28 0.1886 5.094 46.42 2.797
6 ✓ ✓ 26.26 0.1795 4.716 42.45 2.750

Figure 7: T-SNE result of distribution from LQ,
aligned and HQ latent code.
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Table 6: Comparison between our proposed alignment adapter and alignment module in VQFR Gu
et al. (2022) on CelebA-Test. Best results in red.

Alignment Model PSNR↑ FID↓ NIQE↓ CLIPIQA↑ Para. Amount (M)↓ Inference Time (s)↓
VQFR 26.41 27.05 5.554 0.6105 19.0 0.128

Ours Alignment Adapter 26.26 17.66 4.715 0.6120 3.5 0.121

3.4 DISCUSSION

Alignment Adapter. To evaluate the effectiveness of our alignment adapter, we compare two infer-
ence strategies: (1) directly using the latent representation of the LQ image from the VAE encoder,
and (2) using the aligned latent representation produced by our alignment adapter. As shown in
Fig. 7, our approach significantly reduces the distribution gap between LQ and HQ latent codes (the
distance between aligned latent and HQ latent is much closer than that of LQ latent), confirming that
the adapter effectively mitigates latent space misalignment.

Recent works such as FaithDiff Chen et al. (2025) also address latent alignment, primarily in general
image super-resolution. However, their alignment module introduces larger overhead, incorporat-
ing multiple Transformer Vaswani et al. (2017) blocks jointly re-trained with the VAE encoder and
fine-tuned alongside the denoising UNet. This integrated, heavyweight design results in increased
parameter count, training complexity, and unstable convergence. In contrast, our method is specifi-
cally tailored for blind face restoration, where the faces domain features relatively consistent spatial
structures and semantic regularity. Leveraging this prior, we design a lightweight alignment adapter
based on learned codebook Van Den Oord et al. (2017), effectively bridging the latent gap between
LQ and HQ images. This modular design not only minimizes the number of trainable parameters
but also enables a two-stage training strategy that decouples alignment from restoration, simplifying
optimization. The quantitative comparison between our method and FaithDiff is shown in Tab. 4.
Our alignment adapter delivers superior performance with significantly fewer parameters, demon-
strating both its practical efficiency and domain-specific effectiveness. Additional comparisons with
similar latent alignment methods Kong et al. (2025); Lee et al. (2025); Lin et al. (2023), which all
require re-training the VAE encoder, are included in Sec. A.3.1 of Appendix.

Multilevel Loss. To validate the effectiveness of our multilevel loss, we compare it with the loss
function used in OSDFace Wang et al. (2025), which includes DISTS Ding et al. (2020) and an em-
bedding loss derived from ArcFace Deng et al. (2019a). Both losses are applied to our framework
under identical training conditions for a fair comparison. As shown in Tab. 4, our multilevel loss
consistently achieves superior performance in terms of both identity preservation and perceptual
quality. The strength of our approach lies in the ability to supervise the model at multiple seman-
tic levels, including image appearance, identity features, and facial structure. This comprehensive
supervision facilitates more balanced learning, enabling the model to preserve facial identity while
enhancing visual fidelity. Such a design is particularly well-suited for blind face super-resolution,
where both realism and structural integrity are critical.

4 CONCLUSION

In this paper, we proposed LAFR, a lightweight and effective framework for blind face restoration
via latent space alignment. Motivated by the observation that low-quality (LQ) and high-quality
(HQ) face images exhibit a distributional mismatch in the latent space of VAE encodings, we in-
troduce a codebook-guided alignment module that leverages the structural regularity and semantic
consistency of facial images to efficiently align LQ features with the HQ latent domain. Building
on this, we further introduce a multilevel identity-preserving loss that integrates supervision from
image appearance, identity embeddings, and facial structure cues. This design ensures that the re-
stored faces maintain both high perceptual quality and strong semantic identity consistency. With
only 600 training images (0.9% of FFHQ) and 7.5M trainable parameters, our method effectively
adapts a pretrained Stable Diffusion prior to the face restoration task, achieving performance com-
parable to state-of-the-art methods, also reducing training time by 70%. Extensive experiments on
both synthetic and real-world face restoration benchmarks demonstrate the effectiveness of our ap-
proach. Compared to existing latent alignment techniques, LAFR offers a more compact, efficient,
and principled solution tailored to the unique characteristics of facial restoration.
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A APPENDIX

In the appendix, we demonstrate related work, additional experimental results, implementation de-
tails, discussion, and analysis as follows.

A.1 RELATED WORK

A.1.1 DIFFUSION-BASED NATURAL IMAGE RESTORATION

Diffusion models Ho et al. (2020); Song et al. (2020; 2021); Rombach et al. (2022) have shown
strong potential in image restoration tasks due to their powerful generative priors Dhariwal & Nichol
(2021). SR3 Saharia et al. (2022) was among the first to apply diffusion models to the super-
resolution task, introducing denoising steps conditioned on low-resolution inputs. Following this, a
series of methods explored the use of known degradation operators to guide the diffusion process.
DDRM Kawar et al. (2022), DDNM Wang et al. (2023b), and DDS Hyungjin et al. (2024) apply
fixed forward operators during sampling to solve inverse problems without retraining. These meth-
ods demonstrate strong performance when the degradation process is known. To address scenarios
where the degradation type is known but its specific parameters are not, GDP Fei et al. (2023) ex-
tends this concept, showing that diffusion models can perform restoration in a task-agnostic manner
using generic priors.

For real-world image super-resolution, more recent work has focused on handling complex, un-
known degradations. StableSR Wang et al. (2024a), ResShift Yue et al. (2023), and InvSR Yue et al.
(2025) adopt multi-step refinement strategies to progressively reconstruct high-quality images from
degraded inputs. These methods emphasize intermediate supervision and progressive denoising. In
contrast, single-step approaches such as OSEDiff Wu et al. (2024a), SeeSR Wu et al. (2024b), TSD-
SR Dong et al. (2025), and FaithDiff Chen et al. (2025) aim to improve sampling efficiency while
maintaining the generation quality of the diffusion prior. Further methods, including PiSA-SR Sun
et al. (2025) and OFTSR Zhu et al. (2024), explore the controllability between fidelity and real-
ism in the results. These approaches incorporate task-specific designs or losses to ensure semantic
accuracy and structural realism.

A.1.2 DIFFUSION-BASED BLIND FACE RESTORATION

Although general super-resolution methods target natural scenes, several recent works have fo-
cused specifically on face restoration using diffusion models Suin et al. (2024); Suin & Chellappa
(2024); Chen et al. (2024); Zhao et al. (2023); Qiu et al. (2023); Tu et al. (2022). DR2 Wang et al.
(2023c) proposes a diffusion-based face super-resolution framework with domain-specific priors.
PGDiff Yang et al. (2023) introduces pose-guided conditioning to enhance the quality of restored
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Figure 8: Results on animation images with real-world degradations. Our method yields high-
quality restored images (bottom) given real-world animated low-quality inputs (top).

faces under large pose variations. DifFace Yue & Loy (2024) employs a dual-branch architecture
to separate structural and texture generation, improving detail reconstruction. DiffBIR Xinqi et al.
(2024) applies a blind image restoration pipeline using diffusion models, specifically designed for
real-world face images. These methods demonstrate that the use of facial priors and task-aware
guidance can significantly enhance the quality of face-specific restoration Li et al. (2018); Qiu et al.
(2023). However, most still depend on full-model fine-tuning or large-scale training datasets. Some
related works focus on identity-reserving and 3D-guided face restoration Varanka et al. (2024b); Hu
et al. (2020), which provide motivation and inspiration of our proposal.

A.2 MORE EVALUATION OF LAFR

A.2.1 MORE EVALUATIONS ON OTHER DOMAINS

Here we provide the restored results on animation images in Fig. 8, which were unseen during our
training stages. Degraded animation images are obtained from the Internet, which has degradations
including video encoding compressions, severe down-sampling, and other unknown types of degra-
dation. It is shown that (1) our proposed LAFR could generalize to unseen domains, (2) our model
is not over-fitted on the training set.

A.2.2 MORE IMPLEMENTATION DETAILS

Parameters Amount. Here we provide the detailed calculation of learnable parameters amount.
We freeze the VAE encoder and decoder of OSEDiff diffusion model, and for layers in UNet, we
set modules with “conv”, “conv1”, “conv2”, “conv in”, “conv shortcut”, “conv out” trainable, and
left frozen. This part has 2.3M learnable parameters in total. For alignment adapter, we set the
hidden dimension as 256, and vocabulary size of the codebook as 1024, and the amount of trainable
parameters is 5.2M in total. For the overall framework we have 7.5M learnable parameters.

Differentiable argmin. We provide the detailed implementation PyTorch-like pseudo code here:

1 class DifferentiableArgmin(torch.nn.Module):
2 def __init__(self, dim, keepdim, beta, straight_through):
3 super().__init__()
4 self.dim = dim
5 self.keepdim = keepdim
6 self.beta = beta
7 self.straight_through = straight_through
8

9 def forward(self, x):
10 return differentiable_argmin(x,self.dim,self.keepdim,self.beta,
11 self.straight_through)
12

13 class STArgmin(torch.autograd.Function):
14 @staticmethod
15 def forward(ctx, x, dim, keepdim, beta):
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16 ctx.dim = dim
17 ctx.keepdim = keepdim
18 ctx.beta = beta
19 ctx.save_for_backward(x)
20 return torch.argmin(x, dim, keepdim).to(x.dtype)
21

22 @staticmethod
23 def backward(ctx, grad_output):
24 (x,) = ctx.saved_tensors
25 dim, keepdim, beta = ctx.dim, ctx.keepdim, ctx.beta
26

27 weights = torch.softmax(-beta * x, dim=dim)
28 indices = torch.arange(x.shape[dim])
29 view_shape = [1] * x.dim()
30 view_shape[dim] = x.shape[dim]
31 indices = indices.view(view_shape)
32 soft_idx = torch.sum(weights * indices, dim=dim, keepdim=True)
33 grad_x = -beta * weights * (indices - soft_idx)
34

35 if not keepdim:
36 grad_output = grad_output.unsqueeze(dim)
37

38 return grad_output * grad_x, None, None, None
39

40

41 def differentiable_argmin(x, dim, keepdim, beta, straight_through):
42 if straight_through:
43 return STArgmin.apply(x, dim, keepdim, beta)
44

45 if dim is None:
46 x_flat = x.view(-1)
47 weights = torch.softmax(-beta * x_flat, dim=0)
48 indices = torch.arange(x_flat.shape[0])
49 out = torch.sum(weights * indices)
50 if keepdim:
51 return out.view([1] * x.dim())
52 return out
53

54 weights = torch.softmax(-beta * x, dim=dim)
55 indices = torch.arange(x.shape[dim])
56 view_shape = [1] * x.dim()
57 view_shape[dim] = x.shape[dim]
58 indices = indices.view(view_shape)
59 out = torch.sum(weights * indices, dim=dim, keepdim=keepdim)
60 return out

A.3 MORE DISCUSSIONS

A.3.1 COMPARISON WITH OTHER RELATED WORKS

Comparison with VQFR. LAFR and VQFR Gu et al. (2022) both incorporate a vector quantization
(VQ) codebook as a means of feature modeling. However, the motivations and utilizations of the
codebook differ substantially. VQFR leverages the codebook to restore semantically fixed facial
structures (e.g., eyes, lips) by learning a representation over Transformer-decoded tokens. In con-
trast, LAFR applies the codebook to the latent encoding of a VAE, focusing on aligning LQ features
directly with their HQ counterparts. Rather than guiding token reconstruction, our codebook acts
as an alignment adapter within the VAE latent space. To assess the distinct impact, we replace our
alignment adapter with the VQFR codebook module and observe a performance drop (see Tab. 6),
confirming the LAFR designed specifically for latent alignment.

Comparison with CLR-Face. CLR-Face Suin & Chellappa (2024) similarly addresses the discrep-
ancy between LQ and HQ latent spaces. However, it involves significantly higher computational and
training costs. Specifically, CLR-Face first generates a coarse image through an Identity Recovery
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Table 7: Ablation studies on CelebA-Test for alignment, UNet pruning, and LoRA parameters.
“Pruned” denotes whether the UNet of diffusion model is pruned, “Conv.” and “Attn.” denotes
LoRA finetuning only on convolutional and attention layers.

# Align Pruned LoRA Type PSNR↑ FID↓ Deg.↓ NIQE↓
1 × × Full 26.42 21.62 43.57 4.937
2 × × Attn. 24.80 36.57 44.32 7.525
3 × × Conv. 25.74 18.46 46.21 4.840
4 × ✓ Conv. 25.99 26.83 46.13 4.861
5 ✓ ✓ Conv. 26.26 17.66 42.45 4.715

Network (IRN), which is then refined via a diffusion-based process. The final latent code is subse-
quently mapped through a VQ codebook and decoded using a VAE decoder. This pipeline requires
training multiple components, including the coarse restoration module, VAE encoder, decoder, and
the VQ codebook itself. In contrast, LAFR eliminates the need for any coarse preprocessing or
full VAE training. Our lightweight alignment adapter efficiently learns to bridge LQ and HQ latent
representations without extensive supervision or modular complexity.

Comparison with SRL-VAE. SRL-VAE Lee et al. (2025) and LAFR both examine the limitations
of conventional VAEs in modeling degraded images, but they differ in goals and solutions. SRL-
VAE aims to enhance the robustness of the VAE encoder to corruptions such as blur and watermark-
ing by re-training it on degraded inputs. However, it is not directly applied to downstream restoration
tasks. Conversely, LAFR introduces a codebook-based alignment adapter that directly refines the
latent space of LQ images toward the HQ domain, enabling effective face image restoration through
a subsequent diffusion-based UNet. Our approach emphasizes task-oriented latent alignment rather
than encoder robustness alone.

Comparison with CodeFormer. While both CodeFormer Zhou et al. (2022) and LAFR utilize
a dictionary-learning-based codebook module, their architectural choices and objectives diverge.
CodeFormer employs a two-stage training scheme: the first stage learns a codebook prior, and the
second stage introduces a Lookup Transformer to retrieve and map latent codes via a learned table-
like structure. In contrast, LAFR simplifies this process by learning the codebook and its mapping
in a single stage using a lightweight alignment layer. Moreover, CodeFormer enforces direct decod-
ing of the mapped codes into HQ images, whereas LAFR merely aligns the LQ latent distribution
to the HQ latent space, deferring image restoration to a subsequent diffusion process. This separa-
tion of alignment and restoration enables LAFR to focus on representation-level fidelity rather than
immediate pixel-level output.

A.3.2 EFFECT OF ALIGNMENT ADAPTER, UNET PRUNING, AND LORA FINE-TUNING

We conduct ablation studies to evaluate the contributions of the alignment adapter, UNet pruning,
and LoRA parameter grouping. The results are shown in Tab. 7. Comparing #1 and #2, we observe a
minimal performance drop when not fine-tuning attention layers, indicating that attention tuning has
limited impact. In contrast, #3 significantly outperforms #2, demonstrating that convolutional layers
are more effective for facial structure restoration. Comparison of #3 and #4 shows that UNet prun-
ing introduces negligible degradation, suggesting that the prompt-related modules are redundant.
Finally, #5 shows a clear performance gain over #4, confirming the importance of our alignment
adapter in improving restoration quality through latent space correction.

A.3.3 MORE ABLATION STUDIES ON ALIGNMENT ADAPTER

As we mentioned in the motivation part, directly using LQ images or their features as guidance for
diffusion sampling could lead to incorrect code, which would further result in an inferior restoration
effect. We here provide a possible way of such an approach, which uses IP-Adapter Ye et al. (2023)
to extract identity embeddings directly from LQ image as a ControlNet Zhang et al. (2023) guidance
for restoration, and its results on the CelebA-Test dataset in Tab. 8. It is shown that our alignment
adapter helps achieve better restoration results.
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Table 8: Comparison between our alignment adapter and directly using LQ images as conditional
guidance via IP-Adapter Ye et al. (2023).

Method PSNR↑ NIQE↓ FID↓ LPIPS↓ Deg.↓
Ours w/o alignment w/ IP-Adapter 26.21 5.358 25.54 0.3606 44.74

Ours 26.26 4.715 17.66 0.2671 42.45

Table 9: Comparison of LAFR trained on 600 FFHQ images, and on overall FFHQ and FFHQR
dataset. Results evaluated on CelebA-HQ testset.

Training set PSNR SSIM LPIPS DISTS MUSIQ NIQE Deg. LMD FID-F FID CLIPIQA MANIQA
600 images from FFHQ (Ours) 26.26 0.7394 0.2671 0.1792 69.99 4.715 42.45 2.750 49.20 17.66 0.6172 0.6220

Overall FFHQ and FFHQR 26.40 0.7418 0.3454 0.1650 71.99 4.490 40.00 2.699 51.00 15.41 0.6049 0.6344

A.3.4 ABLATION OF TRAINING SET SIZE

A possible question for the observation is that: the results trained on 600 images could be over-
fitting, and thus the proposed techniques, including the multi-level loss and alignment adapter, is
not making contribution. Here we provide (1) the evaluation results trained on overall FFHQ and
FFHQR dataset, which other settings same to ours, in Tab. 9 and Tab.; and (2) the detailed results
among different training images amount, where the images are only randomly sampled from FFHQ
dataset, in Tab. 11 and Tab. 12.

A.3.5 LOSS DESIGN

There are some related works using ArcFace as face feature extractor to calculate the loss be-
tween the ground truth and the restored result, instead of CLIP used in our loss term Lid. The
reason for such design is two-folds: (1) CLIP retains rich visual-semantic details (expressions, tex-
tures) essential for realistic reconstruction, unlike ArcFace, which prioritizes identity discrimination
by suppressing non-identity variations; (2) trained on diverse data, CLIP outperforms ArcFace in
handling non-standard scenarios (occlusions, extreme poses), better accommodating reconstruction
variability. For detailed implementation of term Lfs, we use the 3D facial structure extractor in
3D Morphable Model Lu et al. (2024); Deng et al. (2019b) to calculate the difference between the
ground truth and the restored result, in 3D structures. To make sure the gradients are able to be
back-propagated, we re-implemented the 3D facial operators used in the extractor via PyTorch.

A.3.6 WHY NOT USE ALIGNMENT ADAPTER DIRECTLY FOR FACE RESTORATION

Since we have proposed an alignment adapter that receives latent code of LR input and outputs
corresponding HR latent code, a question appears: why not just decode the aligned latent code as
the restored result, but still need to go through a diffusion model. The reasons for not directly
applying adapter for restoration are as follows:

• We only performed alignment at the latent code level, which fails to guarantee the consis-
tency of the images themselves or the validity of restoration.
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Figure 9: Performance trend of OSEDiff and our LAFR on CelebA-Test, as the amount of training
images increases.
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Table 10: Comparison of LAFR trained on 600 FFHQ images, and on overall FFHQ and FFHQR
dataset. Results evaluated on LFW, Wider, and Webphoto testset. C-IQA, M-IQA and M-IQ are
short for CLIPIQA, MANIQA, and MUSIQ separately.

Wider-Test LFW-Test WebPhoto-TestTraining Set C-IQA M-IQA M-IQ NIQE FID C-IQA M-IQA M-IQ NIQE FID C-IQA M-IQA M-IQ NIQE FID

Ours 0.6330 0.6099 69.51 4.859 44.69 0.6375 0.6232 69.94 3.681 45.76 0.6956 0.6113 69.21 4.153 98.48
Overall 0.6508 0.6336 72.13 4.135 62.15 0.6168 0.6181 71.79 4.394 57.37 0.6179 0.6251 70.65 4.768 91.73

Table 11: Ablation studies of different training images amount for our LAFR.

Training Images Amount PSNR↑ SSIM↑ LPIPS↓ DISTS↓ MUSIQ↑ NIQE↓ Deg.↓ LMD↓
100 26.08 0.7384 0.2729 0.1918 71.17 5.117 46.11 3.023
200 26.07 0.7114 0.2537 0.1765 71.94 4.817 45.60 2.883
300 25.87 0.7451 0.2572 0.1836 71.28 4.881 47.45 2.948
400 25.84 0.7425 0.2637 0.1841 71.02 4.872 46.75 2.932
500 26.00 0.7464 0.2594 0.1910 71.37 5.080 47.02 2.824
600 25.91 0.7418 0.2516 0.1782 71.33 4.754 46.12 2.810
700 25.74 0.7388 0.2568 0.1786 72.20 4.841 46.22 3.047
800 26.64 0.7476 0.2578 0.1794 68.64 4.901 41.73 2.819
900 26.29 0.7309 0.2620 0.1810 69.39 4.805 42.42 2.795

7000 26.43 0.7461 0.2671 0.1831 69.37 5.044 42.87 2.773
21000 24.77 0.7328 0.3862 0.1937 70.99 4.855 53.44 3.600
28000 25.48 0.7497 0.3785 0.2032 66.82 5.342 51.02 3.194
35000 25.56 0.7449 0.3713 0.1962 70.64 5.183 50.56 3.176
42000 25.26 0.7390 0.3735 0.1912 70.27 5.254 50.52 3.172
49000 25.06 0.7371 0.3741 0.1910 71.25 4.968 52.05 3.347
56000 25.27 0.7407 0.3679 0.1826 71.50 4.953 49.65 3.144
63000 25.81 0.7438 0.3623 0.1819 69.84 4.852 46.71 2.901
70000 25.16 0.7380 0.3861 0.1973 70.06 5.148 52.04 3.368

• The alignment capability provided by the codebook is also limited; it tends to leverage the
distributional similarity of facial images to efficiently learn the feature distribution from
LR to HR facial images, rather than engage in direct restoration.

• In fact, when we attempt to directly add restoration-related loss to the VAE and train the
model, the VAE transforms into a UNet-like facial restoration model, and numerous studies
have shown that the performance of this structure is inferior to that of diffusion-based
restoration methods.

A.3.7 MORE DISCUSSIONS ON MOTIVATION

We have mentioned that one of our motivations is the difference in the distribution between natural
and facial images. Due to a compact distribution of facial images, it is possible to use fewer training
samples to make a face restoration model learning the corresponding feature than that of natural
images. Here we provide a visualized t-SNE result of these two distributions.

Table 12: Ablation studies of different training images amount for OSEDiff.

Training Images Amount PSNR↑ SSIM↑ LPIPS↓ DISTS↓ MUSIQ↑ NIQE↓ Deg.↓ LMD↓
100 25.95 0.7409 0.3719 0.1915 71.81 5.029 48.86 3.145
200 26.04 0.7404 0.3607 0.1818 72.37 4.927 46.72 3.019
300 26.15 0.7418 0.3592 0.1795 72.28 4.795 44.51 2.803
400 26.25 0.7422 0.3524 0.1809 71.83 5.068 44.39 2.734
500 26.25 0.7397 0.3545 0.1768 73.28 4.843 43.22 2.759
600 26.15 0.7421 0.3560 0.1797 72.54 5.009 43.74 2.774
700 26.20 0.7477 0.3460 0.1786 72.00 4.860 45.31 2.810
800 26.43 0.7452 0.3472 0.1744 72.20 4.754 42.22 2.627
900 26.31 0.7507 0.3478 0.1827 72.28 5.016 44.11 2.752

7000 26.47 0.7514 0.3394 0.1788 72.36 5.084 44.77 2.708
21000 26.11 0.7450 0.3480 0.1779 73.39 5.130 44.52 2.771
28000 26.17 0.7475 0.3387 0.1700 72.36 4.884 45.04 2.753
35000 26.56 0.7489 0.3377 0.1718 71.74 4.771 42.69 2.583
42000 26.57 0.7531 0.3397 0.1759 71.58 4.906 43.50 2.640
49000 26.21 0.7480 0.3511 0.1821 72.63 5.010 45.10 2.874
56000 26.21 0.7465 0.3402 0.1713 72.20 4.874 43.82 2.717
63000 26.36 0.7490 0.3428 0.1778 72.50 4.908 44.82 2.782
70000 26.85 0.7382 0.3254 0.1636 75.07 4.774 46.79 3.024
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t-SNE: CelebA Faces vs ImageNet Natural Images

Face Images (CelebA)
Natural Images (ImageNet)

Figure 10: T-SNE results show that compared to natural images, facial images exhibit a more com-
pact distribution.

A.4 LIMITATIONS

This paper’s codebook-based design for alignment is built upon the assumption that facial images
share highly similar layouts and distributions. Therefore, semantic alignment between LQ and HQ
images can be achieved through dictionary learning in a lightweight structure. However, for complex
situations such as extreme poses and diverse natural images, this approach may not produce the same
effectiveness. We plan to explore this issue in future work.

A.5 SOCIETAL IMPACTS

Our efficient face image restoration method can help in medical diagnosis and forensic investigations
by restoring faces from partial or degraded data, thus supporting identity verification and facial
analysis in critical scenarios. Technology can also benefit individuals with disabilities by enabling
more accurate facial expression recognition and avatar reconstruction, enhancing communication
in virtual environments. However, the method may be misused for unauthorized reconstruction of
individuals’ faces, raising concerns about privacy invasion, surveillance, and identity fraud if not
properly regulated.

A.6 LLM USAGE DECLARATION

In the preparation of this document, we utilized Large Language Model (LLM) to enhance the qual-
ity of the writing. Its application is focused on text polishing, grammar correction, and improving
clarity. All content generated with the assistance of the LLM was rigorously reviewed, revised, and
ultimately approved by the authors to ensure its accuracy and originality.
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