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ABSTRACT

Generative Flow Networks (GFlowNets) are a family of generative models that
learn to sample objects with probabilities proportional to a given reward func-
tion. The key concept behind GFlowNets is the use of two stochastic policies: a
forward policy, which incrementally constructs compositional objects, and a back-
ward policy, which sequentially deconstructs them. Recent results show a close
relationship between GFlowNet training and entropy-regularized reinforcement
learning (RL) problems with a particular reward design. However, this connection
applies only in the setting of a fixed backward policy, which might be a significant
limitation. As a remedy to this problem, we introduce a simple backward policy
optimization algorithm that involves direct maximization of the value function in
an entropy-regularized Markov Decision Process (MDP) over intermediate rewards.
We provide an extensive experimental evaluation of the proposed approach across
various benchmarks in combination with both RL and GFlowNet algorithms and
demonstrate its faster convergence and mode discovery in complex environments.

1 INTRODUCTION

Generative Flow Networks (GFlowNets, Bengio et al., 2021) are models designed to sample compo-
sitional discrete objects, such as graphs, from distributions defined by unnormalized probability mass
functions. They operate by constructing an object through a sequence of stochastic transitions defined
by a forward policy. This policy is trained to match the marginal distribution over constructed objects
with the target distribution of interest. Since this marginal distribution is generally intractable, an
auxiliary backward policy is introduced, and a problem is reduced to the one of matching distributions
over complete trajectories, bearing similarities with variational inference (Malkin et al., 2023).

GFlowNets have found success in various areas, such as biological sequence design (Jain et al., 2022),
molecular optimization (Zhu et al., 2024), recommender systems (Liu et al., 2024), large language
model (LLM) and diffusion model fine-tuning (Hu et al., 2023; Venkatraman et al., 2024; Uehara
et al., 2024), neural architecture search (Chen & Mauch, 2023), combinatorial optimization (Zhang
et al., 2023), and causal discovery (Atanackovic et al., 2024).

Theoretical foundations of GFlowNets have been laid out in seminal works of Bengio et al. (2021;
2023). Most of the literature has since focused on practical applications of these models, so their
theoretical properties have remained largely unexplored, except for a few examples (Krichel et al.,
2024; Silva et al., 2024). However, a recent line of works has brought attention to connections
between GFlowNets and reinforcement learning (Tiapkin et al., 2024; Mohammadpour et al., 2024;
Deleu et al., 2024; He et al., 2024a), showing that the GFlowNet learning problem is equivalent
to a specific RL problem with entropy regularization (also called soft RL, Neu et al. (2017); Geist
et al. (2019)). This opened a new perspective for understanding GFlowNets. The importance of
these findings is supported by empirical evidence, as various RL algorithms have proven useful for
improving GFlowNets (Tiapkin et al., 2024; Lau et al., 2024; Morozov et al., 2024).

However, these connections still carry a limitation related to GFlowNet backward policies. While
GFlowNets can be trained with a fixed backward policy, standard GFlowNet algorithms allow to
train the backward policy together with the forward policy (Bengio et al., 2023; Malkin et al., 2022;
Madan et al., 2023), resulting in faster convergence of the optimization process. Other algorithms
for optimizing backward policies have been proposed in the literature as well (Mohammadpour
et al., 2024; Jang et al., 2024), showing benefits for GFlowNet performance. The theory connecting
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GFlowNets and entropy-regularized RL is based on using the backward policy to add a ”correction”
to GFlowNet rewards and shows the equivalence between two problems only when the backward
policy is fixed. Thus, understanding the backward policy optimization remains a missing piece of this
puzzle. Moreover, Tiapkin et al. (2024) demonstrated that this theoretical gap has practical relevance,
as optimizing the backward policy using the same RL objective as the forward policy can either fail
to improve or even slow down convergence, highlighting the need for a more refined approach.

In this study, we introduce the trajectory likelihood maximization (TLM) approach for backward
policy optimization, which can be integrated with any existing GFlowNet method, including entropy-
regularized RL approaches.

To develop this method, we first formulate the GFlowNet training problem as a unified objective
involving both forward and backward policies. We then propose an alternating minimization proce-
dure consisting of two steps: (1) maximizing the backward policy likelihood of trajectories sampled
from the forward policy and (2) optimizing the forward policy within an entropy-regularized Markov
decision process that corresponds to the updated backward policy. The latter step can be achieved
by any existing GFlowNet or soft RL algorithm, as it was outlined by Deleu et al. (2024). By
approximating these two steps through a single stochastic gradient update, we derive an adaptive
approach for combining backward policy optimization with any GFlowNet method, including soft RL
methods.

Our main contributions are as follows:

• We derive the trajectory likelihood maximization (TLM) method for backward policy optimization;
• The proposed method represents the first unified approach for adaptive backward policy opti-

mization in soft RL-based GFlowNet methods. The method is easy to implement and can be
integrated with any existing GFlowNet training algorithm.

• We provide extensive experimental evaluation of TLM in four tasks, confirming the findings of
Mohammadpour et al. (2024), which emphasize the benefits of training the backward policy in
complex environment with less structure.

2 BACKGROUND

2.1 GFLOWNETS

We aim at sampling from a probability distribution over a finite discrete space X that is given as an
unnormalized probability mass function R : X → R≥0, which we call the GFlowNet reward. We
denote Z =

∑
x∈X R(x) to be an (unknown) normalizing constant.

To formally define a generation process in GFlowNets, we introduce a directed acyclic graph (DAG)
G = (S, E), where S is a state space and E ⊆ S ×S is a set of edges (or transitions). There is exactly
one state, s0, with no incoming edges, which we refer to as the initial state. All other states can
be reached from s0, and the set of terminal states with no outgoing edges coincides with the space
of interest X . Non-terminal states s /∈ X correspond to “incomplete” objects, and edges s → s′

represent adding ”new components” to such objects, transforming s into s′. Let T denote the set of
all complete trajectories τ = (s0, s1, . . . , snτ

) in the graph, where τ is a sequence of states such that
(si → si+1) ∈ E and that starts at s0 and finishes at some terminal state snτ

∈ X . As a result, any
complete trajectory can be viewed as a sequence of actions that constructs the object corresponding
to snτ

starting from the ”empty object” s0.

We say that a state s′ is a child of a state s, if there is an edge (s → s′) ∈ E . In this case we also say
that s is a parent of s′. Next, for any state s, we introduce the forward policy, denoted by PF(s

′|s)
for (s → s′) ∈ E , as an arbitrary probability distribution over the set of children of the state s. In a
similar fashion, we define the backward policy as an arbitrary probability distribution over the parents
of a state s and denote it as PB(s

′|s), where (s′ → s) ∈ E .

Given these two definitions, the main goal of GFlowNet training is a search for a pair of policies
such that the induced distributions over complete trajectories in the forward and backward directions
coincide:

nτ∏
t=1

PF(st | st−1) =
R(snτ )

Z

nτ∏
t=1

PB(st−1 | st) , ∀τ ∈ T . (1)
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The relation (1) is known as the trajectory balance constraint (Malkin et al., 2022). We refer to the
left and right-hand sides of (1) as to the forward and backward trajectory distributions and denote
them as

PPF

T (τ) :=

nτ∏
i=1

PF(si|si−1) , PPB

T (τ) :=
R(snτ

)

Z
·
nτ∏
i=1

PB(si−1|si) , (2)

where τ = (s0, s1, . . . , snτ ) ∈ T . If the condition (1) is satisfied for all complete trajectories,
sampling a trajectory in the forward direction using PF will result in a terminal state being sampled
with probability R(x)/Z.

In practice, we train a model (usually a neural network) that parameterizes the forward policy (and
possibly other auxiliary functions) to minimize an objective function that enforces the constraint
(1) or its equivalent. The main existing objectives are Trajectory Balance (TB, Malkin et al., 2022),
Detailed Balance (DB, Bengio et al., 2023) and Subtrajectory Balance (SubTB, Madan et al., 2023).
The SubTB objective is defined as

LSubTB(θ; τ) =
∑

0≤j<k≤nτ

wjk

(
log

Fθ(sj)
∏k

t=j+1 PF(st|st−1,θ)

Fθ(sk)
∏k

t=j+1 PB(st−1|st,θ)

)2

, (3)

where Fθ(s) is a neural network that approximates the flow function of the state s, see (Bengio
et al., 2023; Madan et al., 2023) for more details on the flow-based formalization of the GFlowNet
problem. Here Fθ(s) is substituted with R(s) for terminal states s, and wjk is usually taken to be
λk−j and then normalized to sum to 1. TB and DB objectives can be viewed as special cases of
(3), which are obtained by only taking the term corresponding to the full trajectory or individual
transitions, respectively. All objectives allow either training the model in an on-policy regime using
the trajectories sampled from PF or in an off-policy mode using the replay buffer or some exploration
techniques. In addition, it is possible to either optimize PB along with PF or to use a fixed PB, e.g.,
the uniform distribution over parents of each state. One can show that given any fixed PB, there
exists a unique PF that satisfies (1); see, e.g., (Malkin et al., 2022).

2.2 GFLOWNETS AS SOFT RL

In reinforcement learning (Sutton & Barto, 2018), a typical performance measure of an agent is a
value function, that is defined as an expected discounted sum of rewards when acting via a given
policy. Entropy-regularized RL (or soft RL, Neu et al. 2017; Geist et al. 2019; Haarnoja et al. 2017)
adds Shannon entropy H to the value function definition, promoting the optimal policy to be more
exploratory:

V PF

λ (s; r) ≜ EPF

[ ∞∑
t=0

γt(r(st, at) + λH(PF(·|st)))|s0 = s

]
, (4)

where λ ≥ 0 is a regularization coefficient. Similarly, regularized Q-values QPF

λ (s, a) are defined as
an expected (discounted) sum of rewards augmented by Shannon entropy given a fixed state s0 = s
and action a0 = a. A regularized optimal policy P⋆

F,λ is a policy that maximizes V PF

λ (s) for any
state s.

Note. In usual RL notation, policy is denoted as π. We opt for using PF as in GFlowNets to avoid
cluttering notation.

It was proven by Tiapkin et al. (2024) that the problem of training GFlowNet PF given a fixed PB can
be formulated as a soft RL task. GFlowNet DAG G is transformed into a deterministic MDP, where
states coincide with DAG states and actions correspond to DAG edges (transitions). For transitions
s → x that lead to terminal states, RL rewards are defined as rPB(s, x) = logPB(s | x) + logR(x),
and for intermediate transitions s → s′ they are defined as rPB(s, s′) = logPB(s | s′). Then, by
taking λ = 1 and γ = 1, one can show that the optimal policy P⋆

F,λ=1(· | s) in this regularized MDP
coincides with a unique GFlowNet forward policy PF(· | s) that is defined by PB and R (Theorem 1,
Tiapkin et al., 2024).

In addition, Proposition 1 of Tiapkin et al. (2024) provides a connection between the corresponding
regularized value function at the initial state s0 for any forward policy PF and KL-divergence between
the induced trajectory distributions:

V PF

λ=1(s0; r
PB) = log Z−KL(PPF

T ∥PPB

T ) .

3
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The main practical corollary of this result is the fact that any RL algorithm that works with entropy
regularization can be utilized to train GFlowNets when PB is fixed. For example, Tiapkin et al.
(2024) demonstrated the efficiency of the classical SoftDQN algorithm (Haarnoja et al., 2017) and
its modified variant called MunchausenDQN (Vieillard et al., 2020). Moreover, it turns out that,
under this framework, the existing GFlowNet training algorithms can be derived from existing RL
algorithms. Tiapkin et al. (2024) showed the on-policy TB corresponds to policy gradient algorithms,
as well as DB corresponds to a dueling variant of SoftDQN. At the same time, Deleu et al. (2024)
showed that TB, DB and SubTB algorithms can be derived from path consistency learning (PCL,
Nachum et al., 2017) under the assumption of a fixed backward policy.

2.3 BACKWARD POLICIES IN GFLOWNETS

The idea of backward policy optimization is an essential element of understanding the GFlowNets
training procedure. In particular, the most straightforward approach used in GFlowNet literature
Malkin et al. (2022); Bengio et al. (2023) proposes to optimize the forward and backward policies
directly through the same GFlowNet objective (e.g., (3)). This approach can accelerate the speed of
convergence Malkin et al. (2022), at the same time potentially leading to less stable training Zhang
et al. (2022).

This phenomenon motivates studying the backward policy optimization in the recent works Mo-
hammadpour et al. (2024) and Jang et al. (2024). Mohammadpour et al. (2024) suggested using
the backward policy with maximum possible trajectory entropy, thus focusing on the exploration
challenges of GFlowNets. Such policy is proven to be PB(s | s′) = n(s)/n(s′), where n(s) is the
number of trajectories which starts at s0 and end at s. It corresponds to the uniform one if the number
of paths to all parent nodes is equal. When n(s) cannot be computed analytically, Mohammadpour
et al. (2024) propose to learn log n(s), s ∈ S alongside the forward policy using its relation to the
value function of the soft Bellman equation in the inverted MDP (see Definition 2 in Mohammadpour
et al. (2024)). Mohammadpour et al. (2024) utilize RL as a tool to find the maximum entropy
backward policy and make the connection to RL solely for such policies. In contrast, our work
theoretically considers the simultaneous optimization of the forward and the backward policy from
the RL perspective, and develops an optimization algorithm grounded in it.

The approach of Mohammadpour et al. (2024) showed consistently better results in less structured
tasks, like QM9 generation (see Section 4.3 for a detailed description). At the same time, more
structured environments with a less challenging exploration counterpart do not show advances of the
proposed backward training approach.

At the same time, Jang et al. (2024) claim that the existing GFlowNets training procedures tend to
under-exploit the high-reward objects and propose a Pessimistic Backward Policy approach. Thus,
the primary aim of Jang et al. (2024) is to focus on the exploitation of the current information about
high-reward trajectories. Towards this aim, they focus on maximizing the observed backward flow
PPB

T (τ) (see (2)) for trajectories leading to high-reward objects. Unfortunately, Jang et al. (2024) do
not provide enough specific details about choosing/sampling trajectories that are stored in their replay
buffer, which limits the reproducibility of the results.

As an additional limitation of both Mohammadpour et al. (2024) and Jang et al. (2024), we mention the
fact that only a single GFlowNet training objective is used in both papers (SubTB and TB respectively)
to evaluate approaches for backward policy optimization, while we carry out experimental evaluation
with various GFlowNet training objectives.

3 TRAJECTORY LIKELIHOOD MAXIMIZATION

The objective of our method is to formalize the optimization process for the backward policy for
reinforcement learning-based approaches. It is worth mentioning that soft RL methods cannot address
the changing of the reward function, except for reward shaping schemes (Ng et al., 1999) that preserve
the total reward of any trajectory. Therefore, we need to return to the underlying GFlowNet problem.
Let us look at the following optimization problem:

minPF∈ΠF,PB∈ΠB
KL(PPF

T ∥PPB

T ) , (5)

where ΠF and ΠB represent the spaces of forward and backward policies, respectively, and PPF

T and
PPB

T are defined in (2). It is easy to see that any solution to the problem (5) satisfies the trajectory
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balance constraint (1) and thus induces a valid GFlowNet sampling policy. Additionally, it is worth
mentioning that for any fixed PB the problem (5) is equivalent to maximizing value

V PF

λ=1(s0; r
PB) = log Z−KL(PPF

T ∥PPB

T )

over PF ∈ ΠF in an entropy-regularized MDP, as established in Tiapkin et al. (2024, Proposition 1).
Thus, the joint optimization resembles the RL formulation with non-stationary rewards. To leverage
the problem’s block structure, we propose a meta-algorithm consisting of two iterative steps, repeated
until convergence:

Pt+1
B ≈ argminPB KL

(
P
Pt

F

T
∥∥PPB

T

)
, Pt+1

F ≈ argminPF KL
(
PPF

T
∥∥PPt+1

B

T

)
. (6)

It is worth noting that if these optimization problems are solved exactly, the algorithm converges
after the first iteration. This occurs because, for every fixed backward policy PB, there is a unique
forward policy PF, such that PPF

T = PPB

T , see, e.g., (Malkin et al., 2022), ensuring that the loss
function reaches its global minimum. In the following sections, we provide implementation details
on approximating these two steps.

First Step: Trajectory Likelihood Maximization. Using the connection between forward KL
divergence minimization and maximum likelihood estimation (MLE), we formulate the following
trajectory likelihood maximization objective:

θt+1
B ≈ argminθ Eτ∼Pt

F
[LTLM(θ; τ)], LTLM(θ; τ) := −

∑nτ

i=1 logPB(si−1|si, θ) . (7)
In this formulation, τ = (s0, s1, . . . , snτ ) denotes a trajectory generated by the forward policy
Pt
F. This step seeks to update the backward policy by minimizing the negative log-likelihood of

trajectories generated from the forward policy. Additionally, instead of solving (7) for exact argmin
for every t, we perform one stochastic gradient update

θt+1
B = θtB − γ∇θLTLM(θ

t
B; τ) .

Second Step: Non-Stationary Soft RL Problem. To approximate the second step of (6), we
exploit the equivalence between the GFlowNet framework and the entropy-regularized RL problem.
This leads to the following expression:

Pt+1
F ≈ argminPF∈ΠF

KL
(
PPF

T
∥∥PPt+1

B

T

)
⇐⇒ Pt+1

F ≈ argmaxPF∈ΠF
V PF

λ=1

(
s0; r

Pt+1
B

)
, (8)

where rPB is the RL reward function corresponding to the backward policy PB. This step can be
solved using any soft RL method, such as SoftDQN (Haarnoja et al., 2018). Additionally, it is
noteworthy that all existing GFlowNet algorithms with a fixed backward policy can be viewed as
variations of existing RL methods, see, e.g., (Deleu et al., 2024). Thus, they can be used to solve the
optimization problem in (8).

To mitigate the computational overhead of searching for exact argmin in (8), we also propose to
perform a single stochastic gradient update in the corresponding GFlowNet training algorithm

θt+1
F = θtF − η∇θLAlg(θ

t
F; τ,Pt+1

B ) ,

where LAlg represents the loss function associated with a GFlowNet or soft RL method, such as
SubTB or SoftDQN. Here, τ denotes a (possibly off-policy) trajectory.

The complete procedure can be interpreted as a soft RL method with changing rewards. Our suggested
method is summarized in Algorithm 1 and can be paired with any GFlowNet training method Alg
(e.g., DB, TB, SubTB, or SoftDQN).

Algorithm 1 Trajectory Likelihood Maximization
1: Input: Forward and backward parameters θ1F, θ1B, any GFlowNet loss function LAlg,

(optional) experience replay buffer B;
2: for t = 1 to Niters do
3: Sample a batch of trajectories {τ (t)k }Kk=1 from the forward policy PF(·|·, θtF);
4: (optional) Update B with {τ (t)k }Kk=1;
5: Update θt+1

B = θtB − γt · 1
K

∑K
k=1 ∇LTLM(θ

t
B; τ

(t)
k ), see (7);

6: (optional) Resample a batch of trajectories {τ (t)k }Kk=1 from B;
7: Update θt+1

F = θtF − ηt · 1
K

∑K
k=1 ∇LAlg(θ

t
F; τ

(t)
k ,PB(·|·, θt+1

B ));
8: end for

5
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Convergence of the method In the following, we show why this method indeed solves the
GFlowNet learning problem. First, we introduce a non-stationary soft reinforcement learning
problem of minimizing the worst-case dynamic average regret

R
T
:= 1

T

∑T
t=1 V

P⋆
F

λ=1(s0; r
t)− V

Pt
F

λ=1(s0; r
t) , (9)

where {rt}t∈[T ] is a sequence of reward functions, and rt is revealed to a learner before selecting a
policy Pt

F. Following Zahavy et al. (2021), we conjecture that existing RL algorithms are adaptive to
the setting of known but non-stationary reward sequences. The implementation of Sampler player of
EntGame algorithm by Tiapkin et al. (2023) is an example of such a regret minimization algorithm.
Additionally, we notice that the optimization of dynamic regret is well-studied in the online learning
literature, even in a more challenging setting of revealing the corresponding reward function after
playing a policy (Zinkevich, 2003; Besbes et al., 2015).

Next, we provide the convergence result for our two-step procedure, using a stability argument for
the first step. The proof is given in Appendix A.1.

Theorem 3.1. Assume that (1) the backward updates are stable: supt≥0∥PT
B −PT+t

B ∥1 → 0 as T →
∞, and (2) the forward updates are given by non-stationary regret minimization algorithm: R

T → 0

as T → ∞. Then there exists a valid GFlowNet sampling policy P⋆
F such that 1

T

∑T
t=1 P

Pt
F

T → P
P⋆

F

T .

During numerical experiments, we observed that enforcing stability in backward updates, in particular
by using a decaying learning rate, significantly improves convergence in practice. Furthermore, as the
theorem shows, this stability is essential for theoretical convergence. We discuss stability techniques
that we utilize alongside our algorithm in Appendix A.2.

Discussion. We underline our approach’s similarity with a celebrated EM-algorithm (Dempster
et al., 1977) and Hinton’s Wake-Sleep algorithm (Hinton et al., 1995). Both these methods also
attempt to address the minimization problem using the block structure and alternating minimization
approaches. Additionally, our approach can be connected to cooperative game theory. Indeed, one
may interpret PF as a Forward player and PB as a Backward player, and both players attempt to
minimize KL-divergence between corresponding trajectory distributions.

4 EXPERIMENTS

We carry out experimental evaluation on hypergrid (Bengio et al., 2021) and bit sequence (Malkin
et al., 2022) environments, as well as two molecule design environments: sEH (Bengio et al., 2021)
and QM9 (Jain et al., 2023). For additional experimental details and hyperparameter choices, we
refer the reader to Appendix A.3 .

We use 4 GFlowNet training methods for evaluation: MunchausenDQN (following the framework
of Tiapkin et al. (2024)), DB (Bengio et al., 2023), TB (Malkin et al., 2022), and SubTB (Madan et al.,
2023), which we will further refer to as GFlowNet algorithms (referred to as LAlg in the previous
section). On hypergrids, we additionally provide results for SoftDQN (Tiapkin et al., 2024). In
combination with them, we consider 4 strategies for learning/choosing the backward policy:

• our approach (TLM);
• fixed uniform backward (uniform);
• learning backward simultaneously with the PF via the same objective (naive);
• maximum entropy (maxent, Mohammadpour et al., 2024).

We will further refer to them as backward approaches. In this section, we denote a distribution
induced by a forward policy PF over the terminal states as Pθ(x) for x ∈ X , which corresponds to
the probability of sampling x from our GFlowNet.

4.1 HYPERGRID

We start experiments with synthetic hypergrid environments introduced by Bengio et al. (2021).
These environments are sufficiently small to compute target distribution in the closed form, allowing
us to directly examine the convergence of Pθ(x) to R(x)/Z.
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Figure 1: L1 distance between target and empirical sample distributions over the course of training
on the standard (top row) and hard (bottom row) hypergrid environments for each method. Lower
values indicate better performance.

The environment is a d-dimensional hypercube with a side length equal to H . The state space is
represented as d-dimensional vectors (s1, . . . , sd)T ∈ {0, . . . ,H − 1}d with the initial state being
(0, . . . , 0)T. For each state (s1, . . . , sd−1), there are at most d + 1 actions. The first action always
corresponds to an exit action that transfers the state to its terminal copy, and the rest of d actions
correspond to incrementing one coordinate by 1 without leaving the grid. The number of terminal
states here is |X | = Hd. There are 2d regions with high rewards near the corners of the grid,
while states outside have much lower rewards. The exact expression for the rewards is given in
Appendix A.3.2.

We explore environments with the reward parameters taken from Malkin et al. (2022), referred to as
“standard case”, and with the reward parameters from Madan et al. (2023), referred to as a “hard case”.
In the second case, background rewards are lower, which makes mode exploration more challenging.
We conduct experiments on a 4-dimensional hypercube with a side length of 20. As an evaluation
metric, we use L1 distance between the true reward distribution and the empirical distribution of the
last 2 · 105 terminal states sampled during training.

Figure 1 presents the results. For SoftDQN, MunchausenDQN, and DB, TLM shows the fastest
convergence for both “standard” and “hard” reward designs. For the SubTB algorithm, TLM shows
similar performance to naive and outperforms uniform and maxent. TB is known to have
difficulties in this environment (Madan et al., 2023), all approaches fail to converge under the
“hard” reward design. At the same time, with the “standard” one, naive backward shows the
best convergence. An important note is that our results reproduce the findings of Tiapkin et al.
(2024): for SoftDQN and MunchausenDQN training with uniform backward converges faster
than with naive algorithm, while TLM shows stable improvement over uniform. The results and
the ranking of algorithms are almost the same for SoftDQN and MunchausenDQN, so we leave
only MunchausenDQN out of two for further experiments.

4.2 BIT SEQUENCES

In this section, we consider the bit sequence generation task introduced by Malkin et al. (2022).
Following the experimental setup of (Tiapkin et al., 2024), we modify the state and action spaces to
create a non-tree DAG structure, similar to the approach introduced in Zhang et al. (2022).

This task is to generate binary sequences of a fixed length n, using a vocabulary of k-bit blocks.
The state space of this environment corresponds to sequences of n/k words, and each word in
these sequences is either an empty word ⊘ or one of 2k possible k-bit words. The initial state s0
corresponds to a sequence of empty words. The possible actions in each state are to replace an
existing empty word ⊘ with one of 2k non-empty words in the vocabulary. The set of terminal states
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Figure 2: Top row: Bit Sequences, the number of discovered modes out of total 60 modes for
different methods with learning rate 10−3. Center row: QM9, the number of Tanimoto-separated
modes with reward higher or equal to 1.125 for different methods with learning rate 5 · 10−4. Bottom
row: sEH, the number of Tanimoto-separated modes with reward higher or equal to 0.875 for different
methods with learning rate 5 · 10−4. Higher values indicate better performance.

X consists of sequences without empty words and correspond to binary strings of length n. The
reward function is defined as R(x) = exp(−2 ·minx′∈M d(x, x′)), where M is a set of modes and
d is Hamming distance. We fix n = 120 and k = 8 for our experiments. The terminal state space size
is |X | = 2120. Importantly, for this environment, the uniform backward coincides with maxent,
see Proposition 1 of Zhang et al. (2022) and Remark 3 of Theorem 3 of Mohammadpour et al. (2024).

To evaluate the performance, we use the same metrics as in Malkin et al. (2022) and Tiapkin et al.
(2024): the number of modes found during training (number of sequences from M for which a
terminal state within a distance of 30 has been sampled) and Spearman correlation on the test set
between R(x) and an estimate of Pθ. Since computing the exact probability of sampling a terminal
state is intractable due to a large number of paths leading to it, we use a Monte Carlo estimate
following the approach of Zhang et al. (2022). We train all models with various choices of the
learning rate, treating it as a hyperparameter, and provide the results depending on its value, similarly
to Madan et al. (2023).

Figure 2 shows the number of modes for different GFlowNet algorithms and backward approaches
found over the course of training. We observe that TLM shows a significant improvement for DB
and a minor one for MunchausenDQN in comparison to other backward approaches, where in the
later case we find all 60 modes. TB and SubTB also find almost all modes, and TLM does not affect
the results much. Full plots for modes across varying learning rates are presented in Figure 5 in
Appendix. Figure 3 (top) presents Spearman correlation between R and Pθ on the test set for the
same GFlowNet algorithms and varying learning rates. TLM shows better or similar performance to
the baselines across all GFlowNet algorithms if the optimal learning rate is chosen. Moreover, for DB
and SubTB, TLM shows steady improvement over the baselines for all learning rates.

4.3 MOLECULE DESIGN, SEH AND QM9

Our final experiments are carried out on molecule design tasks of sEH (Bengio et al., 2021) and QM9
(Jain et al., 2023).

In both tasks, the goal is to generate molecular graphs, with reward emphasizing some desirable
property. For both problems, we use pre-trained reward proxy neural networks. For the sEH task, the
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Figure 3: Top row: Bit Sequences, Spearman correlation between R and Pθ on a test set for
different methods and varying learning rate ∈ {5 ·10−4, 10−3, 2 ·10−3}. Center row: QM9, Pearson
correlation between logR and logPθ on the fixed subset of the QM9 dataset (Ramakrishnan et al.,
2014) for different methods and varying learning rate ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3}. Bottom
row: sEH, Pearson correlation between logR and logPθ on the test set from Bengio et al. (2021)
for different methods and varying learning rate ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3}. Higher values
indicate better performance.

model is trained to predict the binding energy of a molecule to a particular protein target (soluble
epoxide hydrolase) (Bengio et al., 2021). For the QM9 task, the proxy is trained on the QM9 dataset
(Ramakrishnan et al., 2014) to predict the HOMO-LUMO gap (Zhang et al., 2020).

For the sEH task, we follow the framework proposed by Jin et al. (2020) and generate molecules
using a predefined vocabulary of 72 fragments, the same as in Bengio et al. (2021). It is essential to
mention that these fragments are explicitly selected for the sEH task to simplify high-quality object
generation. The states are represented as trees of fragments. The actions correspond to choosing a
new fragment, then choosing an atom to which the fragment will be attached. There is also a special
stop action that moves the state to its terminal copy and stops the generation process.

For QM9 task, molecules are generated atom-by-atom and bond-by-bond. Every state is a connected
graph, and actions either add a new node and edge or set the attribute on edge. Thus, the graph-
building environment is much more expressive than the tree-building environment, but it results in a
more complex generation task and can lead to construction of invalid molecules.

We use the same evaluation metrics for both tasks as proposed in previous works (Madan et al.,
2023; Tiapkin et al., 2024). We track the number of Tanimoto-separated modes above a certain
reward threshold captured over the course of training, and Pearson correlation on the test set between
logR(x) and logPθ(x). For sEH task we use the same test set as in Bengio et al. (2021), and for
QM9 we use a subset of the dataset introduced in Ramakrishnan et al. (2014). We train all models
with various choices of the learning rate, treating it as a hyperparameter, and provide the results
depending on its value, similarly to Madan et al. (2023).

Figure 2 (center and bottom) shows the number of modes for different GFlowNet algorithms and
backward approaches found over the course of training. Overall, TLM greatly speeds up mode
discovery on QM9 for all GFlowNet algorithms, but shows similar or worse performance when
compared to other backward approaches on sEH. However, we note that on sEH no backward
approach shows significant improvement over uniform in terms of mode discovery. Full plots
for modes across varying learning rates are presented in Figure 6 in Appendix. It is worth noting
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that on QM9 TLM shows robust improvement over the baselines across most learning rates for all
GFlowNet algorithms. Figure 3 (center and bottom) shows Pearson correlation between logR and
logPθ estimate measured on the test set for various learning rates. TLM results in better correlations
when paired with MunchausenDQN and SubTB, and shows similar results to the baselines when
paired with DB and TB.

4.4 DISCUSSION

From the plots above, one can see that across all GFlowNet algorithms (forward policy training
objectives), TLM generally shows performance that is better or comparable to other backward
approaches. The sole exception is the number of discovered modes in sEH environment, where TLM
can fall behind other backward approaches. To explain this shortcoming, as well as provide more
intuition on why TLM gives more improvements when paired with some of the GFlowNet algorithms
than with the others, we discuss two hypotheses.

First of all, we hypothesise that TLM is beneficial in less structured tasks, which is supported by the
major improvements to mode exploration that it obtains on QM9, while sometimes even degrading
the same metric on sEH. Indeed, molecules in the sEH task are constructed from the predefined set of
blocks, while in the QM9 task they are created from atoms. This manually predefined set adds much
more structure into the environment, leading to creating a junction tree from these blocks instead of
creating an arbitrary graph of atoms, which can even represent an invalid molecule in some cases.
We suppose that strong methodological bias is a possible reason why it is of little utility to consider
non-trivial backward approaches in the sEH task, and why the uniform backward approach often
has the best or at least comparable performance according to Figure 6. This is exactly the hypothesis
that was initially put forward by Mohammadpour et al. (2024), and our results align with it well.

Next, we put forward our ”local-global optimization” hypothesis, which states that TLM shows
more improvements when paired with ”local” GFlowNet algorithms that optimize some objective
over individual transitions, e.g. DB, while the improvements are less pronounced when it is paired
with ”global” GFlowNet algorithms that optimize some objective over whole trajectories, e.g. TB.
Indeed, by examining the convergence speed on hypergrids and mode discovery on bit sequences,
one can note that TLM offers improvements when paired with DB and MunchausenDQN, while
performing comparably to other backward approaches when paired with TB and SubTB. Similarly,
one can note that TLM offers the biggest mode discovery speedup on QM9 when paired with DB and
MunchausenDQN. We believe that such behavior could be explained by the fact that TLM propagates
information over whole trajectories to train backward policy, matching flows over trajectories. This
can result in a good synergy if the forward policy objective on the other hand uses local information,
matching flows over individual transitions. One can argue that SubTB already considers both local
and global information by construction, while TLM does improve reward correlations on various
environments and mode discovery on QM9 when paired with it. However, local-global information
ratio in SubTB heavily depends on the subtrajectory weighting, thus considering other ways to weigh
them could be an interesting further research direction by itself. Overall, if we rank the GFlowNet
algorithms by the amount of improvement we get on average when using TLM on top of them, the
order will be DB > MunchausenDQN > SubTB > TB, which does align well with our hypothesis.

5 CONCLUSION

In this work, we propose a new method for backward policy optimization that enhances mode ex-
ploration and accelerates convergence in complex GFlowNet environments. TLM represents the first
principled method for learning a backward policy in soft reinforcement learning-based GFlowNet
algorithms, such as SoftDQN and MunchausenDQN. We provide an extensive experimental evalu-
ation, demonstrating benefits of TLM when it is paired with various forward policy training methods,
and analyze its shortcomings, arguing that our results support the hypothesis of Mohammadpour
et al. (2024) about benefits of backward policy optimization in environments with less structure.
In addition, we put forward our ”local-global optimization” hypothesis, which states that TLM-like
approaches show the most benefit when paired with local forward policy training objectives.

A promising further work direction is using backward policy for exploration as proposed in Kim et al.
(2024), He et al. (2024b). Indeed, the ability to sample trajectories that start from high-reward terminal
states via PB provides an opportunity to improve mode exploration. We expect that combining such
methods with TLM-like approaches will additionally improve their performance.
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Naumov, Pierre Perrault, Yunhao Tang, Micha Valko, and Pierre Ménard. Fast rates for maximum
entropy exploration. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics, pp.
4213–4221. PMLR, 2024.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke
Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable inference in
diffusion models for vision, language, and control. arXiv preprint arXiv:2405.20971, 2024.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. Advances
in Neural Information Processing Systems, 33:4235–4246, 2020.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough
for convex mdps. Advances in Neural Information Processing Systems, 34:25746–25759, 2021.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Conference
on Machine Learning, pp. 26412–26428. PMLR, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. In Advances in Neural
Information Processing Systems, volume 36, pp. 11952–11969, 2023.

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multiplex
graph for molecular structures, 2020. URL https://arxiv.org/abs/2011.07457.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

13

http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2011.07457


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 OMITTED PROOFS

Proof of Theorem 3.1. From the stability of backward updates, the Cauchy criterion implies that
there is P⋆

B ∈ ΠB such that PT
B → P⋆

B. At the same time, by the choice or rewards rt = rP
t
B ,

Proposition 1 by Tiapkin et al. (2024) and joint convexity of KL-divergence

R
T
=

1

T

T∑
t=1

KL
(
P
Pt

F

T
∥∥PPt

B

T

)
≥ KL

(
1

T

T∑
t=1

P
Pt

F

T

∥∥∥∥ 1T
T∑

t=1

P
Pt

B

T

)
.

Notice that a mapping PB 7→ PPB

T is continuous, thus PPT
B

T → P
P⋆

B

T , and, as a result, averages of PPt
B

T
also converge to P

P⋆
B

T . Finally, applying Pinkser’s inequality, we have

∥∥ 1
T

∑T
t=1 P

Pt
F

T − P
P⋆

B

T
∥∥
1
≤
√

2R
T
+ ∥ 1

T

∑T
t=1 P

Pt
B

T − P
P⋆

B

T ∥1 .

The right-hand side of the inequality tends to zero as T → +∞, thus 1
T

∑T
t=1 P

Pt
F

T → P
P⋆

B

T . Finally,

since for any P⋆
B there is P⋆

F such that PP⋆
B

T = P
P⋆

F

T , we conclude the statement.

A.2 STABILITY TECHNIQUES

In this section, we highlight important practical techniques and design choices motivated by Theo-
rem 3.1 that we use alongside our TLM algorithm to enforce stability into the training of PB.

First, we found it beneficial to either use a lower learning rate for the backward policy or decay it
over the course of training (see the next sections for detailed descriptions).

Second, akin to how the Deep Q-Network algorithm (Mnih et al., 2015) utilizes a target network
to estimate the value of the next state, we utilize target networks for the backward policy when
calculating the loss for the forward policy. For example, (3) transforms into

LSubTB(θ; τ) =
∑

0≤j<k≤nτ

wjk

(
log

Fθ(sj)
∏k

t=j+1 PF(st|st−1,θ)

Fθ(sk)
∏k

t=j+1 PB(st−1|st,θ̄)

)2

(10)

where the parameters θ̄ of PB(st−1|st, θ̄) are updated via exponential moving average (EMA) of the
online parameters θ of PB(st−1|st, θ). So the loss for the backward policy LTLM is computed using an
online backward policy PB(st−1|st, θ), and the loss for the forward policy LAlg is computed using a
target backward policy PB(st−1|st, θ̄), which is frozen during the gradient update of PF.

Finally, we find it helpful to initialise PB to the uniform distribution at the beggining of training,
which is done by zero-initialization of the last linear layer weight and bias.

We ablate the impact of the proposed techniques on QM9, where we try to separately turn off each of
the three. Results are presented in Figure 4. We observe that using target model and lower learning
rate is crucial, whereas disabling uniform initialization increases variance and shows slightly worse
results. For this experiment, we choose DB as the base algorithm because TLM overall shows the
greatest impact when applied with it compared to TB, SubTB, and MunchausenDQN.

A.3 EXPERIMENTAL DETAILS

We utilize PyTorch (Paszke et al., 2019) in our experiments. For hypergrid and bit sequence
environments, we base our implementation upon the published code of Tiapkin et al. (2024). For
molecule design experiments, our implementations are based on the open source library by Recursion
Pharma.1 In all our experiments, PF and PB share the same neural network backbone, predicting the
logits via two separate linear heads.

1https://github.com/recursionpharma/gflownet
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Figure 4: Ablation study of stability techniques on QM9. The number of Tanimoto-separated modes
with a reward at least 1.125 is shown. As a base algorithm we use DB with a learning rate of 5 · 10−4.

A.3.1 HYPERGRID

The reward at a terminal state s with coordinates (s1, . . . , sD) is defined as

R(s) = R0 +R1 ·
D∏
i=1

I
[
0.25 <

∣∣∣∣ si

H − 1
− 0.5

∣∣∣∣]+R2 ·
D∏
i=1

I
[
0.3 <

∣∣∣∣ si

H − 1
− 0.5

∣∣∣∣ < 0.4

]
.

Standard reward uses parameters (R0 = 10−3, R1 = 0.5, R2 = 2.0) and hard reward uses (R0 =
10−4, R1 = 1.0, R2 = 3.0), taken from Bengio et al. (2021) and Madan et al. (2023) respectively.

All models are parameterized by MLP with 2 hidden layers and 256 hidden units. We use Adam
optimizer with a learning rate of 10−3 and a batch size of 16 trajectories. For backward policy we use
the same initial learning rate and utilize exponential scheduler, where γ is tuned from {0.999, 0.9999}.
For SubTB we use λ = 0.9 following Madan et al. (2023). For SoftDQN and MunchausenDQN
we use prioritized replay buffer (Schaul et al., 2016) and take the same hyperparameters as in Tiapkin
et al. (2024). Backward policy target network uses soft updates with a parameter τ = 0.25 (Silver
et al., 2014). Since the environment is small enough, we precompute n(s) for all states, allowing to
obtain the maxent backward exactly. For all experiments mean and std values are computed over 3
random seeds.

A.3.2 BIT SEQUENCES

The set of modes M is defined as in Malkin et al. (2022), and we choose the same size, |M | = 60.
We set H = {′00000000′,′ 11111111′,′ 11110000′,′ 00001111′,′ 00111100′}. Each sequence in M
is generated by randomly selecting n/8 elements from H with replacement, and then concatenating
them. The test set for evaluating reward correlations is generated by taking a mode and flipping i
random bits in it, where this is repeated for every mode and for each 0 ≤ i < n.

We utilize the same Monte Carlo estimate for Pθ as presented in Tiapkin et al. (2024) with N = 10:

Pθ(x) = EPB(τ |x)
PF(τ | θ)
PB(τ | x)

≈ 1

N

N∑
i=1

PF(τ
i | θ)

PB(τ i | x)
, τ i ∼ PB(τ | x).

Notice that any valid PB can be used here, but for each model we take the PB that was fixed/trained
alongside the corresponding PF since such choice will lead to lower estimate variance. However, we
note that the metric is still very noisy, so for each training run we compute the metric for all model
checkpoints and use the maximum value.

All models are parameterized as Transformers Vaswani et al. (2017) with 3 hidden layers, 8 attention
heads, and a hidden dimension of 64. Each model is trained for 50,000 iterations and a batch size
of 16 with Adam optimizer. We provide results for learning rates from {5 · 10−4, 10−3, 2 · 10−3}.
For backward policy we use the same initial learning rate as for the forward policy and utilize
exponential scheduler, where γ is tuned from {0.9997, 0.9999}. For SubTB we use λ = 0.9.
For MunchausenDQN we use prioritized replay buffer (Schaul et al., 2016) and take the same
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hyperparameters as in Tiapkin et al. (2024). Backward policy target network uses soft updates with a
parameter τ = 0.25 (Silver et al., 2014). For all experiments mean and std values are computed over
3 random seeds.

To closely follow the setting of previous works (Malkin et al., 2022; Madan et al., 2023; Tiapkin
et al., 2024), we use ε-uniform exploration with ε = 10−3. We note that this can introduce a small
bias into the gradient estimate of ∇θLTLM(θ

t
B; τ) since τ will not be sampled exactly from PF.

A.3.3 MOLECULES

For sEH we use the test set from Bengio et al. (2021). For QM9 we choose a subset of 773 molecules
from the QM9 dataset (Ramakrishnan et al., 2014) with number of atoms between 3 and 8. The
subset is constructed to contain approximately equal number of molecules between different molecule
sizes. To compute correlation we utilize the same Monte Carlo estimate as in bit sequence task.
We highlight that Mohammadpour et al. (2024) used another evaluation approach and computed
correlation on sampled molecules instead of a fixed dataset.

We use graph transformer architecture from Jain et al. (2023) with 8 layers and number of embeddings
256 for both tasks. Each model is trained for 20,000 iterations with Adam optimizer. We provide
results for learning rates from {5 ·10−4, 10−4, 5 ·10−4, 10−3}. Learning rate for PB is taken to be 10
times smaller than the one for PF at the beginning of the training, and both use the same exponential
scheduler. Batch size is 256 and 128 for sEH and QM9 respectively. Backward policy target network
uses soft updates with a parameter τ = 0.05 (Silver et al., 2014). For SubTB we use λ = 1.0
following Madan et al. (2023). For MunchausenDQN we do not use a replay buffer, training the
model on-policy, and otherwise use the same hyperparameters as in Tiapkin et al. (2024). To learn
log n(s) for maxent backward we use the same approach as in Mohammadpour et al. (2024).

Following the setting of previous works (Malkin et al., 2022; Madan et al., 2023; Tiapkin et al., 2024),
we also use ε-uniform exploration with ε = 0.05. To adjust for the bias this introduces into the
gradient estimate of ∇θLTLM(θ

t
B; τ), we linearly anneal ε to zero over the course of training.

We set R = exp(−75.0) for invalid molecules in QM9. We set reward exponent to 10. Rewards are
divided by constant 8 in sEH task. For QM9, from all rewards we substract 95%-percentile, thus,
major part of rewards is distributed from 0 to 1 with 5% of molecules having reward higher than 1.

We track the number of Tanimoto-separated modes as described in Bengio et al. (2023), using a
Tanimoto similarity threshold of 0.7. Reward thresholds after normalisation are 0.875 and 1.125 for
sEH and QM9 respectively.

A.4 FULL PLOTS
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Figure 5: Bit Sequences, the number of modes discovered over the course of training for different
methods and a learning rate ∈ {5 · 10−4, 10−3, 2 · 10−3}. TB results at the learning rate of 2 · 10−3

are not full because of exploding gradients at a certain point in training.
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Figure 6: Top row: QM9, the number of Tanimoto-separated modes discovered over the course
of training with reward higher or equal to 1.125 for different methods and learning rate in ∈ {5 ·
10−5, 10−4, 5·10−4, 10−3}. Bottom row: sEH, the number of Tanimoto-separated modes discovered
over the course of training with reward higher or equal to 0.875 for different methods and learning
rate ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3}.
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