
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZING BACKWARD POLICIES IN GFLOWNETS
VIA TRAJECTORY LIKELIHOOD MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) are a family of generative models that
learn to sample objects with probabilities proportional to a given reward func-
tion. The key concept behind GFlowNets is the use of two stochastic policies: a
forward policy, which incrementally constructs compositional objects, and a back-
ward policy, which sequentially deconstructs them. Recent results show a close
relationship between GFlowNet training and entropy-regularized reinforcement
learning (RL) problems with a particular reward design. However, this connection
applies only in the setting of a fixed backward policy, which might be a significant
limitation. As a remedy to this problem, we introduce a simple backward policy
optimization algorithm that involves direct maximization of the value function in
an entropy-regularized Markov Decision Process (MDP) over intermediate rewards.
We provide an extensive experimental evaluation of the proposed approach across
various benchmarks in combination with both RL and GFlowNet algorithms and
demonstrate its faster convergence and mode discovery in complex environments.

1 INTRODUCTION

Generative Flow Networks (GFlowNets, Bengio et al., 2021) are models designed to sample compo-
sitional discrete objects, such as graphs, from distributions defined by unnormalized probability mass
functions. They operate by constructing an object through a sequence of stochastic transitions defined
by a forward policy. This policy is trained to match the marginal distribution over constructed objects
with the target distribution of interest. Since this marginal distribution is generally intractable, an
auxiliary backward policy is introduced, and a problem is reduced to the one of matching distributions
over complete trajectories, bearing similarities with variational inference (Malkin et al., 2023).

GFlowNets have found success in various areas, such as biological sequence design (Jain et al., 2022),
molecular optimization (Zhu et al., 2024), recommender systems (Liu et al., 2024), large language
model (LLM) and diffusion model fine-tuning (Hu et al., 2023; Venkatraman et al., 2024; Uehara
et al., 2024), neural architecture search (Chen & Mauch, 2023), combinatorial optimization (Zhang
et al., 2023), and causal discovery (Atanackovic et al., 2024).

Theoretical foundations of GFlowNets have been laid out in seminal works of Bengio et al. (2021;
2023). Most of the literature has since focused on practical applications of these models, so their
theoretical properties have remained largely unexplored, except for a few examples (Krichel et al.,
2024; Silva et al., 2024). However, a recent line of works has brought attention to connections
between GFlowNets and reinforcement learning (Tiapkin et al., 2024; Mohammadpour et al., 2024;
Deleu et al., 2024; He et al., 2024a), showing that the GFlowNet learning problem is equivalent
to a specific RL problem with entropy regularization (also called soft RL, Neu et al. (2017); Geist
et al. (2019)). This opened a new perspective for understanding GFlowNets. The importance of
these findings is supported by empirical evidence, as various RL algorithms have proven useful for
improving GFlowNets (Tiapkin et al., 2024; Lau et al., 2024; Morozov et al., 2024).

However, these connections still carry a limitation related to GFlowNet backward policies. While
GFlowNets can be trained with a fixed backward policy, standard GFlowNet algorithms allow to
train the backward policy together with the forward policy (Bengio et al., 2023; Malkin et al., 2022;
Madan et al., 2023), resulting in faster convergence of the optimization process. Other algorithms
for optimizing backward policies have been proposed in the literature as well (Mohammadpour
et al., 2024; Jang et al., 2024), showing benefits for GFlowNet performance. The theory connecting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

GFlowNets and entropy-regularized RL is based on using the backward policy to add a ”correction”
to GFlowNet rewards and shows the equivalence between two problems only when the backward
policy is fixed. Thus, understanding the backward policy optimization remains a missing piece of this
puzzle. Moreover, Tiapkin et al. (2024) demonstrated that this theoretical gap has practical relevance,
as optimizing the backward policy using the same RL objective as the forward policy can either fail
to improve or even slow down convergence, highlighting the need for a more refined approach.

In this study, we introduce the trajectory likelihood maximization (TLM) approach for backward
policy optimization, which can be integrated with any existing GFlowNet method, including entropy-
regularized RL approaches.

To develop this method, we first formulate the GFlowNet training problem as a unified objective
involving both forward and backward policies. We then propose an alternating minimization proce-
dure consisting of two steps: (1) maximizing the backward policy likelihood of trajectories sampled
from the forward policy and (2) optimizing the forward policy within an entropy-regularized Markov
decision process that corresponds to the updated backward policy. The latter step can be achieved
by any existing GFlowNet or soft RL algorithm, as it was outlined by Deleu et al. (2024). By
approximating these two steps through a single stochastic gradient update, we derive an adaptive
approach for combining backward policy optimization with any GFlowNet method, including soft RL
methods.

Our main contributions are as follows:

• We derive the trajectory likelihood maximization (TLM) method for backward policy optimization;
• The proposed method represents the first unified approach for adaptive backward policy opti-

mization in soft RL-based GFlowNet methods. The method is easy to implement and can be
integrated with any existing GFlowNet training algorithm.

• We provide extensive experimental evaluation of TLM in four tasks, confirming the findings of
Mohammadpour et al. (2024), which emphasize the benefits of training the backward policy in
complex environment with less structure.

2 BACKGROUND

2.1 GFLOWNETS

We aim at sampling from a probability distribution over a finite discrete space X that is given as an
unnormalized probability mass function R : X → R≥0, which we call the GFlowNet reward. We
denote Z =

∑
x∈X R(x) to be an (unknown) normalizing constant.

To formally define a generation process in GFlowNets, we introduce a directed acyclic graph (DAG)
G = (S, E), where S is a state space and E ⊆ S ×S is a set of edges (or transitions). There is exactly
one state, s0, with no incoming edges, which we refer to as the initial state. All other states can
be reached from s0, and the set of terminal states with no outgoing edges coincides with the space
of interest X . Non-terminal states s /∈ X correspond to “incomplete” objects, and edges s → s′

represent adding ”new components” to such objects, transforming s into s′. Let T denote the set of
all complete trajectories τ = (s0, s1, . . . , snτ

) in the graph, where τ is a sequence of states such that
(si → si+1) ∈ E and that starts at s0 and finishes at some terminal state snτ

∈ X . As a result, any
complete trajectory can be viewed as a sequence of actions that constructs the object corresponding
to snτ

starting from the ”empty object” s0.

We say that a state s′ is a child of a state s, if there is an edge (s → s′) ∈ E . In this case we also say
that s is a parent of s′. Next, for any state s, we introduce the forward policy, denoted by PF(s

′|s)
for (s → s′) ∈ E , as an arbitrary probability distribution over the set of children of the state s. In a
similar fashion, we define the backward policy as an arbitrary probability distribution over the parents
of a state s and denote it as PB(s

′|s), where (s′ → s) ∈ E .

Given these two definitions, the main goal of GFlowNet training is a search for a pair of policies
such that the induced distributions over complete trajectories in the forward and backward directions
coincide:

nτ∏
t=1

PF(st | st−1) =
R(snτ)

Z

nτ∏
t=1

PB(st−1 | st) , ∀τ ∈ T . (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The relation (1) is known as the trajectory balance constraint (Malkin et al., 2022). We refer to the
left and right-hand sides of (1) as to the forward and backward trajectory distributions and denote
them as

PPF

T (τ) :=

nτ∏
i=1

PF(si|si−1) , PPB

T (τ) :=
R(snτ

)

Z
·
nτ∏
i=1

PB(si−1|si) , (2)

where τ = (s0, s1, . . . , snτ) ∈ T . If the condition (1) is satisfied for all complete trajectories,
sampling a trajectory in the forward direction using PF will result in a terminal state being sampled
with probability R(x)/Z.

In practice, we train a model (usually a neural network) that parameterizes the forward policy (and
possibly other auxiliary functions) to minimize an objective function that enforces the constraint
(1) or its equivalent. The main existing objectives are Trajectory Balance (TB, Malkin et al., 2022),
Detailed Balance (DB, Bengio et al., 2023) and Subtrajectory Balance (SubTB, Madan et al., 2023).
The SubTB objective is defined as

LSubTB(θ; τ) =
∑

0≤j<k≤nτ

wjk

(
log

Fθ(sj)
∏k

t=j+1 PF(st|st−1,θ)

Fθ(sk)
∏k

t=j+1 PB(st−1|st,θ)

)2

, (3)

where Fθ(s) is a neural network that approximates the flow function of the state s, see (Bengio
et al., 2023; Madan et al., 2023) for more details on the flow-based formalization of the GFlowNet
problem. Here Fθ(s) is substituted with R(s) for terminal states s, and wjk is usually taken to be
λk−j and then normalized to sum to 1. TB and DB objectives can be viewed as special cases of
(3), which are obtained by only taking the term corresponding to the full trajectory or individual
transitions, respectively. All objectives allow either training the model in an on-policy regime using
the trajectories sampled from PF or in an off-policy mode using the replay buffer or some exploration
techniques. In addition, it is possible to either optimize PB along with PF or to use a fixed PB, e.g.,
the uniform distribution over parents of each state. One can show that given any fixed PB, there
exists a unique PF that satisfies (1); see, e.g., (Malkin et al., 2022).

2.2 GFLOWNETS AS SOFT RL

In reinforcement learning (Sutton & Barto, 2018), a typical performance measure of an agent is a
value function, that is defined as an expected discounted sum of rewards when acting via a given
policy. Entropy-regularized RL (or soft RL, Neu et al. 2017; Geist et al. 2019; Haarnoja et al. 2017)
adds Shannon entropy H to the value function definition, promoting the optimal policy to be more
exploratory:

V PF

λ (s; r) ≜ EPF

[∞∑
t=0

γt(r(st, at) + λH(PF(·|st)))|s0 = s

]
, (4)

where λ ≥ 0 is a regularization coefficient. Similarly, regularized Q-values QPF

λ (s, a) are defined as
an expected (discounted) sum of rewards augmented by Shannon entropy given a fixed state s0 = s
and action a0 = a. A regularized optimal policy P⋆

F,λ is a policy that maximizes V PF

λ (s) for any
state s.

Note. In usual RL notation, policy is denoted as π. We opt for using PF as in GFlowNets to avoid
cluttering notation.

It was proven by Tiapkin et al. (2024) that the problem of training GFlowNet PF given a fixed PB can
be formulated as a soft RL task. GFlowNet DAG G is transformed into a deterministic MDP, where
states coincide with DAG states and actions correspond to DAG edges (transitions). For transitions
s → x that lead to terminal states, RL rewards are defined as rPB(s, x) = logPB(s | x) + logR(x),
and for intermediate transitions s → s′ they are defined as rPB(s, s′) = logPB(s | s′). Then, by
taking λ = 1 and γ = 1, one can show that the optimal policy P⋆

F,λ=1(· | s) in this regularized MDP
coincides with a unique GFlowNet forward policy PF(· | s) that is defined by PB and R (Theorem 1,
Tiapkin et al., 2024).

In addition, Proposition 1 of Tiapkin et al. (2024) provides a connection between the corresponding
regularized value function at the initial state s0 for any forward policy PF and KL-divergence between
the induced trajectory distributions:

V PF

λ=1(s0; r
PB) = log Z−KL(PPF

T ∥PPB

T) .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The main practical corollary of this result is the fact that any RL algorithm that works with entropy
regularization can be utilized to train GFlowNets when PB is fixed. For example, Tiapkin et al.
(2024) demonstrated the efficiency of the classical SoftDQN algorithm (Haarnoja et al., 2017) and
its modified variant called MunchausenDQN (Vieillard et al., 2020). Moreover, it turns out that,
under this framework, the existing GFlowNet training algorithms can be derived from existing RL
algorithms. Tiapkin et al. (2024) showed the on-policy TB corresponds to policy gradient algorithms,
as well as DB corresponds to a dueling variant of SoftDQN. At the same time, Deleu et al. (2024)
showed that TB, DB and SubTB algorithms can be derived from path consistency learning (PCL,
Nachum et al., 2017) under the assumption of a fixed backward policy.

2.3 BACKWARD POLICIES IN GFLOWNETS

The idea of backward policy optimization is an essential element of understanding the GFlowNets
training procedure. In particular, the most straightforward approach used in GFlowNet literature
Malkin et al. (2022); Bengio et al. (2023) proposes to optimize the forward and backward policies
directly through the same GFlowNet objective (e.g., (3)). This approach can accelerate the speed of
convergence Malkin et al. (2022), at the same time potentially leading to less stable training Zhang
et al. (2022).

This phenomenon motivates studying the backward policy optimization in the recent works Mo-
hammadpour et al. (2024) and Jang et al. (2024). Mohammadpour et al. (2024) suggested using
the backward policy with maximum possible trajectory entropy, thus focusing on the exploration
challenges of GFlowNets. Such policy is proven to be PB(s | s′) = n(s)/n(s′), where n(s) is the
number of trajectories which starts at s0 and end at s. It corresponds to the uniform one if the number
of paths to all parent nodes is equal. When n(s) cannot be computed analytically, Mohammadpour
et al. (2024) propose to learn log n(s), s ∈ S alongside the forward policy using its relation to the
value function of the soft Bellman equation in the inverted MDP (see Definition 2 in Mohammadpour
et al. (2024)). Mohammadpour et al. (2024) utilize RL as a tool to find the maximum entropy
backward policy and make the connection to RL solely for such policies. In contrast, our work
theoretically considers the simultaneous optimization of the forward and the backward policy from
the RL perspective, and develops an optimization algorithm grounded in it.

The approach of Mohammadpour et al. (2024) showed consistently better results in less structured
tasks, like QM9 generation (see Section 4.3 for a detailed description). At the same time, more
structured environments with a less challenging exploration counterpart do not show advances of the
proposed backward training approach.

At the same time, Jang et al. (2024) claim that the existing GFlowNets training procedures tend to
under-exploit the high-reward objects and propose a Pessimistic Backward Policy approach. Thus,
the primary aim of Jang et al. (2024) is to focus on the exploitation of the current information about
high-reward trajectories. Towards this aim, they focus on maximizing the observed backward flow
PPB

T (τ) (see (2)) for trajectories leading to high-reward objects. Unfortunately, Jang et al. (2024) do
not provide enough specific details about choosing/sampling trajectories that are stored in their replay
buffer, which limits the reproducibility of the results.

As an additional limitation of both Mohammadpour et al. (2024) and Jang et al. (2024), we mention the
fact that only a single GFlowNet training objective is used in both papers (SubTB and TB respectively)
to evaluate approaches for backward policy optimization, while we carry out experimental evaluation
with various GFlowNet training objectives.

3 TRAJECTORY LIKELIHOOD MAXIMIZATION

The objective of our method is to formalize the optimization process for the backward policy for
reinforcement learning-based approaches. It is worth mentioning that soft RL methods cannot address
the changing of the reward function, except for reward shaping schemes (Ng et al., 1999) that preserve
the total reward of any trajectory. Therefore, we need to return to the underlying GFlowNet problem.
Let us look at the following optimization problem:

minPF∈ΠF,PB∈ΠB
KL(PPF

T ∥PPB

T) , (5)

where ΠF and ΠB represent the spaces of forward and backward policies, respectively, and PPF

T and
PPB

T are defined in (2). It is easy to see that any solution to the problem (5) satisfies the trajectory

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

balance constraint (1) and thus induces a valid GFlowNet sampling policy. Additionally, it is worth
mentioning that for any fixed PB the problem (5) is equivalent to maximizing value

V PF

λ=1(s0; r
PB) = log Z−KL(PPF

T ∥PPB

T)

over PF ∈ ΠF in an entropy-regularized MDP, as established in Tiapkin et al. (2024, Proposition 1).
Thus, the joint optimization resembles the RL formulation with non-stationary rewards. To leverage
the problem’s block structure, we propose a meta-algorithm consisting of two iterative steps, repeated
until convergence:

Pt+1
B ≈ argminPB KL

(
P
Pt

F

T
∥∥PPB

T

)
, Pt+1

F ≈ argminPF KL
(
PPF

T
∥∥PPt+1

B

T

)
. (6)

It is worth noting that if these optimization problems are solved exactly, the algorithm converges
after the first iteration. This occurs because, for every fixed backward policy PB, there is a unique
forward policy PF, such that PPF

T = PPB

T , see, e.g., (Malkin et al., 2022), ensuring that the loss
function reaches its global minimum. In the following sections, we provide implementation details
on approximating these two steps.

First Step: Trajectory Likelihood Maximization. Using the connection between forward KL
divergence minimization and maximum likelihood estimation (MLE), we formulate the following
trajectory likelihood maximization objective:

θt+1
B ≈ argminθ Eτ∼Pt

F
[LTLM(θ; τ)], LTLM(θ; τ) := −

∑nτ

i=1 logPB(si−1|si, θ) . (7)
In this formulation, τ = (s0, s1, . . . , snτ) denotes a trajectory generated by the forward policy
Pt
F. This step seeks to update the backward policy by minimizing the negative log-likelihood of

trajectories generated from the forward policy. Additionally, instead of solving (7) for exact argmin
for every t, we perform one stochastic gradient update

θt+1
B = θtB − γ∇θLTLM(θ

t
B; τ) .

Second Step: Non-Stationary Soft RL Problem. To approximate the second step of (6), we
exploit the equivalence between the GFlowNet framework and the entropy-regularized RL problem.
This leads to the following expression:

Pt+1
F ≈ argminPF∈ΠF

KL
(
PPF

T
∥∥PPt+1

B

T

)
⇐⇒ Pt+1

F ≈ argmaxPF∈ΠF
V PF

λ=1

(
s0; r

Pt+1
B

)
, (8)

where rPB is the RL reward function corresponding to the backward policy PB. This step can be
solved using any soft RL method, such as SoftDQN (Haarnoja et al., 2018). Additionally, it is
noteworthy that all existing GFlowNet algorithms with a fixed backward policy can be viewed as
variations of existing RL methods, see, e.g., (Deleu et al., 2024). Thus, they can be used to solve the
optimization problem in (8).

To mitigate the computational overhead of searching for exact argmin in (8), we also propose to
perform a single stochastic gradient update in the corresponding GFlowNet training algorithm

θt+1
F = θtF − η∇θLAlg(θ

t
F; τ,Pt+1

B) ,

where LAlg represents the loss function associated with a GFlowNet or soft RL method, such as
SubTB or SoftDQN. Here, τ denotes a (possibly off-policy) trajectory.

The complete procedure can be interpreted as a soft RL method with changing rewards. Our suggested
method is summarized in Algorithm 1 and can be paired with any GFlowNet training method Alg
(e.g., DB, TB, SubTB, or SoftDQN).

Algorithm 1 Trajectory Likelihood Maximization
1: Input: Forward and backward parameters θ1F, θ1B, any GFlowNet loss function LAlg,

(optional) experience replay buffer B;
2: for t = 1 to Niters do
3: Sample a batch of trajectories {τ (t)k }Kk=1 from the forward policy PF(·|·, θtF);
4: (optional) Update B with {τ (t)k }Kk=1;
5: Update θt+1

B = θtB − γt · 1
K

∑K
k=1 ∇LTLM(θ

t
B; τ

(t)
k), see (7);

6: (optional) Resample a batch of trajectories {τ (t)k }Kk=1 from B;
7: Update θt+1

F = θtF − ηt · 1
K

∑K
k=1 ∇LAlg(θ

t
F; τ

(t)
k ,PB(·|·, θt+1

B));
8: end for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Convergence of the method In the following, we show why this method indeed solves the
GFlowNet learning problem. First, we introduce a non-stationary soft reinforcement learning
problem of minimizing the worst-case dynamic average regret

R
T
:= 1

T

∑T
t=1 V

P⋆
F

λ=1(s0; r
t)− V

Pt
F

λ=1(s0; r
t) , (9)

where {rt}t∈[T] is a sequence of reward functions, and rt is revealed to a learner before selecting a
policy Pt

F. Following Zahavy et al. (2021), we conjecture that existing RL algorithms are adaptive to
the setting of known but non-stationary reward sequences. The implementation of Sampler player of
EntGame algorithm by Tiapkin et al. (2023) is an example of such a regret minimization algorithm.
Additionally, we notice that the optimization of dynamic regret is well-studied in the online learning
literature, even in a more challenging setting of revealing the corresponding reward function after
playing a policy (Zinkevich, 2003; Besbes et al., 2015).

Next, we provide the convergence result for our two-step procedure, using a stability argument for
the first step. The proof is given in Appendix A.1.

Theorem 3.1. Assume that (1) the backward updates are stable: supt≥0∥PT
B −PT+t

B ∥1 → 0 as T →
∞, and (2) the forward updates are given by non-stationary regret minimization algorithm: R

T → 0

as T → ∞. Then there exists a valid GFlowNet sampling policy P⋆
F such that 1

T

∑T
t=1 P

Pt
F

T → P
P⋆

F

T .

During numerical experiments, we observed that enforcing stability in backward updates, in particular
by using a decaying learning rate, significantly improves convergence in practice. Furthermore, as the
theorem shows, this stability is essential for theoretical convergence. We discuss stability techniques
that we utilize alongside our algorithm in Appendix A.2.

Discussion. We underline our approach’s similarity with a celebrated EM-algorithm (Dempster
et al., 1977) and Hinton’s Wake-Sleep algorithm (Hinton et al., 1995). Both these methods also
attempt to address the minimization problem using the block structure and alternating minimization
approaches. Additionally, our approach can be connected to cooperative game theory. Indeed, one
may interpret PF as a Forward player and PB as a Backward player, and both players attempt to
minimize KL-divergence between corresponding trajectory distributions.

4 EXPERIMENTS

We carry out experimental evaluation on hypergrid (Bengio et al., 2021) and bit sequence (Malkin
et al., 2022) environments, as well as two molecule design environments: sEH (Bengio et al., 2021)
and QM9 (Jain et al., 2023). For additional experimental details and hyperparameter choices, we
refer the reader to Appendix A.3 .

We use 4 GFlowNet training methods for evaluation: MunchausenDQN (following the framework
of Tiapkin et al. (2024)), DB (Bengio et al., 2023), TB (Malkin et al., 2022), and SubTB (Madan et al.,
2023), which we will further refer to as GFlowNet algorithms (referred to as LAlg in the previous
section). On hypergrids, we additionally provide results for SoftDQN (Tiapkin et al., 2024). In
combination with them, we consider 4 strategies for learning/choosing the backward policy:

• our approach (TLM);
• fixed uniform backward (uniform);
• learning backward simultaneously with the PF via the same objective (naive);
• maximum entropy (maxent, Mohammadpour et al., 2024).

We will further refer to them as backward approaches. In this section, we denote a distribution
induced by a forward policy PF over the terminal states as Pθ(x) for x ∈ X , which corresponds to
the probability of sampling x from our GFlowNet.

4.1 HYPERGRID

We start experiments with synthetic hypergrid environments introduced by Bengio et al. (2021).
These environments are sufficiently small to compute target distribution in the closed form, allowing
us to directly examine the convergence of Pθ(x) to R(x)/Z.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

104 105 106

#trajectories

0.2

0.4

0.6

0.8

1.0

1.2

em
pi

ri
ca

l L
1

er
ro

r

1e 5 SoftDQN
uniform
TLM
naive
maxent

104 105 106

#trajectories

Munchausen DQN

104 105 106

#trajectories

DB

104 105 106

#trajectories

TB

104 105 106

#trajectories

SubTB- = 0.9

hypergrid 20x20x20x20

104 105 106

#trajectories

0.25

0.50

0.75

1.00

1.25

em
pi

ri
ca

l L
1

er
ro

r

1e 5 SoftDQN

104 105 106

#trajectories

Munchausen DQN

104 105 106

#trajectories

DB

104 105 106

#trajectories

TB

104 105 106

#trajectories

SubTB- = 0.9

hypergrid 20x20x20x20 (hard)

Figure 1: L1 distance between target and empirical sample distributions over the course of training
on the standard (top row) and hard (bottom row) hypergrid environments for each method. Lower
values indicate better performance.

The environment is a d-dimensional hypercube with a side length equal to H . The state space is
represented as d-dimensional vectors (s1, . . . , sd)T ∈ {0, . . . ,H − 1}d with the initial state being
(0, . . . , 0)T. For each state (s1, . . . , sd−1), there are at most d + 1 actions. The first action always
corresponds to an exit action that transfers the state to its terminal copy, and the rest of d actions
correspond to incrementing one coordinate by 1 without leaving the grid. The number of terminal
states here is |X | = Hd. There are 2d regions with high rewards near the corners of the grid,
while states outside have much lower rewards. The exact expression for the rewards is given in
Appendix A.3.2.

We explore environments with the reward parameters taken from Malkin et al. (2022), referred to as
“standard case”, and with the reward parameters from Madan et al. (2023), referred to as a “hard case”.
In the second case, background rewards are lower, which makes mode exploration more challenging.
We conduct experiments on a 4-dimensional hypercube with a side length of 20. As an evaluation
metric, we use L1 distance between the true reward distribution and the empirical distribution of the
last 2 · 105 terminal states sampled during training.

Figure 1 presents the results. For SoftDQN, MunchausenDQN, and DB, TLM shows the fastest
convergence for both “standard” and “hard” reward designs. For the SubTB algorithm, TLM shows
similar performance to naive and outperforms uniform and maxent. TB is known to have
difficulties in this environment (Madan et al., 2023), all approaches fail to converge under the
“hard” reward design. At the same time, with the “standard” one, naive backward shows the
best convergence. An important note is that our results reproduce the findings of Tiapkin et al.
(2024): for SoftDQN and MunchausenDQN training with uniform backward converges faster
than with naive algorithm, while TLM shows stable improvement over uniform. The results and
the ranking of algorithms are almost the same for SoftDQN and MunchausenDQN, so we leave
only MunchausenDQN out of two for further experiments.

4.2 BIT SEQUENCES

In this section, we consider the bit sequence generation task introduced by Malkin et al. (2022).
Following the experimental setup of (Tiapkin et al., 2024), we modify the state and action spaces to
create a non-tree DAG structure, similar to the approach introduced in Zhang et al. (2022).

This task is to generate binary sequences of a fixed length n, using a vocabulary of k-bit blocks.
The state space of this environment corresponds to sequences of n/k words, and each word in
these sequences is either an empty word ⊘ or one of 2k possible k-bit words. The initial state s0
corresponds to a sequence of empty words. The possible actions in each state are to replace an
existing empty word ⊘ with one of 2k non-empty words in the vocabulary. The set of terminal states

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
#iterations

0

20

40

60

Fo
un

d
M

od
es

Munchausen DQN

uniform/maxent
TLM
naive

0 10000 20000 30000 40000 50000
#iterations

DB

0 10000 20000 30000 40000 50000
#iterations

TB

0 10000 20000 30000 40000 50000
#iterations

SubTB
Bit Sequences

5000 10000 15000 20000
#iterations

0

1000

2000

Fo
un

d
M

od
es

1.

12
5 Munchausen DQN

uniform
TLM
naive
maxent

5000 10000 15000 20000
#iterations

DB

5000 10000 15000 20000
#iterations

TB

5000 10000 15000 20000
#iterations

SubTB
QM9

5000 10000 15000 20000
#iterations

0

20000

40000

60000

Fo
un

d
M

od
es

0.

87
5 Munchausen DQN

uniform
TLM
naive
maxent

5000 10000 15000 20000
#iterations

DB

5000 10000 15000 20000
#iterations

TB

5000 10000 15000 20000
#iterations

SubTB
sEH

Figure 2: Top row: Bit Sequences, the number of discovered modes out of total 60 modes for
different methods with learning rate 10−3. Center row: QM9, the number of Tanimoto-separated
modes with reward higher or equal to 1.125 for different methods with learning rate 5 · 10−4. Bottom
row: sEH, the number of Tanimoto-separated modes with reward higher or equal to 0.875 for different
methods with learning rate 5 · 10−4. Higher values indicate better performance.

X consists of sequences without empty words and correspond to binary strings of length n. The
reward function is defined as R(x) = exp(−2 ·minx′∈M d(x, x′)), where M is a set of modes and
d is Hamming distance. We fix n = 120 and k = 8 for our experiments. The terminal state space size
is |X | = 2120. Importantly, for this environment, the uniform backward coincides with maxent,
see Proposition 1 of Zhang et al. (2022) and Remark 3 of Theorem 3 of Mohammadpour et al. (2024).

To evaluate the performance, we use the same metrics as in Malkin et al. (2022) and Tiapkin et al.
(2024): the number of modes found during training (number of sequences from M for which a
terminal state within a distance of 30 has been sampled) and Spearman correlation on the test set
between R(x) and an estimate of Pθ. Since computing the exact probability of sampling a terminal
state is intractable due to a large number of paths leading to it, we use a Monte Carlo estimate
following the approach of Zhang et al. (2022). We train all models with various choices of the
learning rate, treating it as a hyperparameter, and provide the results depending on its value, similarly
to Madan et al. (2023).

Figure 2 shows the number of modes for different GFlowNet algorithms and backward approaches
found over the course of training. We observe that TLM shows a significant improvement for DB
and a minor one for MunchausenDQN in comparison to other backward approaches, where in the
later case we find all 60 modes. TB and SubTB also find almost all modes, and TLM does not affect
the results much. Full plots for modes across varying learning rates are presented in Figure 5 in
Appendix. Figure 3 (top) presents Spearman correlation between R and Pθ on the test set for the
same GFlowNet algorithms and varying learning rates. TLM shows better or similar performance to
the baselines across all GFlowNet algorithms if the optimal learning rate is chosen. Moreover, for DB
and SubTB, TLM shows steady improvement over the baselines for all learning rates.

4.3 MOLECULE DESIGN, SEH AND QM9

Our final experiments are carried out on molecule design tasks of sEH (Bengio et al., 2021) and QM9
(Jain et al., 2023).

In both tasks, the goal is to generate molecular graphs, with reward emphasizing some desirable
property. For both problems, we use pre-trained reward proxy neural networks. For the sEH task, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 10 4 10 3 2 10 3

learning rate

0.76

0.78

0.80

Sp
ea

r.
 C

or
r.

 (R
,p

)

Munchausen DQN

uniform/maxent
TLM
naive

5 10 4 10 3 2 10 3

learning rate

DB

5 10 4 10 3 2 10 3

learning rate

TB

5 10 4 10 3 2 10 3

learning rate

SubTB
Bit Sequences

5 10 5 10 4 5 10 4 10 3

learning rate

0.2

0.4

0.6

Pe
ar

s.
 C

or
r.

 (l
og

R,
lo

gp
)

Munchausen DQN

5 10 5 10 4 5 10 4 10 3

learning rate

DB

5 10 5 10 4 5 10 4 10 3

learning rate

TB

5 10 5 10 4 5 10 4 10 3

learning rate

SubTB
QM9

5e-05 0.0001 0.0005 0.001
learning rate

0.00

0.25

0.50

0.75

Pe
ar

s.
 C

or
r.

 (l
og

R,
lo

gp
)

Munchausen DQN

uniform
TLM
naive
maxent

5e-05 0.0001 0.0005 0.001
learning rate

DB

5e-05 0.0001 0.0005 0.001
learning rate

TB

5e-05 0.0001 0.0005 0.001
learning rate

SubTB
sEH

Figure 3: Top row: Bit Sequences, Spearman correlation between R and Pθ on a test set for
different methods and varying learning rate ∈ {5 ·10−4, 10−3, 2 ·10−3}. Center row: QM9, Pearson
correlation between logR and logPθ on the fixed subset of the QM9 dataset (Ramakrishnan et al.,
2014) for different methods and varying learning rate ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3}. Bottom
row: sEH, Pearson correlation between logR and logPθ on the test set from Bengio et al. (2021)
for different methods and varying learning rate ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3}. Higher values
indicate better performance.

model is trained to predict the binding energy of a molecule to a particular protein target (soluble
epoxide hydrolase) (Bengio et al., 2021). For the QM9 task, the proxy is trained on the QM9 dataset
(Ramakrishnan et al., 2014) to predict the HOMO-LUMO gap (Zhang et al., 2020).

For the sEH task, we follow the framework proposed by Jin et al. (2020) and generate molecules
using a predefined vocabulary of 72 fragments, the same as in Bengio et al. (2021). It is essential to
mention that these fragments are explicitly selected for the sEH task to simplify high-quality object
generation. The states are represented as trees of fragments. The actions correspond to choosing a
new fragment, then choosing an atom to which the fragment will be attached. There is also a special
stop action that moves the state to its terminal copy and stops the generation process.

For QM9 task, molecules are generated atom-by-atom and bond-by-bond. Every state is a connected
graph, and actions either add a new node and edge or set the attribute on edge. Thus, the graph-
building environment is much more expressive than the tree-building environment, but it results in a
more complex generation task and can lead to construction of invalid molecules.

We use the same evaluation metrics for both tasks as proposed in previous works (Madan et al.,
2023; Tiapkin et al., 2024). We track the number of Tanimoto-separated modes above a certain
reward threshold captured over the course of training, and Pearson correlation on the test set between
logR(x) and logPθ(x). For sEH task we use the same test set as in Bengio et al. (2021), and for
QM9 we use a subset of the dataset introduced in Ramakrishnan et al. (2014). We train all models
with various choices of the learning rate, treating it as a hyperparameter, and provide the results
depending on its value, similarly to Madan et al. (2023).

Figure 2 (center and bottom) shows the number of modes for different GFlowNet algorithms and
backward approaches found over the course of training. Overall, TLM greatly speeds up mode
discovery on QM9 for all GFlowNet algorithms, but shows similar or worse performance when
compared to other backward approaches on sEH. However, we note that on sEH no backward
approach shows significant improvement over uniform in terms of mode discovery. Full plots
for modes across varying learning rates are presented in Figure 6 in Appendix. It is worth noting

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

that on QM9 TLM shows robust improvement over the baselines across most learning rates for all
GFlowNet algorithms. Figure 3 (center and bottom) shows Pearson correlation between logR and
logPθ estimate measured on the test set for various learning rates. TLM results in better correlations
when paired with MunchausenDQN and SubTB, and shows similar results to the baselines when
paired with DB and TB.

4.4 DISCUSSION

From the plots above, one can see that across all GFlowNet algorithms (forward policy training
objectives), TLM generally shows performance that is better or comparable to other backward
approaches. The sole exception is the number of discovered modes in sEH environment, where TLM
can fall behind other backward approaches. To explain this shortcoming, as well as provide more
intuition on why TLM gives more improvements when paired with some of the GFlowNet algorithms
than with the others, we discuss two hypotheses.

First of all, we hypothesise that TLM is beneficial in less structured tasks, which is supported by the
major improvements to mode exploration that it obtains on QM9, while sometimes even degrading
the same metric on sEH. Indeed, molecules in the sEH task are constructed from the predefined set of
blocks, while in the QM9 task they are created from atoms. This manually predefined set adds much
more structure into the environment, leading to creating a junction tree from these blocks instead of
creating an arbitrary graph of atoms, which can even represent an invalid molecule in some cases.
We suppose that strong methodological bias is a possible reason why it is of little utility to consider
non-trivial backward approaches in the sEH task, and why the uniform backward approach often
has the best or at least comparable performance according to Figure 6. This is exactly the hypothesis
that was initially put forward by Mohammadpour et al. (2024), and our results align with it well.

Next, we put forward our ”local-global optimization” hypothesis, which states that TLM shows
more improvements when paired with ”local” GFlowNet algorithms that optimize some objective
over individual transitions, e.g. DB, while the improvements are less pronounced when it is paired
with ”global” GFlowNet algorithms that optimize some objective over whole trajectories, e.g. TB.
Indeed, by examining the convergence speed on hypergrids and mode discovery on bit sequences,
one can note that TLM offers improvements when paired with DB and MunchausenDQN, while
performing comparably to other backward approaches when paired with TB and SubTB. Similarly,
one can note that TLM offers the biggest mode discovery speedup on QM9 when paired with DB and
MunchausenDQN. We believe that such behavior could be explained by the fact that TLM propagates
information over whole trajectories to train backward policy, matching flows over trajectories. This
can result in a good synergy if the forward policy objective on the other hand uses local information,
matching flows over individual transitions. One can argue that SubTB already considers both local
and global information by construction, while TLM does improve reward correlations on various
environments and mode discovery on QM9 when paired with it. However, local-global information
ratio in SubTB heavily depends on the subtrajectory weighting, thus considering other ways to weigh
them could be an interesting further research direction by itself. Overall, if we rank the GFlowNet
algorithms by the amount of improvement we get on average when using TLM on top of them, the
order will be DB > MunchausenDQN > SubTB > TB, which does align well with our hypothesis.

5 CONCLUSION

In this work, we propose a new method for backward policy optimization that enhances mode ex-
ploration and accelerates convergence in complex GFlowNet environments. TLM represents the first
principled method for learning a backward policy in soft reinforcement learning-based GFlowNet
algorithms, such as SoftDQN and MunchausenDQN. We provide an extensive experimental evalu-
ation, demonstrating benefits of TLM when it is paired with various forward policy training methods,
and analyze its shortcomings, arguing that our results support the hypothesis of Mohammadpour
et al. (2024) about benefits of backward policy optimization in environments with less structure.
In addition, we put forward our ”local-global optimization” hypothesis, which states that TLM-like
approaches show the most benefit when paired with local forward policy training objectives.

A promising further work direction is using backward policy for exploration as proposed in Kim et al.
(2024), He et al. (2024b). Indeed, the ability to sample trajectories that start from high-reward terminal
states via PB provides an opportunity to improve mode exploration. We expect that combining such
methods with TLM-like approaches will additionally improve their performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lazar Atanackovic, Alexander Tong, Bo Wang, Leo J Lee, Yoshua Bengio, and Jason S Hartford.
Dyngfn: Towards bayesian inference of gene regulatory networks with gflownets. Advances in
Neural Information Processing Systems, 36, 2024.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023. URL http:
//jmlr.org/papers/v24/22-0364.html.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations
research, 63(5):1227–1244, 2015.

Yihang Chen and Lukas Mauch. Order-preserving gflownets. In The Twelfth International Conference
on Learning Representations, 2023.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete proba-
bilistic inference as control in multi-path environments. In The 40th Conference on Uncertainty in
Artificial Intelligence, 2024. URL https://openreview.net/forum?id=3C69sU1YkK.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In International Conference on Machine Learning, pp. 2160–2169. PMLR, 2019.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/haarnoja18b.html.

Haoran He, Emmanuel Bengio, Qingpeng Cai, and Ling Pan. Rectifying reinforcement learning for
reward matching. arXiv preprint arXiv:2406.02213, 2024a.

Haoran He, Can Chang, Huazhe Xu, and Ling Pan. Looking backward: Retrospective backward
synthesis for goal-conditioned gflownets, 2024b. URL https://arxiv.org/abs/2406.
01150.

Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The ”wake-sleep ” algorithm
for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. In The Twelfth
International Conference on Learning Representations, 2023.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua
Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International
Conference on Machine Learning, pp. 14631–14653. PMLR, 2023.

11

http://jmlr.org/papers/v24/22-0364.html
http://jmlr.org/papers/v24/22-0364.html
https://openreview.net/forum?id=3C69sU1YkK
https://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/2406.01150
https://arxiv.org/abs/2406.01150

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Pessimistic backward
policy for gflownets. arXiv preprint arXiv:2405.16012, 2024.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Artificial Intelligence in Drug Discovery, pp. 228–249. The Royal
Society of Chemistry, 2020.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn,
and Jinkyoo Park. Local search gflownets, 2024. URL https://arxiv.org/abs/2310.
02710.

Anas Krichel, Nikolay Malkin, Salem Lahlou, and Yoshua Bengio. On generalization for generative
flow networks. arXiv preprint arXiv:2407.03105, 2024.

Elaine Lau, Stephen Zhewen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. Qgfn: Controllable
greediness with action values. arXiv preprint arXiv:2402.05234, 2024.

Ziru Liu, Shuchang Liu, Bin Yang, Zhenghai Xue, Qingpeng Cai, Xiangyu Zhao, Zijian Zhang,
Lantao Hu, Han Li, and Peng Jiang. Modeling user retention through generative flow networks. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
5497–5508, 2024.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:
5955–5967, 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai
Zhang, and Yoshua Bengio. GFlownets and variational inference. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=uKiE0VIluA-.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum
entropy gflownets with soft q-learning. In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

Nikita Morozov, Daniil Tiapkin, Sergey Samsonov, Alexey Naumov, and Dmitry Vetrov. Improving
gflownets with monte carlo tree search. arXiv preprint arXiv:2406.13655, 2024.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing systems,
30, 2017.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):140022, 2014.

12

https://arxiv.org/abs/2310.02710
https://arxiv.org/abs/2310.02710
https://openreview.net/forum?id=uKiE0VIluA-
https://openreview.net/forum?id=uKiE0VIluA-

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.05952.

Tiago Silva, Eliezer de Souza da Silva, Rodrigo Barreto Alves, Luiz Max Carvalho, Amauri H Souza,
Samuel Kaski, Vikas Garg, and Diego Mesquita. Analyzing gflownets: Stability, expressiveness,
and assessment. In ICML 2024 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2024.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Éric Moulines, Rémi Munos, Alexey
Naumov, Pierre Perrault, Yunhao Tang, Micha Valko, and Pierre Ménard. Fast rates for maximum
entropy exploration. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics, pp.
4213–4221. PMLR, 2024.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke
Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable inference in
diffusion models for vision, language, and control. arXiv preprint arXiv:2405.20971, 2024.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. Advances
in Neural Information Processing Systems, 33:4235–4246, 2020.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough
for convex mdps. Advances in Neural Information Processing Systems, 34:25746–25759, 2021.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Conference
on Machine Learning, pp. 26412–26428. PMLR, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. In Advances in Neural
Information Processing Systems, volume 36, pp. 11952–11969, 2023.

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multiplex
graph for molecular structures, 2020. URL https://arxiv.org/abs/2011.07457.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

13

http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2011.07457

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 OMITTED PROOFS

Proof of Theorem 3.1. From the stability of backward updates, the Cauchy criterion implies that
there is P⋆

B ∈ ΠB such that PT
B → P⋆

B. At the same time, by the choice or rewards rt = rP
t
B ,

Proposition 1 by Tiapkin et al. (2024) and joint convexity of KL-divergence

R
T
=

1

T

T∑
t=1

KL
(
P
Pt

F

T
∥∥PPt

B

T

)
≥ KL

(
1

T

T∑
t=1

P
Pt

F

T

∥∥∥∥ 1T
T∑

t=1

P
Pt

B

T

)
.

Notice that a mapping PB 7→ PPB

T is continuous, thus PPT
B

T → P
P⋆

B

T , and, as a result, averages of PPt
B

T
also converge to P

P⋆
B

T . Finally, applying Pinkser’s inequality, we have

∥∥ 1
T

∑T
t=1 P

Pt
F

T − P
P⋆

B

T
∥∥
1
≤
√

2R
T
+ ∥ 1

T

∑T
t=1 P

Pt
B

T − P
P⋆

B

T ∥1 .

The right-hand side of the inequality tends to zero as T → +∞, thus 1
T

∑T
t=1 P

Pt
F

T → P
P⋆

B

T . Finally,

since for any P⋆
B there is P⋆

F such that PP⋆
B

T = P
P⋆

F

T , we conclude the statement.

A.2 STABILITY TECHNIQUES

In this section, we highlight important practical techniques and design choices motivated by Theo-
rem 3.1 that we use alongside our TLM algorithm to enforce stability into the training of PB.

First, we found it beneficial to either use a lower learning rate for the backward policy or decay it
over the course of training (see the next sections for detailed descriptions).

Second, akin to how the Deep Q-Network algorithm (Mnih et al., 2015) utilizes a target network
to estimate the value of the next state, we utilize target networks for the backward policy when
calculating the loss for the forward policy. For example, (3) transforms into

LSubTB(θ; τ) =
∑

0≤j<k≤nτ

wjk

(
log

Fθ(sj)
∏k

t=j+1 PF(st|st−1,θ)

Fθ(sk)
∏k

t=j+1 PB(st−1|st,θ̄)

)2

(10)

where the parameters θ̄ of PB(st−1|st, θ̄) are updated via exponential moving average (EMA) of the
online parameters θ of PB(st−1|st, θ). So the loss for the backward policy LTLM is computed using an
online backward policy PB(st−1|st, θ), and the loss for the forward policy LAlg is computed using a
target backward policy PB(st−1|st, θ̄), which is frozen during the gradient update of PF.

Finally, we find it helpful to initialise PB to the uniform distribution at the beggining of training,
which is done by zero-initialization of the last linear layer weight and bias.

We ablate the impact of the proposed techniques on QM9, where we try to separately turn off each of
the three. Results are presented in Figure 4. We observe that using target model and lower learning
rate is crucial, whereas disabling uniform initialization increases variance and shows slightly worse
results. For this experiment, we choose DB as the base algorithm because TLM overall shows the
greatest impact when applied with it compared to TB, SubTB, and MunchausenDQN.

A.3 EXPERIMENTAL DETAILS

We utilize PyTorch (Paszke et al., 2019) in our experiments. For hypergrid and bit sequence
environments, we base our implementation upon the published code of Tiapkin et al. (2024). For
molecule design experiments, our implementations are based on the open source library by Recursion
Pharma.1 In all our experiments, PF and PB share the same neural network backbone, predicting the
logits via two separate linear heads.

1https://github.com/recursionpharma/gflownet

14

https://github.com/recursionpharma/gflownet

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

5000 10000 15000 20000
#iterations

500

1000

1500

2000

2500

Fo
un

d
M

od
es

 1

.1
25

DB, learning rate = 5 10 4

TLM
TLM, w/o lower backward lr
TLM, w/o backward target model
TLM, w/o uniform backward init

Figure 4: Ablation study of stability techniques on QM9. The number of Tanimoto-separated modes
with a reward at least 1.125 is shown. As a base algorithm we use DB with a learning rate of 5 · 10−4.

A.3.1 HYPERGRID

The reward at a terminal state s with coordinates (s1, . . . , sD) is defined as

R(s) = R0 +R1 ·
D∏
i=1

I
[
0.25 <

∣∣∣∣ si

H − 1
− 0.5

∣∣∣∣]+R2 ·
D∏
i=1

I
[
0.3 <

∣∣∣∣ si

H − 1
− 0.5

∣∣∣∣ < 0.4

]
.

Standard reward uses parameters (R0 = 10−3, R1 = 0.5, R2 = 2.0) and hard reward uses (R0 =
10−4, R1 = 1.0, R2 = 3.0), taken from Bengio et al. (2021) and Madan et al. (2023) respectively.

All models are parameterized by MLP with 2 hidden layers and 256 hidden units. We use Adam
optimizer with a learning rate of 10−3 and a batch size of 16 trajectories. For backward policy we use
the same initial learning rate and utilize exponential scheduler, where γ is tuned from {0.999, 0.9999}.
For SubTB we use λ = 0.9 following Madan et al. (2023). For SoftDQN and MunchausenDQN
we use prioritized replay buffer (Schaul et al., 2016) and take the same hyperparameters as in Tiapkin
et al. (2024). Backward policy target network uses soft updates with a parameter τ = 0.25 (Silver
et al., 2014). Since the environment is small enough, we precompute n(s) for all states, allowing to
obtain the maxent backward exactly. For all experiments mean and std values are computed over 3
random seeds.

A.3.2 BIT SEQUENCES

The set of modes M is defined as in Malkin et al. (2022), and we choose the same size, |M | = 60.
We set H = {′00000000′,′ 11111111′,′ 11110000′,′ 00001111′,′ 00111100′}. Each sequence in M
is generated by randomly selecting n/8 elements from H with replacement, and then concatenating
them. The test set for evaluating reward correlations is generated by taking a mode and flipping i
random bits in it, where this is repeated for every mode and for each 0 ≤ i < n.

We utilize the same Monte Carlo estimate for Pθ as presented in Tiapkin et al. (2024) with N = 10:

Pθ(x) = EPB(τ |x)
PF(τ | θ)
PB(τ | x)

≈ 1

N

N∑
i=1

PF(τ
i | θ)

PB(τ i | x)
, τ i ∼ PB(τ | x).

Notice that any valid PB can be used here, but for each model we take the PB that was fixed/trained
alongside the corresponding PF since such choice will lead to lower estimate variance. However, we
note that the metric is still very noisy, so for each training run we compute the metric for all model
checkpoints and use the maximum value.

All models are parameterized as Transformers Vaswani et al. (2017) with 3 hidden layers, 8 attention
heads, and a hidden dimension of 64. Each model is trained for 50,000 iterations and a batch size
of 16 with Adam optimizer. We provide results for learning rates from {5 · 10−4, 10−3, 2 · 10−3}.
For backward policy we use the same initial learning rate as for the forward policy and utilize
exponential scheduler, where γ is tuned from {0.9997, 0.9999}. For SubTB we use λ = 0.9.
For MunchausenDQN we use prioritized replay buffer (Schaul et al., 2016) and take the same

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

hyperparameters as in Tiapkin et al. (2024). Backward policy target network uses soft updates with a
parameter τ = 0.25 (Silver et al., 2014). For all experiments mean and std values are computed over
3 random seeds.

To closely follow the setting of previous works (Malkin et al., 2022; Madan et al., 2023; Tiapkin
et al., 2024), we use ε-uniform exploration with ε = 10−3. We note that this can introduce a small
bias into the gradient estimate of ∇θLTLM(θ

t
B; τ) since τ will not be sampled exactly from PF.

A.3.3 MOLECULES

For sEH we use the test set from Bengio et al. (2021). For QM9 we choose a subset of 773 molecules
from the QM9 dataset (Ramakrishnan et al., 2014) with number of atoms between 3 and 8. The
subset is constructed to contain approximately equal number of molecules between different molecule
sizes. To compute correlation we utilize the same Monte Carlo estimate as in bit sequence task.
We highlight that Mohammadpour et al. (2024) used another evaluation approach and computed
correlation on sampled molecules instead of a fixed dataset.

We use graph transformer architecture from Jain et al. (2023) with 8 layers and number of embeddings
256 for both tasks. Each model is trained for 20,000 iterations with Adam optimizer. We provide
results for learning rates from {5 ·10−4, 10−4, 5 ·10−4, 10−3}. Learning rate for PB is taken to be 10
times smaller than the one for PF at the beginning of the training, and both use the same exponential
scheduler. Batch size is 256 and 128 for sEH and QM9 respectively. Backward policy target network
uses soft updates with a parameter τ = 0.05 (Silver et al., 2014). For SubTB we use λ = 1.0
following Madan et al. (2023). For MunchausenDQN we do not use a replay buffer, training the
model on-policy, and otherwise use the same hyperparameters as in Tiapkin et al. (2024). To learn
log n(s) for maxent backward we use the same approach as in Mohammadpour et al. (2024).

Following the setting of previous works (Malkin et al., 2022; Madan et al., 2023; Tiapkin et al., 2024),
we also use ε-uniform exploration with ε = 0.05. To adjust for the bias this introduces into the
gradient estimate of ∇θLTLM(θ

t
B; τ), we linearly anneal ε to zero over the course of training.

We set R = exp(−75.0) for invalid molecules in QM9. We set reward exponent to 10. Rewards are
divided by constant 8 in sEH task. For QM9, from all rewards we substract 95%-percentile, thus,
major part of rewards is distributed from 0 to 1 with 5% of molecules having reward higher than 1.

We track the number of Tanimoto-separated modes as described in Bengio et al. (2023), using a
Tanimoto similarity threshold of 0.7. Reward thresholds after normalisation are 0.875 and 1.125 for
sEH and QM9 respectively.

A.4 FULL PLOTS

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
#iterations

0

20

40

60

M
un

ch
au

se
n

D
Q

N
M

od
es

 F
ou

nd

learning rate = 0.0005

uniform/maxent
TLM
naive

0 10000 20000 30000 40000 50000
#iterations

learning rate = 0.001

0 10000 20000 30000 40000 50000
#iterations

learning rate = 0.002

0 10000 20000 30000 40000 50000
#iterations

0

10

20

30

40

D
B

M
od

es
 F

ou
nd

0 10000 20000 30000 40000 50000
#iterations

0 10000 20000 30000 40000 50000
#iterations

0 10000 20000 30000 40000 50000
#iterations

0

20

40

60

TB
M

od
es

 F
ou

nd

0 10000 20000 30000 40000 50000
#iterations

0 10000 20000 30000 40000 50000
#iterations

0 10000 20000 30000 40000 50000
#iterations

0

20

40

Su
bT

B
M

od
es

 F
ou

nd

0 10000 20000 30000 40000 50000
#iterations

0 10000 20000 30000 40000 50000
#iterations

Bit Sequences

Figure 5: Bit Sequences, the number of modes discovered over the course of training for different
methods and a learning rate ∈ {5 · 10−4, 10−3, 2 · 10−3}. TB results at the learning rate of 2 · 10−3

are not full because of exploding gradients at a certain point in training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

5000 10000 15000 20000
#iterations

0

1000

2000

3000
M

un
ch

au
se

n
D

Q
N

Fo
un

d
M

od
es

1.

12
5

learning rate = 5 10 5

uniform
TLM
naive
maxent

5000 10000 15000 20000
#iterations

learning rate = 10 4

5000 10000 15000 20000
#iterations

learning rate = 5 10 4

5000 10000 15000 20000
#iterations

learning rate = 10 3

5000 10000 15000 20000
#iterations

1000

2000

D
B

Fo
un

d
M

od
es

1.

12
5

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

0

1000

2000

TB
Fo

un
d

M
od

es

1.
12

5

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

500

1000

1500

2000

Su
bT

B
Fo

un
d

M
od

es

1.
12

5

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

QM9

5000 10000 15000 20000
#iterations

0

20000

40000

60000

M
un

ch
au

se
n

D
Q

N
Fo

un
d

M
od

es

0.
87

5

learning rate = 5 10 5

uniform
TLM
naive
maxent

5000 10000 15000 20000
#iterations

learning rate = 10 4

5000 10000 15000 20000
#iterations

learning rate = 5 10 4

5000 10000 15000 20000
#iterations

learning rate = 10 3

5000 10000 15000 20000
#iterations

0

20000

40000

D
B

Fo
un

d
M

od
es

0.

87
5

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

0

20000

40000

60000

TB
Fo

un
d

M
od

es

0.
87

5

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

0

10000

20000

30000

Su
bT

B
Fo

un
d

M
od

es

0.
87

5

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

5000 10000 15000 20000
#iterations

sEH

Figure 6: Top row: QM9, the number of Tanimoto-separated modes discovered over the course
of training with reward higher or equal to 1.125 for different methods and learning rate in ∈ {5 ·
10−5, 10−4, 5·10−4, 10−3}. Bottom row: sEH, the number of Tanimoto-separated modes discovered
over the course of training with reward higher or equal to 0.875 for different methods and learning
rate ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3}.

18

	Introduction
	Background
	GFlowNets
	GFlowNets as Soft RL
	Backward Policies in GFlowNets

	Trajectory Likelihood Maximization
	Experiments
	Hypergrid
	Bit Sequences
	Molecule Design, sEH and QM9
	Discussion

	Conclusion
	Appendix
	Omitted proofs
	Stability Techniques
	Experimental Details
	Hypergrid
	Bit Sequences
	Molecules

	Full plots

