
Under review as a conference paper at ICLR 2023

PROPER SCORING RULES FOR SURVIVAL ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Survival analysis is the problem of estimating probability distributions for future
events, which can be seen as a problem in uncertainty quantification. Although
there are fundamental theories on strictly proper scoring rules for uncertainty
quantification, little is known about those for survival analysis. In this paper,
we investigate extensions of four major strictly proper scoring rules for survival
analysis. Through the extensions, we discuss and clarify the assumptions arising
from the discretization of the estimation of probability distributions. We also dis-
cuss the relationship between the existing algorithms and extended scoring rules,
and we propose new algorithms based on our extensions of the scoring rules for
survival analysis.

1 INTRODUCTION

The theory of scoring rules is a fundamental theory in statistical analysis, and it is widely used
in uncertainty quantification (see, e.g., Mura et al. (2008); Parmigiani & Inoue (2009); Benedetti
(2010); Schlag et al. (2015)). Suppose that there is a random variable Y whose cumulative distribu-
tion function (CDF) is FY . Given an estimation F̂Y of FY and a single sample y obtained from Y ,
a scoring rule S(F̂Y , y) is a function that returns an evaluation score for F̂Y based on y. Since F̂Y
is a CDF and y is a single sample of Y , it is not straightforward to choose an appropriate scoring
rule S(F̂Y , y). The theory of scoring rules suggests strictly proper scoring rules that can be used
to recover the true probability distribution FY by optimizing the scoring rules. This theory shows
that there are infinitely many strictly proper scoring rules, and examples of them include the pinball
loss, the logarithmic score, the Brier score, and the ranked probability score (see, e.g., Gneiting &
Raftery (2007) for the definitions of these scoring rules).

Survival analysis, which is also known as time-to-event analysis, can be seen a problem in uncer-
tainty quantification. Despite the long history of research on survival analysis (see, e.g., Wang et al.
(2019) for a comprehensive survey), little is known about the strictly proper scoring rules for survival
analysis. Therefore, this paper investigates extensions of these scoring rules for survival analysis.

Survival analysis is the problem of estimating probability distributions for future events. In health-
care applications, an event usually corresponds to an undesirable event for a patient (e.g., a death
or the onset of disease). The time between a well-defined starting point and the occurrence of an
event is called the survival time or event time. Survival analysis has important applications in many
fields such as credit scoring (Dirick et al., 2017) and fraud detection (Zheng et al., 2019) as well as
healthcare. Although we discuss survival analysis in the context of healthcare applications, we can
use the extended scoring rules for any other applications.

Datasets for survival analysis are censored, which means that events of interest might not be ob-
served for a number of data points. This may be due to either the limited observation time window
or missing traces caused by other irrelevant events. In this paper, we consider only right censored
data, which is a widely studied problem setting in survival analysis. The exact event time of a right
censored data point is unknown; we know only that the event had not happened up to a certain time
for the data point. The time between a well-defined starting point and the last observation time of a
right censored data point is called the censoring time.

One of the classical methods for survival analysis is the Kaplan-Meier estimator (Kaplan & Meier,
1958). It is a non-parametric method for estimating the probability distribution of survival times as
a survival function κ(t), where the value κ(t) represents the survival rate at time t (i.e., the ratio of
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the patients who survived at time t). By definition, κ(0) = 1 and κ(t) is a monotonically decreasing
function.

Since there are many applications that require an estimate of the survival function for each patient
rather than the overall survival function κ(t) for all patients, many algorithms have been proposed.
In particular, many neural network models have been proposed (e.g., (Lee et al., 2018; Avati et al.,
2019; Ren et al., 2019; Kamran & Wiens, 2021; Tjandra et al., 2021)).

A problem with these neural network models is that most of them are not based on the theory of
scoring rules except for (Rindt et al., 2022). Since we cannot directly use a known scoring rule due
to censoring in survival analysis, the state-of-the-art neural network models for survival analysis use
their own custom loss functions instead. Even though these custom loss functions can be seen as
variants of known scoring rules, they are not proven to be strictly proper for survival analysis in
terms of the theory of scoring rules.

We review variants of scoring rules used in survival analysis with respect to the four major strictly
proper scoring rules.

• Pinball loss. Portnoy’s estimator (Portnoy, 2003), which is a variant of the pinball loss, has
been used in quantile regression-based survival analysis (Portnoy, 2003; Neocleous et al.,
2006; Pearce et al., 2022). However, it is unknown if Portnoy’s estimator is proper or not.

• Logarithmic score. Rindt et al. (2022) proved that a variant of the logarithmic score is
strictly proper for survival analysis. This variant has been used in the loss function of many
neural network models (e.g., (Lee et al., 2018; Avati et al., 2019; Ren et al., 2019; Kamran
& Wiens, 2021; Kvamme & Borgan, 2021; Tjandra et al., 2021)). However, most of them
use this variant in part of the loss functions, and these loss functions are used without the
proof of properness.

• Brier score. The IPCW Brier score (Graf et al., 1999) and integrated Brier score (Graf
et al., 1999) are widely used in survival analysis (e.g., (Kvamme et al., 2019; Haider et al.,
2020; Han et al., 2021; Zhong et al., 2021)) as variants of the Brier score. However, Rindt
et al. (2022) show that neither of them are not proper in terms of the theory of scoring rules.

• Ranked probability score. Variants of the ranked probability score have been proposed in
(Avati et al., 2019; Kamran & Wiens, 2021), but (Rindt et al., 2022) show that they are not
proper in terms of the theory of scoring rules.

Our contributions. We analyze survival analysis through the lens of the theory of scoring rules.
First, we prove that Portnoy’s estimator, which is an extension of the pinball loss, is proper under
certain conditions. This result underpins the grid-search algorithm (Portnoy, 2003; Neocleous et al.,
2006) and the CQRNN algorithm (Pearce et al., 2022), which is based on the expectation maxi-
mization (EM) algorithm. Second, we show another proof for an extension of the logarithmic score.
This scoring rule has already been proven to be strictly proper in (Rindt et al., 2022), but our proof
clarifies the implicit assumption in the proof. Third, we show that there are two other proper scor-
ing rules for survival analysis under certain conditions by extending the Brier score and the ranked
probability score. By using these extended scoring rules, we construct two new algorithms by using
the EM algorithm.

2 RELATED WORK

Survival analysis has been traditionally studied under the proportional hazard assumption. Its sem-
inal work is the Cox model (Cox, 1972), and many other prediction models have been proposed
under this strong assumption. See, e.g., Wang et al. (2019) for a comprehensive survey of the pre-
diction models based on this assumption. Since we do not require the theory of scoring rules under
this assumption, we consider survival analysis without this assumption. Note that most of the state-
of-the-art neural network models for survival analysis do not use this assumption.

Regarding evaluation metrics for survival analysis, the concordance index (C-index) (Harrell et al.,
1982) has been widely used under the proportional hazard assumption. Some variants of the C-
index (Antolini et al., 2005; Uno et al., 2011) are proposed for survival analysis without the pro-
portional hazard assumption. However, they are proven to not be proper in terms of the theory of
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Figure 1: Two types of discretization of probability distribution F̂ (t) with B = 5

scoring rules (Blanche et al., 2018; Rindt et al., 2022). Therefore, we do not use these variants of
the C-index in this paper. We also note that Sonabend et al. (2022) discuss the problems of using
these variants of the C-index in survival analysis.

3 PRELIMINARIES

We define notation here before showing the extensions of the scoring rules for survival analysis.
Unless otherwise stated, we consider a single patient x, and let T and C be random variables for
the event time and censoring time of this patient, respectively. Let t ∼ T and c ∼ C be samples
obtained from T and C, respectively. We assume that t and c are positive real values (i.e., t ∈ R+

and c ∈ R+). In survival analysis, we can observe only the minimum z = min{t, c}, and we use
δ = 1(t ≤ c) to indicate whether z represents the true event time (i.e., δ = 1 means z is uncensored,
and z = t) or z represents the censoring time (i.e., δ = 0 means z is censored, and z = c). In this
paper, a pair of samples (t, c) is often represented as a pair of values (z, δ) to emphasize that we can
observe only one of t and c. We assume that there exists zmax > 0 such that 0 < z ≤ zmax, which
means that we have prior knowledge that z is at most zmax. Let F (t) be the CDF of T , which is
defined as F (t) = Pr(T ≤ t). By the definition of F (t), we have F (0) = 0, and we can represent
the probability that the true event time is between t1 and t2 by Pr(t1 < T ≤ t2) = F (t2)− F (t1).

Survival analysis is the problem of estimating the F̂ (t) of the true CDF F (t). For simplicity, we
assume that both F (t) and F̂ (t) are monotonically increasing continuous functions. This means that
F (t1) < F (t2) holds if and only if 0 ≤ t1 < t2 < ∞. This assumption enables us to calculate
F (t) for any time 0 ≤ t < ∞ and to calculate F−1(τ) for any quantile level 0 ≤ τ ≤ 1. When we
estimate F̂ (t) by using a neural network, we usually discretize p = F̂ (t) along with the p-axis or
the t-axis as shown in Fig. 1. In quantile regression-based survival analysis, p = F̂ (t) is discretized
along the p-axis, F̂−1(τi) is estimated for 0 = τ0 < τ1 < · · · < τB−1 < τB = 1, and we
assume that F̂−1(τ0) = 0 and F̂−1(τB) = zmax. In distribution regression-based survival analysis,
p = F̂ (t) is discretized along the t-axis, F̂ (ζi) is estimated for 0 = ζ0 < ζ1 < · · · < ζB−1 < ζB =

zmax, and we assume that F̂ (ζ0) = 0 and F̂ (ζB) = 1.

Throughout this paper we assume that the censoring time and the event time are independent of each
other given a feature vector of patient x. This assumption is widely used in survival analysis, and
this assumption is represented as

Assumption 3.1. T ⊥⊥ C|X .

Note that he Kaplan-Meier estimator (Kaplan & Meier, 1958), which is a classical non-parametric
method for survival analysis, uses this assumption. D-calibration (Haider et al., 2020), which is one
of the widely used metrics in survival analysis, also uses this assumption. We can find examples
of the other stronger assumptions (e.g., unconditionally random right censoring) used in survival
analysis in (Peng, 2021).
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4 PROPER SCORING RULES FOR SURVIVAL ANALYSIS

We briefly review the theory of scoring rules for uncertainty quantification. Let Y be a random
variable, and let FY (y) be its CDF, which is defined as FY (y) = Pr(Y ≤ y). A scoring rule is a
function S(F̂Y , y) that returns a real value for inputs F̂Y and y, where F̂Y is an estimation of FY
and y is a sample obtained from Y . In this paper, we consider negatively-oriented scoring rules.
Therefore, the inequality S(F̂1, y) < S(F̂2, y) means that F̂1 is a better estimation than F̂2. We can
interpret the scoring rule S(F̂Y , y) as a penalty function for the misestimation of F̂Y for a sample y.

The proper and strictly proper scoring rules are defined by using the expected score of a scoring
rule, which can be written as

S̃(F̂Y ;Y ) = Ey∼Y [S(F̂Y , y)].

Definition 4.1. A scoring rule S(F̂Y , y) is proper if S̃(F̂Y ;Y ) ≥ S̃(FY ;Y ) holds.

Definition 4.2. A scoring rule S(F̂Y , y) is strictly proper if S̃(F̂Y ;Y ) ≥ S̃(FY ;Y ) holds and the
equality holds only when F̂Y = FY .

These definitions ask a proper scoring rule to satisfy that the score S(F̂Y , y) for estimation F̂Y is
always at least S(FY , y) for true CDF FY , and the score is minimized if F̂Y = FY . This is a natural
property that any scoring rule should satisfy, and this means that we can recover the true FY if we
can minimize the score of a strictly proper scoring rule. The theory of scoring rules shows that there
are infinitely many strictly proper scoring rules (see, e.g., Gneiting & Raftery (2007)).

Now we extend these definitions of the proper and strictly proper scoring rules for survival analysis.
In survival analysis, the inputs of a scoring rule S(F̂ , (z, δ)) are changed from FY and y to F and
(z, δ). The proper and strictly proper scoring rules are defined by using

S̃(F̂ ;T,C) = E(t,c)∼(T,C)[S(F̂ , (z, δ))].

Definition 4.3. A scoring rule S(F̂ , (z, δ)) is proper if S̃(F̂ ;T,C) ≥ S̃(F ;T,C) holds.

Definition 4.4. A scoring rule S(F̂ , (z, δ)) is strictly proper if S̃(F̂ ;T,C) ≥ S̃(F ;T,C) holds and
the equality holds only when F̂ = F .

Now we investigate the extensions of the scoring rules for survival analysis. In Sec. 4.1, we consider
quantile regression and survival analysis based on quantile regression. In Secs. 4.2–4.4, we consider
distribution regression and survival analysis based on distribution regression.

4.1 EXTENSION OF PINBALL LOSS

We first review quantile regression (Koenker & Bassett, 1978; Koenker & Hallock, 2001). Let Y
be a real-valued random variable and FY be its CDF. In quantile regression, we estimate the τ -th
quantile of Y , which can be written as

F−1Y (τ) = inf{y | FY (y) ≥ τ}.

The pinball loss (Koenker & Bassett, 1978), which is also known as the check function, is a widely
used scoring rule. The pinball loss for an estimation F̂Y of FY and a quantile level τ is defined as

SPinball(F̂Y , y; τ) = ρτ (F̂
−1
Y (τ), y) =

{
(1− τ)(F̂−1Y (τ)− y) if F̂−1Y (τ) ≥ y,
τ(y − F̂−1Y (τ)) if F̂−1Y (τ) < y.

(1)

Note that the pinball loss with τ = 0.5 is equivalent to the mean absolute error (MAE) and it can
be used to estimate the median (i.e., 0.5-th quantile) of Y . This means that the pinball loss is a
generalization of MAE for any quantile level τ ∈ [0, 1]. Note also that we include the quantile level
τ in the notation SPinball(F̂

−1
Y , y; τ) to clarify that this scoring rule receives τ as an input.

It is known that the pinball loss is strictly proper (see e.g., (Gneiting & Raftery, 2007)), which means
that we have

Ey∼Y [SPinball(F̂Y , y; τ)] ≥ Ey∼Y [SPinball(FY , y; τ)],
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and the equality holds only when F̂−1Y (τ) = F−1Y (τ) by Definition 4.2. Therefore, quantile regres-
sion can be formulated as the problem of computing

argmin
F̂Y

Ey∼Y [SPinball(F̂Y , y; τ)].

As an extension of the pinball loss for quantile regression-based survival analysis, Portnoy’s estima-
tor is proposed in Portnoy (2003), which is defined as

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), z) if δ = 1,

wρτ (F̂
−1(τ), z) + (1− w)ρτ (F̂−1(τ), z∞) if δ = 0,

(2)

where ρτ is the pinball loss defined in Eq. (1),w is a weight parameter to control the balance between
two pinball loss terms, and z∞ is any constant such that z∞ > zmax. In Portnoy’s estimator, we can
set an arbitrary constant 0 ≤ w ≤ 1 for the parameter w if τc > τ , where τc = Pr(t ≤ c) = F (c),
but we have to set w = Pr(F (c) < F (t) ≤ τ |t > c) = (τ − τc)/(1 − τc) otherwise (i.e., τc ≤ τ ).
Since we do not know the true value τc = F (c), we have to resolve this problem to use this estimator.

Before showing how to resolve this problem, we prove that this estimator is proper under the con-
dition that w is correct. Note that this is the first result for the quantile regression-based survival
analysis in terms of the theory of scoring rules.
Theorem 4.5. Portnoy’s estimator is proper under the condition that w is correct.

Proof. The proof is given in Appendix A.1.

This theorem means that the crucial part of Portnoy’s estimator is to set an appropriate value for w,
and this theorem ensures that we can recover the true probability distribution F−1 by minimizing
Eq. (2) if w is correct.

Now we discuss how to set parameter w in Portnoy’s estimator. First, we emphasize that we cannot
avoid the dependence on F (c) in the definition of any of the scoring rules for survival analysis
due to the discretization of F̂ . Even if we know the true value F−1(τi) for all {τi}Bi=0, we cannot
compute F (c) because c is not always contained in {F−1(τi)}Bi=0. The best we can do is to find
quantile levels τi and τi+1 such that F−1(τi) < c ≤ F−1(τi+1) by using the assumption that F is a
monotonically increasing function. Note that, even if we could find such τi and τi+1, we would not
be able to calculate some important probabilities such as Pr(c < t ≤ F−1(τi+1)) = τi+1 − F (c).
Therefore, we usually mitigate this problem by using a large B, which enables us to assume, for
example, F (τi+1)− F (τi) ≈ 0 for all i.

Even if we use a large B to assume that we can find the quantile level τ ′c such that c ≈ F−1(τ ′c) for
any c, the problem that we do not know the true F−1 remains. One of the approaches to tackling
this problem is the grid search algorithm (Portnoy, 2003; Neocleous et al., 2006). In this algorithm,
we use a sufficiently large B, and we estimate F̂−1(τi) of F−1(τi) in the increasing order of i =
0, 1, . . . , B. Suppose that we have estimated {F̂−1(τi)}j−1i=0 and we are going to estimate F̂−1(τj).
The key idea of this algorithm is that we can find τ ′c ∈ {τi}

j−1
i=0 such that c ≈ F̂−1(τ ′c) if τc =

F (c) < τj . If we can find such τ ′c, we estimate w by using τ ′c ≈ τc. If we cannot find such
τ ′c, this algorithm assumes that τc > τj and we use an arbitrary constant 0 ≤ w ≤ 1. Portnoy
(2003) discuss that this algorithm is analogous to the Kaplan-Meier estimator, and their theoretical
analysis (Portnoy, 2003; Neocleous et al., 2006) proves that Portnoy’s estimator combined with
linear regression can recover the true probability distribution F .

As for another approach, Pearce et al. (2022) propose the CQRNN algorithm, which combines a
neural network and the EM algorithm. Unlike the grid search algorithm, this algorithm estimates
{F̂−1(τi)}Bi=0 simultaneously by using a neural network. This algorithm starts with an arbitrary
initial estimation F̂ , and the parameter w is estimated by using F̂ . Then, this algorithm updates
F̂ by using the estimation ŵ of w, and it repeats this alternative estimation of F̂ and ŵ until these
values converge. This EM algorithm can be implemented for “free” according to (Pearce et al.,
2022), which means that we can implement it easily in the computation of the loss function of a
neural network training algorithm and we do not need to construct two separate neural network
models for estimating F̂ and ŵ. The experimental evaluation in (Pearce et al., 2022) shows that the
CQRNN algorithm performs the best among the quantile regression-based survival analysis models.
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4.2 EXTENSION OF LOGARITHMIC SCORE

While we estimate {F̂−1(τi)}Bi=0 in quantile regression, we consider distribution regression, in
which we estimate {F̂ (ζi)}Bi=0. For distribution regression, the logarithmic score (Good, 1952) is
known as one of the strictly proper scoring rules, and it is defined as

Slog(F̂ , y; {ζi}Bi=0) = −
B−1∑
i=0

1(ζi < y ≤ ζi+1) log(F̂ (ζi+1)− F̂ (ζi))

= −
B−1∑
i=0

1(ζi < y ≤ ζi+1) log f̂i, (3)

where f̂i = F̂ (ζi+1)− F̂ (ζi) for i = 0, 1, . . . , B − 1.

We extend this logarithmic score for distribution regression-based survival analysis as

SCen−log(F̂ , (z, δ);w, {ζi}Bi=0)

= −
B−1∑
i=0

1(ζi < z ≤ ζi+1)
(
δ log f̂i + (1− δ)(w log f̂i + (1− w) log(1− F̂ (ζi+1)))

)
,(4)

where w = Pr(c < t ≤ ζi+1|t > c) = (F (ζi+1)− F (c))/(1− F (c)). If δ = 1, this scoring rule is
equal to Eq. (3). Similar to Portnoy’s estimator, we cannot set the parameter w of this scoring rule
because we do not know F (ζi+1) and F (c).

Even though we do not know the correct w, we prove that this scoring rule is strictly proper if the
parameter w is correct.

Theorem 4.6. The scoring rule SCen−Log(F̂ , (z, δ);w, {ζi}Bi=0) is strictly proper if w is correct.

Proof. The proof is given in Appendix A.2.

Similar to Portnoy’s estimator, we can use both the grid-search algorithm and an EM algorithm
similar to the CQRNN algorithm to estimate w. In addition, we show another simpler approach
by using the observation that w ≈ 0 if B is large. If B is large, 1 − F (c) is usually much larger
than F (ζi+1) − F (c) (see Fig. 2(a)), and hence we have w = (F (ζi+1) − F (c))/(1 − F (c)) ≈ 0.
Therefore, we obtain a simpler variant of SCen−log by setting w = 0:

SCen−simple−log(F̂ , (z, δ); {ζi}Bi=0)

= −
B−1∑
i=0

1(ζi < z ≤ ζi+1)
(
δ log f̂i + (1− δ) log(1− F̂ (ζi+1))

)
. (5)

Furthermore, by increasing B to infinity (i.e., B → ∞), we obtain the continuous version of this
scoring rule:

SCen−cont−log(F̂ , (z, δ)) = −δ log
dF̂

dt
(z)− (1− δ) log(1− F̂ (z)),

which is equal to the extension of the logarithmic score that is proven to be strictly proper in (Rindt
et al., 2022). This clarifies that the proof in (Rindt et al., 2022) implicitly assumes that B is suffi-
ciently large.

4.3 EXTENSION OF BRIER SCORE

In distribution regression, the Brier score (Brier, 1950) is also known as a strictly proper scoring
rule, which is defined as

SBrier(F̂ , y; {ζi}Bi=0) =

B−1∑
i=0

(1(ζi < y ≤ ζi+1)− fi)2, (6)
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Figure 2: Illustrations of computations of w

where f̂i = F̂ (ζi+1)− F̂ (ζi) for i = 0, 1, . . . , B − 1.

We extend this Brier score for distribution regression-based survival analysis as

SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0) =

B−1∑
i=0

(
wi(1− f̂i)2 + (1− wi)f̂2i

)
, (7)

where

wi =



0 if δ = 1 and ζi+1 < z = t

1 if δ = 1 and ζi < z = t ≤ ζi+1

0 if z ≤ ζi
(F (ζi+1)− F (c))/(1− F (c)) if δ = 0 and ζi < z = c ≤ ζi+1

fj/(1− F (c)) if δ = 0 and ζi+1 < z = c.

If δ = 1, it is easy to see that Eq. (7) is equal to Eq. (6).

We prove that this scoring rule is strictly proper if the set of parameters {wi}B−1i=0 is correct.

Theorem 4.7. The scoring rule SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}Bi=0) is strictly proper if wi is
correct for all i.

Proof. The proof is given in Appendix A.3.

We can use the EM algorithm similar to the CQRNN algorithm to estimate w. However, unlike Port-
noy’s estimator and the extension of the logarithmic score, we cannot use the grid-search algorithm
in this extension of the Brier score because wi depends on fj such that i < j.

Note that each wi in this scoring rule is close to zero if B is large and δ = 0. However, since wis
are designed to satisfy

∑
i wi = 1, we cannot use the approximation wi ≈ 0 for this scoring rule.

4.4 EXTENSION OF RANKED PROBABILITY SCORE

The ranked probability score (RPS) is also known as a strictly proper scoring rule (see e.g., (Gneiting
& Raftery, 2007)). It is defined as

SRPS(F̂ , y) =

B∑
i=1

SBinary−Brier(F̂ , y; ζi), (8)

where SBinary−Brier is the binary version of SBrier (Eq. (6)) with single threshold ζ:

SBinary−Brier(F̂ , y; ζ) = (1(y ≤ ζ)− 1)2. (9)

We extend this scoring rule for survival analysis:

SCen−RPS(F̂ , (z, δ); {wi}B−1i=1 , {ζi}
B−1
i=1 ) =

B−1∑
i=1

SCen−Binary−Brier(F̂ , (z, δ);wi, ζi), (10)
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where SCen−Binary−Brier is the binary version of SCen−Brier (Eq. (7)) with single threshold ζ:

SCen−Binary−Brier(F̂ , (z, δ);w, ζ) =


F̂ (ζ)2 if z > ζ

(1− F̂ (ζ))2 if δ = 1 and z = t ≤ ζ
w(1− F̂ (ζ))2 + (1− w)F̂ (ζ)2 if δ = 0 and z = c ≤ ζ,

where w = (F (ζ)− F (c))/(1− F (c)).
Since this scoring rule is just the sum of the binary version of Brier scores, it is straightforward to
prove this theorem.
Theorem 4.8. The scoring rule SCen−RPS(F̂ , (z, δ); {wi}B−1i=1 , {ζi}

B−1
i=1 ) is strictly proper if wi is

correct for all i.

Note that the scoring rule SCen−Binary−Brier is analogous to Portnoy’s estimator. The scoring rule
SCen−Binary−Brier is designed to estimate F̂ (ζ), where ζ is an input, and we use F (c) and ζ to setw,
whereas Portnoy’s estimator is designed to estimate F̂−1(τ), where τ is an input, and we use F (c)
and τ to set w. As these two scoring rules are similar, we can use both the grid-search algorithm and
an EM algorithm similar to the CQRNN algorithm for SCen−RPS.

Unlike SCen−log defined in Eq. (4), the parameter w of the scoring rule SCen−Binary−Brier is usually
not close to zero, because ζ and c are usually not close to each other as shown in Fig. 2(b). We note
that the parameter w of Portnoy’s estimator is also not close to zero for a similar reason.

5 EVALUATION METRICS FOR SURVIVAL ANALYSIS

While we have discussed the extensions of the scoring rules as loss functions, we can use strictly
proper scoring rules also for evaluation metrics. If we use a nonproper scoring rule Snonproper as an
evaluation metric, a neural network model can find F̂ such that

E(t,c)∼(T,C)[Snonproper(F̂ , (z, δ))] < E(t,c)∼(T,C)[Snonproper(F, (z, δ))]

by using Snon−proper for the loss function. This suggests that we should avoid nonproper scoring
rules as evaluation metrics, because we may obtain an over-optimized estimation F̂ , which has a
lower score than F in terms of the evaluation metric Snonproper.

Among the extensions of the scoring rules for survival analysis, we can use only SCen−simple−log
(Eq. (5)) as an evaluation metric for survival analysis, because the other scoring rules depend on
the parameter w or {wi}B−1i=1 . Note that this scoring rule SCen−simple−log is valid only if B is
sufficiently large. In Appendix B, we conducted experiments on choosing an appropriate B, and the
results suggested using B > 16.

Regarding calibration metrics for survival analysis, while D-calibration (Haider et al., 2020) is
widely used, we propose another metric for calibration, KM-calibration. We define this metric
as

dKM−cal(κ, F̂avg; {ζi}Bi=0) = dKL(κ||1− F̂avg; {ζi}Bi=0) =

B−1∑
i=0

(pi log pi − pi log qi),

where κ is the survival function estimated by using the Kaplan-Meier estimator (Kaplan & Meier,
1958), F̂avg is the average of the estimated CDFs of all patients, pi = κ(ζi+1) − κ(ζi), and qi =
(1− F̂avg(ζi+1))− (1− F̂avg(ζi)). (In this computation, we assume that κ(ζB) = 0.) This metric
is the Kullback-Leibler divergence between κ(t) and the average of the estimated survival function
1 − F̂avg(t). This metric is based on the observation that the model’s predicted number of events
within any time interval should be similar to the observed number (Goldstein et al., 2020).

We note here that calibration is particularly important for survival analysis especially in healthcare
applications. If we use a prediction model that is miscalibrated, the predictions obtained from the
miscalibrated model would be pessimistic or optimistic as a whole compared with the actual ones.
If medical doctors were to make decisions on patient treatments on the basis of such a miscalibrated
prediction model, the treatments could be harmful for patients because of the pessimistic or opti-
mistic predictions. Calster et al. (2019) extensively discuss the importance of calibration in survival
analysis.
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Table 1: Prediction performances (lower is better) of extended scoring rules with B = 32

Metric Loss Function flchain prostateSurvival support
SCen−log−simple SCen−log 1.5054± 0.0508 1.3608± 0.0295 1.8307± 0.0452

SCen−Brier 1.5137± 0.0557 1.3680± 0.0291 1.8467± 0.0448
SCen−RPS 1.6737± 0.0821 1.4821± 0.0639 2.1036± 0.1012
SPortnoy 1.6641± 0.0518 1.4352± 0.0420 2.0645± 0.0455

D-calibration SCen−log 0.0003± 0.0001 0.0001± 0.0000 0.0063± 0.0009
SCen−Brier 0.0004± 0.0002 0.0001± 0.0000 0.0071± 0.0009
SCen−RPS 0.0005± 0.0003 0.0010± 0.0005 0.0045± 0.0011
SPortnoy 0.0071± 0.0031 0.0055± 0.0041 0.0237± 0.0037

KM-calibration SCen−log 0.0206± 0.0049 0.0312± 0.0084 0.0299± 0.0115
SCen−Brier 0.0268± 0.0071 0.0324± 0.0090 0.0492± 0.0125
SCen−RPS 0.1553± 0.0349 0.5931± 0.3846 0.2668± 0.1192
SPortnoy 0.0434± 0.0067 0.1895± 0.1413 0.0809± 0.0381

6 EXPERIMENTS

In our experiments, we used three datasets for the survival analysis from the packages in R R
Core Team (2016): the flchain dataset Dispenzieri et al. (2012), which was obtained from the ‘sur-
vival’ package and contains 7874 data points (69.9% of which are censored), the prostateSurvival
dataset (Lu-Yao et al., 2009), which was obtained from the ‘asaur’ package and contains 14294
data points (71.7% of which are censored), and the support dataset Knaus et al. (1995), which was
obtained from the ‘casebase’ package and contains 9104 data points (31.9% of which are censored).

We compared the prediction performances of the extended scoring rules: SCen−log (Eq. (4)),
SCen−Brier (Eq. (7)), SCen−RPS (Eq. (10)), and SPortnoy (Eq. (2)). We used a neural network model
with B = 32 to estimate F̂ , and we combined it with the EM algorithm to estimate w or {wi}B−1i=0 .
This means that we used the CQRNN algorithm (Pearce et al., 2022), which is the state-of-the-
art model for quantile regression-based survival analysis, for SPortnoy. We used SCen−log−simple

(Eq. (5)) as a metric for discrimination performce. We used D-calibration (Haider et al., 2020) and
KM-calibration as metrics for calibration performance, where we used 20 bins of equal-length for
D-calibration.

Table 1 shows the results, and each number shows the mean and standard deviation of the measure-
ments of five-fold cross validation. These results showed that SCen−log and SCen−Brier performed
the best. Note that the former one is almost equal to the variant of the logarithmic score used
in (Rindt et al., 2022), and that the latter one is our new extension of Brier score. Compared to these
two scoring rules, the prediction performance of SCen−RPS and SPortnoy were worse than expected
and these results seemed to be not close to the true probability distribution, even though we prove
that they are conditionally proper scoring rules. It is considered that the estimation ŵ of parameter
w by the EM algorithm was not accurate enough to converge to the true probability distribution for
SCen−RPS and SPortnoy. As we illustrate in Figure 2, the parameter w of SCen−RPS (and SPortnoy)
is usually not close to zero unlike SCen−log, and this fact indicates that it was difficult to find correct
w for these two scoring rules.

7 CONCLUSION

We have discussed the extensions of the four scoring rules for survival analysis, and we have proved
that these extensions are proper if the parameter w or {wi}B−1i=0 is correct. By using these scoring
rules, we present neural network models combined with the EM algorithm to estimate the parameter,
and our experiments showed that the models with SCen−log and SCen−Brier performed the best. In
addition, we clarified the hidden assumption in the proof of the variant of the logarithmic score for
survival analysis (Rindt et al., 2022), which suggests us to use a sufficiently large B when we use it
as an evaluation metric. We believe that our approach of extending scoring rules for survival analysis
can be used for many other known strictly proper scoring rules.
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A PROOFS OF THEOREMS

We give proofs of the theorems, which are omitted from the main body of this paper.

A.1 PORTNOY’S ESTIMATOR

We show a proof of Theorem 4.5.

Proof. We consider a fixed c ∼ C, and we prove

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)] (11)

for these four cases separately.

• Case 1: c ≤ min{F−1(τ), F̂−1(τ)}.

• Case 2: max{F−1(τ), F̂−1(τ)} < c.

• Case 3: F−1(τ) < c ≤ F̂−1(τ).

• Case 4: F̂−1(τ) < c ≤ F−1(τ).

Note that, if Inequality (11) holds for any c ∼ C, we can marginalize the inequality with respect to
C, and we can prove

E
t∼T,c∼C

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T,c∼C

[SPortnoy(F, (z, δ);w, τ)],

which means that SPortnoy(F̂ , (z, δ);w, τ) is proper. Therefore, we prove Inequality (11) for the
four cases.

Case 1. We prove the case for c ≤ min{F−1(τ), F̂−1(τ)}. This means that τc ≤ τ and w =
(τ − τc)/(1− τc). Hence, we have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
−τc(1− τ)(F̂−1(τ)− t)/(1− τc) if t > c.

By Assumption 3.1, we have Pr(t ≤ c|C = c) = Pr(t ≤ c) = τc and Pr(t > c|C = c) = 1 − τc.
Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] = Pr(t ≤ c|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

−Pr(t > c|C = c)τc(1− τ)F̂−1(τ)/(1− τc)

+
τc(1− τ)
1− τc

E
t∼T |C=c,t>c

[t]

= −(1− τ) E
t∼T |C=c,t≤c

[t] +
τc(1− τ)
1− τc

E
t∼T |C=c,t>c

[t].

Since this value is the same for SPortnoy(F̂ , (z, δ);w, τ) and SPortnoy(F, (z, δ);w, τ), we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] = E
t∼T |C=c

[SPortnoy, (z, δ);w, τ)].
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Case 2. We prove the case for max{F−1(τ), F̂−1(τ)} < c.

If F−1(τ) ≤ F̂−1(τ) < c, then we have

SPortnoy(F̂ , (z, δ);w, τ)

=

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− t)− (1− w)τ(F̂−1(τ)− t) if t > c,

≥


(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−τ(F̂−1(τ)− t) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t,

where we used −wτ(F̂−1(τ) − t) ≤ w(1 − τ)(F̂−1(τ) − t) when F−1(τ) < t ≤ F̂−1(τ) and
w ≥ 0 for the inequality.

If F̂−1(τ) ≤ F−1(τ) < c, then we have

SPortnoy(F̂ , (z, δ);w, τ)

=

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− t)− (1− w)τ(F̂−1(τ)− t) if t > c,

>


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
(1− τ)(F̂−1(τ)− t) if F̂−1(τ) < t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ c,
−τ(F̂−1(τ)− t) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t,

where we used −wτ(F̂−1(τ) − t) > w(1 − τ)(F̂−1(τ) − t) when F̂−1(τ) < t ≤ F−1(τ) and
w ≥ 0 for the inequality.

By Assumption 3.1, we have Pr(t ≤ F−1(τ)|C = c) = Pr(t ≤ F−1(τ)) = τ and Pr(F−1(τ) <
t|C = c) = 1− τ . Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)]

≥ Pr(t ≤ F−1(τ)|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤F−1(τ)

[t]

−Pr(F−1(τ) < t|C = c)τF̂−1(τ) + τ E
t∼T |C=c,F−1(τ)<t

[t]

= −(1− τ) E
t∼T |C=c,t≤F−1(τ)

[t] + τ E
t∼T |C=c,F−1(τ)<t

[t].

By using a similar argument, we have

E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)] = −(1− τ) E
t∼T |C=c,t≤F−1(τ)

[t] + τ E
t∼T |C=c,F−1(τ)<t

[t].
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Note that this equation holds with equality.

Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)].

Case 3. We prove the case for F−1(τ) < c ≤ F̂−1(τ).
We have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
w(1− τ)(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− c) if t > c,

≥


(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ c,
−τ(F̂−1(τ)− c) if t > c,

where we used −wτ(F̂−1(τ) − t) ≤ w(1 − τ)(F̂−1(τ) − t) when F−1(τ) < t ≤ c ≤ F̂−1(τ)

and w ≥ 0, and w(1 − τ)(F̂−1(τ) − c) > −wτ(F̂−1(τ) − c) when F̂−1(τ) > t > c and w ≥ 0
for the inequality. By Assumption 3.1, we have Pr(t ≤ F−1(τ)|C = c) = Pr(t ≤ F−1(τ)) = τ ,
Pr(F−1(τ) < t ≤ c|C = c) = τc − τ , and Pr(t > c|C = c) = 1− τc. Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)]

≥ Pr(t ≤ F−1(τ)|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤F−1(τ)

[t]

−Pr(F−1(τ) < t ≤ c|C = c)τF̂−1(τ) + τ E
t∼T |C=c,F−1(τ)<t

[t]

−Pr(t > c|C = c)τF̂−1(τ) + τc

= −(1− τ) E
t∼T |C=c,t≤F−1(τ)

[t] + τ E
t∼T |C=c,F−1(τ)<t≤c

[t] + τc.

By using a similar argument, we have

SPortnoy(F, (z, δ);w, τ) =


(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ c,
−τ(F̂−1(τ)− c) if t > c,

and so we have

E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)] = −(1−τ) E
t∼T |C=c,t≤F−1(τ)

[t]+τ E
t∼T |C=c,F−1(τ)<t≤c

[t]+τc.

Note that this equation holds with equality.

Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)].

Case 4. We prove the case for F̂−1(τ) < c ≤ F−1(τ).

14
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We have

SPortnoy(F̂ , (z, δ);w, τ)

=

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− c) if t > c,

>


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
(1− τ)(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
w(1− τ)(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− c) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
−τc(1− τ)(F̂−1(τ)− c)/(1− τc) if t > c.

where we used −wτ(F̂−1(τ) − t) > w(1 − τ)(F̂−1(τ) − t) when F̂−1(τ) < t < c and w ≥ 0,
and −wτ(F̂−1(τ)− c) > w(1− τ)(F̂−1(τ)− c) when c > F̂−1(τ) and w ≥ 0 for the inequality,
and w = (τ − τc)/(1 − τc) when τc ≤ τ for the last equality. By Assumption 3.1, we have
Pr(t ≤ c|C = c) = Pr(t ≤ c) = τc and Pr(t > c|C = c) = 1− τc. Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)]

≥ Pr(t ≤ c|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

−Pr(t > c|C = c)τc(1− τ)F̂−1(τ)/(1− τc) +
τc(1− τ)
1− τc

c

= −(1− τ) E
t∼T |C=c,t≤c

[t] +
τc(1− τ)
1− τc

c.

By using a similar argument, we have

E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)] = −(1− τ) E
t∼T |C=c,t≤c

[t] +
τc(1− τ)
1− τc

c.

Note that this equation holds with equality.

Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)].

A.2 VARIANT OF LOGARITHMIC SCORE

We show a proof of Theorem 4.6.

Proof. We consider a fixed c ∼ C, and let t be a sample obtained from T . Let i be the index such
that ζi ≤ c < ζi+1. Since Assumption 3.1 holds, we have Pr(ζj < t ≤ ζj+1|C = c) = Pr(ζj <
t ≤ ζj+1) = F (ζj+1) − F (ζj) = fj for any j < i, Pr(ζi < t ≤ c|C = c) = F (c) − F (ζi), and
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Pr(c < t|C = c) = Pr(c < t) = 1− F (c). Hence, we have

Et∼T |C=c[SCen−log(F̂ , (z, δ);w, {ζi}Bi=0)]

= −
∑
j<i

Pr(ζj < t ≤ ζj+1|C = c) log f̂j

−Pr(ζi < t ≤ c|C = c) log f̂i

−Pr(c < t|C = c)
(
w log f̂i + (1− w) log(1− F̂ (ζi+1))

)
= −

∑
j<i

fj log f̂j

−(F (c)− F (ζi)) log f̂i
−(1− F (c))

(
w log f̂i + (1− w) log(1− F̂ (ζi+1))

)
= −

∑
j≤i

fj log f̂j − (1− F (ζi+1)) log(1− F̂ (ζi+1)),

where we used w = (F (ζi+1)− F (c))/(1− F (c)) for the last equality.

Hence, we have

Et∼T |C=c[SCen−log(F̂ , (z, δ);w, {ζi}Bi=0)]− Et∼T |C=c[SCen−log(F, (z, δ);w, {ζi}Bi=0)]

= −
∑
j≤i

fj(log f̂j − log fj)− (1− F (ζi+1))(log(1− F̂ (ζi+1))− log(1− F (ζi+1)))

≥ 0, (12)

where we used the fact that the Kullback-Leibler divergence between two probability distributions
is non-negative for the inequality. This means that the inequality

−
∑
k

pk(log p̂k − log pk) ≥ 0

holds for any two probability distributions pk and p̂k and the equality holds only if pk = p̂k for all
k. Here, we use an (i + 2)-dimensional vector p = (p0, p1, . . . , pi+1), and we set pk = fk for all
k ≤ i and we set pi+1 = 1 − F (ζi+1). Note that the vectors p and p̂ constructed in this way is a
probability distribution (i.e.,

∑
k pk = 1).

Since Inequality (12) holds for any c ∼ C, we marginalize the inequality with respect to C, and we
have

Et∼T,c∼C [SCen−log(F̂ , (z, δ);w, {ζi}Bi=0)] ≥ Et∼T,c∼C [SCen−log(F, (z, δ);w, {ζi}Bi=0)],

which means that SCen−log(F̂ , (z, δ)) is proper. Moreover, the equality holds only if F̂ = F , and
therefore, SCen−log(F̂ , (z, δ)) is strictly proper.

A.3 VARIANT OF BRIER SCORE

We show a proof of Theorem 4.7.

Proof. We consider a fixed c ∼ C, and let t be a sample obtained from T . Let i be the index such
that ζi < c ≤ ζi+1. Assuming that Assumption 3.1 holds, we have Pr(ζj < t ≤ ζj+1|C = c) =
Pr(ζj < t ≤ ζj+1) = F (ζj+1)−F (ζj) = fj for any j < i, Pr(ζi < t ≤ c|C = c) = F (c)−F (ζi),
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and Pr(c < t|C = c) = Pr(c < t) = 1− F (c). Hence, we have

Et∼T |C=c[SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0)]

=
∑
j<i

Pr(ζj < t ≤ ζj+1|C = c)

(1− f̂j)2 +
∑
j 6=k

f̂2k


+Pr(ζi < t ≤ c|C = c)

(1− f̂j)2 +
∑
j 6=k

f̂2k


+Pr(c < t|C = c)

wi(1− f̂i)2 + (1− wi)f̂2i +
∑
j<i

f̂2j +
∑
j>i

(wj(1− f̂j)2 + (1− wj)f̂2j )


=

∑
j<i

fj

(1− f̂j)2 +
∑
j 6=k

f̂2k

+ (F (c)− F (ζi))

(1− f̂j)2 +
∑
j 6=k

f̂2k


+(1− F (c))

wi(1− f̂i)2 + (1− wi)f̂2i +
∑
j<i

f̂2j +
∑
j>i

(wj(1− f̂j)2 + (1− wj)f̂2j )


=

∑
j

(f̂2j − 2fj f̂j + 1),

where we used

wi =


0 if δ = 1 and ζi+1 < z = t

1 if δ = 1 and ζi < z = t ≤ ζi+1

0 if z ≤ ζi
for the first equality and

wi =

{
(F (ζi+1)− F (c))/(1− F (c)) if δ = 0 and ζi < z = c ≤ ζi+1

fj/(1− F (c) if δ = 0 and ζi+1 < z = c

for the last equality.

Hence we have

Et∼T |C=c[SCen−Brier(F̂ , (z, δ))]− Et∼T |C=c[SCen−Brier(F, (z, δ))]

=
∑
j

(f̂2j − f2j − 2fj(f̂j − fj))

=
∑
j

(f̂j − fj)2

≥ 0. (13)

Note that the equality holds only if f̂j = fj holds for all j.

Since Inequality (13) holds for any c ∼ C, we have

Et∼T,c∼C [SCen−Brier(F̂ , (z, δ))] ≥ Et∼T,c∼C [SCen−Brier(F, (z, δ))],

which means that SCen−Brier(F̂ , (z, δ)) is strictly proper.

B ADDITIONAL EXPERIMENTS

In this section, we report the results of our additional experiments. The source codes used in our
experiments are attached as the supplementary material.

In our experiments, we used the flchain, prostateSurvival, and support datasets, and we split the
data points into training (60%), validation (20%), and test (20%). For each dataset, we divided the
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Table 2: Comparison between two variants of the logarithmic score for B = 8

Metric Loss Function flchain prostateSurvival support
SCen−log−simple SCen−log 6.4618± 0.1204 1.3460± 0.0476 1.5422± 0.0704

SCen−log−simple 6.4176± 0.1266 1.3447± 0.0451 1.5368± 0.0701
D-calibration SCen−log 0.0045± 0.0004 0.0002± 0.0000 0.0370± 0.0032

SCen−log−simple 0.0127± 0.0013 0.0002± 0.0001 0.0349± 0.0024
KM-calibration SCen−log 0.0048± 0.0026 0.0048± 0.0028 0.0057± 0.0027

SCen−log−simple 0.0614± 0.0081 0.0083± 0.0024 0.0061± 0.0033

Table 3: Comparison between two variants of the logarithmic score for B = 16

Metric Loss Function flchain prostateSurvival support
SCen−log−simple SCen−log 3.6774± 0.0386 1.2880± 0.0247 1.6017± 0.0733

SCen−log−simple 3.6676± 0.0424 1.3447± 0.0451 1.6008± 0.0731
D-calibration SCen−log 0.0005± 0.0002 0.0001± 0.0000 0.0147± 0.0020

SCen−log−simple 0.0013± 0.0004 0.0002± 0.0000 0.0143± 0.0021
KM-calibration SCen−log 0.0117± 0.0046 0.0142± 0.0036 0.0149± 0.0080

SCen−log−simple 0.0162± 0.0049 0.0158± 0.0063 0.0158± 0.0100

Table 4: Comparison between two variants of the logarithmic score for B = 32

Metric Loss Function flchain prostateSurvival support
SCen−log−simple SCen−log 1.5054± 0.0508 1.3608± 0.0295 1.8307± 0.0452

SCen−log−simple 1.5059± 0.0513 1.3609± 0.0301 1.8296± 0.0446
D-calibration SCen−log 0.0003± 0.0001 0.0001± 0.0000 0.0063± 0.0009

SCen−log−simple 0.0003± 0.0001 0.0001± 0.0000 0.0062± 0.0012
KM-calibration SCen−log 0.0206± 0.0049 0.0312± 0.0084 0.0299± 0.0115

SCen−log−simple 0.0213± 0.0049 0.0343± 0.0102 0.0288± 0.0127

time interval [0, zmax + ε), where ε = 10−3, into B − 1 equal-length intervals to get the thresholds
{ζi}Bi=0 for distribution regression-based survival analysis, and we divided the unit interval [0, 1]
into B − 1 equal-length intervals to get the quantile levels {τi}Bi=0 for quantile regression-based
survival analysis.

All our experiments were conducted on a virtual machine with an Intel Xeon CPU (3.30 GHz)
processor without any GPU and 64 GB of memory running Red Hat Enterprise Linux Server 7.6.
We used Python 3.7.4 and PyTorch 1.7.1 for the implementation.

We constructed a multi-layer perceptron (MLP) for our experiments. It consists of three hidden
layers containing 128 neurons, and the number of outputs was B. The type of activation function
after the hidden layer was the rectified linear unit (ReLU), and the activation function at the output
node was softmax. We can satisfy the assumption that F̂ (t) is a monotonically increasing continuous
function by using it. In distribution regression-based survival analysis, each output of MLP estimates
f̂i = F̂ (ζi+1) − F̂ (ζi) for i = 0, 1, . . . , B − 1. By using these outputs {f̂i}B−1i=0 , we can calculate
{F̂ (ζi)}Bi=0 and we can represent the function F̂ (t) as a piecewise linear function connecting the
values {F̂ (ζi)}Bi=0. Since fi > 0 holds for all i, F̂ (t) estimated in this way is a monotonically
increasing continuous function. We can estimate F̂ for quantile regression-based survival analysis
by using a similar way.

First, we investigated the differences of the prediction performances between SCen−log (defined in
Eq. (4)) and SCen−log−simple (defined in Eq. (5)) by using SCen−log−simple, D-calibration, and KM-
calibration as metrics. Tables 2– 4 show the results for B = 8, 16, 32, respectively, where the bold
numbers were used to emphasize the difference between two scoring rules. These results showed
that the prediction performance of these two scoring rules were similar for the prostateSurvival and
support datasets even for B = 8. However they showed different prediction performance for the
flchain dataset for B = 8 and B = 16, but the performance difference were negligible for B = 32.
Therefore, we used B = 32 in the other experiments in this paper.
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Table 5: Prediction performances (lower is better) with various loss functions for B = 32

Metric Model flchain prostateSurvival support
SCen−log−simple DeepHit (α = 0.1) 1.5200± 0.0398 1.3644± 0.0293 1.8481± 0.0453

DeepHit (α = 1) 1.5858± 0.0495 1.3813± 0.0318 1.9996± 0.0525
DeepHit (α = 10) 2.0313± 0.1648 1.5688± 0.0823 2.3657± 0.0441
DRSA 1.6783± 0.0393 1.4631± 0.0273 2.0342± 0.0452
S-CRPS 2.0470± 0.1575 1.4589± 0.0442 2.1162± 0.1095
IPCW BS(t) game 1.9265± 0.1093 1.6413± 0.0743 2.3581± 0.1604
SCen−log 1.5054± 0.0508 1.3608± 0.0295 1.8307± 0.0452
SCen−Brier 1.5137± 0.0557 1.3680± 0.0291 1.8467± 0.0448
SCen−RPS 1.6737± 0.0821 1.4821± 0.0639 2.1036± 0.1012
SPortnoy 1.6641± 0.0518 1.4352± 0.0420 2.0645± 0.0455

D-calibration DeepHit (α = 0.1) 0.0005± 0.0002 0.0001± 0.0000 0.0056± 0.0009
DeepHit (α = 1) 0.0008± 0.0003 0.0003± 0.0001 0.0062± 0.0010
DeepHit (α = 10) 0.0138± 0.0046 0.0064± 0.0035 0.0179± 0.0053
DRSA 0.0043± 0.0011 0.0047± 0.0004 0.0057± 0.0006
S-CRPS 0.0032± 0.0005 0.0018± 0.0004 0.0072± 0.0011
IPCW BS(t) game 0.0022± 0.0006 0.0083± 0.0018 0.0060± 0.0008
SCen−log 0.0003± 0.0001 0.0001± 0.0000 0.0063± 0.0009
SCen−Brier 0.0004± 0.0002 0.0001± 0.0000 0.0071± 0.0009
SCen−RPS 0.0005± 0.0003 0.0010± 0.0005 0.0045± 0.0011
SPortnoy 0.0071± 0.0031 0.0055± 0.0041 0.0237± 0.0037

KM-calibration DeepHit (α = 0.1) 0.0264± 0.0071 0.0418± 0.0139 0.0249± 0.0067
DeepHit (α = 1) 0.0362± 0.0084 0.0599± 0.0341 0.0545± 0.0110
DeepHit (α = 10) 0.2077± 0.0543 0.4937± 0.1772 0.4273± 0.1188
DRSA 0.1929± 0.0135 0.1845± 0.0050 0.2103± 0.0162
S-CRPS 0.2759± 0.1279 0.6414± 0.3043 0.4090± 0.1499
IPCW BS(t) game 0.2770± 0.0789 0.4246± 0.0841 0.5325± 0.1342
SCen−log 0.0206± 0.0049 0.0312± 0.0084 0.0299± 0.0115
SCen−Brier 0.0268± 0.0071 0.0324± 0.0090 0.0492± 0.0125
SCen−RPS 0.1553± 0.0349 0.5931± 0.3846 0.2668± 0.1192
SPortnoy 0.0434± 0.0067 0.1895± 0.1413 0.0809± 0.0381

Next, we computed the prediction performance of several loss functions used in the state-of-the-art
neural network models. The loss function of DeepHit (Lee et al., 2018) consists of two terms. The
first term is equal to the extension of the logarithmic score SCen−log−simple, and the second term is
used to improve a ranking metric between patients. The parameter α is used to control the balance
between these two terms, and the weight for the second term is increased by using a large α. The
loss function of DRSA (Ren et al., 2019) can also be seen as a variant of logarithmic score, and we
set α = 0.25 for the parameter. S-CRPS (Avati et al., 2019) is a variant of the ranked probability
score, but Rindt et al. (2022) showed that this scoring rule is not proper in terms of theory of scoring
rules. We also implemented the IPCW BS(t) game model, which is proposed in (Han et al., 2021).
Table 5 shows the results. The prediction performance of DeepHit degraded by using a large α,
which means that it is better to use SCen−log−simple by setting α = 0. The other prediction models
did not outperform SCen−log and SCen−Brier.

Finally, we show an ablation study on the training models with and without the EM algorithm.
Figure 3 shows the average survival functions for B = 32, which means that the average of F (t) =
1 − F (t) for all patients in test dataset were shown. The parameter w (or {wi}B−1i=0 ) is included
in the computation of the gradient in the neural network training of the prediction model without
the EM algorithm, whereas the prediction model with the EM algorithm handles the parameter as
a constant. The actual survival functions were estimated by the Kaplan-Meier estimator. These
results showed that the average predictions for the extension of the logarithmic score were close to
the Kaplan-Meier curve regardless of the use of the EM algorithm for the three datasets. As for the
other three estimators, the average predictions with the EM algorithm were closer than those without
the EM algorithm to the Kaplan-Meier curves. These results mean that we need the EM algorithm
except for the extension of the logarithmic score.
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(a) SCen−log on flchain
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(b) SCen−log on prostateSurvival
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(c) SCen−log on support
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(d) SCen−Brier on flchain
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(e) SCen−Brier on prostateSurvival
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(f) SCen−Brier on support
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(g) SCen−RPS on flchain
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(h) SCen−RPS on prostateSurvival
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(i) SCen−RPS on support

0 1000 2000 3000 4000 5000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

flchain

Portnoy w/ EM
Portnoy w/o EM
Kaplan-Meier

(j) SPortnoy on flchain
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(k) SPortnoy on prostateSurvival
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Figure 3: Comparisons of average survival functions with and without EM algorithm for B = 32
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