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ABSTRACT

Steering large language models (LLMs) through activation interventions has
emerged as a lightweight alternative to fine-tuning for alignment and personal-
ization. Recent work on Bi-directional Preference Optimization (BiPO) shows
that dense steering vectors can be learned directly from preference data, in
a Direct Preference Optimization (DPO) fashion, enabling control over truth-
fulness, hallucinations, and safety behaviors. However, dense steering vec-
tors often entangle multiple latent factors due to neuron multi-semanticity,
which limits their effectiveness and stability in fine-grained settings such as
cultural alignment, where closely related values and behaviors (e.g., among
Middle Eastern cultures) must be distinguished. In this paper, we propose
Yet another Policy Optimization (YaPO), a reference-free method that learns
sparse steering vectors in the latent space of a Sparse Autoencoder (SAE). By
optimizing sparse codes, YaPO produces disentangled, interpretable, and efficient
steering directions. Empirically, we show that sparse steering vectors converge
faster, achieves remarkable performance improvements, and remain more sta-
ble throughout training compared to dense counterparts. Beyond cultural align-
ment, YaPO generalizes to diverse alignment-related behaviors studied in BiPO,
including truthfulness, hallucination mitigation, and jailbreak defense. Our results
demonstrate that YaPO sparse steering provides a general recipe for efficient, sta-
ble, and fine-grained alignment of LLMs, with broad implications for controlla-
bility and domain adaptation.

1 INTRODUCTION
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Figure 1: Overview of YaPO. Unlike dense BiPO, which learns entangled steering directions di-
rectly in activation space, YaPO leverages a pretrained Sparse Autoencoder (SAE) to project activa-
tions into an interpretable sparse space. By optimizing sparse codes, YaPO learns disentangled and
robust steering vectors that improve convergence, stability, and cultural alignment, while preserving
generalization across domains.
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Large language models (LLMs) have achieved remarkable progress in generating coherent, contex-
tually appropriate, and useful text across domains. However, controlling their behavior in a fine-
grained and interpretable manner remains a central challenge for alignment and personalization.
Traditional approaches such as Reinforcement Learning from Human Feedback (RLHF) (Ziegler
et al., 2019) are effective but costly, difficult to scale, and often inflexible, while also offering little
transparency into how specific behaviors are modulated. Prompt engineering provides a lightweight
alternative but is brittle and usually less efficient compared to fine-tuning. More importantly, RLHF
lack scalability: modulating a single behavior may require updating millions of parameters or col-
lecting large amounts of preference data, with the risk of degrading performance on unrelated tasks.
These limitations have motivated growing interest in activation steering, a lightweight paradigm that
guides model outputs by directly modifying hidden activations at inference time, via steering vector
injection at specific layers without retraining or altering model weights (Turner et al., 2023).

Early work on activation steering relied on Contrastive Activation Addition (CAA) (Panickssery
et al., 2024), which computes a steering vector as the average activation difference between con-
trastive prompt pairs drawn from a behavior-specific dataset. While simple and sometimes effective,
averaging over prompts captures only a coarse approximation of the desired behavior and often
fails in complex cases, leading to misaligned or unstable steering. More recently, BiPO (Cao et al.,
2024) introduced a framework for directly learning steering vectors through a DPO-style objective,
enabling more effective control over behaviors such as truthfulness, hallucination suppression, and
refusal. This marked a step forward from static activation differences toward preference-optimized
interventions. Nonetheless, these methods rely on dense steering vectors with dimensionality equal
to that of the model’s hidden states, which introduces critical limitations. In particular, due to neuron
multi-semanticity and superposition (Elhage et al., 2022), dense vectors often entangle multiple la-
tent factors, making them unstable and less effective in fine-grained settings. Indeed, dense vectors
are opaque, offering little interpretability into the features being modulated. In parallel, Sparse Acti-
vation Steering (SAS) has emerged as a promising alternative (Bayat et al., 2025), leveraging Sparse
Autoencoders (SAEs) to decompose dense activations into a dictionary of “almost” monosemantic
features. Sparse features mitigate superposition and support interpretable interventions, enabling
finer-grained control compared to dense steering. However, SAS relies on averaged sparse activa-
tions rather than learnable sparse vectors, limiting its flexibility and effectiveness.

In this paper, we introduce Yet Another Policy Optimization (YaPO), a reference-free method that
combines the strengths of BiPO and SAS with almost no training time overhead. YaPO optimizes
sparse steering vectors directly in the latent space of a pretrained SAE using a variant of the BiPO
objective. This yields steering directions that are simultaneously sparse, interpretable, stable, and
preference-optimized. Unlike BiPO, YaPO produces disentangled steering vectors that converge
faster, remain more stable throughout training, and achieve superior performance across evaluation
metrics. Unlike SAS, YaPO learns trainable sparse interventions rather than relying on static aver-
ages. To ground our study, we focus on cultural adaptation as a case study of domain adaptation.
We meticulously curated a new dataset and benchmark spanning five class of languages and fifteen
cultural contexts, designed to expose culturally valid but divergent answers. Our experiments re-
veal that the baseline models suffer from the implicit–explicit localization gap (Veselovsky et al.,
2025), where models default to dominant cultures across clusters. While our benchmark centers on
culture, we emphasize that YaPO is a general framework for domain adaptation, applicable to other
alignment dimensions. Indeed, we show that YaPO generalizes beyond cultural alignment to tasks
explored in BiPO.

In summary, our contributions are three folds:

• We propose YaPO, the first reference-free, preference-optimized sparse steering method
that learns steering vectors in the latent space of a SAE.

• We curate a new dataset and benchmark for cultural alignment, covering five language
families and fifteen cultural contexts.

• We show that YaPO converges faster, remains more stable, and yields more interpretable
features than dense baselines, while also generalizing beyond culture to broader alignment
dimensions, thereby establishing sparse steering as a scalable recipe for fine-grained do-
main adaptation.
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2 METHOD

2.1 MOTIVATION: FROM DENSE TO SPARSE STEERING

Existing approaches extract steering vectors by directly operating in the dense activation space of
LLMs (Rimsky et al., 2023; Wang & Shu, 2023). While effective in some cases, these methods
inherit the multi-semantic entanglement of neurons: individual dense features often conflate multiple
latent factors (Elhage et al., 2022), leading to noisy and unstable control signals. As a result, vectors
obtained from contrastive prompt pairs can misalign with actual generation behaviors, especially in
alignment-critical tasks.

To address this, we leverage SAEs, which have recently been shown to disentangle latent concepts
in LLM activations into sparse, interpretable features (Bayat et al., 2025; Lieberum et al., 2024). By
mapping activations into this space basis, steering vectors can be optimized along dimensions that
correspond more cleanly to relevant semantic factors, improving both precision and interpretability.

2.2 PREFERENCE-OPTIMIZED STEERING IN SPARSE SPACE

Let AL(x) denote the hidden activations of the transformer at layer L for input x. Let also πL+1

denote the upper part of the transformer (from layer L + 1 to output). BiPO (Cao et al., 2024)
learns a steering vector v ∈ Rkd in the dense activation space of dimension kd using the following
bi-directional preference optimization objective

min
v

E d∼U{−1,1}
(x,yw,yl)∼D

[
log σ

(
d β log πL+1(yw|AL(x)+dv)

πL+1(yw|AL(x)) − d β log πL+1(yl|AL(x)+dv)
πL+1(yl|AL(x))

)]
, (1)

where yw and yl are respectively the preferred and dispreferred responses which are jointly drawn
with the prompt x from the preference datasetD, σ is the logistic function, β ≥ 0 a deviation control
parameter, and d ∈ {−1, 1} a uniformly random coefficient enforcing bi-directionality. At inference
time, the learned steering vector v is injected to the hidden state to cause a perturbation towards the
desired steering behavior as follows

AL(x) = AL(x) + d · λ · v, ∀d ∈ {−1, 1} (2)

with d fixed to either -1 or 1 (negative or positive steering) and λ being a multiplicative factor that
controlling the strength of steering.

In contrast, with YaPO, we introduce a sparse transformation function Φ that steers activations
through an SAE as follows:

Φ(AL(x), λ, d, v) = Dec
(
ReLU(Enc(AL(x)) + d · λ · v)

)︸ ︷︷ ︸
steered reconstruction

+
(
AL(x)− Dec(Enc(AL(x)))

)
︸ ︷︷ ︸

residual correction

,

(3)
where Enc and Dec are the encoder and decoder of a pretrained SAE, and v ∈ Rks is the learnable
steering vector in sparse space of dimension ks ≫ kd. To correct for SAE reconstruction error, we
add a residual correction term ensuring consistency with the original hidden state, see equation 3.
The rational behind applying ReLU function is to enforce non-negativity in sparse codes (Bayat
et al., 2025). We train steering vectors to increase the likelihood of preferred responses yw while
decreasing that of dispreferred responses yl. The resulting optimization objective is:

min
v

E d∼U{−1,1}
(x,yw,yl)∼D

[
log σ

(
d β log πL+1(yw|Φ(AL(x),λ,d,v))

πL+1(yw|AL(x)) − d β log πL+1(yl|Φ(AL(x),λ,d,v))
πL+1(yl|AL(x))

)]
. (4)

With d = 1, the objective increases the relative probability of yw over yl; with d = −1, it enforces
the reverse. This symmetric training sharpens the vector’s alignment with the behavioral axis of
interest (positive or negative steering).

During optimization, we detach gradients through the SAE parameters (which along with the LLM
parameter remain frozen) and only update v. This setup enables v to live in a disentangled basis,
while the decoder projects it back to the model’s hidden space. We summarize the overall optimiza-
tion procedure in Algorithm 1.

3
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Algorithm 1 YaPO: Yet another Policy Optimization

1: Input: LLM π, preference datasetD = {(xi, yiw, y
i
l)}ni=1, batch size B, layer AL, SAE encoder

Enc, decoder Dec, learning rate η, temperature β, epochs N
2: Output: Optimized steering vector v∗
3: Initialize v0 ∈ Rks with zeros
4: for e = 0 to N − 1 do
5: Sample minibatch De := {(xi, yiw, y

i
l)}Bi=1 ∼ D

6: Sample directional coefficient d ∼ U{−1, 1}
7: for each (xi, yiw, y

i
l) ∈ De do

8: hi ← AL(x
i)

9: si ← Enc(hi)
10: s̃i ← ReLU(si + dvs)

11: h̃i ← Dec(s̃i); ĥi ← Dec(Enc(hi))

12: h′ i ← h̃i + (hi − ĥi)
13: end for

14: L(ve, d, π,De)← −
1

B

B∑
i=1

log σ
(
dβ log

πL+1(y
i
w|h′ i)

πL+1(yi
w|hi) − dβ log

πL+1(y
i
l |h

′ i)

πL+1(yi
l |hi)

)
15: Update ve+1 ← AdamW(ve,∇veL, η)
16: end for
17: return v∗ ← vN−1

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Target LLM. We conduct all experiments on Gemma-2-2B (Team et al., 2024), a lightweight yet
efficient model. This choice is further motivated by the availability of pretrained Gemma-Scope
SAEs (Lieberum et al., 2024), which are trained directly on Gemma-2 hidden activations and enable
sparse steering without additional pretraining of the SAEs.

Tasks. For readability, we focus on cultural adaptation, followed by a generalization study on other
alignment tasks as studied in (Cao et al., 2024). For cultural adaptation, we select the steering
layer via activation patching, see Appendix B. Empirically, we find that layer 15 gives the best
performance. Training details and hyperparameter settings are reported in Appendix A.

Dataset. We train and evaluate on a high-quality cultural dataset meticulously curated and designed
to probe fine-grained cultural knowledge across multiple countries. The dataset curation process
details are differed to Appendix D. We consider three scenarios:

• Localized prompts: inputs explicitly indicate the country (e.g., “I am from Morocco, ...
question in Moroccan ...”),

• Non-localized prompts: inputs omit explicit country references, requiring the model to infer
implicitly from language or phrasing, and

• Mixed setting: a concatenation of both of the above dataset of prompts.

This design allows us to measure absolute cultural alignment as well as the explicit–implicit local-
ization gap, defined as the performance drop when moving from localized to non-localized prompts.
Definition 1 (Performance–Normalized Localization Gap (PNLG)). Let xloc and xnonloc be a lo-
calized and its corresponding non–localized prompt, and let y∗ be the culturally correct answer. For
a model π, define the per-instance correctness scores

ploc = Sπ(xloc, y
∗), pnon = Sπ(xnonloc, y

∗),

where Sπ(x, y
∗) ≥ 0 indicates whether the model output matches the correct answer. In the

multiple-choice questions setting, Sπ is the accuracy and thus is 1 if the predicted option equals
y∗, and 0 otherwise. In the open-ended generation setting, Sπ is a score determined by an external
LLM judge.

4
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Figure 2: Localized (a) and non-localized (b) training and evaluation loss comparison between BiPO
and YaPO for Egypt (a) and Nepal (b).

Let p̄ = 1
2 (ploc + pnon). The performance–normalized localization gap is:

PNLGα(π) = E(xloc,xnonloc,y∗)∼D

[
ploc − pnon
p̄α + ε

]
, (5)

with ε > 0 arbitrarily small for numerical stability and α ∈ [0, 1] controlling the strength of the
normalization.
Definition 2 (Robust Cultural Accuracy (RCA)). Using the same notation, the robust cultural accu-
racy is the harmonic mean of localized and non–localized accuracies:

RCA(π) = E(xloc,xnonloc,y∗)∼D

[
2 ploc pnon

ploc + pnon + ε

]
. (6)

with ε > 0 arbitrarily small for numerical stability.

Design choice of metrics. A raw localization gap ploc − pnon can be misleading: a weak model
may display a small gap simply because both accuracies are near zero. PNLG corrects for this
by normalizing the gap with the mean performance p̄, so models with trivially low accuracy are
penalized. RCA complements this by rewarding methods that are both accurate and balanced across
localized and non–localized prompts. Together, PNLG and RCA provide a more faithful evaluation
of cultural alignment than raw gap alone.
Remark 1. Different values of α control the strength of the normalization:

• α = 0: reduces to the raw gap ploc − pnon, without any performance normalization.

• α = 0.5: applies a moderate normalization, balancing sensitivity to both the gap and the
average performance.

• α = 1: normalizes by the mean performance p̄, strongly penalizing models that show small
gaps only because both localized and non-localized accuracies are very low (our default
choice).

Baselines. We benchmark the performances of YaPO against two baselines:

1. No steering: the original Gemma-2-2B model without any intervention.
2. BiPO (Cao et al., 2024): which optimizes dense steering vectors directly in the residual

stream via bi-directional preference optimization.

These baselines allow us to disentangle the contributions of sparse representations and preference
optimization in improving cultural alignment.

3.2 TRAINING DYNAMICS ANALYSIS

We begin by comparing the training dynamics of YaPO and BiPO. Empirically, we find that the same
behavior occur for all countries and scenarios. Thus, for conciseness matters, we report training and
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evaluation loss logs for “Egypt” and “Nepal” under both the “localized” and “non-localized” cultural
adaptation settings. Figures 2a–2b show training and evaluation loss over optimization steps for both
methods (YaPO and BiPO).

The contrast is striking: YaPO converges an order of magnitude faster, with loss consistently
dropping below 0.1 in under than 150 steps in both scenarios, whereas BiPO remains above 0.3 even
after 600 steps. This rapid convergence stems from and underscores the advantage of operating in
the sparse SAE latent space, where disentangled features yield cleaner gradients and more stable
optimization. Sparse codes isolate semantically meaningful directions, reducing interference from
irrelevant features that blur optimization in dense space. In contrast, BiPO remains tied to the dense
residual space, where multi-semanticity and superposition entangle behavioral factors, hindering
convergence, stability, and interpretability, particularly in tasks that require disentangling closely
related features.

4 EVALUATION

We evaluate YaPO againt BiPO and the baseline model without steering on our curated multilingual
cultural adaptation benchmark using both multiple-choice questions (MCQs) and open-ended gen-
eration (OG). To assess absolute alignment as well as robustness to the explicit–implicit localization
gap, we consider the three settings: localized, non-localized, and mixed prompts. MCQ performance
is measured by accuracy1, while OG responses are scored by an external LLM judge for consistency
with the gold answer (see Appendix ?? for the evaluation prompt).

4.1 MULTIPLE-CHOICE QUESTIONS

Table 1 summarizes MCQ results by language and country.

Quantitative analysis. Across all languages and settings, YaPO consistently surpasses BiPO and
the baseline model. Country-level peaks include Nepal at 70.4% (YaPO), 44.9% (BiPO) in local-
ized prompts (+26.7 over baseline) and 68.2% (YaPO), 40.7% (BiPO) in non-localized (+30.7%
over baseline), demonstrating that sparse steering vectors excel even under implicit cultural cues. In
particular, we find that non-localized prompts benefit the most, confirming that sparse preference-
optimized vectors generalize better under implicit cues, whereas BiPO often collapses by entangling
neighboring cultural features. Additionally, we observe that the performance improvement is stable
and consistent throughout the epochs for YaPO while BiPO see Figure 5. In general, we also ob-
serve that the strongest improvements occur in the highest-resource language of each group, where
pretraining exposure is richer and steering at inference time suffices to align outputs.

Qualitative analysis. Training dynamics analysis in Section 3.2 showed that YaPO stabilizes
rapidly. We observe this at inference time on the test data. In the MCQ setting, once the correct
answer is identified, it remains consistent across epochs with only minor token-level variations,
whereas BiPO frequently overwrites correct predictions and occasionally shifts to an incorrect lan-
guage. In the open-ended setting, BiPO exhibits substantial drift in generated outputs across epochs,
while YaPO remains comparatively stable. This stability underlines YaPO’s advantage in benefiting
from robust and interpretable steering.

4.2 OPEN-ENDED GENERATION

Table 2 summarizes OG results by language and country.

Quantitative analysis. We observe consistent improvements from YaPO over both baseline and
BiPO in most settings. In localized prompts, YaPO yields steady gains (e.g., +0.40 in English and
+0.81 in Hindi on average), with the largest improvements again concentrated in lower-resource
languages such as Hindi and Arabic. Under non-localized prompts, YaPO provides further ad-
vantages, especially in Spanish (+0.53) and Hindi (+0.19), confirming its robustness when cul-
tural cues are implicit. While BiPO occasionally achieves higher scores in isolated cases (e.g.,

1The ground-truth answer is annotated using a \boxed{k} tag, where k denotes the index of the correct
choice.
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Table 1: Multiple-Choice Questions Performance by Language and Country across settings.

Localized Non-localized Both

Language Country Baseline BiPO YaPO (ours) Baseline BiPO YaPO (ours) Baseline BiPO YaPO (ours)

English
UK 36.4% 36.8% (+0.4%) 49.1% (+12.7%) 23.2% 30.3% (+7.1%) 39.1% (+15.9%) 29.0% 33.8% (+4.8%) 43.6% (+14.6%)

USA 45.5% 51.9% (+6.4%) 59.8% (+14.3%) 40.2% 45.9% (+5.7%) 54.4% (+14.2%) 44.7% 45.2% (+0.5%) 57.5% (+12.8%)

Australia 48.2% 51.1% (+2.9%) 59.8% (+11.6%) 23.8% 31.1% (+7.3%) 38.8% (+15.0%) 33.3% 37.9% (+4.6%) 50.2% (+16.9%)

Average 43.4% 46.6% (+3.2%) 56.2% (+12.9%) 29.1% 35.8% (+6.7%) 44.1% (+15.0%) 35.7% 39.0% (+3.3%) 50.4% (+14.7%)

Spanish
Bolivia 22.8% 29.4% (+6.6%) 42.1% (+19.3%) 14.5% 17.4% (+2.9%) 24.6% (+10.1%) 18.5% 25.3% (+6.8%) 35.5% (+17.0%)

Mexico 24.4% 22.5% (–1.9%) 35.2% (+10.8%) 13.3% 18.4% (+5.1%) 27.2% (+13.9%) 18.6% 21.2% (+2.6%) 30.0% (+11.4%)

Spain 46.5% 50.8% (+4.3%) 61.6% (+15.1%) 31.8% 35.1% (+3.3%) 43.5% (+11.7%) 37.3% 41.1% (+3.8%) 52.3% (+15.0%)

Average 31.2% 34.2% (+3.0%) 46.3% (+15.1%) 19.9% 23.6% (+3.7%) 31.8% (+11.9%) 24.8% 29.2% (+4.4%) 39.3% (+14.5%)

Portuguese
Brazil 23.4% 27.9% (+4.5%) 41.6% (+18.2%) 17.7% 22.2% (+4.5%) 34.8% (+17.1%) 19.9% 27.3% (+7.4%) 39.1% (+19.2%)

Mozambique 21.8% 28.0% (+6.2%) 37.2% (+15.4%) 19.3% 25.7% (+6.4%) 27.5% (+8.2%) 20.2% 25.0% (+4.8%) 32.1% (+11.9%)

Portugal 33.5% 37.6% (+4.1%) 53.2% (+19.7%) 28.7% 35.2% (+6.5%) 52.3% (+23.6%) 32.2% 34.5% (+2.3%) 54.0% (+21.8%)

Average 26.2% 31.2% (+5.0%) 44.0% (+17.8%) 21.9% 27.7% (+5.8%) 38.2% (+16.3%) 24.1% 28.9% (+4.8%) 41.7% (+17.6%)

Arabic

Egypt 43.1% 45.1% (+2.0%) 47.7% (+4.6%) 36.0% 39.8% (+3.8%) 43.6% (+7.6%) 36.1% 42.2% (+6.1%) 50.2% (+14.1%)

KSA 16.1% 19.9% (+3.8%) 20.2% (+4.1%) 16.7% 18.9% (+2.2%) 19.2% (+2.5%) 17.1% 19.5% (+2.4%) 20.9% (+3.8%)

Levantine 15.0% 16.9% (+1.9%) 16.9% (+1.9%) 10.3% 11.4% (+1.1%) 13.1% (+2.8%) 12.4% 14.6% (+2.2%) 15.3% (+2.9%)

Morocco 12.6% 13.6% (+1.0%) 14.0% (+1.4%) 12.6% 13.6% (+1.0%) 14.0% (+1.4%) 11.6% 13.8% (+2.2%) 13.6% (+2.0%)

Average 21.7% 23.9% (+2.2%) 24.7% (+3.0%) 21.0% 23.4% (+2.4%) 22.5% (+3.5%) 19.3% 22.5% (+3.2%) 25.0% (+5.7%)

Hindi India 21.6% 23.4% (+1.8%) 41.1% (+19.5%) 22.2% 26.1% (+3.9%) 39.9% (+17.7%) 20.3% 22.4% (+2.1%) 42.9% (+22.6%)

Nepal 43.7% 44.9% (+1.2%) 70.4% (+26.7%) 37.0% 40.7% (+3.7%) 68.2% (+31.2%) 41.6% 42.1% (+0.5%) 70.6% (+29.0%)

Average 32.7% 34.2% (+1.5%) 55.8% (+23.1%) 29.6% 33.4% (+3.8%) 54.1% (+24.5%) 31.0% 32.3% (+1.3%) 56.8% (+25.8%)

Portuguese–Mozambique), these improvements are unstable and sometimes degrade overall perfor-
mance (–3.83 localized, –0.35 both). On average, YaPO achieves the best trade-off across all eval-
uation modes, reaching 6.01 in localized, 0.61 in non-localized, and 1.16 in the combined setting.
Qualitative analysis. Similar to the behavior observed in MCQs.

Table 2: Open-Ended Performance by Language and Country across settings.

Localized Non-localized Both

Language Country Baseline BiPO YaPO (ours) Baseline BiPO YaPO (ours) Baseline BiPO YaPO (ours)

English
UK 6.39 6.54 (+0.15) 6.63 (+0.24) 0.83 1.41 (+0.58) 1.48 (+0.65) 0.83 0.98 (+0.15) 0.95 (+0.12)

USA 6.78 7.14 (+0.36) 7.20 (+0.42) 0.59 1.30 (+0.71) 1.90 (+1.31) 0.66 1.56 (+0.90) 1.89 (+1.23)

Australia 6.78 7.10 (+0.32) 7.32 (+0.54) 0.68 1.44 (+0.76) 1.95 (+1.27) 1.93 2.71 (+0.78) 2.31 (+0.38)

Average 6.65 6.93 (+0.28) 7.05 (+0.40) 0.70 1.38 (+0.68) 1.78 (+1.08) 1.14 1.75 (+0.61) 1.72 (+0.58)

Spanish
Spain 6.68 6.79 (+0.11) 6.77 (+0.09) 2.76 2.80 (+0.04) 2.99 (+0.23) 2.79 3.28 (+0.49) 2.96 (+0.17)

Mexico 6.67 6.69 (+0.02) 6.94 (+0.27) 2.38 2.98 (+0.60) 3.04 (+0.66) 2.38 3.04 (+0.66) 2.98 (+0.60)

Bolivia 6.57 6.65 (+0.08) 6.74 (+0.17) 1.86 2.14 (+0.28) 2.26 (+0.40) 1.86 2.26 (+0.40) 2.14 (+0.28)

Average 6.64 6.71 (+0.07) 6.82 (+0.18) 2.33 2.64 (+0.31) 2.76 (+0.43) 2.34 2.86 (+0.52) 2.69 (+0.35)

Portuguese
Brazil 6.61 6.67 (+0.06) 6.70 (+0.09) 0.76 0.80 (+0.04) 0.79 (+0.03) 2.70 2.65 (–0.05) 2.90 (+0.20)

Mozambique 6.36 6.47 (+0.11) 6.44 (+0.08) 0.36 0.65 (+0.29) 0.52 (+0.16) 2.98 2.63 (–0.35) 2.78 (+0.20)

Portugal 6.49 6.60 (+0.11) 6.66 (+0.17) 1.30 1.70 (+0.40) 1.53 (+0.23) 0.47 0.60 (+0.13) 0.60 (+0.13)

Average 6.49 6.58 (+0.09) 6.60 (+0.11) 0.81 1.05 (+0.24) 1.11 (+0.30) 2.05 2.29 (+0.24) 2.43 (+0.38)

Arabic

Egypt 5.08 5.47 (+0.39) 5.11 (+0.03) 0.73 1.00 (+0.27) 1.08 (+0.35) 1.76 2.08 (+0.32) 1.97 (+0.21)

KSA 3.95 4.22 (+0.27) 5.34 (+1.39) 0.96 1.10 (+0.14) 1.37 (+0.41) 0.44 0.46 (+0.02) 0.61 (+0.17)

Levantine 3.85 3.90 (+0.05) 4.80 (+0.95) 0.21 0.42 (+0.21) 0.56 (+0.35) 0.78 0.79 (+0.01) 1.16 (+0.38)

Morocco 3.48 3.46 (–0.02) 4.18 (+0.70) 0.65 0.77 (+0.12) 0.86 (+0.21) 0.58 0.61 (+0.03) 0.74 (+0.16)

Average 4.09 4.26 (+0.17) 4.86 (+0.77) 0.64 0.82 (+0.19) 0.97 (+0.33) 0.89 0.99 (+0.10) 1.12 (+0.23)

Hindi India 5.29 5.55 (+0.26) 6.11 (+0.82) 0.11 0.39 (+0.28) 0.43 (+0.32) 0.58 1.03 (+0.45) 0.93 (+0.35)

Nepal 5.11 5.25 (+0.14) 5.90 (+0.79) 0.73 0.75 (+0.02) 0.79 (+0.06) 1.07 1.25 (+0.18) 1.38 (+0.31)

Average 5.20 5.40 (+0.20) 6.01 (+0.81) 0.42 0.57 (+0.15) 0.61 (+0.19) 0.83 1.14 (+0.32) 1.16 (+0.33)
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4.3 EXPLICIT–IMPLICIT LOCALIZATION GAP

Table 3 reports RCA and PNLG. We recall that RCA (eq.6) is the harmonic mean of localized
and non-localized accuracies, thus rewarding models that are both accurate and balanced across
settings. High RCA therefore indicates robust cultural competence rather than overfitting to explicit
prompts. In contrast, PNLG (eq.5) measures the relative difference between localized and non-
localized performance, normalized by their average; lower PNLG implies a smaller explicit–implicit
localization gap.

Overall, YaPO achieves the best trade-off: it substantially increases RCA (41.2%, +14.5% over
baseline) while also reducing PNLG (0.184, –27.3% over baseline). This shows that YaPO not only
improves absolute cultural accuracy but also yields more consistent behavior across prompt types,
whereas BiPO tends to reduce the gap without comparable gains in robustness.

Table 3: RCA and PNLG Analysis by Language for MCQ and Open-Ended Tasks

Language
RCA ↑ (Higher is better) PNLG ↓ (Lower is better)

MCQ (%) Open-Ended (0-10 scale) MCQ Open-Ended
Base BiPO YaPO Base BiPO YaPO Base BiPO YaPO Base BiPO YaPO

Arabic 20.1 22.2 (↑10.4%) 23.5 (↑16.9%) 1.08 1.36 (↑25.9%) 1.60 (↑48.1%) 0.129 0.141 (↑9.3%) 0.098 (↓24.0%) 1.470 1.359 (↓7.6%) 1.346 (↓8.4%)

English 34.3 40.2 (↑17.2%) 49.2 (↑43.4%) 1.26 2.30 (↑82.5%) 2.84 (↑125.4%) 0.415 0.268 (↓35.4%) 0.249 (↓40.0%) 1.618 1.333 (↓17.6%) 1.198 (↓26.0%)

Hindi 31.0 33.7 (↑8.7%) 54.9 (↑77.1%) 0.75 1.02 (↑36.0%) 1.10 (↑46.7%) 0.069 -0.005 (↓107.2%) 0.031 (↓55.1%) 1.709 1.619 (↓5.3%) 1.632 (↓4.5%)

Portuguese 23.8 29.3 (↑23.1%) 40.8 (↑71.4%) 1.40 1.77 (↑26.4%) 1.62 (↑15.7%) 0.184 0.126 (↓31.5%) 0.165 (↓10.3%) 1.569 1.462 (↓6.8%) 1.511 (↓3.7%)

Spanish 24.2 27.9 (↑15.3%) 37.6 (↑55.4%) 3.44 3.78 (↑9.9%) 3.92 (↑14.0%) 0.470 0.360 (↓23.4%) 0.375 (↓20.2%) 0.965 0.875 (↓9.3%) 0.851 (↓11.8%)

Overall 26.7 30.7 (↑15.0%) 41.2 (↑54.3%) 1.59 2.05 (↑28.9%) 2.22 (↑39.6%) 0.253 0.178 (↓29.6%) 0.184 (↓27.3%) 1.466 1.330 (↓9.3%) 1.308 (↓10.8%)

4.4 GENERALIZATION TO OTHER DOMAINS

To assess whether cultural steering vectors specialize too narrowly, we evaluate them on BiPO’s
benchmarks. On the hallucination task, the baseline model reaches a score of 1.580, while BiPO
slightly underperforms at 1.575. In contrast, YaPO achieves a score of 1.680, clearly outperforming
both. This demonstrates that learning in sparse space not only improves cultural alignment but also
generalizes to broader alignment dimensions such as hallucination reduction.

5 RELATED WORKS

Alignment and controllability. RLHF (Christiano et al., 2017; Ziegler et al., 2019; Stiennon
et al., 2020; Ouyang et al., 2022) has become the standard approach to align LLMs, training a
reward model on human preference data and fine-tuning with PPO (Schulman et al., 2017) under
the Bradley-Terry framework (Bradley & Terry, 1952). Recent methods simplify this pipeline by
bypassing explicit reward modeling: DPO (Rafailov et al., 2024) directly optimizes on preference
pairs, while SLiC (Zhao et al., 2023) introduces a contrastive calibration loss with regularization
toward the SFT model. Statistical Rejection Sampling (Liu et al., 2024) unifies both objectives and
provides a tighter policy estimate.

Activation Engineering. steers LLMs by freezing weights and perturbing activations in hidden
layers. Early work showed that sentence-specific vectors could be optimized to reproduce target
text (Subramani et al., 2022), though this required costly per-sample gradient descent. Activation
addition (Turner et al., 2023) instead computes activation differences between prompt pairs, but its
performance is inconsistent. CAA (Rimsky et al., 2023) averages across many preference pairs,
and has been applied to steer personas and mitigate hallucinations in LLaMA-2, while Wang & Shu
(2023) extended this to free-form prompts, even demonstrating safety compromises. However, be-
cause these vectors are derived directly from prompt activations, they often fail to reflect the model’s
actual generation behavior, particularly in alignment-critical cases. Beyond MLP activations, other
approaches perturb attention heads: Li et al. (2024) shifted truth-correlated heads to improve fac-
tuality, and Liu et al. (2023) replaced demonstrations in in-context learning with latent activation
shifts. Overall, existing activation-based methods remain noisy and unstable. Recently, BiPO (Cao
et al., 2024) reframed steering as preference optimization, directly learning dense vectors with a
bi-directional DPO loss, and directly optimizes steering vectors in the activation space rather than
model weights, yielding more accurate, disentangled, and controllable representations of target be-
haviors.
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Sparse activation steering. To address superposition, Sparse Autoencoders (SAEs) (Lieberum
et al., 2024) decompose activations into high-dimensional sparse codes that approximate monose-
mantic features. Sparse Activation Steering (SAS) (Bayat et al., 2025) operationalized this for be-
havior control, building steering vectors by averaging sparse activations from contrastive datasets.
SAS achieves interpretable, compositional, and fine-grained control, while preserving general utility
under moderate steering. However, because its sparse directions are not optimized against prefer-
ences, its effectiveness remains limited compared to preference-optimized methods.

Positioning of YaPO. BiPO provides strong optimization but suffers from dense entanglement;
SAS offers interpretability but lacks optimization. YaPO unifies these lines by learning sparse,
preference-optimized steering vectors in SAE space. This yields disentangled, interpretable, and
stable steering, with improved convergence and generalization across cultural alignment, truthful-
ness, hallucination suppression, and jailbreak defense.

6 CONCLUSION

In this work, we introduced YaPO, a reference-free method that learns sparse, preference-optimized
steering vectors in the latent space of Sparse Autoencoders. Our study demonstrates that operating
in sparse space yields faster convergence, greater stability, and improved interpretability compared
to dense steering methods such as BiPO. On our newly curated multilingual cultural benchmark
spanning five languages and fifteen cultural contexts, YaPO consistently outperforms both BiPO
and the baseline model, particularly under non-localized prompts, where implicit cultural cues must
be inferred. Beyond culture, YaPO generalizes to other alignment dimensions such as hallucination
mitigation, underscoring its potential as a general recipe for efficient and fine-grained alignment.

7 LIMITATIONS

While promising, YaPO also comes with certain limitations. First, our evaluation is restricted to
Gemma-2-2B; although we also observe the same trend with Gemma-2-9B in training (details
omitted for brevity) further work is required to test whether the observed gains scale to larger mod-
els or transfer across architectures. Second, our generalization study was limited in scope: although
we reported improvements on hallucination, other alignment dimensions such as truthfulness and
jailbreak resistance were not explored in depth. Finally, while sparse vectors improve interpretabil-
ity, a systematic analysis of what individual features encode was beyond the scope of this work,
though this can be done via encoding BiPO’s dense steering vector and computing the difference
with YaPO’s steering vector, and looking at the features misalignment.

8 LLM USAGE

We use LLMs solely to polish writing and clarify ideas, keeping all scientific reasoning human-
driven. The model acts only as a stylistic assistant, enhancing readability without contributing con-
tent.
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A TRAINING DETAILS

We summarize the training configuration and hyperparameters in Table 4.
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Table 4: Training configuration and hyperparameters.

Hardware Single node with 8 × AMD MI210 GPUs

Epochs 20
Batch size 4 (gradient accumulation = 1)
Optimizer AdamW (β1 = 0.9, β2 = 0.999) with weight decay of 0.05
Learning rate 5 × 10−4

LR scheduler Cosine decay with 100 warmup steps
Max prompt length 512 tokens
Max new tokens 2048

SAE layer 15
SAE vector size 65k
Average index (layer 15) 68

B LAYER DISCOVERY

We employ activation patching (Ghandeharioun et al., 2024; Dumas et al., 2024; Vig et al., 2020)
to identify which layers of the LLM contribute most strongly to cultural localization. In our setting,
the slocalized prompt xlocalized is the localized version of the input (e.g., specifying the country or
culture), whereas the non-localized prompt xnonloc is the -localized variant (e.g., without cultural
specification).

Due to causal masking in the attention layers, the latent representation of the i-th input token after
the j-th transformer block depends on all preceding tokens:

h
(j)
i = h

(j)
i (x1, . . . , xi).

For clarity, we omit this explicit dependence when clear from context and use the shorthand notation
h(j)(x)i.

We first perform a forward pass on the localized (source) prompt and extract its latent representation
h
(j)
i (xlocalized) at each layer. During the forward pass on the non-localized (target) prompt, we patch

its latent representation by overwriting h
(j)
i (xnonloc) with the localized one, producing a perturbed

forward pass P̃ (xnonloc). By comparing P̃ (xnonloc) to the original prediction P (xnonloc), we quantify
how much information from each layer of the localized prompt contributes to aligning the model’s
behavior with the culturally appropriate response.

Concretely, for our analysis we focus on the latent representation at the last token position tlocalized
in the localized prompt, i.e.,

h
(j)
tlocalized

(xlocalized),

and patch this into the corresponding position in the target forward pass. Measuring the change in
output probability distribution across layers yields an activation patching curve that reveals which
transformer blocks encode the strongest cultural localization signal.and we do this for two countries
for specific language so we choose two countries Egypt and Morocco and the data was just question
that are loclaized and non localized and then we have for the answers the for egypt the egyptian
answer and for Morocco we have moroccon answer and western answer and then we apply the
activation batching on both as we defined in the above so that we can find the layers, for Gemma
models for both Gemma-2 9b, and Gemma-2 2b, and as we see in the figure 2

C MORE EVALUATIONS

Figure 5 summarizes the aggregated evaluation results. Across all languages and cultural contexts,
YaPO consistently achieves higher accuracy and lower variance compared to BiPO. This demon-
strates not only improved performance but also greater training stability, highlighting the advantage
of learning sparse steering vectors in the SAE latent space.
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Figure 3: Activation patching analysis on Gemma-2-2B. We intervene across layers to trace cultural
features in model representations. The plots show the probability of producing culturally specific
answers (Egypt, Morocco) versus Western defaults as activations are patched. We empirically iden-
tify layer 15 as the most culturally relevant layer.

Table 5: PNLG and RCA Analysis by Country for MCQ and Open-Ended Tasks

Language Country Task PNLG ↓ (Lower is better) RCA ↑ (Higher is better)
Baseline BiPO YaPO (ours) Baseline BiPO YaPO (ours)

English

UK MCQ 0.443 0.194 (↓56.2%) 0.227 (↓48.8%) 28.3% 33.2% (↑4.9%) 43.5% (↑15.2%)

Open 1.540 1.291 (↓16.2%) 1.270 (↓17.5%) 14.7% 23.2% (↑8.5%) 24.2% (↑9.5%)

USA MCQ 0.124 0.123 (↓0.8%) 0.095 (↓23.4%) 42.7% 48.7% (↑6.0%) 57.0% (↑14.3%)

Open 1.680 1.384 (↓17.6%) 1.165 (↓30.7%) 10.9% 22.0% (↑11.1%) 30.1% (↑19.2%)

Australia MCQ 0.678 0.487 (↓28.2%) 0.426 (↓37.2%) 31.9% 38.7% (↑6.8%) 47.1% (↑15.2%)

Open 1.635 1.326 (↓18.9%) 1.159 (↓29.1%) 12.4% 23.9% (↑11.5%) 30.8% (↑18.4%)

Spanish

Spain MCQ 0.375 0.366 (↓2.4%) 0.344 (↓8.3%) 37.8% 41.5% (↑3.7%) 51.0% (↑13.2%)

Open 0.831 0.832 (↑0.1%) 0.775 (↓6.7%) 39.1% 39.6% (↑0.5%) 41.5% (↑2.4%)

Mexico MCQ 0.589 0.200 (↓66.0%) 0.256 (↓56.5%) 17.2% 20.2% (↑3.0%) 30.7% (↑13.5%)

Open 0.948 0.767 (↓19.1%) 0.782 (↓17.5%) 35.1% 41.2% (↑6.1%) 42.3% (↑7.2%)

Bolivia MCQ 0.445 0.513 (↑15.3%) 0.525 (↑18.0%) 17.7% 21.9% (↑4.2%) 31.1% (↑13.4%)

Open 1.117 1.026 (↓8.1%) 0.996 (↓10.8%) 29.0% 32.4% (↑3.4%) 33.8% (↑4.8%)

Portuguese

Brazil MCQ 0.277 0.228 (↓17.7%) 0.178 (↓35.7%) 20.2% 24.7% (↑4.5%) 37.9% (↑17.7%)

Open 1.588 1.572 (↓1.0%) 1.578 (↓0.6%) 13.6% 14.3% (↑0.7%) 14.1% (↑0.5%)

Mozambique MCQ 0.122 0.086 (↓29.5%) 0.300 (↑145.9%) 20.5% 26.8% (↑6.3%) 31.6% (↑11.1%)

Open 1.786 1.635 (↓8.5%) 1.701 (↓4.8%) 6.8% 11.8% (↑5.0%) 9.6% (↑2.8%)

Portugal MCQ 0.154 0.066 (↓57.1%) 0.017 (↓89.0%) 30.9% 36.4% (↑5.5%) 52.7% (↑21.8%)

Open 1.332 1.181 (↓11.3%) 1.253 (↓5.9%) 21.7% 27.0% (↑5.3%) 24.9% (↑3.2%)

Arabic

Egypt MCQ 0.180 0.125 (↓30.6%) 0.090 (↓50.0%) 39.2% 42.3% (↑3.1%) 45.6% (↑6.4%)

Open 1.497 1.382 (↓7.7%) 1.302 (↓13.0%) 12.8% 16.9% (↑4.1%) 17.8% (↑5.0%)

KSA MCQ -0.037 0.052 (↑240.5%) 0.051 (↑237.8%) 16.4% 19.4% (↑3.0%) 19.7% (↑3.3%)

Open 1.218 1.173 (↓3.7%) 1.183 (↓2.9%) 15.4% 17.5% (↑2.1%) 21.8% (↑6.4%)

Levantine MCQ 0.372 0.389 (↑4.6%) 0.253 (↓32.0%) 12.2% 13.6% (↑1.4%) 14.8% (↑2.6%)

Open 1.793 1.611 (↓10.2%) 1.582 (↓11.8%) 4.0% 7.6% (↑3.6%) 10.0% (↑6.0%)

Morocco MCQ 0.000 0.000 (0.0%) 0.000 (0.0%) 12.6% 13.6% (↑1.0%) 14.0% (↑1.4%)

Open 1.370 1.272 (↓7.2%) 1.317 (↓3.9%) 11.0% 12.6% (↑1.6%) 14.3% (↑3.3%)

Hindi
India MCQ -0.027 -0.109 (↓303.7%) 0.030 (↑211.1%) 21.9% 24.7% (↑2.8%) 40.5% (↑18.6%)

Open 1.919 1.737 (↓9.5%) 1.737 (↓9.5%) 2.2% 7.3% (↑5.1%) 8.0% (↑5.8%)

Nepal MCQ 0.166 0.098 (↓41.0%) 0.032 (↓80.7%) 40.1% 42.7% (↑2.6%) 69.3% (↑29.2%)

Open 1.500 1.500 (0.0%) 1.528 (↑1.9%) 12.8% 13.1% (↑0.3%) 13.9% (↑1.1%)

D DATASET

Our dataset is explicitly designed to make these failures measurable by stress-testing implicit vs.
explicit cultural localization under within-language control. We cover 52 lived-experience topics
(Table 6) meals, routines, family relations, greetings and etiquette, financial habits, ceremonies and
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Evaluate this model response (Score 1–10) based on Language Quality, Factual Accuracy, Cultural
Appropriateness, and Content Quality.

1) Language Quality (0–2):
   - 0: Nonsensical text (made-up words, broken grammar, gibberish)

   - 1: Poor language with many errors
   - 2: Correct, natural language

2) Factual Accuracy (0–3):
   - 0: Fabricated information (fake practices/customs that don't exist)

   - 1: Mix of correct and incorrect facts
   - 2: Mostly factually correct

   - 3: Completely accurate information

3) Cultural Appropriateness (0–3):
- 0: Wrong culture or generic/Western response

   - 1: Generic response, not country-specific
   - 2: Mostly appropriate for target culture

   - 3: Perfect cultural accuracy for specific country

4) Content Quality (0–2):
   - 0: Severe issues (excessive repetition, refusal, off-topic)

   - 1: Partial answer with problems
   - 2: Complete, relevant, well-structured answer

Question: {question[:]}
Expected Answer: {ground_truth[:]}

Model Response ({response_type}): {model_response[:]}

CRITICAL CHECKS
Are cultural practices authentic (not fabricated)?

 Is content non-repetitive?
 Is it culturally specific (not generic)?

 Does it align with the expected answer?

Figure 4: Evaluation prompt

mourning, holidays, childhood games, music and idioms, because these domains reveal norms rather
than trivia. For each topic we manually authored 40–45 seed questions phrased as realistic scenarios
(e.g., weekend breakfast, commute habits, hospitality customs). Every question appears in paired
form: a localized variant that names the country and a non-localized variant that omits it, forcing the
model to rely on dialect and situational cues. Each item is cast as a multiple-choice question with
one culturally valid option per country within the same language group, written in that country’s
dialect, plus a Western control option expressed in a standardized register (MSA for Arabic) to iso-
late culture from translation artifacts. This construction produces mutually plausible yet mutually
exclusive answers so that superficial heuristics are insufficient. It enables principled measurement of
the Localization Gap (accuracy shift from non-localized to localized form), Intra-language Domi-
nance Bias (systematic preference for one country in non-localized form), and Stereotype Preference
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YaPO BiPO BaseLine

Figure 5: YaPO consistently improves performance and exhibits greater stability compared to BiPO.

(gravitating toward caricatured or Western answers against human-majority ground truth). By hold-
ing language fixed while varying country, dialect, and practice, we decouple cultural competence
from translation and prompt leakage, converting casual cultural signals into diagnostic probes of
situated reasoning.

D.1 DATA CURATION PIPELINE

We built the dataset through a multi-stage pipeline (see Figure ??) that integrates generation, filter-
ing, and contrastive packaging. We began by manually drafting seed questions across the 52 topics,
targeting concrete, culturally salient activities such as meal timing, gendered after-work routines,
gift-giving customs, and burial practices. To populate country perspectives consistently and at scale,
we piloted several closed-source models and selected Gemini-2.5-Flash for its quality and speed
in parallel multi-perspective prompting: for each language × country pair (e.g., Arabic: Egypt,
KSA, Levantine, Morocco; English: USA, UK, Australia; Spanish: Bolivia, Mexico, Spain; Por-
tuguese: Brazil, Mozambique, Portugal; Hindi: India, Nepal), the model was instructed to act as a
country-specific cultural expert and answer in that country’s dialect. In the same pass we generated
a standardized Western control answer (in MSA for Arabic) to serve as a neutral reference without
introducing translation confounds.

After generation, we performed existence filtering to remove questions that do not apply to a given
culture (e.g., asking about an ingredient never used in that region). We then transformed each item
into final multiple-choice format, ensuring that each option was dialect-specific and semantically
distinct; a semantic similarity pass plus manual review removed near-duplicates to guarantee dis-
criminative answer sets. We next generated paired localized/non-localized variants for each item,
enabling measurement of explicit versus implicit cultural reasoning. Finally, we packaged MCQ
and open-ended splits, computed per-language statistics (see Table 7).

D.2 DATASET STATISTICS

The resulting dataset (Table 7) provides dense, balanced coverage across five languages and four-
teen countries, with near-uniform counts per language–country variant (≈1,372–1,607 questions per
variant) and a total of 45,354 items. Localized and non-localized forms are balanced overall (57.7%
vs. 42.3%), enabling clean estimation of the Localization Gap. The breadth across 52 topics (see
Table 6) and depth per topic (≈40–45 items) provide statistical headroom for per-topic and per-
country analyses, bias detection, and mechanistic interpretability studies such as activation patching
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and sparse-feature steering. In short, the combination of thematic coverage, dialectal specificity,
validated cultural applicability, and contrastive pairing turns everyday cultural knowledge into a rig-
orous, reproducible benchmark for evaluating and improving situated cultural adaptation of LLMs.

Table 6: Dataset Topics by Thematic Category. The dataset spans 52 topics across 5 cultural contexts
(Moroccan, Egyptian, Saudi Arabian, Levantine, and American), providing a rich lens into daily life,
norms, and practices.

Category Topics Covered Cultural Dimensions

Daily Meals & Food
Culture

• Breakfast

• Lunch

• Dinner

• Snacks

• Desserts

• Fruits

• Eating habits

Traditional dishes, meal timing, eating eti-
quette, food preferences, dietary restrictions,
communal vs. individual eating styles

Daily Routines & Activ-
ities

• Before going to work/college

• During commute

• After work/uni (men)

• After work/uni (women)

• Free time activities

• Household tasks

Gender-specific routines, time use, leisure
preferences, division of domestic labor, work-
life balance

Family & Social Rela-
tions

• Parent-child interactions

• Parent-child activities

• Grandparent-grandchild activities

• Sibling relationships

• Cousin relationships

• Colleagues (work/college)

Family hierarchy, respect protocols, intergen-
erational differences, kinship obligations, per-
sonal vs. professional boundaries

Communication & So-
cial Etiquette

• Greetings (verbal)

• Non-verbal communication

• Hospitality customs

• Punctuality

• Cleanliness habits

Greeting formulas, body language, guest
treatment protocols, perception of time, hy-
giene norms and practices

Financial & Economic
Practices

• Saving habits

• Debt and loans

• Financial discussions

• Inheritance

Attitudes toward money, saving and spending
strategies, debt perception, investment cus-
toms, inheritance rules

Ceremonies & Life
Events

• Weddings (dowry, food, venue)

• Wedding logistics and music

• Gender-specific ceremonies

• Burial and mourning (before, during, after)

Marriage rituals, dowry negotiations, celebra-
tion styles, gender segregation, death rituals,
mourning practices

Holidays & Celebra-
tions

• Religious holidays (before)

• Religious holidays (during)

• Non-religious holidays

• Gift-giving customs

Religious observances, secular celebrations,
festive preparations, gift exchange traditions,
symbolic meaning

Cultural Expression &
Recreation

• Childhood games (indoor/outdoor)

• Local songs and dances

• Musical instruments

• Idioms and proverbs

• Agricultural practices

Traditional games, folk music, dance forms,
linguistic expressions, agricultural customs,
community recreation
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Table 7: Multilingual dataset statistics (per country and language totals).

Language Country Localized Non-localized Total

English
USA 1,372 1,372 2,744
UK 1,372 1,372 2,744
Australia 1,372 1,372 2,744

Subtotal 4,116 4,116 8,232

Spanish
Bolivia 1,536 1,536 3,072
Mexico 1,535 1,535 3,070
Spain 1,536 1,536 3,072

Subtotal 4,607 4,607 9,214

Portuguese
Brazil 1,607 1,607 3,214
Mozambique 1,607 1,607 3,214
Portugal 1,606 1,606 3,212

Subtotal 4,820 4,820 9,640

Hindi India 1,550 1,550 3,100
Nepal 1,550 1,550 3,100

Subtotal 3,100 3,100 6,200

Arabic

Egypt 1,509 1,509 3,018
Saudi Arabia (KSA) 1,509 1,509 3,018
Levantine 1,508 1,508 3,016
Morocco 1,508 1,508 3,016

Subtotal 6,034 6,034 12,068

Total 22,677 22,677 45,354
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