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ABSTRACT

Adversarial examples, which are artificially crafted data intended to disrupt the
output of deep learning models, present a new round of challenges to the stability
and security of artificial intelligence technology. Unrestricted adversarial exam-
ples, obtained by modifying the semantic elements of images, have the character-
istics of being natural and semantically meaningful. However, previous methods
either significantly altered the image’s color or content, or blurred visual details
(such as text or geometric designs), making the generated adversarial examples
easily detectable by the human eye. In this paper, we propose a method to gener-
ate highly natural adversarial examples based on stable diffusion. This is achieved
by introducing adversarial loss during the image reconstruction process to perturb
cross-attention mechanism. To further enhance image quality, we introduce per-
ceptual loss into the adversarial attack process for the first time. Extensive exper-
iments and visualizations demonstrate the effectiveness of our proposed method.
Compared to the current state-of-the-art methods, our approach not only improves
the adversarial transferability by an average of 12.59−50.3% but also significantly
enhances image quality. Code will be publicly available.

1 INTRODUCTION

The development of deep learning technologies has driven advancements across various industries.
However, past research has revealed inherent limitations in deep learning models, particularly neu-
ral networks. Specifically, their performance significantly degrades when confronted with carefully
crafted adversarial samples, a phenomenon known as adversarial attacks, and the resulting special
samples are referred to as adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2014;
Moosavi-Dezfooli et al., 2016). Research on adversarial attacks and defenses offers a novel per-
spective for studying neural networks, contributing to their interpretability and robustness (Ilyas
et al., 2019; Zhang et al., 2020). Early adversarial attack methods manipulated image pixel values
based on gradient information to perturb the target model’s output (Madry et al., 2018; Su et al.,
2019). Since the magnitude of pixel perturbations was constrained by the Lp-norm, these methods
produced what are referred to as restricted adversarial examples. Although these methods enable
effective white-box attacks, their noise-like fixed patterns have made it feasible to develop targeted
defense strategies, including data preprocessing Liao et al. (2018); Xie et al. (2018); Nie et al. (2022)
and adversarial training (Tramèr et al., 2018; Shafahi et al., 2019).

In contrast to the aforementioned methods, recent approaches advocate for generating ”natural”
adversarial examples by manipulating semantic elements of images (e.g., color, texture) to produce
data that significantly reduce the confidence of deep learning models (Zhao et al., 2020; Shamsabadi
et al., 2020). This is referred to as unrestricted adversarial examples, meaning they are not subject to
Lp-norm constraints. Compared to perturbation-based examples, unrestricted adversarial examples
follow a different pattern: they exhibit high transferability without requiring meticulously designed
methods Yuan et al. (2022); Chen et al. (2024) and are more effective at bypassing defenses aimed
at Lp-norm perturbations (Chen et al., 2023). This presents new challenges for researchers focused
on model robustness and defense strategies targeting Lp-norm adversarial examples. Given that
unrestricted adversarial examples offer similar (or even greater) value than restricted examples, this
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paper focuses on the study of unrestricted adversarial examples, calling for increased attention from
researchers in this domain.

Unrestricted adversarial examples often focus on manipulating the colors of the original image. This
includes transformations of the entire image’s color space Hosseini & Poovendran (2018), dividing
the image into regions and applying different degrees of color changes Yuan et al. (2022), and using
coloring models for more flexible color editing (Bhattad et al., 2019). Subsequent research has
attempted attack methods based on texture and style transfer (Bhattad et al., 2019; Liang & Xiao,
2023). However, focusing solely on color or texture elements to some extent hinders the degree
to which adversarial examples are unrestricted. This undoubtedly weakens the effectiveness and
transferability of adversarial examples. With the rapid development of generative AI, some research
have attempted to introduce generative models into the creation of unrestricted adversarial examples.
This includes methods based on class labels Song et al. (2018); Dai et al. (2023) and content-based
methods (Chen et al., 2024; 2023). Generative model-based methods are not limited to specific color
or texture elements, allowing them to produce more diverse and effective adversarial examples.

Although intuitively, it seems reasonable that achieving high transferability comes at the cost of
altering more content in the original image, we still tried to explore in this paper: Is it possible
to get higher transferability by less cost? Specifically, we aim to achieve the following three ob-
jectives: 1) Modify a given image based on a diffusion model to produce unrestricted adversarial
examples; 2) The generated results should exhibit the characteristics of unrestricted adversarial ex-
amples, which are high transferability and effectiveness against common defense methods; 3) The
generated results should have minimal content alteration compared to the original image. Therefore,
in this paper, we propose a framework for generating unrestricted adversarial examples based on
latent diffusion model (Rombach et al., 2022). Unlike previous approaches that directly optimize la-
tent space features, we draw inspiration from recent work on controllable generation Mokady et al.
(2023); Meng et al. (2021); Kawar et al. (2023) and achieve fine-grained control over the gener-
ated results by optimizing null-text embeddings during the denoising process, thereby significantly
improving the quality of the generated examples. In conclusion, our main contributions are:

• We propose a method for generating unrestricted adversarial examples based on LDMs. Our
method requires only minimal modifications to the image content, effectively addressing the chal-
lenge that previous methods faced in balancing high transferability and image fidelity.

• We optimize the null-text embedding by introducing adversarial loss at specific denoising steps
during the image reconstruction process, which can subtly alter the unconditional generative pro-
cess and achieve inconspicuous attack.

• We incorporate perceptual loss into the generation of unrestricted adversarial examples, signifi-
cantly improving visual effect and achieving state-of-the-art image quality with higher transfer-
ability.

2 RELATED WORKS

2.1 Lp-NORM ADVERSARIAL EXAMPLES

Since the seminal work of Christian et al. Szegedy et al. (2014), there has been extensive discourse
on methods for executing white-box attacks based on the gradient information of the target model
Goodfellow et al. (2014); Madry et al. (2018); Moosavi-Dezfooli et al. (2016); Tramèr et al. (2018).
These strategies typically require the initial input of pristine samples into the target network to derive
the predicted probability distribution. Su et al. (2019) achieved adversarial objectives by modifying
a single pixel, thereby generating adversarial examples with heightened deceptive characteristics.
Carlini & Wagner (2017) introduced a C&W algorithm, which proved effective in undermining de-
fensive distillation mechanisms. To alleviate the complexity of optimization techniques, subsequent
research Xiao et al. (2018); Baluja & Fischer (2018); Jandial et al. (2019) proposed the use of neural
networks to model the transformation mapping from clean to adversarial samples, thereby enhancing
efficiency. However, Lp norm-based adversarial examples are merely numerical changes obtained
through optimization strategies. They fail to reveal which semantic features of the input data pose
blind spots for deep learning models, and they can be easily filtered out by defenses designed specif-
ically for Lp-norm perturbation.
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2.2 UNRESTRICTED ADVERSARIAL EXAMPLES

To break free from the constraints of Lp norm, some studies have attempted to solve adversarial
examples in different search spaces. Zhao et al. (2018) uses GANs to map input data to a latent
space and searches for adversarial examples near the latent features. Hosseini & Poovendran (2018)
converts the original RGB image to the HSV space, then globally modifies the H and S values while
keeping V unchanged, claiming this preserves the basic shape of the image. Alaifari et al. (2019)
proposes iteratively applying small deformations to the image plane based on a small amplitude
vector field to create adversarial examples. Bhattad et al. (2019) proposes methods for attacking
by recoloring or transferring textures of the image. Shamsabadi et al. (2020) excludes areas of
the image that are easily perceptible to humans and applies color changes based on prior intuition.
Furthermore, Yuan et al. (2022) transform clean images to adversarial variants with realistic color
distribution sampled from ADE20K dataset Zhou et al. (2019). However, the aforementioned meth-
ods all rely on carefully designed modification patterns, including color, texture, human intuition,
and specific data distributions. These constraints mean that the generated adversarial examples are
not as ”unrestricted” as their names suggest. Therefore, some studies have attempted to use gen-
erative models to achieve more flexible and diverse unrestricted adversarial attacks. Song et al.
(2018) models the class-conditional distribution on data samples by training an AC-GAN, and then
searches the latent space for samples that may cause the target classifier to fail under the given class.
Dai et al. (2023) extends this idea by introducing the latent diffusion model Rombach et al. (2022),
which generates false negative samples with better generative performance for the corresponding
class. Xue et al. (2024) utilizes the SDEdit method to purify the obtained adversarial examples in
a multi-step adversarial attack, resulting in outcomes that lie in the intersection of the support sets
of the adversarial example distribution and the real data distribution. To improve the consistency
between adversarial examples and the original images, Chen et al. (2024) maps input samples onto a
low-dimensional manifold via latent image mapping and then uses adversarial latent optimization to
guide Stable Diffusion to generate adversarial results. Chen et al. (2023) enhances adversarial trans-
ferability by disrupting the original cross-attention maps and maintains content similarity through
self-attention control and a reduced number of DDIM inversion steps. However, methods based on
Stable Diffusion typically focus on directly optimizing latent features, and the impact of optimizing
conditional inputs has yet to be thoroughly studied.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a clean image x0 with a true label y0, adversarial attacks aim to find an adversarial example
xadv that is highly similar to x0 but misleads the classifier such that its predicted output y′ is not
equal to y0. Methods based on the Lp-norm add a small perturbation δ to the original input, then
optimize the value of based on the gradient of the target classifier and restrict it within a certain
range κ to maximize the cross-entropy loss:

max
δ
Lce(F(xadv = x0 + δ), y0) s.t. ∥ δ ∥p< κ, (1)

On the other hand, unrestricted adversarial examples typically use image transformation methods to
semantically manipulate the clean image and then adjust the transformation strategy based on the
gradient of classifier, which means:

max
θ
Lce(F (xadv = G(x0, θ)), y0) (2)

where G can be color space transformation algorithms, colorization models or generative models,
and θ are parameters that can be optimized. Recent research on using diffusion models for ad-
versarial transformations of images has demonstrated strong transferability. However, the generated
images exhibit poor visual quality. Therefore, we aim to design more refined adversarial transforma-
tion strategies by controlling the generation results based on null-text embeddings instead of latent
maps.
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3.2 PERTURB LATENT FEATURE BY CROSS-ATTENTION

Latent diffusion models(LDMs) progressively denoise and generate realistic images by iteratively
predicting the noise present in the latent features at each timestep t:

ϵ̃θ(zt, t, C,∅) = w · ϵθ(zt, t, C) + (1− w) · ϵθ(zt, t,∅) (3)

where zt is latent features, C and ∅ are text embedding and null-text embedding, andw is a guidance
factor. To make the generated results adversarial, perturbations can be added to the latent features
and optimized accordingly. However, applying global perturbations to the latent features tends to
obscure the original visual details, even when starting from intermediate timesteps, as demonstrated
in previous studies (Chen et al., 2024; 2023). In fact, the textual embeddings input at each timestep
can also influence the generated results through the cross-attention mechanism.

Attention(Q,K, V ) = softmax(
QKT

√
d

) · V (4)

Q =W
(i)
Q · ϕi(zt),K =W

(i)
K · ψ(y), V =W

(i)
V · ψ(y) (5)

Here, ϕi(zt) ∈ RN×di
ϵ represents the flattened output of the UNet, and WQ, WK and WV are learn-

able projection matrices. ψ(·) is a pretrained text encoder. We influence the attention mechanism by
introducing a perturbation δ to the textual embedding so that ψ(y)→ ψ(y) + δ. Then the attention
result can be reformulated as:

Attention = softmax

(
Q(W

(i)
K · ψ(y))T +Q(W

(i)
K · δ)√

d

)
·
(
W

(i)
V · ψ(y) +W

(i)
V · δ

)
(6)

Due to the complexity of the latent feature space, directly adding perturbations may result in non-
linear amplification effects, leading to instability in the generated outputs. In contrast, applying per-
turbations to the textual embedding is more controllable, as its influence is smoothly propagated to
global features through the cross-attention mechanism, without introducing intense localized noise.

3.3 LEARNING ADVERSARIAL NULL-TEXT EMBEDDING

Perturbations to the cross-attention results can be achieved by introducing perturbations to either the
text embedding or the null-text embedding. However, since the text embedding is highly correlated
with the content of the generated image, we opted to perturb the null-text embedding instead. We
achieve this goal by utilizing DDIM inversion and null-text optimization (Mokady et al., 2023).
Given a clean image x0 and corresponding text description P , pre-trained VAE project it into a
low-dimension feature map z0 in latent space. Base on the assumption that the ordinary differential
equation (ODE) process can be reversed in the limit of small steps, DDIM inversion process can be
formulated as :

zt+1 =

√
αt+1

αt
zt +

√
αt+1(

√
1

αt+1
− 1−

√
1

αt
− 1) · ϵθ(zt, t, C) (7)

here C = ψ(P). Theoretically, after T steps of adding noise, DDIM inversion can yield an initial
noise z∗T , from which one can progressively denoise and restore the original image z0 based on
Eq.3. However, the default value of w is set to 7.5 for Stable Diffusion. This is inconsistent with
the forward process based on DDIM inversion, as Eq.7 indicates that the noise is predicted based on
the prompt C. Therefore, the null-text embeddings input at each sampling step need to be optimized
to make the network output close to the results obtained by DDIM inversion at the corresponding
steps:

min
∅t

∥ z̄t−1 − z∗t−1 ∥22, (8)
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Figure 1: The intermediate results of DDIM. We can see that in the first 20 steps, there are so many
noises in the generated result that can mislead classifier. And the accuracy of the target classifier is
really very low. This means that adding adversarial gradient to the first several steps is meaningless.

z̄t−1 = zt−1(z̄t, t,∅t, C) (9)

For simplicity zt−1(z̄t, t,∅t, C) denotes applying DDIM sampling step using z̄t under the uncondi-
tional embedding ∅t and the conditional embedding C:

zt−1(z̄t, t, C,∅t) =

√
αt−1

αt
z̄t +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· ϵ̃θ(z̄t, t, C,∅t) (10)

During the null-text optimization process, we directly introduce adversarial perturbations to the
null-text embeddings. The reason for choosing null-text embeddings over text embeddings as the
optimization target is that text embeddings significantly affect the content of the generated image,
whereas the impact of null-text embeddings is less perceptible. Specifically, we incorporate the clas-
sifier to be attacked into the null-text optimization process at the sampling step t. The optimization
objective is expressed as follows:

min
∅t

β · Lmse(z̄t−1, z
∗
t−1)− Lce(F(D(z̄t−1)), y) (11)

Here, D is the decoder of the VAE, and y is the true label of the image x0. However, null-text
optimization process usually takes 500 steps, which makes it very time-consuming. We delay the
injection of the adversarial gradient to further reduce the extent of modification to the original image.
This approach not only saves runtime but also does not affect the adversarial nature of the generated
results, because, as shown in Figure.1, when t approaches T , the generated results still contain
excessive noise, causing the classifier to naturally misclassify them. We measured the classifier’s
accuracy at different time steps and decided to add the misclassification loss at the last 10 DDIM
steps.

3.4 IMPROVING PERCEPTUAL QUALITY

Through the aforementioned process, we obtain a set of adversarial null-text embeddings {∅adv
t }Tt=1

that can control the Stable Diffusion model to generate examples that are faithful to the original im-
age while also being adversarial. However, we observed that the results obtained by this method lack
high-frequency features, specifically manifesting as a certain degree of local blurriness. We believe
this is due to the limitations of the L2 loss constraint. It is well-known that L2 loss in the latent space
is not a good measure of image fidelity; it can accurately capture low frequencies but fails to promote
high-frequency clarity. Hence, the results generated by VAE tend to be somewhat blurry. Diffusion
models mitigate the blurring effect caused by L2 loss by increasing the number of sampling steps
T , thereby reducing the difference between intermediate results at each step. However, our method
significantly modifies the output results at each step during the latter stages of DDIM sampling,
which exacerbates the negative impact of L2 loss. To address this issue, we introduce perceptual
loss Zhang et al. (2018) into the optimization objective to enhance the restoration of high-frequency
details. Feature reconstruction perceptual loss calculates the similarity between the input image x̂
and the target image x in the feature space using a network G to map both images into this space:

LG,j
feat(x̂, x) =

1

CjHjWj
∥ Gj(x̂)− Gj(x) ∥22 (12)
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Algorithm 1 Example Algorithm
1: Input: an input image z0 with label y, a corresponding text embedding C = ψ(P), a classifier
Fθ(·), DDIM steps T , null-text optimization iteration N , and adversarial start timestep tadvs .

2: Calculate latents {z∗0 , ..., z∗T } using Equation.7 over z0
3: Initialize variables
4: for t = tadvs , tadvs − 1, ..., 1 do
5: for j = 0, ..., N − 1 do
6: ∅t ← ∅t − η∇∅L(zt−1(z̄t,∅t, C), z∗t−1);
7: end for
8: Set z̄t−1 ← zt−1(z̄t,∅t, C), ∅t−1 ← ∅t;
9: end for

10: Output: The unrestricted adversarial example x̄0 = D(z̄0).

Here Gj represents the activation of the j-th layer in network G. If j is a convolutional layer then
Gj(x) will be a feature map of shape Cj × Hj × Wj . After introducing feature reconstruction
perceptual loss, the final optimization object is as follows:

L(z̄t−1, z
∗
t−1) = β · Lmse(z̄t−1, z

∗
t−1) + γ · LG

feat(D(z̄t−1), x0)− Lce(F(D(z̄t−1)), y) (13)

γ is a scaling factor used to adjust the weight of the perceptual loss. In this paper, we set γ = 0.1.
The perceptual loss is calculated based on the VGG16 model pre-trained on the ImageNet dataset.
We use the outputs of the 4-th, 9-th, 16-th, and 23-rd layers of the VGG16 network to compute
feature similarity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. Our experiments are conducted on the ImageNet-compatible Dataset (Kurakin et al.,
2018b). The dataset consists of 1,000 images from the validation set of ImageNet, and is widely
used in recent adversarial attacking research (Xie et al., 2019; Gao et al., 2020; Dong et al., 2019;
Yuan et al., 2022; Chen et al., 2024).

Attack Evaluation. We selected SAE Hosseini & Poovendran (2018), ColorFool Shamsabadi
et al. (2020), ACE Zhao et al. (2020), NCF Yuan et al. (2022), ACA Chen et al. (2024) and Dif-
fAttack Chen et al. (2023) as our comparison methods. The evaluation criterion for adversarial per-
formance is the attack success rate (ASR), which is the proportion of samples misclassified by the
target model out of all samples. The average attack success rate (Ave.ASR) is consistent with Chen
et al. (2024), which is the average attack success rate on non-surrogate models.

Models. To fully measure the performance of our method compared to other methods across var-
ious classification models, we selected models with different architectures, including convolutional
neural networks (CNNs) and Transformers, as attack targets. For CNNs, we chose ResNet-50 (RN-
50) He et al. (2016), ResNet152 (RN-152) He et al. (2016), MobileNet-v2 (MN-v2) Sandler et al.
(2018), DenseNet-161 (Dense-161) Huang et al. (2017), EfficientNet-b7 (EF-b7) Tan & Le (2019),
and Inception-v3 (Inc-v3) Szegedy et al. (2016). For Transformers, we selected ViT-Base-16 (ViT-
B) Dosovitskiy et al. (2020), MobileViT-small (MobViT-s) Sandler et al. (2018), Swin-Transformer-
Base (Swin-B) Liu et al. (2022), and Pyramid Vision Transformer (PVT-v2) Wang et al. (2022). For
a fair comparison, all models are evaluated using their respective default input sizes and normaliza-
tion coefficients in PyTorch.

Implementation Details. Our experiments are conducted on a single NVIDIA 6000 Ada GPU.
DDIM steps= 50, adversarial injection starting timestep tadvs = 10, β = 30.0, γ = 0.1. We selected
Adam Kingma & Ba (2014) as optimizer. Learning rate is 1e−2. For a fair comparison, all methods
based on Stable Diffusion use the SDv1.4 checkpoint. Corresponding prompts are generated based
on BLIP v2 Li et al. (2023) automatically.
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Table 1: Performance comparison of adversarial transferability on normally trained CNNs and ViTs.
We report attack success rates (%) of each method. (“*” means white-box attack results. Red text
and underline text represent the best and second best result, respectively.)

Surrogate
Model Attack

Models Avg.
ASR(%)CNNs Transformers

RN-50 Inc-v3 MN-v2 Dense-161 RN-152 EF-b7 MobViT-s ViT-B Swin-B PVT-v2

- Clean 5.60 7.60 13.60 7.10 3.20 4.90 7.10 7.70 4.60 4.10 6.55

RN-50

SAE 71.70* 21.60 42.70 36.20 24.90 19.20 35.10 32.10 25.00 16.90 28.19
ColorFool 71.40* 19.20 41.70 33.70 16.10 12.60 27.80 22.40 13.20 10.20 21.88
ACE 91.80* 18.90 34.20 21.30 10.30 12.00 24.00 13.80 9.70 5.70 16.66
NCF 78.10* 46.30 68.80 53.30 40.20 37.80 55.60 43.20 32.40 21.90 44.39
ACA 72.70* 56.10 60.30 56.90 53.30 53.50 57.60 51.50 52.70 47.50 54.38
DiffAttack 79.30* 46.10 49.00 49.20 46.10 45.90 48.10 38.70 40.80 37.70 44.62

Ours 94.40* 70.30 74.10 74.70 70.80 63.80 70.80 57.60 65.40 55.20 66.97

MN-v2

SAE 30.50 25.00 86.30* 40.10 27.60 22.90 37.00 34.00 25.40 16.60 28.79
ColorFool 15.40 13.80 84.20* 23.70 10.20 8.70 18.00 14.90 8.40 7.20 13.37
ACE 10.00 17.40 96.40* 16.10 6.90 10.30 19.20 10.60 7.70 5.70 11.54
NCF 42.20 47.90 91.10* 53.60 34.30 39.10 56.00 42.20 28.30 19.40 40.33
ACA 50.70 54.90 84.90* 53.80 45.70 50.20 56.20 50.70 47.50 44.40 50.46
DiffAttack 41.20 47.60 91.80* 48.50 33.10 42.70 51.80 35.70 38.00 32.50 41.23

Ours 66.50 66.80 98.80* 70.30 52.70 54.40 74.80 54.10 55.30 45.30 60.02

ViT-B

SAE 27.80 22.50 41.30 38.00 22.60 19.80 37.20 72.40* 24.90 16.50 27.84
ColorFool 21.80 20.60 42.20 35.00 15.10 12.20 28.00 76.70* 14.20 11.00 22.23
ACE 13.10 22.40 33.40 22.90 8.90 13.10 25.80 97.60* 10.40 7.80 17.53
NCF 44.60 46.20 64.60 52.80 35.90 41.00 55.60 77.50* 35.60 24.60 44.54
ACA 62.50 66.90 68.90 66.20 58.20 58.40 66.30 87.40* 62.10 55.00 62.72
DiffAttack 59.30 60.10 62.50 59.80 55.50 58.80 67.60 84.70* 68.00 62.20 61.53

Ours 69.50 72.10 75.20 77.10 64.70 61.10 74.80 94.90* 74.80 63.40 70.30

Inc-v3

SAE 23.60 64.80* 38.90 33.30 18.30 15.60 33.70 28.30 19.50 13.80 25.00
ColorFool 9.60 93.70* 21.40 14.30 5.40 6.10 14.10 11.20 5.60 4.60 10.26
ACE 9.40 93.50* 26.10 16.00 6.70 7.80 14.50 11.50 6.10 6.00 11.57
NCF 34.90 75.50* 55.40 41.70 25.70 23.50 45.50 34.50 23.10 16.70 33.44
ACA 54.00 90.50* 63.00 61.90 53.50 52.60 59.70 56.50 53.10 49.90 56.02
DiffAttack 32.10 70.20* 41.80 41.20 25.00 31.20 35.70 30.30 27.00 24.20 32.06

Ours 56.10 97.90* 63.80 67.30 45.30 50.10 59.30 45.60 47.40 37.90 52.53

Swin-B

SAE 31.10 22.30 44.40 39.30 24.00 20.20 37.70 37.80 69.80* 19.10 30.66
ColorFool 16.70 17.20 35.80 26.70 12.20 10.30 24.30 20.30 73.30* 8.10 19.07
ACE 16.10 17.40 31.90 23.70 11.00 10.20 21.50 17.60 96.20* 9.50 17.64
NCF 40.10 31.30 53.40 42.10 33.90 27.50 44.80 43.40 67.20* 26.70 38.13
ACA 62.50 62.00 68.00 64.90 58.80 59.20 63.20 62.70 77.90* 59.80 62.34
DiffAttack 55.60 53.80 58.50 52.90 51.20 60.40 60.70 57.10 82.60* 65.40 59.82

Ours 74.80 72.40 73.50 74.00 70.10 72.20 77.20 73.00 91.50* 73.10 75.18

4.2 ADVERSARIAL PERFORMANCE ANALYSIS

Table 1 shows the performance comparison between our method and baseline methods on different
classifiers. We selected RN50, MNV2, ViT-Base-16, Swin-Transformer-Base and Inception-v3 as
surrogate models in the white-box attack scenario, and then transferred the generated adversarial
examples to other classifiers that did not access gradient information to perform black-box attacks.

We first focus on the results of white-box attacks. It can be observed that unrestricted adversarial ex-
amples typically achieve only around a 70% attack success rate in white-box attack scenarios. This
is because unrestricted adversarial attacks are limited by factors such as color range or segmented
regions, meaning they may not always find a local optimum. However, our proposed method signifi-
cantly addresses this issue, delivering a stable performance above 90% ASR across various surrogate
models in white-box attack scenarios. This demonstrates that our method enables the model to learn
adversarial null-text embeddings and generate highly adversarial examples.

Even more exciting are the black-box attack results. When transferring adversarial examples gen-
erated based on the surrogate models to other classifiers, the results generated by our model main-
tained a high attack success rate, comparable to the current state-of-the-art methods. Specifically,
when using RN50 and MN-v2 as surrogate models, our method outperformed other baselines by
12.59% − 50.31% and 9.56% − 48.48%, respectively. While with ViT-B and Swin-B as surrogate
models, it also surpassed other baselines by 7.58%− 52.77% and 12.84%− 57.54%. This demon-
strates that our proposed method is capable of generating highly transferable adversarial examples
when faced with both CNN and Transformer-based surrogate models.
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Table 2: Image quality comparison of adversarial examples on different surrogate models. Here
”FR” and ”NR” refer to full-reference and no-reference image quality assessment metrics, respec-
tively. ( Red text and underline text represent the best and second best result, respectively.)

RN50 MN-v2 ViT-B Inc-v3 Swin-B

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SAE 15.731 0.657 0.365 14.951 0.593 0.368 14.795 0.631 0.385 22.985 0.742 0.339 18.650 0.697 0.386

ColorFool 14.788 0.665 0.348 17.912 0.729 0.280 14.250 0.646 0.363 21.034 0.681 0.273 15.981 0.674 0.333
NCF 15.420 0.651 0.437 15.096 0.640 0.450 15.082 0.639 0.443 14.965 0.637 0.444 15.430 0.661 0.430
ACA 16.080 0.497 0.422 16.243 0.503 0.421 14.013 0.397 0.486 17.689 0.569 0.425 17.957 0.580 0.416

DiffAttack 22.427 0.640 0.194 22.381 0.639 0.197 21.736 0.621 0.218 22.379 0.640 0.194 22.198 0.633 0.203

Ours 23.935 0.759 0.183 23.592 0.748 0.198 23.059 0.734 0.210 23.625 0.748 0.189 23.649 0.747 0.191

Table 3: Performance comparison of adversarial methods on defense algorithm. ( Red text and
underline text represent the best and second best result, respectively.)

Attack HGD R&P DiffPure Shape-Res50 Adv-Inc-V3 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens
SAE 38.20 40.90 38.80 41.20 17.00 16.70 18.90 12.20

ColorFool 34.80 34.20 41.60 40.40 13.90 18.10 21.60 12.70
NCF 62.50 64.10 50.10 53.90 31.70 33.80 36.90 27.90
ACA 61.10 63.70 53.60 55.50 55.20 56.00 55.30 49.10

DiffAttack 72.80 69.20 46.30 48.10 40.20 38.60 42.10 33.10

Ours 87.90 86.90 69.90 68.70 62.00 58.80 61.10 52.40

Notably, when using Inc-v3 as the surrogate model, the average attack success rate of our method
is slightly lower than that of ACA Chen et al. (2024), especially when transferring to Transformer-
based models. This suggests that adversarial examples generated by our method targeting Inception-
V3 are prone to local dependency overfitting. In contrast, ACA globally alters the image content,
which makes it more effective when transferred to Transformer-based models.

4.3 IMAGE QUALITY ASSESSMENT

When converting clean samples into adversarial examples, we must not only focus on the attack
performance but also on the quality of the generated images. Here, we use PSNR, SSIM Wang et al.
(2004), and LPIPS Zhang et al. (2018) to measure the similarity between the generated results and
the original images. Results are represented in Table 2. Since our method only modifies the high-
frequency details of the image, the quality of the generated results shows significant improvement
compared to previous methods. It can be observed that the PSNR of adversarial examples generated
by our method remains above 23 dB in all cases, while LPIPS stays below 0.2 in most cases.

Figure 2 presents the visual comparison of our method with several baseline methods. It can be
seen that unrestricted adversarial attack methods, such as NCF Yuan et al. (2022), primarily rely
on altering the color of the original image, leading to unnatural color distortions that are easily
noticeable by the human eye. ACA Chen et al. (2024) generated some results that are semantically
consistent with the original images, but sometimes the differences are significant enough to be easily
identified when a reference image (the original image) is available. Although the results generated
by DiffAttack Chen et al. (2023) resemble the original image in general, a closer inspection reveals
that finer geometric features tend to become distorted, such as the text on the cardboard box in the
first row, which becomes difficult to read. In contrast, the results generated by our method preserve
the visual details of the original image, making them less noticeable to the human eye.

4.4 ADVERSARIAL PERFORMANCE ON DEFENSE METHODS

As previously mentioned, current defense methods against adversarial attacks primarily focus on
Lp-norm attacks, including input preprocessing and adversarial training. However, unrestricted
adversarial examples differ significantly from Lp-norm examples, making them harder to defend
against using existing methods. Here, we select several defense strategies that have been proven
effective against Lp-norm adversarial examples Liao et al. (2018); Xie et al. (2018); Tramèr et al.
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Original                            NCF                             ACA                         DiffAttack               DiffAttack (detail)                  Ours                        Ours (detail)

Figure 2: Visualization of unrestricted adversarial examples generated by state-of-the-art methods
and our method. Since the image quality generated by our method is similar to that of DiffAt-
tack (Chen et al., 2023), we provide zoomed-in images to compare the two methods’ performance
in preserving visual details. Additional results are included in the supplementary material.

(2018); Kurakin et al. (2018a); Nie et al. (2022); Geirhos et al. (2018) and test whether the baseline
methods, as well as the approach we propose, remain effective when confronted with these defenses.

Table 3 presents the performance of various unrestricted adversarial attack methods when encoun-
tering different defense strategies. The adversarial examples are generated based on ResNet-50.
For input preprocessing defense methods, the adversarial examples are processed by the defense
mechanism and then re-evaluated on ResNet-50; for adversarially trained models, the adversarial
examples are directly transferred to the target models for testing. As shown in the table, previ-
ous defense methods can somewhat reduce the effectiveness of unrestricted adversarial examples,
but the latest methods are increasingly exhibiting stronger attack capabilities. Compared to input
preprocessing methods, adversarially trained models demonstrate greater generalization and per-
form better against unknown adversarial examples. However, even on the best-performing model,
Ensemble-IncRes-V2, our proposed method still achieved a 52.40% attack success rate, surpassing
NCF, DiffAttack, and ACA by 24.5%, 19.3%, and 3.3%, respectively.

4.5 ABLATION STUDY

Effect of Various Hyperparameters. Since our proposed loss function consists of three compo-
nents, we introduce two scaling factors, β and γ, to adjust the importance of each loss function. It is
evident that the final adversarial performance is influenced by the values of β and γ. Therefore, we
conducted extensive ablation experiments to explore the impact of these factors on both adversarial
performance and image quality.

Figure 3 shows how the white-box attack success rate, average black-box attack success rate, PSNR,
and LPIPS change when varying β and γ with ResNet-50 as the surrogate model. It can be observed
that increasing β and γ generally reduces the attack success rate while improving image quality.
However, this is not always the case. For instance, when β = 10.0, increasing γ from 0.01 to 0.1
raises the average black-box attack success rate from 71.23% to 71.38%. Similarly, when β = 100.0,
increasing γ from 0.01 to 0.1 improves the white-box attack success rate from 94.2% to 94.6%.
Likewise, when γ = 0.1, increasing β from 30.0 to 100.0 results in a rise in the white-box attack
success rate from 94.4% to 94.6%. These results highlight the complex interplay between the three
loss functions.

Effect of Stable Diffusion Versions. We also tested the impact of different Stable Diffusion ver-
sions on the generated results. Specifically, we selected SD v1-4, v1-5, and v2-1 for evaluation.
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Figure 3: Impact of Hyperparameter Variations on the Performance of Generated Adversarial Ex-
amples.

Table 4: Comparison of the Impact of Different Stable Diffusion Versions on the Generated Results.
Visualization results are included in the supplementary materials.

SD version White-box ASR↑ Ave.ASR↑ PSNR↑ LPIPS↓
v1-4 94.400 66.970 23.935 0.183
v1-5 95.500 67.220 23.966 0.182
v2-1 98.200 72.910 23.511 0.226

With all other hyperparameters held constant, Table 4 shows that the results generated by SD v1-
5 outperform those of v1-4 across the board. In contrast, while SD v2-1 achieves a higher attack
success rate, it produces images of lower quality. This indicates that different versions of Stable
Diffusion may require distinct optimal parameter combinations for the best performance.

5 CONCLUSIONS

In this work, we propose an adversarial attacking method based on diffusion models. This method
first maps the original image to a series of noise maps in the latent space through DDIM inversion
and then performs adversarial optimization on the null-text embeddings using a null-text optimiza-
tion method, thereby generating highly similar and transferable adversarial examples. To preserve
the visual details of the generated results, we introduce perceptual feature reconstruction loss into
our framework. Experiments demonstrate that our method can generate highly transferable adver-
sarial examples, outperforming current state-of-the-art methods across multiple models, while also
achieving best image quality. We hope this research draws attention to the security concerns of AI
technologies.

Limitations. Due to the inherent limitations of diffusion models, a significant number of sampling
steps are required during inference, causing our method to take around 60 seconds on an NVIDIA
6000 Ada. This makes it challenging to apply our proposed method in adversarial training at this
stage.

Social Impacts. Our method can generate adversarial examples with strong black-box attack ef-
fectiveness and realism, which could be used for malicious attacks on deep learning models de-
ployed on the internet or in specific industrial scenarios, thereby threatening high-security-sensitive
applications.
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A APPENDIX

A.1 MORE VISUALIZATION RESULTS

Original                 SAE               ColorFool ACE                    NCF                   ACA               DiffAttack Ours

Figure 4: Visualization comparison of adversarial examples generated by various baseline methods.
We also provide both full images and zoomed-in sections to illustrate the differences in detail be-
tween the adversarial examples produced by different methods.
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Original                         Ours (SD v1-4)                   Ours (SD v1-5)                  Ours (SD v2-1)

Figure 5: Differences in adversarial examples generated using different versions of Stable Diffusion.
It can be observed that the results produced by v1-4 and v1-5 are similar, while the results generated
by v2-1 are more distinctive, exhibiting noticeable artifacts.
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A.2 ATTACK PERFORMANCE IN THE PHYSICAL WORLD

To validate the feasibility of our attack method in the physical world, we printed both the original
images and the generated adversarial examples, then photographed them again and input them into
the classifier for recognition. All of the adversarial examples are generated based on ResNet-50.
The classifier used for recognition is ResNet-50 as well. It can be observed that the adversarial
examples we generated remain effective in the physical world. This clearly demonstrates the strong
generalization and stability of our proposed attack method.

Ori_image Ori_photo Adv_example Adv_photo

Pred: otter
Prob: 37.0%

Pred: otter
Prob: 37.6%

Pred: brambling
Prob: 94.5%

Pred: tiger
Prob: 29.6%

Pred: crash helmet
Prob: 68.7%

Pred: crash helmet
Prob: 60.7%

Pred: stretcher
Prob: 99.3%

Pred: stretcher
Prob: 19.1%

Pred: carousel
Prob: 33.1%

Pred: carousel
Prob: 27.8%

Pred: corn
Prob: 2.7%

Pred: comic book
Prob: 17.0%

Figure 6: Predictions and probabilities of original image and adversarial examples in digital and
physical world. Green and red represent the correct and incorrect prediction, respectively.
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Pred: Indian elephant
Prob: 42.5%

Pred: Indian elephant
Prob: 45.5%

Pred: rock python
Prob: 94.3%

Pred: rock python
Prob: 4.7%

Ori_image Ori_photo Adv_example Adv_photo

Pred: monastery
Prob: 31.6%

Pred: monastery
Prob: 27.9%

Pred: carousel
Prob: 19.3%

Pred: church
Prob: 16.0%

Pred: traffic light
Prob: 33.4%

Pred: traffic light
Prob: 10.4%

Pred: switch
Prob: 54.0%

Pred: switch
Prob: 35.8%

Pred: oystercatcher
Prob: 42.6%

Pred: oystercatcher
Prob: 59.8%

Pred: black stork
Prob: 30.6%

Pred: black stork
Prob: 12.6%

Figure 7: More results in digital and physical world.
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