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Abstract
This work studies the combinatorial optimization
problem of finding an optimal core tensor shape,
also called multilinear rank, for a size-constrained
Tucker decomposition. We give an algorithm with
provable approximation guarantees for its recon-
struction error via connections to higher-order sin-
gular values. Specifically, we introduce a novel
Tucker packing problem, which we prove is NP-
hard, and give a polynomial-time approximation
scheme based on a reduction to the 2-dimensional
knapsack problem with a matroid constraint. We
also generalize our techniques to tree tensor net-
work decompositions. We implement our algo-
rithm using an integer programming solver, and
show that its solution quality is competitive with
(and sometimes better than) the greedy algorithm
that uses the true Tucker decomposition loss at
each step, while also running up to 1000x faster.

1. Introduction
Low-rank tensor decomposition is a powerful tool in the
modern machine learning toolbox. Like low-rank matrix
factorization, it has countless applications in scientific com-
puting, data mining, and signal processing (Kolda & Bader,
2009; Sidiropoulos et al., 2017), e.g., anomaly detection in
data streams (Jang & Kang, 2021) and compressing convolu-
tional neural networks on mobile devices for faster inference
while reducing power consumption (Kim et al., 2016).

The most widely used tensor decompositions are the canon-
ical polyadic (CP) decomposition, Tucker decomposition,
and tensor-train decomposition (Oseledets, 2011)—the last
two being instances of tree tensor networks (Krämer, 2020).
CP decomposition factors a tensor into the sum of r rank-
one tensors. Tucker decomposition, however, specifies the
rank Rn in each dimension n and relies on a core tensor
G ∈ RR1×···×RN for reconstructing the decomposition. The
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Figure 1. Pareto frontier of core shapes r ∈ [20]3 for hyperspectral
tensor X ∈ R1024×1344×33. Plots the RRE, i.e., L(X, r)/∥X∥2F ,
as a function of compression rate. RRE-greedy builds core shapes
by computing Tucker decompositions at each step. HOSVD-IP
is Algorithm 2 with integer programming, which builds core shapes
via a surrogate packing problem on higher-order singular values.

notion of multilinear rank r = (R1, . . . , RN ) puts practi-
tioners in a challenging spot because the set of feasible core
shapes can be exponentially large. Furthermore, searching
in this state space can be prohibitively expensive because
evaluating the true quality of a core shape requires comput-
ing a Tucker decomposition, which for large tensors can take
hours and consume hundreds of GB of RAM. For example,
in the MATLAB Tensor Toolbox (Bader & Kolda, 2022), we
need to specify the core shape parameter ranks in advance
before computing a size-constrained Tucker decomposition.

In practice, the most popular Tucker decomposition algo-
rithms are the r-truncated higher-order singular value de-
composition (HOSVD) in De Lathauwer et al. (2000a),
sequentially truncated ST-HOSVD in Vannieuwenhoven
et al. (2012), and higher-order orthogonal iteration (HOOI),
which is a structured alternating least squares algorithm.

We explore the simple but fundamental discrete optimization
problem for low-rank tensor decompositions:

If a Tucker decomposition of X can use at most c
parameters, which core tensor shape minimizes
the reconstruction error?

This is a multilinear generalization of the best rank-r matrix
approximation problem. While there are many parallels to
low-rank matrix factorization, tensor rank-related problems
can be thoroughly different and more challenging than their
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matrix counterparts. For example, computing the CP rank
of a real-valued tensor is NP-hard (Hillar & Lim, 2013).

1.1. Our contributions and techniques

We summarize the main contributions of this work below:

1. We formalize the core tensor shape problem for size-
constrained Tucker decompositions and introduce the
Tucker packing problem, which we prove is NP-hard.
The approximation algorithms we develop build on a re-
lationship between the optimal reconstruction error of a
rank-r Tucker decomposition and a multi-dimensional
tail sum of its higher-order singular values (De Lath-
auwer et al., 2000a; Hackbusch, 2019).

2. We design a polynomial-time approximation scheme
(PTAS) for the surrogate Tucker packing problem (The-
orem 4.6) by showing that it suffices to consider a small
number of budget splits between the cost of the core
tensor and the cost of the factor matrices. Each budget
split subproblem reduces to a 2-dimensional knapsack
problem with a partition matroid constraint after minor
transformations. We solve these knapsack problems
using the PTAS of Grandoni et al. (2014), or in practice
with integer linear programming.

3. We extend our approach to tree tensor networks, which
generalize the Tucker decomposition, tensor-train de-
composition, and hierarchical Tucker decomposition.
In doing so, we synthesize several works on tree tensors
from the mathematics and physics communities, and
give a succinct introduction for computer scientists.

4. Finally, we demonstrate the effectiveness of our Tucker
packing-based core shape solvers on four real-world
tensors. Our HOSVD-IP algorithm is competitive with
(and sometimes outperforms) the greedy algorithm that
uses the true RRE, while running up to 1000x faster.

1.2. Related works

Core shape constraints. De Lathauwer et al. (2000b) in-
troduced the problem of computing the best rank-r tensor
approximation for a prespecified core shape r, and demon-
strated the benefit of initializing the decomposition with a
truncated HOSVD and then running iterative methods such
as HOOI. Eldén & Savas (2009); Ishteva et al. (2009; 2011;
2013); Eldén & Dehghan (2022) consider this problem for
rank-(r1, r2, r3) decompositions and develop a suite of ad-
vanced algorithms: a Newton method on Grassmannian
manifolds, a trust-region method on Riemannian manifolds,
Jacobi rotations for symmetric tensors, and a Krylov-type
iterative method. All these works, however, are concerned
with optimizing the tensor decomposition for a fixed core
shape—not with optimizing the core tensor shape itself.

Ehrlacher et al. (2021) and Xiao & Yang (2021) recently ex-
plored rank-adaptive methods for HOOI that find minimal
core shapes such that the Tucker decomposition achieves a
target reconstruct error. They also leverage properties of the
HOSVD, but they do not impose a hard constraint on the
size of the returned Tucker decomposition. Hashemizadeh
et al. (2020) generalized the RRE-greedy algorithm in Fig-
ure 1 to tensor networks for both rank and size constraints.

Low-rank tensor decomposition. Song et al. (2019) gave
polynomial-time (1+ε)-approximation algorithms for many
types of low-rank tensor decompositions with respect to the
Frobenius norm, including CP and Tucker decompositions.
Frandsen & Ge (2022) showed that if a third-order tensor
has an exact Tucker decomposition, then all local minima
of an appropriately regularized loss landscape are globally
optimal. Several works recently studied Tucker decompo-
sition in streaming models (Traoré et al., 2019; Sun et al.,
2020) and a sliding window model (Jang & Kang, 2021).
Fast randomized low-rank tensor decomposition algorithms
based on sketching have been proposed in Zhou et al. (2014);
Cheng et al. (2016); Battaglino et al. (2018); Malik & Becker
(2018); Che & Wei (2019); Ma & Solomonik (2021); Larsen
& Kolda (2022); Fahrbach et al. (2022); Malik (2022).

2. Preliminaries
Notation. The order of a tensor is its number of dimen-
sions. We denote scalars by normal lowercase letters x ∈ R,
vectors by boldface lower letters x ∈ Rn, matrices by bold-
face uppercase letters X ∈ Rm×n, and higher-order ten-
sors by boldface script letters X ∈ RI1×···×IN . We use
normal uppercase letters for the size of an index set, e.g.,
[N ] = {1, 2, . . . , N}. We denote the i-th entry of vector x
by xi, the (i, j)-th entry of matrix X by xij , and the (i, j, k)-
th entry of a third-order tensor X by xijk.

Tensor products. The fibers of a tensor are the vectors we
get by fixing all but one index. For example, if X ∈ R3, we
denote the column, row, and tube fibers by x:jk, xi:k, and
xij:, respectively. The mode-n unfolding of a tensor X ∈
RI1×···×IN is the matrix X(n) ∈ RIn×(I1...In−1In+1...IN )

that arranges the mode-n fibers of X as columns of X(n)

ordered lexicographically by index.

We denote the n-mode product of a tensor X ∈ RI1×···×IN

and matrix A ∈ RJ×IN by Y = X ×n A, where Y ∈
RI1×···×In−1×J×In+1×···×IN . This operation multiplies
each mode-n fiber of X by A, and can be expressed element-
wise as

(X×n A)i1...in−1jin+1...iN =

In∑
in=1

xi1i2...iNajin .

The inner product of two tensors X,Y ∈ RI1×···×IN is the
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sum of the products of their entries:

⟨X,Y⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2...iN yi1i2...iN .

The Frobenius norm of a tensor X is ∥X∥F =
√
⟨X,X⟩.

Tucker decomposition. The Tucker decomposition of a
tensor X ∈ RI1×···×IN decomposes X into a core tensor
G ∈ RR1×···×RN and N factor matrices A(n) ∈ RIn×Rn .
We refer to r = (R1, . . . , RN ) as the core shape, which is
also called the multilinear rank or truncation of the decom-
position. We denote the loss of an optimal rank-r Tucker
decomposition by

L(X, r)
def
= min

G∈RR1×···×RN

∥X−G×1A
(1)×2· · ·×NA(N)∥2F.

3. Reduction to HOSVD Tucker packing
3.1. Higher-order singular value decomposition

We start with a recap of the seminal work on higher-order
singular value decompositions (HOSVD) by De Lathauwer,
De Moor, and Vandewalle (2000a).
Theorem 3.1 (De Lathauwer et al. (2000a, Theorem 2)).
Any tensor X ∈ RI1×···×IN can be written as

X = S×1 U
(1) ×2 · · · ×N U(N),

where each U(n) ∈ RIn×In is an orthogonal matrix and
S ∈ RI1×···×IN is a tensor with subtensors Sin=α, obtained
by fixing the n-th index to α, that have the properties:

1. all-orthogonality: for all possible values of n, α and
β subject to α ̸= β, two subtensors Sin=α and Sin=β

are orthgonal, i.e., ⟨Sin=α,Sin=β⟩ = 0 when α ̸= β;

2. ordering: for all values of n, ∥Sin=1∥F ≥ ∥Sin=2∥F ≥
· · · ≥ ∥Sin=In∥F ≥ 0.

Furthermore, the values ∥Sin=i∥F, denoted by σ
(n)
i , are

the singular values of the mode-n unfolding X(n), and the
columns of U(n) are the the left singular vectors.

Next, we present the TuckerHOSVD algorithm. This is a
widely used initialization strategy when computing rank-r
Tucker decompositions (Kolda & Bader, 2009), i.e., if the
core shape r is predetermined.

Algorithm 1 TuckerHOSVD
Input: X ∈ RI1×···×IN , core shape r = (R1, . . . , RN )

1: for n = 1 to N do
2: A(n) ← Rn top left singular vectors of X(n)

3: end for
4: G← X×1 A

(1) ×2 · · · ×N A(N)

5: return G,A(1),A(2), . . . ,A(N)

The output of TuckerHOSVD has the following error guar-
antees (De Lathauwer et al., 2000a; Hackbusch, 2019).
These bounds suggest a less expensive surrogate loss func-
tion to minimize instead when optimizing the core tensor
shape subject to a Tucker decomposition size constraint. We
give self-contained proofs of these results in Appendix A.1
that build on Theorem 3.1.

Theorem 3.2 (De Lathauwer et al. (2000a, Property 10);
Hackbusch (2019, Theorem 10.2)). For any tensor X ∈
RI1×···×IN and core shape r ∈ [I1] × · · · × [IN ], let the
output of TuckerHOSVD(X, r) be G ∈ RR1×···×RN and
A(n) ∈ RIn×Rn , for each n ∈ [N ]. If we let

X̂HOSVD(r)
def
= G×1 A

(1) ×2 · · · ×N A(N) (1)

denote the reconstructed r-truncated tensor, then

∥X− X̂HOSVD(r)∥2F ≤
N∑

n=1

In∑
in=Rn+1

(
σ
(n)
in

)2
≤ N · L(X, r).

Furthermore, we have L(X, r) ≤ ∥X− X̂HOSVD(r)∥2F.

Theorem 3.2 implies that the following function is a mean-
ingful proxy for the reconstruction error of an optimal rank-r
Tucker decomposition.

Definition 3.3. Define the surrogate loss of core shape r as

L̃(X, r)
def
=

N∑
n=1

In∑
in=Rn+1

(
σ
(n)
in

)2
. (2)

To summarize so far, for any core shape r ∈ [I1]×· · ·×[IN ],
we are guaranteed that 1/N · L̃(X, r) ≤ L(X, r) ≤ L̃(X, r).
We refer the reader to Appendix A.2 for the full details.

3.2. Tucker packing problem

Next, observe that the sum of squared singular values across
all mode-n unfoldings of X is

N∑
n=1

In∑
in=1

(
σ
(n)
in

)2
=

N∑
n=1

∥X(n)∥2F = N∥X∥2F.

This means we can solve a singular value packing problem
instead by considering the complement of the surrogate loss.
The following lemma is a wrapper for the truncated HOSVD
error guarantees in Theorem 3.2.

Lemma 3.4. For any tensor X ∈ RI1×···×IN and budget
c ≥ 1 +

∑N
n=1 In for the size of the Tucker decomposition,

let the set of feasible core shapes be

F =

{
r ∈ [I1]× · · · × [IN ] :

N∏
n=1

Rn +

N∑
n=1

InRn ≤ c

}
.
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Then, we have

r̃∗
def
= argmin

r∈F
L̃(X, r) = argmax

r∈F

N∑
n=1

Rn∑
in=1

(
σ
(n)
in

)2
.

Further, if r∗ def
= argminr∈F L(X, r) is an optimal budget-

constrained core shape, then L(X, r̃∗) ≤ N · L(X, r∗).

To find a core shape whose optimal Tucker decomposition
approximates the optimal loss L(X, r∗) subject to a size con-
straint, we solve the maximization problem in Lemma 3.4.
Optimizing this proxy objective is substantially less expen-
sive than methods that rely on rank-r Tucker decomposition
solvers as a subroutine. We formalize this idea by introduc-
ing the more general problem below.

Definition 3.5 (Tucker packing problem). Given a shape
(I1, . . . , IN ) ∈ ZN

≥1, N non-increasing sequences a(n) ∈
RIn

≥0, and a budget c ≥ 1, the Tucker packing problem asks
to find a core shape r ∈ [I1]× · · · × [IN ] that solves:

maximize
N∑

n=1

Rn∑
in=1

a
(n)
in

(3)

subject to
N∏

n=1

Rn +

N∑
n=1

InRn ≤ c (4)

We also denote the objective by f(r)
def
=
∑N

n=1

∑Rn

in=1 a
(n)
in

.

Theorem 3.6. The Tucker packing problem is NP-hard.

We prove this result in Appendix A.3 with an intricate reduc-
tion from the EQUIPARTITION problem (see, e.g., Garey
& Johnson (1979, SP12)).

NP-hardness motivates the need for efficient approximation
algorithms. In Section 4, we develop a polynomial-time ap-
proximation scheme (PTAS) for the Tucker packing problem.
We leave the existence of a fully-polynomial time approxi-
mation scheme (FPTAS) as a challenging open question for
future works.

To conclude, since Tucker packing is the complement of
surrogate loss minimization, we must quantify how a (1−ε)-
approximation for the packing problem can affect the error
incurred in the surrogate loss. We explain this in detail in
Appendix A.4 and present the main idea below.

Lemma 3.7. Let r ∈ [I1]×· · ·×[IN ] be any core shape that
achieves a (1− ε/N)-approximation to the Tucker packing
problem. Then, we have RRE(X, r) ≤ N ·RRE(X, r∗)+ε,
where RRE(X, r) := L(X, r)/∥X∥2F.

Remark 3.8. We can obtain global approximation guaran-
tees for Tucker decomposition reconstruction error by (1)
finding an approximately optimal core shape, (2) running

TuckerHOSVD to initialize the Tucker decomposition, and
(3) using alternating least squares (ALS) to improve the
tensor decomposition. This is analogous to how k-means++
enhances Lloyd’s algorithm (Arthur & Vassilvitskii, 2006).

4. Algorithm
4.1. Warm-up: Connections to multiple-choice knapsack

To start, consider a simplified version of the Tucker packing
problem that only accounts for the size of the core tensor,
i.e., the factor matrices do not use any of the budget. We
show that after two simple transformations this new problem
reduces to the multiple-choice knapsack problem,1 which is
NP-hard (Pisinger, 1995) but has an FPTAS (Lawler, 1977).

Concretely, the optimization problem is

maximize
N∑

n=1

Rn∑
in=1

a
(n)
in

(5)

subject to
N∏

n=1

Rn ≤ c (6)

Prefix sums transformation. To get closer to a 0-1 knap-
sack problem, define new coefficients by taking the prefix
sums of the a

(n)
in

’s, for each n ∈ [N ] and in ∈ [In]:

p
(n)
in

def
=

in∑
jn=1

a
(n)
jn

.

This “core size-only” Tucker packing problem can be refor-
mulated as the following integer program:

maximize
N∑

n=1

In∑
in=1

p
(n)
in

x
(n)
in

subject to
N∏

n=1

In∑
in=1

inx
(n)
in
≤ c (7)

In∑
in=1

x
(n)
in

= 1 ∀n ∈ [N ]

x
(n)
in
∈ {0, 1} ∀n ∈ [N ], in ∈ [In]

We optimize over in instead of Rn for notational brevity.

Log transformation. Next, replace constraint (7) with the
linear inequality

N∑
n=1

In∑
in=1

log(in)x
(n)
in
≤ log(c).

1The multiple-choice knapsack problem is a 0-1 knapsack prob-
lem where the items are partitioned into N classes and exactly one
item must be taken from each class (Sinha & Zoltners, 1979).
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This substitution is valid because in any feasible solution, for
each n ∈ [N ], exactly one of x(n)

1 , x
(n)
2 , . . . , x

(n)
In

is equal
to one and the rest are zero. Putting everything together,
this core size-only Tucker packing problem is the following
multiple-choice knapsack problem:

maximize
N∑

n=1

In∑
in=1

p
(n)
in

x
(n)
in

(8)

subject to
N∑

n=1

In∑
in=1

log(in)x
(n)
in
≤ log(c)

In∑
in=1

x
(n)
in

= 1 ∀n ∈ [N ]

x
(n)
in
∈ {0, 1} ∀n ∈ [N ], in ∈ [In]

Theorem 4.1 (Lawler 1977). There exists an algorithm that
computes a (1 − ε)-approximation to problem (8) in time
and space O(N2ε−1

∑N
n=1 In).

The FPTAS in Theorem 4.1 for multiple-choice knapsack
uniformly downscales all coefficients p(n)in

in the objective,
rounds them, and then uses dynamic programming.

4.2. PTAS for the Tucker packing problem

Now we consider the true cost of a Tucker decomposition,
i.e., the size of the core tensor and the factor matrices. We
first introduce a simple grid-search algorithm that solves
approximate Tucker packing for a general class of feasible
solutions (i.e., downwards closed sets). This captures the
Tucker packing problem and will be useful for extending
our results to tree tensor networks in Section 5.
Definition 4.2. For any N ≥ 1 and (I1, . . . , IN ) ∈ ZN

≥1, let
F ⊆ [I1]× · · · × [IN ]. The set F is downward closed if for
any pair (R1, . . . , RN ), (R′

1, . . . , R
′
N ) ∈ [I1]× · · · × [IN ]

such that R′
n ≤ Rn for all n ∈ [N ], (R1, . . . , RN ) ∈ F

implies that (R′
1, . . . , R

′
N ) ∈ F .

Lemma 4.3. Let 0 < ε ≤ 1 and F ⊆ [I1]× · · · × [IN ] be
downwards closed. For each n ∈ [N ], define

S(ε)
n =

{
⌈(1 + ε)k⌉ : k ∈ Z≥0, ⌈(1 + ε)k⌉ ≤ In

}
.

Let r∗ be an optimal solution to the generalized problem

maximize
N∑

n=1

Rn∑
in=1

a
(n)
in

(9)

subject to (R1, . . . , RN ) ∈ F

and let r(ε) = (R
(ε)
1 , . . . , R

(ε)
N ) be an optimal solution to

maximize
N∑

n=1

Rn∑
in=1

a
(n)
in

(10)

subject to (R1, . . . , RN ) ∈ (S
(ε)
1 × · · · × S

(ε)
N ) ∩ F

Then, f(r(ε)) ≥ (1 + ε)−1f(r∗). Further, there is an algo-
rithm that finds an optimal solution of (10) with running
time O(

∑N
n=1 In + ε−N

∏N
n=1(1 + log2(In))).

The time complexity in Lemma 4.3 is exponential in the or-
der of the tensor, so we now focus on designing our main al-
gorithm TuckerPackingSolver, whose running time
is O(poly(N, log c, In)) for constant values of ε > 0.

Algorithm description. There are two phases in this algo-
rithm: (1) exhaustively search over all “small” core shapes
by trying all budget allocation splits when the factor ma-
trix cost is low; and (2) try coarser splits between the core
tensor size and factor matrix costs. In the large phase, we
show that it is sufficient to consider O(log1+ε c) such splits.
Each budget split induces a problem of the form (13), which
after applying prefix sum and log transformations becomes
a familiar 2-dimensional knapsack problem with a partition
matroid constraint:

maximize
N∑

n=1

In∑
in=1

p
(n)
in

x
(n)
in

(11)

subject to
N∑

n=1

In∑
in=1

log(in)x
(n)
in
≤ log(ccore)

N∑
n=1

In∑
in=1

Ininx
(n)
in
≤ c− ccore

In∑
in=1

x
(n)
in

= 1 ∀n ∈ [N ]

x
(n)
in
∈ {0, 1} ∀n ∈ [N ], in ∈ [In]

More generally, (11) is a d-budgeted matroid independent
set problem (see, e.g., Grandoni et al. (2014)), in which a
linear objective function is maximized subject to d knapsack
constraints and a matroid constraint. Recall that the multi-
dimensional knapsack problem (even without any matroid
constraints) does not admit an FPTAS unless P = NP (Gens
& Levner, 1979; Korte & Schrader, 1981). It does, however,
have a PTAS as shown by the next theorem.
Theorem 4.4 (Grandoni et al. 2014, Corollary 4.4). There
is a PTAS (i.e., a (1− ε)-approximation algorithm) for the
d-budgeted matroid independent set problem with running
time O(mO(d2/ε)), where m is the number of items.

The number of items in (11) is m =
∑N

n=1 In, one for each
core shape dimension choice. Thus, since d = 2, this gives
a running time of O((

∑N
n=1 In)

O(1/ε)). This in turn allows
us to bound the overall running time of Algorithm 2.
Remark 4.5. We can use integer linear programming solvers
for (11) instead of Grandoni et al. (2014), but this is possible
only because we decouple the core shape cost and the factor
matrix cost, i.e., because of the cfactor and ccore budget splits.
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Algorithm 2 TuckerPackingSolver
Input: shape (I1, . . . , IN ) ∈ ZN

≥1, N non-increasing se-
quences a(n) ∈ RIn

≥0, budget c ≥ 1+
∑N

n=1 In, error ε > 0

1: Initialize S ← ∅
2: for cfactor ∈ [⌈1/ε⌉

∑N
n=1 In] do

3: Let r′ be a (1− ε)-approximate solution to:

maximize f(r) (12)

subject to
∏N

n=1 Rn ≤ c− cfactor∑N
n=1 InRn ≤ cfactor

Rn ∈ [min(⌈1/ε⌉, In)] ∀n ∈ [N ]

4: Update S ← S ∪ {r′}
5: end for
6: for k = 0 to ⌊log1+ε c⌋ do
7: Set ccore ← (1 + ε)k

8: Let r(k) be a (1− ε)-approximate solution to:

maximize f(r) (13)

subject to
∏N

n=1 Rn ≤ ccore∑N
n=1 InRn ≤ c− ccore

Rn ∈ [In] ∀n ∈ [N ]

9: Update S ← S ∪ {r(k)}
10: end for
11: return argmaxr∈S f(r)

Theorem 4.6. If 0 < ε < 1/3, then Algorithm 2 returns a
(1− 3ε)-approximate solution to Problem (9) in time

O

(log1+ε(c) + ⌈1/ε⌉
N∑

n=1

In

)(
N∑

n=1

In

)O(1/ε)
.

Proof. TuckerPackingSolver solves for two types of
shapes: (1) “small” solutions where each Rn ≤ ⌈1/ε⌉, and
(2) “large” solutions where Rn > ⌈1/ε⌉ for some n ∈ [N ].

In the small phase, observe that since Rn ≤ min(⌈1/ε⌉, In),
the factor matrix cost is

∑N
n=1 InRn ≤ ⌈1/ε⌉

∑N
n=1 In.

Therefore, we can exhaustively check all small budget splits
of the form cfactor ∈ [⌈1/ε⌉

∑N
n=1 In]. Each split induces a

2-dimensional knapsack problem with a partition matroid
(but for a smaller set of items), so use Theorem 4.4 to obtain
a (1− ε)-approximation for each subproblem. If an optimal
solution r∗ to the Tucker packing problem is small, then
Algorithm 2 recovers an approximately optimal objective.

For the large phase, assume that the optimal core shape r∗

has a dimension m ∈ [N ] such that R∗
m > ⌈1/ε⌉. The

algorithm searches over large shapes indirectly by splitting
the budget c between the size of the core tensor and the total

cost of factor matrices. A crucial observation is that we only
need to check O(log1+ε c) different splits because there is
a sufficient amount of slack in the large dimension R∗

m.

To proceed, let c∗core =
∏N

n=1 R
∗
n, and let k∗ be the largest

integer such that (1 + ε)k ≤ c∗core. Define ĉcore = (1+ ε)k
∗
,

and let r̂ = (R̂1, . . . , R̂N ) where

R̂n =

{
R∗

n if n ̸= m,

⌊R∗
n/(1 + ε)⌋ if n = m.

Since we assumed R∗
m ≥ ⌈1/ε⌉ is a large dimension, R̂m =

⌊R∗
m/(1 + ε)⌋ ≥ ⌊⌈1/ε⌉/(1 + ε)⌋. Next, observe that

N∏
n=1

R̂n ≤
1

1 + ε

N∏
n=1

R∗
n =

ccore

1 + ε

<
(1 + ε)k

∗+1

1 + ε
= (1 + ε)k

∗
= ĉcore,

and
∑N

n=1 InR̂n ≤
∑N

n=1 InR
∗
n ≤ c − c∗core ≤ c − ĉcore.

Therefore, r̂ is a feasible solution of (13) for k = k∗. Fur-
thermore, f(r(k

∗)) ≥ (1− ε)f(r̂).

Next, we show that f(r̂) ≥ (1− 2ε)f(r∗). For any n ̸= m,
we have R̂n = R∗

n, so it follows that

R̂n∑
in=1

a
(n)
in

=

R∗
n∑

in=1

a
(n)
in

. (14)

For the large dimension m, we have

R̂m =

⌊
R∗

m

1 + ε

⌋
≥ R∗

m

1 + ε
− 1 =

R∗
m − (1 + ε)

1 + ε
· R

∗
m

R∗
m

.

The assumption R∗
m ≥ ⌈1/ε⌉ then gives

R∗
m − (1 + ε)

R∗
m

≥ 1− 1 + ε

⌈1/ε⌉
≥ 1− ε− ε2.

It follows for any ε ≥ 0 that

R̂m ≥
1− ε− ε2

1 + ε
R∗

m ≥ (1− 2ε)R∗
m.

Since a
(m)
i1
≥ · · · ≥ a

(m)
Im

is non-increasing, we have

R̂m∑
im=1

a
(m)
im
≥ (1− 2ε)

R∗
m∑

im=1

a
(m)
im

. (15)

Combining (14) and (15) gives f(r̂) ≥ (1 − 2ε)f(r∗), so
then f(r(k

∗)) ≥ (1 − ε)(1 − 2ε)f(r∗) ≥ (1 − 3ε)f(r∗),
which proves the approximation guarantee.2

Finally, the running time follows from our reductions to the
2-dimensional knapsack problem with a partition matroid
constraint, and using Theorem 4.4 for each budget split.

2To obtain a PTAS, it is enough to consider the budget splits
cfactor ∈ [

∑N
n=1 I

2
n], i.e., line 2 of TuckerPackingSolver,

but this gives a worse running time as explained in Appendix B.
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5. Tree tensor network decompositions
Here we consider a general decomposition called tree tensor
network (Oseledets & Tyrtyshnikov, 2009; Krämer, 2020),
which includes Tucker decomposition, tensor-train decom-
position, and hierarchical Tucker decomposition as special
cases.

Definition 5.1 (Tree tensor network). Let X ∈ RI1×···×IN

be any tensor. Let G = (V,E) be a rooted tree with N
leaves where each node v corresponds to a subset Sv ⊆ [N ].
The leaves are the N singletons of [N ], and internal nodes v
are recursively defined by Sv = ∪u∈CvSu, where Cv is the
set of children of v.

Each edge e ∈ E is endowed an integer Re ≥ 1. Then, a
(truncated) tree tensor network decomposition of X for tree
G is the following collection of tensors, each corresponding
to a v ∈ V . For each leaf, the tensor is A(v) ∈ RIn×Re ,
where e is the edge connecting v to its parent. For each
internal node v, its tensor is T(v) ∈ RRe1×···×Rek , where
Ev = {e1, . . . , ek} is the set of edges incident to v.

The output tensor X̂ is constructed by taking the mode-wise
products of all the “node tensors” in G over their correspond-
ing edges. These products commute and are associative (see,
e.g., Proposition 2.17 in Krämer (2020)).

Remark 5.2. The tree tensor network for Tucker decompo-
sition corresponds to a tree of depth one, and for hierarchi-
cal Tucker decomposition it is an (almost) balanced binary
tree (Oseledets & Tyrtyshnikov, 2009; Grasedyck, 2010).

We give an example with figures in Appendix C. Now we
generalize the definition of tensor unfolding.

Definition 5.3. For any X ∈ RI1×···×IN and S ⊆ [N ],
the matricization X(S) ∈ RP×Q, where P =

∏
n∈S In

and Q =
∏

n∈[N ]\S In, is the matrix with the entries of X
arranged lexicographically by their original index tuples.

The next theorem gives a polynomial-time algorithm for
finding a tree tensor network decomposition that achieves
bounded reconstruction error for specified Re values.

Theorem 5.4 (Grasedyck (2010); Krämer (2020)). Let X ∈
RI1×···×IN and G = (V,E), Re for e ∈ E be the tree
tensor network parameters as in Definition 5.1. There exists
a polynomial-time algorithm that finds T(v) for v ∈ V (for
leaves these tensors are the matrices A(v)) such that

∥X− X̂∥2F ≤
∑

v∈V \{r}

Pv∑
iv=Rv+1

(
σ
(v)
iv

)2
≤ (|V | − 1) · ∥X−Xbest∥2F,

where Xbest is the best tree tensor network decomposition
for G and the values Re, r is the root node, Pv =

∏
n∈Sv

In,

and σ
(v)
i is the i-th singular value of X(Sv).

Further, the size of the tree tensor network decomposition
is
∑

v∈L IvRv +
∑

v∈J

∏
e∈Ev

Re, where L is the set of
leaves, J is the set of internal nodes, and Rv is value on the
edge that connects v to its parent.

It follows that we can define the NP-hard tree tensor network
packing problem, which generalizes Tucker packing.

Definition 5.5 (Tree tensor network packing). Given a shape
(I1, . . . , IN ) ∈ ZN

≥1, tree G = (V,E) with leaves L = [N ]
and internal nodes J , |V | − 1 non-increasing sequences
(corresponding to non-root nodes) a(v) ∈ RPv

≥0 with Pv =∏
n∈Sv

In, and the budget c ≥ 1, the tree tensor network
packing problem asks to find Rv ∈ Z≥1 for v ∈ V \ {r},
where r is the root and Nv is the set of neighbors of node v,
that solves:

maximize
∑

v∈V \{r}

Rv∑
i=1

a
(v)
i (16)

subject to
∑
v∈J

∏
u∈Nv

Ru +
∑
v∈L

IvRv ≤ c (17)

Theorem 5.6. There is a (1− ε)-approximation algorithm
for the tree tensor network packing problem the runs in time

O

 ∑
v∈V \{t}

Pv + ε−(|V |−1)
∏

v∈V \{t}

(1 + log2(Pv))

.

6. Experiments
We compare several algorithms for computing the core
shapes of size-constrained Tucker decompositions on four
real-world tensors (see Table 1). These experiments
demonstrate the effectiveness of using the surrogate loss
L̃(X, r) in place of the true relative reconstruction er-
ror (RRE), both in terms of solution quality and run-
ning time. All experiments use NumPy (Harris et al.,
2020) with an Intel Xeon W-1235 processor (3.7 GHz,
8.25MB cache) and 128GB of RAM. The source code
is available at https://github.com/fahrbach/
approximately-optimal-core-shapes.

Table 1. Statistics for tensor datasets used in experiments.

TENSOR SHAPE SIZE

CARDIAC MRI 256× 256× 14× 20 18, 350, 080
HYPERSPECTRAL 1024× 1344× 33 45, 416, 488
VICROADS 1084× 2033× 96 211, 562, 112
COIL-100 7200× 128× 128× 3 353, 894, 400

6.1. Algorithms

The first four algorithms we consider are based on HOSVD
Tucker packing: they compute the mode-n singular values
σ
(n)
in

and take a(n) = {(σ(n)
in

)2}Inin=1 as input to their Tucker

7
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Figure 2. Comparison of five core shape solvers on four real-world tensors (columns) for increasing values of the Tucker decomposition
size budget c ≤ 100, 000. The plots in the top row are the HOSVD Tucker packing objective value f(r) for the core shape solutions r,
the middle row is the RRE, and the bottom row is the running time of each algorithm in seconds.

packing instance. The fifth is a commonly used greedy
algorithm that computes true losses L(X, r) at each step.

HOSVD-IP is the TuckerPackingSolver algorithm
with ε = 0.25, but we use the integer programming solver
in scipy.optimize.mlip to solve each budget split
subproblem instead of the PTAS in Grandoni et al. (2014).

HOSVD-greedy maximizes the same packing objective by
repeating r← argmaxr′∈N(r) f(r

′), where N(r) is the set
of neighboring feasible core shapes r′ = r+ en and en ∈
{0, 1}N is a standard unit vector. This is Algorithm 3.1
in Ehrlacher et al. (2021) with additional budget constraints.

HOSVD-bang-for-buck is analogous to HOSVD-greedy,
but it increments the dimension in each step that maximizes
(f(r′) − f(r))/(cost(r′) − cost(r)), where cost(r) is the
size of the rank-r Tucker decomposition.

HOSVD-brute-force exhaustively checks all feasible core
shapes and outputs the maximum Tucker packing objective.

RRE-greedy constructs the core shape by computing O(N)
rank-r′ Tucker decompositions in each step and increment-
ing the dimension that most improves the RRE, Concretely,
the update is r ← argminr′∈N(r) L(X, r′), similar to the
Greedy-TL algorithm of Hashemizadeh et al. (2020).

6.2. Results

We consider the budgets c ≤ 100, 000 for all tensor datasets.
For each c, we run each algorithm to get core shape r. Then
in Figure 2, we plot the packing objective f(r), the RRE, i.e.,
L(X, r)/∥X∥2F, and the algorithm running time (including

the mode-n singular value computations) as a function of c.
Each L(X, r) computation uses 20 iterations of HOOI.

Cardiac MRI shows that maximizing the HOSVD Tucker
packing objective f(r) can give noticeably better RRE than
RRE-greedy, while also running 1000x faster. If we take
a closer look at the core shapes these algorithms output,
HOSVD-{brute-force, IP} always return core shapes of the
form (x, y, z, 1), whereas the greedy algorithms allocate
budget to the time dimension as c increases, e.g., (x, y, z, 3).
Increases in the fourth dimension correspond to points of
degradation in f(r) and RRE in Figure 2.

This tensor is also small enough to see differences in the run-
ning times of the HOSVD packing algorithms. In particular,
we see (1) that there is a fixed cost for computing the σ(n)

in
’s,

and (2) that HOSVD-{greedy, bang-for-buck} are faster
than HOSVD-IP, which is faster than HOSVD-brute-force.
All algorithms are significantly faster than RRE-greedy.

Hyperspectral shows that the surrogate loss L̃(X, r) and
RRE can guide greedy algorithms to the same core shapes,
and that HOSVD-greedy can achieve maximum the Tucker
packing objective. We see that computing the higher-order
singular values becomes the bottleneck for the HOSVD
solvers, not solving the packing instances themselves.

VicRoads shows a clear gap between RRE and the surrogate
loss. While HOSVD-{greedy, bang-for-buck} are subopti-
mal in the packing objective, they achieve the same RRE as
the 100x slower RRE-greedy algorithm. This data demon-
strates a shortcoming of the surrogate loss, but also shows
that higher-order singular values can still be effective.

8
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COIL-100 is perhaps the most interesting tensor because
it shows the non-monotonic behavior of greedy HOSVD
Tucker packing algorithms. Similar to cardiac MRI, every
time a greedy core shape solver increases the dimension of
the first index (corresponding to the number of objects), the
packing objective f(r). This effect also appears in the RRE
plots, but it happens in the opposite direction.
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A. Missing analysis from Section 3
A.1. Proof of Theorem 3.2

A.1.1. UPPER BOUNDING THE RECONSTRUCTION ERROR

For any Tucker decomposition X = G×1 A
(1) ×2 · · · ×N A(N) ∈ RI1×···×IN , the mode-n unfolding of X can be written

as
X(n) = A(n)G(n)

(
A(1) ⊗ · · ·A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N)

)⊺
. (18)

This is the corrected version of Equation (4.2) in Kolda & Bader (2009).

Lemma A.1 (De Lathauwer et al. (2000a, Property 10)). For any X ∈ RI1×···×IN and n ∈ [N ], let σ(n)
1 ≥ σ

(n)
2 · · · ≥ σ

(n)
In

denote the singular values of X(n). Then, for any core shape r = (R1, R2, . . . , RN ) ∈ [I1]× [I2]× · · · × [IN ], we have

L(X, r) ≤ ∥X− X̂HOSVD(r)∥2F

≤
I1∑

i1=R1+1

(
σ
(1)
i1

)2
+

I2∑
i2=R2+1

(
σ
(2)
i2

)2
+ · · ·+

IN∑
iN=RN+1

(
σ
(N)
iN

)2
.

Proof. Let the HOSVD of X = S×1 U
(1) ×2 · · · ×N U(N) as in Theorem 3.1. Let S denote the truncated version of S

with respect to core shape r such that

si1...iN =

{
si1...iN if in ≤ Rn for all n ∈ [N ],
0 otherwise.

Let X = S×1 U
(1) ×2 · · · ×N U(N). Summing over all dimensions n ∈ [N ] and using the HOSVD results in Theorem 3.1,

∥S− S∥2F ≤
N∑

n=1

In∑
j=Rn+1

∥
(
S− S

)
in=j
∥2F

=

N∑
n=1

In∑
j=Rn+1

∥Sin=j∥2F

=

N∑
n=1

In∑
in=Rn+1

(
σ
(n)
in

)2
.

We have ∥S− S∥2F = ∥S(n) − S(n)∥2F for all values of n. Further, since the Kronecker product of two orthogonal matrices is
also orthogonal and multiplication by an orthogonal matrix does not affect the Frobenius norm, Equation (18) implies that

∥S(n) − S(n)∥2F = ∥U(n)(S(n) − S(n))(U(1) ⊗ . . .⊗U(n−1) ⊗U(n+1) ⊗ · · · ⊗U(N))
⊺∥2F

= ∥X−X∥2F.

Observing that X = X̂HOSVD(r) by the definition of TuckerHOSVD in Algorithm 1 and putting everything together,

L(X, r) ≤ ∥X− X̂HOSVD(r)∥2F = ∥X−X∥2F = ∥S− S∥2F ≤
N∑

n=1

In∑
in=Rn+1

(
σ
(n)
in

)2
,

which completes the proof.

A.1.2. LOWER BOUNDING THE RECONSTRUCTION ERROR

Theorem A.2 (Eckart & Young (1936)). Let A ∈ Rn×d with n ≥ d and singular values σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0. Let Ak

be the best rank-k approximation of A in the Frobenius norm. Then

∥A−Ak∥2F =

d∑
i=k+1

σ2
i .
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Lemma A.3. For any X ∈ RI1×···×IN and n ∈ [N ], let σ(n)
1 ≥ · · · ≥ σ

(n)
In

denote the singular values of X(n). For every
core shape r = (R1, R2, . . . , RN ) ∈ [I1]× [I2]× · · · × [IN ], we have

L(X, r) ≥ max
n∈[N ]

In∑
in=Rn+1

(
σ
(n)
in

)2
.

Proof. Let the core tensor and factors that minimize L(X, r) be G ∈ RR1×···×RN and A(n) ∈ RIn×Rn , i.e.,

L(X, r) = ∥X− G×1 A
(1) ×2 · · · ×N A(N)∥2F.

Let X̂ = G×1 A
(1) ×2 · · · ×N A(N). Equation (18) and the dimensions of A(n) ∈ RIn×Rn imply that

rank
(
X̂(n)

)
≤ rank

(
A(n)

)
≤ Rn,

since Rn ≤ In. The Eckart–Young–Mirsky theorem (Theorem A.2) with the characterization of σ(n)
i in Theorem 3.1 gives

∥X− X̂∥2F = ∥X(n) − X̂(n)∥2F ≥
In∑

in=Rn+1

(
σ
(n)
in

)2
. (19)

Equation (19) holds for all values of n, so take the equation that maximizes the right-hand side.

A.1.3. COMBINING THE RESULTS

Now we combine Lemma A.1 and Lemma A.3 to give an approximation inequality that is true for all core shapes.

Lemma A.4. For any X ∈ RI1×···×IN and any core shape r = (R1, R2, . . . , RN ) ∈ [I1]× [I2]× · · · × [IN ], we have

1

N
· L̃(X, r) ≤ L(X, r) ≤ L̃(X, r),

where L̃(X, r) is defined in Equation (2).

Proof. Summing Equation (19) in the proof of Lemma A.3 over all values of n ∈ [N ] gives

N∑
n=1

In∑
in=Rn+1

(
σ
(n)
in

)2
≤ N · L(X, r) =⇒ 1

N
· L̃(X, r) ≤ L(X, r). (20)

The upper bound L(X, r) ≤ L̃(X, r) is a restatement of Lemma A.1.

Theorem 3.2 (De Lathauwer et al. (2000a, Property 10); Hackbusch (2019, Theorem 10.2)). For any tensor X ∈ RI1×···×IN

and core shape r ∈ [I1] × · · · × [IN ], let the output of TuckerHOSVD(X, r) be G ∈ RR1×···×RN and A(n) ∈ RIn×Rn ,
for each n ∈ [N ]. If we let

X̂HOSVD(r)
def
= G×1 A

(1) ×2 · · · ×N A(N) (1)

denote the reconstructed r-truncated tensor, then

∥X− X̂HOSVD(r)∥2F ≤
N∑

n=1

In∑
in=Rn+1

(
σ
(n)
in

)2
≤ N · L(X, r).

Furthermore, we have L(X, r) ≤ ∥X− X̂HOSVD(r)∥2F.

Proof. The proof follows by combining Lemma A.1 and Equation (20).

12
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A.2. Proof of Lemma 3.4

Lemma A.5. For any tensor X ∈ RI1×···×IN and budget c ≥ 1 +
∑N

n=1 In for the size of the Tucker decomposition, let
the set of feasible core shapes be

F =

{
r ∈ [I1]× · · · × [IN ] :

N∏
n=1

Rn +

N∑
n=1

InRn ≤ c

}
.

Then, we have

r̃∗
def
= argmin

r∈F
L̃(X, r) = argmax

r∈F

N∑
n=1

Rn∑
in=1

(
σ
(n)
in

)2
.

Further, if r∗ def
= argminr∈F L(X, r) is an optimal budget-constrained core shape, then L(X, r̃∗) ≤ N · L(X, r∗).

Proof. For any n, we have

In∑
in=1

(
σ
(n)
in

)2
= ∥X(n)∥2F = ∥X∥2F.

Therefore, for any choice of r = (R1, R2, . . . , RN ), we have[
N∑

n=1

Rn∑
in=1

(
σ
(n)
in

)2]
+

[
N∑

n=1

In∑
in=Rn+1

(
σ
(n)
in

)2]
= N∥X∥2F.

This is a constant value that only depends on X, so minimizing L̃(X, r) is equivalent to maximizing the packing version
since both problems optimize over the same set F .

Lastly, we have

L̃(X, r̃∗) ≤ L̃(X, r∗) ≤ N · L(X, r∗),

where the first inequality follows from optimizing the surrogate loss and the second inequality follows from Lemma A.4
since that result holds for all core shapes.

A.3. Hardness

Definition A.6. Let N ≥ 2 be an even integer and w1, . . . , wN ≥ 1 be integers. The EQUIPARTITION problem asks to
determine whether there exists a subset S ⊆ [N ] of size n/2 such that∑

i∈S

wi =
∑

i∈[N ]\S

wi.

Lemma A.7 (Garey & Johnson 1979, SP12). EQUIPARTITION is NP-complete.

We now give a reduction from the equipartition problem to the Tucker packing problem.

Theorem 3.6. The Tucker packing problem is NP-hard.

Proof. Let T,w1, . . . , wT be an instance of EQUIPARTITION where wn ≥ 2 for all n ∈ [T ]. Notice that the assumption
wn ≥ 2 is without loss of generality because we can multiply all of the values w1, . . . , wT by two.

Let M =
∑

n∈[T ] wn be the sum of all weights, and let N ≥ T be the smallest integer such that 2N−T/2 > 4(N−T )+3M/2.
Now we construct an instance of the Tucker packing problem. For each n ∈ [T ], let:

• In = wn

13
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• a
(n)
1 = 2M

• a
(n)
2 = M + wn

• a
(n)
in

= 0, for all in ∈ [In] \ {1, 2}

Next, for each n ∈ [N ] \ [T ], let:

• In = 2

• a
(n)
1 = a

(n)
2 = 2M

Finally, set the budget to be c = 2N−T/2 + 4(N − T ) + 3M/2.

First, notice that this is a valid instance of the Tucker packing problem since a
(n)
1 ≥ a

(n)
2 ≥ · · · ≥ a

(n)
In

for all n ∈ [N ].

Further, since N = O(T · log2(3M/2)) and a
(n)
in

= 0 for in ∈ [In] \ {1, 2}, the size of the description of this problem is
polynomial in the size of the description of the corresponding EQUIPARTITION problem.

Now we consider a decision version of this Tucker packing problem in which we are asked to determine whether there exists
a feasible solution (R1, . . . , RN ) such that

N∑
n=1

Rn∑
in=1

a
(n)
in
≥M(4N − 3T/2) +M/2. (21)

We show that a positive answer to the decision version of the Tucker packing problem in (21) implies a positive answer to
the EQUIPARTITION problem and vice versa.

Suppose the answer to the decision version of the Tucker packing problem is YES, and r∗ is an optimal solution such that

N∑
n=1

R∗
n∑

in=1

a
(n)
in
≥M(4N − 3T/2) +M/2 and

N∏
n=1

R∗
n +

N∑
n=1

InR
∗
n ≤ c.

Since
c = 2N−T/2 + 4(N − T ) + 3M/2 < 2 · 2N−T/2 = 2N−T/2+1,

there are at most N − T/2 values of R∗
n such that R∗

n ≥ 2. Further, since a(n)in
= 0 for all in ≥ 3, we never have R∗

n > 2 in
a minimal optimal solution. It follows that R∗

n ∈ {1, 2} for all n ∈ [N ], and

N∏
n=1

R∗
n ≤ 2N−T/2.

Next, we establish the structure of an optimal solution to this Tucker packing instance. Observe that r̂ = (R̂1, . . . , R̂N ) with
R̂1 = · · · = R̂T = 1 and R̂T+1 = · · · = R̂N = 2 is a feasible solution r that achieves an objective value of M(4N − 2T ).
Now consider any feasible solution in which there exists i ∈ [T ] and j ∈ [N ] \ [T ] such that Ri = 2 and Rj = 1. If we
switch the values of Ri and Rj , then the cost decreases by wi − 2 ≥ 0 (i.e., the solution is still feasible), and the objective
value increases by M − wi > 0. Therefore, since r̂ is feasible, in an optimal solution we have Rn = 2 for all n ∈ [N ] \ [T ]
and at most T/2 of the Rn’s for n ∈ [T ] are equal to two.

Let S = {i ∈ [T ] : R∗
i = 2}. Then by construction we have∑

n∈S

a
(n)
2 =

∑
n∈S

(M + wn) = M |S|+
∑
n∈S

wn < M(|S|+ 1).

14



Approximately Optimal Core Shapes for Tensor Decompositions

Moreover, since the answer to the decision problem is YES and in an optimal solution we have R∗
n = 2 for all n ∈ [N ] \ [T ],

it follows that

∑
n∈S

a
(n)
2 = f(r∗)−

N∑
n=1

a
(n)
1 −

N∑
n=T+1

a
(n)
2 (22)

= f(r∗)− 2NM − 2(N − T )M

≥M(4N − 3T/2) +M/2− 2NM − 2(N − T )M

= MT/2 +M/2.

Therefore,

M(|S|+ 1) > MT/2 +M/2,

which implies |S| > T/2− 1/2, so |S| ≥ T/2 since |S| and T/2 are integers. Using the characterization above about an
optimal solution together with the fact that the budget is strictly less than 2N−T/2+1 gives us |S| ≤ T/2. Thus, a YES to
the decision problem implies that |S| = T/2, which further implies

∏N
n=1 R

∗
n = 2N−T/2.

It then follows from our choice of budget c that

N∑
n=1

InR
∗
n ≤ c− 2N−T/2 = 4(N − T ) + 3M/2,

which then by the definition of In implies that(
T∑

n=1

wnR
∗
n +

N∑
n=T+1

2R∗
n

)
=

(
M +

∑
n∈S

wn

)
+ 4(N − T ) ≤ 4(N − T ) + 3M/2 =⇒

∑
n∈S

wn ≤M/2.

Furthermore, using (22), the definition of the a
(n)
in

’s, and the fact that |S| = T/2, we have∑
n∈S

a
(n)
2 =

∑
n∈S

(M + wn) = |S|M +
∑
n∈S

wn ≥MT/2 +M/2 =⇒
∑
n∈S

wn ≥M/2.

Putting everything together, we get
∑

n∈S wn = M/2. Thus, S is a solution for the EQUIPARTITION problem.

Now suppose the answer to the EQUIPARTITION problem is YES. Let S ⊆ [T ] such that |S| = T/2 and
∑

n∈S wn = M/2.
Construct r∗ as follows: For each n ∈ S ∪ ([N ] \ [T ]), set R∗

n = 2; for each n ∈ [T ] \ S, set R∗
n = 1.

Then, by the definitions of In and a
(n)
in

above, we have

N∑
n=1

R∗
n∑

in=1

a
(n)
in
≥M(4N − 3T/2) +M/2 and

N∏
n=1

R∗
n +

N∑
n=1

InR
∗
n ≤ c,

which completes the proof.

A.4. Translating between approximate maximization and minimization

We prove an additive-error guarantee that shows how a (1− ε′)-approximate solution to the Tucker packing problem, i.e., a
core shape r ∈ [I1]× · · · × [IN ], can lead to an increase in the surrogate loss objective.

Lemma A.8. Let r ∈ [I1]× · · · × [IN ] be any core shape that achieves a (1− ε/N)-approximation to the Tucker packing
problem. Then, we have RRE(X, r) ≤ N · RRE(X, r∗) + ε, where RRE(X, r) := L(X, r)/∥X∥2F.

Proof. Let ε′ = ε/N and r̃∗ be the optimal shape for the surrogate loss L̃. If r = (R1, . . . , RN ) is a (1− ε′)-approximation
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to the Tucker packing problem, it follows that

L̃(X, r)

∥X∥2F
=

N∥X∥2F −
∑N

n=1

∑Rn

in=1

(
σ
(n)
in

)2
∥X∥2F

≤
N∥X∥2F − (1− ε′)

∑N
n=1

∑R̃∗
n

in=1

(
σ
(n)
in

)2
∥X∥2F

=
L̃(X, r̃∗)

∥X∥2F
+ ε′

(
N − L̃(X, r̃∗)

∥X∥2F

)

≤ L̃(X, r̃∗)

∥X∥2F
+ ε.

Theorem 3.2 gives us L(X, r) ≤ L̃(X, r) ≤ N · L(X, r). By definition L̃(X, r̃∗) ≤ L̃(X, r∗), so we have

RRE(X, r) =
L(X, r)

∥X∥2F
≤ L̃(X, r)

∥X∥2F
≤ L̃(X, r̃∗)

∥X∥2F
+ ε ≤ L̃(X, r∗)

∥X∥2F
+ ε ≤ N · L(X, r∗)

∥X∥2F
+ ε = N · RRE(X, r∗) + ε,

as desired.

B. Missing analysis from Section 4
B.1. Proof of Lemma 4.3

Lemma B.1. Let 0 < ε ≤ 1 and F ⊆ [I1]× · · · × [IN ] be downwards closed. For each n ∈ [N ], define

S(ε)
n =

{
⌈(1 + ε)k⌉ : k ∈ Z≥0, ⌈(1 + ε)k⌉ ≤ In

}
.

Let r∗ be an optimal solution to the generalized problem

maximize
N∑

n=1

Rn∑
in=1

a
(n)
in

(9)

subject to (R1, . . . , RN ) ∈ F

and let r(ε) = (R
(ε)
1 , . . . , R

(ε)
N ) be an optimal solution to

maximize
N∑

n=1

Rn∑
in=1

a
(n)
in

(10)

subject to (R1, . . . , RN ) ∈ (S
(ε)
1 × · · · × S

(ε)
N ) ∩ F

Then, f(r(ε)) ≥ (1 + ε)−1f(r∗). Further, there is an algorithm that finds an optimal solution of (10) with running time
O(
∑N

n=1 In + ε−N
∏N

n=1(1 + log2(In))).

Proof. Let kn ≥ 0 be the largest integer such that (1 + ε)kn ≤ R∗
n for each n ∈ [N ]. Further, let

R̂n =
⌈
(1 + ε)kn

⌉
.

Since R∗
n is an integer, we know that R̂n ≤ R∗

n. Therefore, because F is downwards closed, r̂ = (R̂1, . . . , R̂N ) is a feasible
solution to (10). It follows that

f(r̂) ≤ f(r(ε)). (23)
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Now we will show that f(r∗) ≤ (1 + ε)f(r̂). Since a
(n)
1 ≥ · · · ≥ a

(n)
In
≥ 0 for all n ∈ [N ], we have

(1 + ε)

R̂n∑
in=1

a
(n)
in
≥

⌊(1+ε)R̂n⌋∑
in=1

a
(n)
in

. (24)

By the definition of kn, it follows that

(1 + ε)R̂n = (1 + ε)
⌈
(1 + ε)kn

⌉
≥ (1 + ε)kn+1

> R∗
n.

Since R∗
n is an integer, we have ⌊(1 + ε)R̂n⌋ ≥ R∗

n. Therefore, using Equation (25) we have

(1 + ε)

R̂n∑
in=1

a
(n)
in
≥

R∗
n∑

in=1

a
(n)
in

. (25)

Finally, summing over n ∈ [N ] and using Equation (23) gives us

(1 + ε)f(r̂) ≥ f(r∗) =⇒ f(r(ε)) ≥ (1 + ε)−1f(r∗).

Algorithm. Now we design and analyze a simple algorithm to solve the grid-search problem in (10). First observe that

|S(ε)
n | = 1 +

⌊
log1+ε(In)

⌋
= 1 +

⌊
log2(In)

log2(1 + ε)

⌋
.

It follows that the number of feasible solutions for Problem (10) is

O

(
N∏

n=1

(
1 +

log2(In)

log2(1 + ε)

))
= O

(
1

logN2 (1 + ε)

N∏
n=1

(1 + log2(In))

)
,

since log2(1 + ε) ≤ 1 for ε ≤ 1. Further, observing that log2(1 + ε) ≥ ε for 0 < ε ≤ 1 implies a bound of

O

(
1

εN

n∏
n=1

(1 + log2(In))

)
on the number of feasible solutions.

After computing the prefix sums for elements of S(ε)
n ’s, we can iterate over the elements of S(ε)

1 × · · · × S
(ε)
N in the

lexicographical order, check for feasibility, and compute the objective value f(r) for any candidate solution in amortized
time O(1). Finally, note that the prefix sums for elements of S(ε)

n can be computed in O(In) time.

Rationale for two different types of budget splits in Algorithm 2. Instead of considering two different budget splitting
methods (i.e., with cfactor and ccore), one could just consider the budget splits cfactor ∈ [

∑N
n=1 I

2
n] over problems of the form:

maximize f(r)

subject to
∏N

n=1 Rn ≤ c− cfactor∑N
n=1 InRn ≤ cfactor

Rn ∈ [In] ∀n ∈ [N ]

This approach also gives a PTAS. The running time, however, is O((
∑N

n=1 I
2
n)(
∑N

n=1 In)
O(1/ε)). In contrast, the run-

ning time of Algorithm 2 is O((log1+ε(c) + ⌈1/ε⌉
∑N

n=1 In)(
∑N

n=1 In)
O(1/ε)). Note that c ≤

∑N
n=1 I

2
n +

∏N
n=1 In.

Therefore, log1+ε(c) = O( 1ε
∑N

n=1 log2(In)) ≪ ⌈1/ε⌉
∑N

n=1 In, where the first equality follows from the concavity of
the logarithm function. Thus, our running time is O((⌈1/ε⌉

∑N
n=1 In)(

∑N
n=1 In)

O(1/ε)), which is always smaller than
O((
∑N

n=1 I
2
n)(
∑N

n=1 In)
O(1/ε)).
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C. Tree tensor networks
Remark C.1. Although the tree tensor network is considered for general Hilbert spaces and has been defined in full generality
using the tensor network notations (see, e.g., Hackbusch (2019, Chapter 11) and Krämer (2020, Chapter 3)), we consider
finite-dimensional Euclidean spaces to keep our notation simple.
Remark C.2. Theorem 5.6 is implied by Lemma 4.3.

v

2 31 4

e1 e2 e3
e4

Figure 3. Tree tensor network corresponding to a Tucker decomposition.

Example (Tucker decomposition). Tucker decomposition corresponds to a tree tensor of depth one. For example, the
tree tensor in Figure 3 consists of matrices A1 ∈ RI1×Re1 ,A2 ∈ RI2×Re2 ,A3 ∈ RI3×Re3 ,A4 ∈ RI4×Re4 , and tensor
Tv ∈ RRe1

×Re2
×Re3

×Re4 . The corresponding reconstruction is

X̂ = Tv ×e4 A4 ×e3 A3 ×e2 A2 ×e1 A1.

w

u v

1 2 3 4

e1 e2 e3 e4

e5 e6

Figure 4. Tree tensor network example corresponding to a hierarchical Tucker decomposition.

Example (Hierarchical Tucker decomposition). To to better understand Definition 5.1, we give an example for a tensor
of order 4. Consider the tree illustrated in Figure 4. This tree tensor network corresponds to matrices A1 ∈ RI1×Re1 ,A2 ∈
RI2×Re2 ,A3 ∈ RI3×Re3 ,A4 ∈ RI4×Re4 , and tensors Tu ∈ RRe1

×Re2
×Re5 ,Tv ∈ RRe3

×Re4
×Re6 ,Tw ∈ RRe5

×Re6 . The
corresponding reconstruction is

X̂ = Tw ×e6 Tv ×e5 Tu ×e4 A4 ×e3 A3 ×e2 A2 ×e1 A1.

D. Experiments
We provide short descriptions about each of the tensor datasets used in the core shape experiments in Section 6, which gives
some insight into why the algorithms build the core shapes they do.

Cardiac MRI. 256× 256× 14× 20 tensor whose elements are MRI measurements indexed by (x, y, z, t), where (x, y, z)
is a point in space and t corresponds to time.

Hyperspectral. 1024× 1344× 33 tensor of time-lapse hyperspectral radiance images of a nature scene that is undergoing
illumination changes (Nascimento et al., 2016).

VicRoads. 1084× 2033× 96 tensor containing 2033 days of traffic volume data from Melbourne and its surrounding
suburbs. This data comes from a network of 1084 road sensors measured in 15 minute intervals (Schimbinschi et al., 2015).

COIL-100. 7200× 128× 128× 3 tensor containing 7200 colored photos of 100 different objects (72 images per object)
taken at 5-degree rotations (Nene et al., 1996). This is a widely-used dataset in the computer vision research community.
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