UNLOCKING FOUNDATION MODELS FOR TIME SERIES WITH CHANNEL DESCRIPTIONS

Anonymous authorsPaper under double-blind review

ABSTRACT

Traditional time series models are often task-specific and rely heavily on feature engineering. While Transformer-based architectures have advanced sequence modeling in other domains, their use for time series representation learning remains limited. We introduce CHARM, a model that improves representation quality for multivariate time series by incorporating channel-level textual descriptions into its architecture. This design enables the model to exploit contextual information associated with individual sensors while remaining invariant to channel order. CHARM is trained using a Joint Embedding Predictive Architecture (JEPA) with a novel loss function that encourages informative and temporally robust embeddings. We find that integrating channel descriptions consistently enhances representation quality, with supplementary ablations providing insight into the contributions of different design choices. The learned embeddings yield strong performance across diverse downstream tasks, underscoring the value of description-aware time series modeling.

1 Introduction

Time series models play a pivotal role in critical real-world applications such as forecasting, classification, and anomaly detection across domains including manufacturing, energy, healthcare, and finance (Hannun et al., 2019; Susto et al., 2014; Ding et al., 2015). By converting temporal signals into actionable insights, these models enable large-scale, data-driven decision-making. However, most existing approaches remain narrowly scoped and task-specific, requiring significant manual effort for development and maintenance. Even in ostensibly homogeneous settings—such as industrial pump fleets with varied sensor configurations—models are often trained independently (Morgenthal et al., 2024), despite underlying shared physical dynamics. This fragmentation is rooted in structural limitations of conventional time series architectures, which typically assume fixed-length, uniformly structured inputs and lack mechanisms for fusing information across heterogeneous sensors. Consequently, current paradigms struggle to generalize across tasks, domains, and configurations, posing challenges to scalability and adaptability.

Foundation models in other modalities In contrast, fields such as natural language processing, computer vision, and audio have undergone transformative progress with the emergence of foundation models—large-scale, pre-trained architectures that learn general-purpose representations across diverse downstream tasks (Devlin et al., 2019; Nussbaum et al., 2025; Assran et al., 2023; Kirillov et al., 2023; Baevski et al., 2020; Brown et al., 2020; Radford et al., 2021). These models, often trained via Self-Supervised Learning (SSL) on massive unlabeled corpora, have demonstrated capabilities such as Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) and robust task transfer via lightweight fine-tuning (Devlin et al., 2019; Oquab et al., 2023; Kirillov et al., 2023). Their success hinges on learning semantically meaningful representations that are modular, robust, and highly transferable.

Foundation models for time series forecasting Inspired by these advances, the time-series community has begun developing foundation models, with a strong emphasis on supervised forecasting objectives (Das et al., 2024; Woo et al., 2024b; Ansari et al., 2024; Liu et al., 2024). These models achieve impressive performance on predictive benchmarks and introduce architectural innovations tailored to multi-domain forecasting. However, because their training remains tightly coupled

to a forecasting loss, the learned representations are often specialized and brittle—limiting their applicability to downstream tasks such as classification, segmentation, or anomaly detection.

Foundation embedding models for time series Most self-supervised foundation models for time series rely on objectives such as masked reconstruction or next-step forecasting, which require the encoder to impute raw signal values. These signals are often noisy, low-resolution, and entangled with domain-specific artifacts (Trirat et al., 2024), resulting in representations that overfit to sensor-level noise rather than capturing higher-level process dynamics. While such objectives are straightforward to implement, they tend to entangle semantic structure with noise, limiting robustness and generalization across tasks or domains. Recent approaches such as MOMENT (univariate) (Goswami et al., 2024) and UniTS (multivariate) (Gao et al., 2024a) extend this paradigm with multi-task or reconstruction-based pretraining and report strong downstream performance, but remain fundamentally grounded in raw signal-level prediction for pretraining.

JEPA-style latent prediction: a robust alternative In contrast, Joint Embedding Predictive Architectures (JEPA) (LeCun, 2022) adopt a fundamentally different approach: predicting latent representations of masked target segments from contextual embeddings rather than raw values. By operating entirely in embedding space, JEPA filters out sensor noise and encourages the encoder to model higher-level temporal structure. In vision, this paradigm has proven highly effective—Assran et al. (2023) demonstrate that latent prediction yields representations that rival or surpass those learned via supervised learning, while remaining more robust to noise and label scarcity. Compared to contrastive learning, JEPA-style models also avoid the complexity of negative sampling and the sensitivity to embedding space dimensionality, making them a more stable and scalable choice for semantic representation learning.

Lack of channel-awareness in time series models Most time series models treat all input channels uniformly as uncategorized streams of sensor data, without incorporating information about the identity, modality, or semantics of the sensors generating the data. This lack of sensor-awareness discards valuable contextual information, limiting the model's ability to reason about sensor-specific behavior or operate reliably across deployments with varying instrumentation.

1.1 CONTRIBUTIONS

This work aims to (1) develop a robust, semantically grounded SSL objective for time series data, and (2) design an architecture capable of directly incorporating textual channel information. This is inspired by how subject matter experts interpret time series data, by jointly considering the raw signals and their accompanying channel descriptions. To this end, we introduce a **CHannel-Aware Representation Model** (CHARM), trained to produce domain-aware, and performant representations across tasks and datasets. Building such a model entails several key challenges, including channel heterogeneity, variation in temporal dynamics across domains, and risks of negative transfer and representational collapse. To realize these aims, we introduce the following core contributions:

Description-aware temporal featurization We modify temporal convolutional networks to incorporate channel descriptions directly into the convolutional layers. Unlike patch-based approaches, our stacked, description-aware convolutions allow the model to seamlessly adapt across domains without manual tuning of patch size. Details are provided in Section 2.1.1.

Inter-channel reasoning via attention and gating We augment the standard attention mechanism with novel, learnable inter-channel attention layers and gating modules conditioned on channel descriptions. These components enable the model to flexibly capture inter-channel dependencies, selectively integrate signals in a structured manner, while maintaining invariance to channel ordering. See Section 2.1.2 for details.

Self-supervised training with JEPA for time series We adapt the JEPA to the time series domain, enabling semantic representation learning without reconstruction. To do so, we introduce a set of tailored data augmentations and temporal perturbations that improve robustness to common time series artifacts. This avoids the drawbacks of contrastive learning, such as sensitivity to sampling and

Figure 1: Overview of the model architecture, featuring a context-aware temporal convolutional network and a series of contextual attention layers, each guided by textual descriptions of the input time series channels.

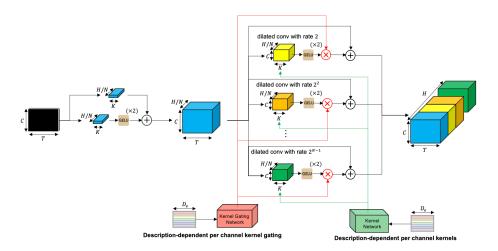


Figure 2: Schematic of the context-aware temporal convolutional network, performing initial featurization of multivariate time series inputs guided by granular textual descriptions of each channel.

dimensionality constraints (LeCun, 2022; Assran et al., 2023; Chen et al., 2020; 2022; Chuang et al., 2020). Details are provided in Section 2.2.

We evaluate our model across a range of downstream tasks, including classification, forecasting, and anomaly detection. Our approach consistently achieves strong performance across diverse datasets, underscoring the effectiveness of both the model architecture and the training strategy.

2 METHODOLOGY

In this section, we first introduce a novel multi-modal transformer-based architecture for learning embeddings from time series data, guided by underlying channel descriptions (Section 2.1). We then describe how this architecture is trained using self-supervised learning with JEPA (Section 2.2). The notation used throughout this section is provided in Appendix B.

2.1 Multi-Modal Time Series Embedding Model

Here, we present three key architectural contributions that enable learning high-quality time series embeddings by incorporating textual channel descriptions. Our model employs convolutional layers in conjunction with a series of custom attention layers, enhanced by a novel attention mechanism. An overview of the full architecture is provided in Figure 1.

We begin by describing the contextual temporal convolutional network in Section 2.1.1, which generates convolution-based embeddings. These embeddings are then passed to a series of contextual attention layers, where our novel attention mechanism is applied. We describe the details of this layer in Section 2.1.2, where we introduce two core extensions to the self-attention mechanism in sections.

2.1.1 CONTEXTUAL TEMPORAL CONVOLUTIONAL NETWORK

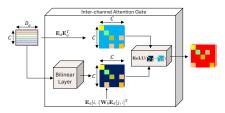
We introduce a contextual Temporal Convolutional Network (TCN) that projects input time series $\mathbf{T} \in \mathbb{R}^{T \times C}$ into contextual embeddings $\mathbf{T}_c \in \mathbb{R}^{T \times C \times H}$, where $\mathbf{T}_c[i,j,:]$ denotes the H-dimensional embedding at time step i for channel j. The base architecture follows standard dilated TCNs (Bai et al., 2018; Lin et al., 2021), which stack 1D convolutions with exponentially increasing dilation factors (2^l) . However, standard TCNs are architecturally static and their learned kernels are input independent and constant. This lack of flexibility hinders their ability to adapt across diverse domains, leading to representation collapse or negative transfer when trained on heterogeneous datasets. To address this, we make the TCN context-aware by incorporating channel descriptions into the convolutional process. Given a time series tuple $\mathbf{t} = (\mathbf{T}, \mathbf{D}, \mathbf{pos})$ (see Figure 7), we extract text embeddings for the descriptions using a frozen text embedding model, as $\mathbf{E}_d \in \mathbb{R}^{C \times D_e}$. We introduce two mechanisms to inject this context, namely:

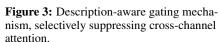
Contextual kernel gating Description embeddings are used to conduct soft gating through the layers of the TCN. The gates are produced by the *kernel gating network* in Figure 2, which is given as $\mathbf{G}_c = \mathbf{sigmoid}(\mathbf{E}_d\mathbf{W}_g), \mathbf{W}_g \in \mathbb{R}^{D_e \times N}$, with N denoting the number of stacked convolutional layers in the TCN. Each element $\mathbf{G}_c[i,j]$, which corresponds to the soft gate associated with channel i and layer j of the TCN which is then incorporated multiplicatively in the network as depicted in Figure 2. This enables the model to control the effective field of view of TCN informed by the channel descriptions.

Contextual kernels Rather than learning fixed convolutional filters, we generate them from the descriptions embeddings as $\mathbf{G}_k = \mathbf{E}_d \mathbf{W}_k$, $\mathbf{W}_k \in \mathbb{R}^{D_e \times (\frac{H \times K}{N})}$, where K is the kernel size and N the number of TCN layers. This mechanism directly ties channel semantics to filter generation and is represented by the *kernel network* in Figure 2.

2.1.2 CONTEXTUAL ATTENTION LAYER

The embeddings generated by the contextual TCN layer are subsequently processed through a sequence of contextual attention layers. The primary goal of these layers is to effectively fuse channel and temporal dimensions into richer, more expressive representations, directly incorporating the granular textual descriptions of each channel. To achieve this, we propose several novel extensions to the classical self-attention mechanism (Vaswani et al., 2017). These and their inter-play are depicted in Figure 1, under the contextual attention layer. Below we discuss the key details of these key components in detail.





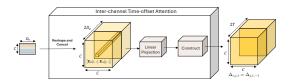


Figure 4: Symmetric construction of inter-channel temporal-offset attention, encoding mutual dependencies between channels at varying time lags.

Description-aware inter-channel attention gating This module introduces a gating mechanism conditioned explicitly on channel descriptions, enabling our architecture to selectively co-attend to the most relevant channels. Given the channel description embeddings \mathbf{E}_d , this layer computes the pairwise similarities, \mathbf{S} , and the similarity threshold matrix, \mathbf{Z} , as $\mathbf{S} = \mathbf{E}_d \mathbf{E}_d^{\mathsf{T}}$, $\mathbf{Z}[i,j] = \operatorname{sigmoid}\left(\mathbf{E}_d[i,:]\mathbf{W}_b\mathbf{E}_d[j,:]^{\mathsf{T}}\right)$. The similarity threshold matrix governs our inter-channel gating mechanism. Specifically, this layer outputs the gating matrix given as $\mathbf{G}_d = \operatorname{ReLU}(\mathbf{Z} - \mathbf{S})$. This process, illustrated in Figure 3, allows the model to selectively suppress cross-attention between channel pairs (i,j) by driving their corresponding similarity threshold $\mathbf{Z}[i,j]$ toward one.

Description-aware inter-channel time-offset attention This module improves the model's ability to capture inter-channel relationships by explicitly quantifying dependencies between channels at different temporal offsets. Specifically, we introduce a learnable tensor $\Delta \in \mathbb{R}^{C \times C \times 2T_{\max}}$, where each entry $\Delta_{i,j,t}$ encodes the learned dependency strength between channel i and channel j at a temporal offset of t steps. We assume inherent symmetry within Δ , reflecting the intuition that the relationship from channel i to channel i at step t should match the inverse relationship from channel i to channel i at step i to channel i to channel i at step i at

Next, we apply a linear projection to these pairwise embeddings, parameterized by the matrix $\mathbf{W}_d \in \mathbb{R}^{2D_e \times T_{\text{max}}}$, yielding the intermediate tensor $\mathbf{\Delta}_+ = \bar{\mathbf{E}}_d \, \mathbf{W}_d$. We then construct the full symmetric tensor $\mathbf{\Delta}$ as below

$$oldsymbol{\Delta}[i,j,t] = egin{cases} oldsymbol{\Delta}_+[i,j,t] & ext{if } t \geq 0, \ oldsymbol{\Delta}_+[j,i,-t] & ext{if } t < 0. \end{cases}$$

This symmetric construction, depicted in Figure 4, ensures parameter efficiency and explicitly encodes symmetry constraints. We compute the final $\bar{\Delta} \in \mathbb{R}^{CT \times CT}$ matrix using a "slice-and-tile" operation, where $\bar{\Delta}$ is a block matrix with T blocks on each axis, and in block notation $\bar{\Delta}[T_i,T_j]=\Delta[:,:,T_j-T_i]$. See Section C.5.1 for PyTorch style pseudocode for the naive and fast versions of this operation.

Custom attention mechanism We unify the gating and attention mechanisms described above into a single self-attention framework. Given embedding matrix the contextual TCN layer, \mathbf{T}_c , we reshape it into $\mathbf{X} \in \mathbb{R}^{CT \times H}$, where each channel-time pair is represented by an H-dimensional embedding. To facilitate intuitive indexing, we employ a triple-index notation $\mathbf{X}_{[(c_i,t_j),k]}$ rather than a flattened indexing scheme $\mathbf{X}[m,k]$, with $c_i=m \mod C$ and $t_j=\lfloor \frac{m}{C} \rfloor$. First we apply rotary position embeddings to the queries and keys given the \mathbf{pos} indices as:

$$\hat{\mathbf{Q}} = \mathbf{RoPE}(\mathbf{W}_Q\mathbf{X}_{[(i,p),:]},\mathbf{pos}), \quad \hat{\mathbf{K}} = \mathbf{RoPE}(\mathbf{W}_K\mathbf{X}_{[(j,q),:]},\mathbf{pos})$$

The custom attention matrix $\mathbf{A} \in \mathbb{R}^{CT \times CT}$ is then constructed as

$$\mathbf{A}_{[(i,p),(j,q)]} = \operatorname{Softmax}\left(\underbrace{\frac{\hat{\mathbf{Q}}_{[i,p,:]}\hat{\mathbf{K}}_{[j,q,:]}^T}{\sqrt{D_e}}}_{\text{Vanilla Self-Attention}} + \underbrace{\mathbf{\Delta}[i,j,q-p]}_{\text{Channel Lags}} - \underbrace{\lambda_G\mathbf{G}_d[i,j]}_{\text{Channel Gates}}\right)$$

Here, $\mathbf{A}_{[(i,p),(j,q)]}$ represents the attention from channel i at time p to channel j at time q. The scalar λ_G is typically a large positive number, enabling the gating matrix to serve as an attention mask, selectively blocking certain cross-channel interactions based on the learnt thresholds. The attention matrix can be efficiently computed using vectorized operations by appropriately tiling the inter-channel gating and time-offset matrices. Following the standard transformer approach, we multiply the attention matrix by the value matrix $\mathbf{V} = \mathbf{W}_V \mathbf{X}$ to produce our contextualized embeddings.

2.1.3 PUTTING IT ALL TOGETHER

This completes the integration of the various components within our multimodal time-series embedding architecture. For a given input tuple $\mathbf{t} = (\mathbf{T}, \mathbf{D}, \mathbf{pos})$, we first generate the initial embeddings $\mathbf{X} \in \mathbb{R}^{T \times C \times H}$ from our **contextual TCN** layer. These embeddings pass through a stack of N **contextual attention** layers, each layer outputting $\mathbf{X}^{(l)} \in \mathbb{R}^{(T \times C) \times H}$, reshaped to $\mathbf{Y}^{(l)} \in \mathbb{R}^{T \times C \times H}$ for subsequent layers. Similar to (Grill et al., 2020a), we apply ℓ_2 normalization to the final embeddings: $\mathbf{Y}[i,j,t] = \frac{\mathbf{Y}[i,j,t]}{\sqrt{\sum_h \mathbf{Y}[i,j,h]^2}}$, with normalization computed along the embedding dimension only. The complete architecture is denoted as \mathbf{E}_{θ} , such that $\mathbf{Y} = \mathbf{E}_{\theta}(\mathbf{T}, \mathbf{D}, \mathbf{pos})$. While this outlines the primary structure of our contextual embedding model, we have also introduced several nuanced modifications aimed at enhancing training stability and convergence speed. These detailed adjustments are presented in Section C.

2.2 Self-supervised Representation Learning

We adopt the JEPA framework (Assran et al., 2023; LeCun, 2022) to enable self-supervised learning on time series data enriched with fine-grained textual context. JEPA comprises three core components, namely predictor, context, and target encoders. In the following section, we detail the key components of our training pipeline based on JEPA, namely, (i) the dataset generation process in Section 2.2.1, (ii) the integration of JEPA with our embedding model in Section 2.2.2, and (iii) a novel loss formulation tailored to JEPA training in Section 2.2.3.

2.2.1 Dataset Generation

 Figure 5 provides a high-level view of JEPA and the interplay among JEPA's three encoders, and how they consume data points generated by the dataset generation process. For time series data, we generate augmented views of the same data point through data augmentation and perturbation techniques. We refer to the data augmentation as JEPA training tasks.

Formally, given an input instance $\mathbf{t} = (\mathbf{T}, \mathbf{D}, \mathbf{pos})$, we define an augmented view of this instance through three randomly generated contiguous sets of indices, with $\mathcal{I}_{\text{ctx}}, \mathcal{I}_{\text{tgt}}, \mathcal{I}_{\text{prd}} \subseteq \mathbf{pos}$, denoting time indices that are fed into the context, target and predictor encoders. We employ two self-supervised tasks, namely *causal prediction*, where $\mathcal{I}_{\text{ctx}} \subset \mathcal{I}_{\text{tgt}}$, and *smoothing*,

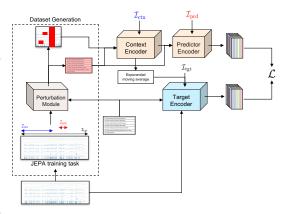


Figure 5: JEPA architecture with three encoders processing augmented views.

where $\mathcal{I}_{ctx} \cap \mathcal{I}_{tgt} \neq \emptyset$ and $\mathcal{I}_{prd} \subset \mathcal{I}_{ctx} \cap \mathcal{I}_{tgt}$. See Figure 10 for an overview of the causal prediction (left) and smoothing (right) tasks. The input to the context encoder is further perturbed (see Section I.1) to encourage the model to learn robust representations under mild corruption.

2.2.2 JEPA SETUP

In JEPA the context and target encoders are architecturally identical. However, only the context encoder is directly optimized during training while the target encoder is updated using an exponential moving average of the context encoder's parameters, see Figure 5. In contrast, the predictor is a narrow/shallower version of the context encoder which is trained jointly with the context encoder through standard backpropagation.

To leverage JEPA, we integrate our embedding model within the underlying encoders. Let us denote the context, target and predictor encoders as, \mathbf{E}_{θ}^{c} , \mathbf{E}_{θ}^{t} and \mathbf{E}_{θ}^{p} , respectively. The context and target encoders are fully defined by our embedding model as

$$\mathbf{X}^c = \mathbf{E}^c_{\theta}(\bar{\mathbf{T}}, \bar{\mathbf{D}}, \mathcal{I}_{\text{ctx}}) \coloneqq \mathbf{E}_{\theta}(\bar{\mathbf{T}}, \bar{\mathbf{D}}, \mathcal{I}_{\text{ctx}}), \quad \mathbf{X}^t = \mathbf{E}^t_{\theta}(\mathbf{T}[\mathcal{I}_{\text{tgt}}, :], \mathbf{D}, \mathcal{I}_{\text{tgt}}) \coloneqq \mathbf{E}_{\theta}([\mathcal{I}_{\text{tgt}}, :], \mathbf{D}, \mathcal{I}_{\text{tgt}})$$

where $\mathbf{X}^c \in \mathbb{R}^{|\mathcal{I}_{\text{ctx}}| \times C \times H}$ and $\mathbf{X}^t \in \mathbb{R}^{|\mathcal{I}_{\text{tgt}}| \times C \times H}$ are the outputs from the context and target encoders, respectively, and $\bar{\mathbf{D}}$ and $\bar{\mathbf{T}} \in \mathbb{R}^{|\mathcal{I}_{\text{ctx}}| \times C}$ denote the perturbed descriptions and the perturbed time series data $\mathbf{T}[\mathcal{I}_{\text{ctx}},:]$. The predictor encoder accepts the output of the context encoder as input. Unlike the context and target encoders, the predictor encoder solely leverages the contextual attention layer. Let $\bar{\mathbf{A}}_{\theta}$ denote the narrower and shallower version of the contextual attention layer. Also let $\bar{\mathbf{X}}_c = [\mathbf{X}^c, \underbrace{\mathbf{m}_{\theta}, \cdots, \mathbf{m}_{\theta}}_{\text{repeated}}]$ where \mathbf{m}_{θ} represents learnable placeholders that guide the predictor

encoder to generate embeddings for masked positions, see (Assran et al., 2023) for more information. We further define the concatenated set $\bar{\mathcal{I}}_{prd} = \mathcal{I}_{ctx} + \mathcal{I}_{prd}$. The predictor encoder is then defined as $\mathbf{X}^p = \mathbf{E}^p_{\theta}(\bar{\mathbf{X}}^c, \bar{\mathbf{D}}, \bar{\mathcal{I}}_{prd}) \coloneqq \bar{\mathbf{A}}_{\theta}(\bar{\mathbf{X}}^c\mathbf{W}_{pd}, \bar{\mathbf{D}}, \bar{\mathcal{I}}_{prd})\mathbf{W}_{pu}$, where $\mathbf{X}^p \in \mathbb{R}^{|\bar{\mathcal{I}}_{prd}| \times C \times H}$ is the output of the predictor encoder, and $\mathbf{W}_{pu} \in \mathbb{R}^{H_d \times H}$, $\mathbf{W}_{pd} \in \mathbb{R}^{H \times H_d}$ denote linear layers used for up and down projecting.

2.2.3 Training Loss

The training loss for training our embedding model comprises two major components, self-supervised objectives and regularization terms associated with key modules of the contextual attention layer.

Self-supervised loss Our embedding model produces embeddings at the level of each time point and each channel. We employ a self-supervised objective based on the ℓ_1 norm to measure discrepancies between embeddings from two augmented views of the same time series instance. To promote consistency not only at the most granular level but also across coarser aggregations, we extend the objective to include progressively aggregated embeddings. Let $\bar{\mathbf{X}}^t = \mathbf{X}^t[\mathcal{I}_{\mathrm{prd}},:] \in \mathbb{R}^{|\mathcal{I}_{\mathrm{prd}}| \times C \times H}$ and $\bar{\mathbf{X}}^p = \mathbf{X}^p[-|\mathcal{I}_{\mathrm{prd}}|:,:] \in \mathbb{R}^{|\mathcal{I}_{\mathrm{prd}}| \times C \times H}$. The self-supervised loss is then defined as

$$\mathcal{L}_{\text{ssl}} = \sum_{i,j,t} |\bar{\mathbf{X}}_{i,j,t}^{p} - \bar{\mathbf{X}}_{i,j,t}^{t}| + \sum_{i,t} |\mu_{j} \left(\bar{\mathbf{X}}_{i,:,t}^{p}\right) - \mu_{j} \left(\bar{\mathbf{X}}_{i,:,t}^{t}\right)| + \sum_{t} |\mu_{i,j} \left(\bar{\mathbf{X}}_{:,:,t}^{p}\right) - \mu_{i,j} \left(\bar{\mathbf{X}}_{:,:,t}^{t}\right)|$$

with $\mu_j(\mathbf{X}_{i,:,t}) = \frac{1}{C} \sum_j \mathbf{X}_{i,j,t}$, $\mu_{i,j}(\mathbf{X}_{:,:,t}) = \frac{1}{CT} \sum_i \sum_j \mathbf{X}_{i,j,t}$. This multi-resolution loss encourages the model to align representations both at the fine-grained level (per time point and channel) and at higher levels of abstraction (per time point and globally), thereby enhancing regularity and usability of the embeddings at different levels of granularity.

Regularization loss We include two regularization terms related to key modules of the contextual attention layer, namely the inter-channel gating and inter-channel time-offset attention modules. Given the inherent sparsity in meaningful channel relationships, we promote sparsity in the learned channel relationships, by regularizing the similarity threshold matrix \mathbf{Z} toward 1 and regularizing the relationships among channels across temporal offsets using

$$R_1 = \sum_{i,j} |1 - \mathbf{Z}[i,j]|, \quad R_2 = \frac{\sum_{i,j} \sum_t \mathbf{\Delta}[i,j,t]^2}{C^2},$$

respectively. The regularization term R_2 encourages consistency and stability in the learned interchannel temporal relationships. Combining these loss terms results in the following training objective function to be applied across all data points $\mathcal{L} = \mathcal{L}_{ssl} + \lambda_1 R_1 + \lambda_2 R_2$, where λ_1 and λ_2 control the extent and strictness of gating and temporal attention suppression.

3 EXPERIMENTS

In this section, we evaluate our model's embeddings on common downstream tasks, namely classification, forecasting, and anomaly detection, and benchmark our model against the current state-of-the-art models in each of the aforementioned downstream tasks. We expand on our datasets in Section H, and provide more details on downstream task training and baselines in Section J and Table 10 respectively.

Forecasting We evaluate forecasting on the LSF benchmark suite (Wu et al. 2021, ETTh1/2, ETTm1/2, Weather) in the standard multi-horizon, multivariate setting with horizons 96/192/336/720. We compare against state-of-the-art foundation time-series models that are either (i) pre-trained for forecasting or (ii) pre-trained for representation learning and evaluated via dataset-specific linear probing (LP).

To produce point forecasts with CHARM, we consider three variants: (1) **CHARM+LP** — dataset-specific linear probes trained on frozen CHARM embeddings; (2) **CHARM + NLH** — a single, dataset-agnostic non-linear forecaster trained on frozen CHARM embeddings; and (3) **CHARM + NLH FT** — end-to-end training that back-propagates through CHARM to align the embeddings with the point-forecast objective. Per-dataset means (averaged across horizons) are reported in Table 1.

Dataset																			C	HARM		
	Te	oto	Moira	i_Small	Moira	i_Base	Moirai	i_Large	TimeN	lixer++	Visio	onTS	MOM	ENT-LP	PatchT	ST-LP	CHAR	M + LP	CHAR	M+NLH	CHARM	4+NLH FT
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Weather	0.224	0.245	0.242	0.267	0.238	0.261	0.263	0.271	0.226	0.262	0.269	0.292	0.228	0.266	0.233	0.270	0.230	0.262	0.230	0.262	0.222	0.255
ETTm1	0.396	0.378	0.448	0.410	0.382	0.404	0.390	0.389	0.368	0.378	0.373	0.371	0.344	0.379	0.350	0.382	0.413	0.432	0.416	0.437	0.411	0.428
ETTm2	0.266	0.303	0.322	0.319	0.302	0.295	0.285	0.320	0.269	0.320	0.281	0.321	0.259	0.318	0.262	0.322	0.209	0.298	0.220	0.304	0.208	0.299
ETTh1	0.435	0.413	0.400	0.423	0.432	0.440	0.510	0.469	0.395	0.419	0.392	0.405	0.418	0.422	0.428	0.438	0.554	0.532	0.592	0.555	0.557	0.526
ETTh2	0.349	0.363	0.341	0.379	0.346	0.382	0.354	0.377	0.339	0.380	0.333	0.374	0.352	0.395	0.365	0.386	0.324	0.386	0.323	0.385	0.316	0.381

Table 1: Per-dataset mean MSE/MAE (lower is better). **Bold** = best, <u>underline</u> = second-best. The last three methods are grouped as **Ours**: CHARM-LP, *CHARM* + *Non-linear Head*, and *Fully Fine-tuned*.

Our *fully fine-tuned* model attains the lowest MSE on 3/5 datasets, outperforming significantly larger models trained on substantially bigger corpora (e.g., *Toto* and *Moirai*). By contrast, MAE leaders skew toward models optimized with MAE-aligned objectives (e.g., *Toto*, *VisionTS*, and *Morai*), which explains our relative MAE gap under an MSE-optimized head. See Section J.3 for forecasting-head details, training setup. Disaggregated results can be found in Table 23.

Classification We evaluate our model on multivariate time series classification using the UEA dataset (Bagnall et al., 2018), benchmarking against semantic and reconstruction-based representation learning methods as well as specialized classification models. Results are summarized in Table 2. We test two protocols: (i) frozen encoder embeddings passed to an SVM with an rbf kernel, and (ii) a finetuned encoder with a linear classification head trained via cross-

Method	Wins↑	Avg. Acc.↑	Total Correct↑
TS2Vec	2	78.1	7467
T-Loss	3	72.8	7141
TS-TCC	2	74.4	7118
T-Rep	3	78.5	7363
MOMENT	3	72.5	5414
MiniROCKET	4	77.6	7569
CHARM _{frozen+SVM}	4	79.6	7431
CHARM _{finetuned}	5	80.9	7799

Table 2: Multivariate Classification Results.

entropy loss. Finetuning yields substantial gains over the frozen setting and baselines, achieving the highest number of wins, average accuracy, and unnormalized correct predictions. Against MiniRocket—a SOTA task-specific method—our frozen model is competitive despite MiniRocket's stronger raw scores (see Table 13), showing that our pretraining produces strong embeddings without task-specific adaptation. With finetuning, performance improves across all metrics, particularly in unnormalized scores (see Table 15), providing evidence that post-training alignment can substantially enhance downstream task performance.

Anomaly Detection We use two tasks to evaluate our model's performance on anomaly detection. We use the Skoltech Anomaly Detection Benchmark (SKAB), to assess performance on real world multivariate datasets, as well as the popular UCR univariate anomaly detection dataset. For i) SKAB, we use baselines that consist of classical anomaly detection, CNN/LSTM based models, as well as more recent representation learning models. We reproduce these baselines by training a linear reconstruc-

Method	F1↑	FAR↓	MAR↓
MSCRED	0.36	49.94	69.88
T-Rep	0.78	12.60	28.51
$MOMENT_0$	0.79	14.20	26.98
TS2Vec	0.79	12.77	27.61
$MOMENT_{LP}$	0.82	15.52	20.73
CHARM	0.86	19.35	12.69

Table 3: 34 SKAB Anomaly Detection Datasets

tion head on each of the 34 datasets in SKAB, and evaluating on the corresponding test instances. The evaluation setup in the SKAB test suite is uniformly applied to all models, which relies on using the errors at each time point in the test set to classify anomalies based on selecting an appropriate threshold (Section J.2). The setup for the reconstruction head (including optimization setup) is identical for all baselines for which the SKAB results were obtained by training¹. As seen in Table 3, CHARM has the highest F1 score, followed closely by MOMENT, demonstrating strong performance on multivariate anomaly detection.

For (ii) UCR, we train our model with a reconstruction head on 46 UCR univariate anomaly detection datasets, which come from a diverse set of domains with varying types of anomalies. We benchmark our model against both task-specific anomaly detection methods and representation learning approaches, using the average adjusted F1 score as the standard evaluation metric. We report the per dataset scores, and wins in Table 16. Table 4 shows that CHARM has the highest average F1 score across all datasets.

Method	F1↑
Anomaly Transformer	0.485
DGHL	0.415
GPT4TS	0.479
TimesNet	0.627
MOMENT	0.684
CHARM	0.754

Table 4: 46 UCR Univariate Datasets

3.1 ABLATIONS

To assess the impact of our architectural contributions, we conduct a series of ablation studies that isolate the benefits of (i) incorporating the proposed featurization layer based on temporal convolutional networks (TCNs) and (ii) modifying the text-based attention mechanism. Additional details on ablations experiments—covering description quality, choice of textual embedding model, comparison to naive text integrations, and the full experimental details—are reported in Appendix K.

¹MOMENT₀ is used directly in reconstruction mode with no training, whereas MOMENT_{LP}'s reconstruction head is trained for each SKAB dataset, similar to other models.

				$ETTh1_{T_f=168}$	$ETTh1_{T_f=168}$	$ETTh2_{T_f=168}$	$ETTh2_{T_f=168}$
Category	Configuration	# Correct	Accuracy	MSE	MAE	MSE	MAE
Featurization Layer	w/ Patching	4200	63%	0.54	0.58	0.79	1.18
reaturization Layer	TCN _{no text}	4713	68%	0.54	0.61	0.62	1.18
	TCN _{no text}	4713	68%	0.54	0.61	0.62	1.19
TCN Variants	TCN _{gate}	4732	69%	0.52	0.56	0.74	1.04
	TCNconv	4897	71.4%	0.42	0.49	0.57	0.80
	Ø (vanilla self-attn)	4563	67.9%	0.46	0.50	0.64	0.93
Text Attention	Δ	4643	68.6%	0.50	0.55	0.68	0.97
ICAL AUGILION	G	4785	69.8%	0.46	0.51	0.59	0.94
	$\mathbf{\Delta} + \mathbf{G}$	4897	71.4%	0.42	0.49	0.57	0.80

Table 5: Unified ablation study results.² Top section compares TCN-based featurization to patching, middle section compares TCN variants, and bottom section evaluates different text attention mechanisms. We evaluate classification and forecasting metrics (ETTh1, ETTh2, horizon $T_f = 168$) (see Section K for full details). **Featurization Layer:** w/Patching: using vanilla patch embedding layer; $TCN_{no \text{ text}} = w/o \text{ text layers}$; $TCN \text{ Variants: } TCN_{no \text{ text}} = w/o \text{ text layers}$; $TCN \text{ Variants: } TCN_{no \text{ text}} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text gating}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{conv} = w/o \text{ text layers}$; $TCN_{gate} = w/o \text{ text layers}$; $TCN_{$

Table 5 demonstrates that augmenting the vanilla time-series transformer architecture with our proposed text-based components yields consistent and substantial performance gains across both the featurization layers, as well as the attention layers.

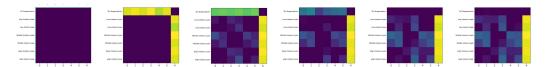


Figure 6: Evolution of Channel Gates for the ETT Dataset. A causal structure evolves over training, where the target causal variable Oil Temperature attends to all other independent channels but not vice versa. Extended discussion on evolution of channel gates can be found in Section L.2.

Conclusion

In this paper, we introduced CHARM, a foundation embedding model for multivariate time series that combines a description-aware temporal convolutional network with contextual attention over textual channel metadata. Using a JEPA-inspired self-supervised objective, CHARM learns enriched representations that go beyond reconstruction- or contrastive-based methods. Across diverse datasets and tasks, CHARM achieves competitive performance, with ablations confirming the importance of text featurization and attention layers. Furthermore, its heatmap visualizations (see Figure 6) provide interpretable insights into cross-channel dynamics.

As the first model to incorporate granular textual information into foundational time-series embeddings, CHARM opens promising avenues for deeper multimodal integration, multi-task architectures, and retrieval-augmented interpretive frameworks. At the same time, the model is constrained by its limited context length: it operates on the full-resolution input of length $T_{\rm eff} = T \times C$, computing attention scores across all channel-time pairs. Future work will explore more efficient attention mechanisms to improve scalability to longer horizons and higher-dimensional inputs.

Finally, our results demonstrate that task-specific fine-tuning provides a noticeable lift in both forecasting and classification performance. This highlights the potential of systematic multi-task post-training strategies to further boost downstream performance and strengthen the role of foundation models in time-series analysis.

²Featurization Layer and TCN ablations uses Δ +G; Text Attention ablations use TCN_{conv}

5 LLM USAGE STATEMENT

All authors used large language models to assist with text rephrasing, correction of grammatical errors, formatting, proof-reading for typos, and LaTeX typesetting.

6 REPRODUCIBILITY STATEMENT

We intend to release the pre-training dataset, including hand-annotated descriptions, along with performant infrastructure for dataset storage, loading, and preprocessing via GitHub. Since different datasets in our pipeline are subject to distinct usage licenses, we will additionally provide detailed guidelines for sourcing datasets that cannot be directly hosted on GitHub.

The architecture and hyperparameter configurations used for pretraining CHARM, as well as for downstream task-specific heads, are documented in the Appendix. We also include PyTorch-style pseudocode for the JEPA architecture (see Figure 1), together with efficient vectorized implementations of the text-attention layers (see Figure 9). We hope that this detailed documentation of architecture, hyperparameters, and pseudocode will enhance transparency and facilitate understanding of our model.

7 ETHICS STATEMENT

This work presents CHARM, a time series representation learning model developed to advance research on integrating textual information to enrich representation quality. As with other pretrained models, risks include the propagation of biases in training data and the environmental costs of compute-intensive training. To mitigate these concerns, we document data sources, model configurations, and training details to promote transparency. This research is intended for academic use and is not suitable for deployment in high-stakes decision-making contexts without additional safeguards.

REFERENCES

- Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al. Chronos: Learning the language of time series. *Transactions on Machine Learning Research*, 2024.
- Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. ViViT: A video vision transformer, 2021. URL https://arxiv.org/abs/2103.15691.
- Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding predictive architecture, 2023. URL https://arxiv.org/abs/2301.08243.
- Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations. *Advances in neural information processing systems*, 33:12449–12460, 2020.
- Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. The UEA multivariate time series classification archive, 2018, 2018. URL https://arxiv.org/abs/1811.00075.
- Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.
- Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023. URL https://arxiv.org/abs/2304.12210.

- Adrien Bardes, Jean Ponce, and Yann LeCun. Mc-jepa: A joint-embedding predictive architecture for self-supervised learning of motion and content features. *arXiv preprint arXiv:2307.12698*, 2023. URL https://doi.org/10.48550/arXiv.2307.12698.
 - Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from video, 2024. URL https://arxiv.org/abs/2404.08471.
 - Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
 - Yifu Cai, Mononito Goswami, Arjun Choudhry, Arvind Srinivasan, and Artur Dubrawski. Jolt: Jointly learned representations of language and time-series. In *Workshop on Deep Generative Models for Health, NeurIPS 2023*, 2023. URL https://openreview.net/pdf?id=UVF1AMBj9u.poster.
 - Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu. Visionts: Visual masked autoencoders are free-lunch zero-shot time series forecasters, 2025. URL https://arxiv.org/abs/2408.17253.
 - Shuo Chen, Chen Gong, Jun Li, Jian Yang, Gang Niu, and Masashi Sugiyama. Learning contrastive embedding in low-dimensional space. *Advances in Neural Information Processing Systems*, 35: 6345–6357, 2022.
 - Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607, 2020.
 - Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. Debiased contrastive learning. *Advances in neural information processing systems*, 33:8765–8775, 2020.
 - Ben Cohen, Emaad Khwaja, Youssef Doubli, Salahidine Lemaachi, Chris Lettieri, Charles Masson, Hugo Miccinilli, Elise Ramé, Qiqi Ren, Afshin Rostamizadeh, Jean Ogier du Terrail, Anna-Monica Toon, Kan Wang, Stephan Xie, Zongzhe Xu, Viktoriya Zhukova, David Asker, Ameet Talwalkar, and Othmane Abou-Amal. This time is different: An observability perspective on time series foundation models, 2025. URL https://arxiv.org/abs/2505.14766.
 - Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for time-series forecasting. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, pp. 10148–10167, 2024.
 - Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The UCR time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 4171–4186, 2019.
 - Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. Deep learning for event-driven stock prediction. In *IJCAI*, volume 15, pp. 2327–2333, 2015.
 - Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5884–5888, 2018. doi: 10.1109/ICASSP.2018.8462506.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https://arxiv.org/abs/2010.11929.
 - Katrina Drozdov, Ravid Shwartz-Ziv, and Yann LeCun. Video representation learning with joint-embedding predictive architectures. *arXiv preprint arXiv:2412.10925*, 2024. URL https://doi.org/10.48550/arXiv.2412.10925.
 - Thomas D. P. Edwards, James Alvey, Justin Alsing, Nam H. Nguyen, and Benjamin D. Wandelt. Scaling-laws for large time-series models, 2025. URL https://arxiv.org/abs/2405.13867.
 - William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https://github.com/Lightning-AI/lightning.
 - Philip J. Fleming and John J. Wallace. How not to lie with statistics: the correct way to summarize benchmark results. *Commun. ACM*, 29:218–221, 1986. URL https://api.semanticscholar.org/CorpusID:1047380.
 - Archibald Felix Fraikin, Adrien Bennetot, and Stephanie Allassonniere. T-Rep: Representation learning for time series using time-embeddings. In *The 12th International Conference on Learning Representations*, 2024.
 - Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation learning for multivariate time series. In *Advances in neural information processing systems*, volume 32, pp. 4650–4661, 2019.
 - Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and Marinka Zitnik. UniTS: a unified multi-task time series model, 2024a. URL https://arxiv.org/abs/2403.00131.
 - Shanghua Gao, Teddy Koker, Owen Queen, Tom Hartvigsen, Theodoros Tsiligkaridis, and Marinka Zitnik. UniTS: A unified multi-task time series model. In *Advances in Neural Information Processing Systems*, volume 37, pp. 140589–140631, 2024b.
 - Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.
 - Yuan Gong, Yu-An Chung, and James Glass. AST: audio spectrogram transformer, 2021. URL https://arxiv.org/abs/2104.01778.
 - Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. MOMENT: a family of open time-series foundation models, 2024. URL https://arxiv.org/abs/2402.03885.
 - Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural information processing systems*, 33:21271–21284, 2020a.
 - Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to self-supervised learning. *arXiv preprint arXiv:2006.07733*, 2020b. URL https://doi.org/10.48550/arXiv.2006.07733.
 - Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie Bourn, Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. *Nature medicine*, 25(1):65–69, 2019.

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 1026–1034, 2015.
 - Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Palpanas, and Ievgen Redko. SAMformer: Unlocking the potential of transformers in time series forecasting with sharpness-aware minimization and channel-wise attention, 2024. URL https://arxiv.org/abs/2402.10198.
 - Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting by reprogramming large language models, 2024. URL https://arxiv.org/abs/2310.01728.
 - Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray Kavukcuoglu. Neural machine translation in linear time. *arXiv preprint arXiv:1610.10099*, 2016.
 - Iurii D. Katser and Vyacheslav O. Kozitsin. Skoltech anomaly benchmark (SKAB). https://www.kaggle.com/dsv/1693952, 2020.
 - Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive survey of deep learning for time series forecasting: Architectural diversity and open challenges. *Artificial Intelligence Review*, 58, 2025.
 - Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
 - Yann LeCun. A path towards autonomous machine intelligence. *Open Review*, 62(1):1–62, 2022.
 - Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33: 9459–9474, 2020.
 - Yang Lin, Irena Koprinska, and Mashud Rana. Temporal convolutional attention neural networks for time series forecasting. In *2021 International joint conference on neural networks (IJCNN)*, pp. 1–8, 2021.
 - Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. iTransformer: Inverted transformers are effective for time series forecasting. In *Proceedings of the 12th International Conference on Learning Representations (ICLR)*, 2024.
 - Allyson Morgenthal, Akhilesh Jain, Michael Aman, Kevin Gullikson, Nkem Egboga, and Marcus Horton. Global modeling: Scaling up machine learning models for predictive maintenance. 02 2024. doi: 10.1115/IMECE2023-112254.
 - Yiqin Nie, Zhaohan Wang, Zhiwei Li, Yujing Zhang, Yao Zhang, Yuxuan Wang, Yafeng Wang, and Philip S. Yu. A time series is worth 64 words: Long-term forecasting with transformers. In *Proceedings of the 11th International Conference on Learning Representations (ICLR)*, 2023a.
 - Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers, 2023b. URL https://arxiv.org/abs/2211.14730.
 - Zach Nussbaum, John Xavier Morris, Andriy Mulyar, and Brandon Duderstadt. Nomic embed: Training a reproducible long context text embedder. *Transactions on Machine Learning Research*, 2025.
 - Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,

- Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 OLMo 2 Furious, 2025. URL https://arxiv.org/abs/2501.00656.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 - Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song. S²ip-llm: Semantic space informed prompt learning with llm for time series forecasting, 2024. URL https://arxiv.org/abs/2403.05798.
 - Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In *International conference on machine learning*, pp. 1310–1318, 2013.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.01703.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf, 2018. OpenAI.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763, 2021.
 - David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 36: 1181–1191, 2020.
 - Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pretraining for language understanding, 2020. URL https://arxiv.org/abs/2004.09297.
 - Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 - Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. Test: Text prototype aligned embedding to activate llm's ability for time series, 2024. URL https://arxiv.org/abs/2308.08241.
 - Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Seán McLoone, and Alessandro Beghi. Machine learning for predictive maintenance: A multiple classifier approach. *IEEE transactions on industrial informatics*, 11(3):812–820, 2014.
 - Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for time series with temporal neighborhood coding. In *International Conference on Learning Representations (ICLR)*, 2021.
 - Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim, Byunghyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A survey, 2024. URL https://arxiv.org/abs/2401.03717.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30, pp. 5998–6008, 2017.
 - Khang H. N. Vo, Duc P. T. Nguyen, Thong Nguyen, and Tho T. Quan. Ti-jepa: An innovative energy-based joint embedding strategy for text-image multimodal systems. *arXiv preprint arXiv:2503.06380*, 2025. URL https://doi.org/10.48550/arXiv.2503.06380.

- Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive analysis, 2025. URL https://arxiv.org/abs/2410.16032.
 - Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers, 2020. URL https://arxiv.org/abs/2002.10957.
 - Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified training of universal time series forecasting transformers, 2024a. URL https://arxiv.org/abs/2402.02592.
 - Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified training of universal time series forecasting transformers. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, pp. 53140–53164, 2024b.
 - Haixu Wu, Yao Xu, Jindong Wang, Guodong Long, Chengqi Wang, and Lijun Yao. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In *Advances in Neural Information Processing Systems*, volume 34, pp. 22419–22430, 2021.
 - Ziheng Yue, Yuxuan Zhang, Yifan Sun, Yifan Wang, and Zenglin Huang. TS2Vec: Towards universal representation of time series. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8075–8083, 2022.
 - Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *International Conference on Learning Representations*, 2023.
 - Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings* of the 35th AAAI Conference on Artificial Intelligence (AAAI), pp. 11106–11115, 2021a.
 - Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021b. URL https://arxiv.org/abs/2012.07436.
 - Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting, 2022. URL https://arxiv.org/abs/2201.12740.
 - Yunjiao Zhou, Jianfei Yang, Han Zou, and Lihua Xie. Tent: Connect language models with iot sensors for zero-shot activity recognition, 2023. URL https://arxiv.org/abs/2311.08245.

A RELATED WORK

810

811 812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830 831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Historically, recurrent neural network architectures such as RNNs, LSTMs, and GRUs dominated time series modeling by capturing temporal dependencies through recursive hidden-state updates, achieving success across diverse tasks (Salinas et al., 2020). However, their sequential nature impeded parallelization, leading to slow training and difficulties in modeling long-range dependencies (Kalchbrenner et al., 2016; Pascanu et al., 2013; Zhou et al., 2021a; Kim et al., 2025).

With the emergence of Transformer architectures (Vaswani et al., 2017), significant advancements have occurred across multiple modalities, including images (Dosovitskiy et al., 2021), audio (Gong et al., 2021), video (Arnab et al., 2021), text (Devlin et al., 2018; Radford et al., 2018), and speech (Dong et al., 2018). Inspired by these successes, the time series community has adopted Transformer-based approaches, leading to notable innovations tailored specifically for temporal data (Zhou et al., 2021b; 2022; Ilbert et al., 2024; Wu et al., 2021; Zhang & Yan, 2023).

Simultaneously, self-supervised representation learning (SSRL), widely successful in domains such as vision and language, has demonstrated potential for extracting high-quality embeddings from vast amounts of unlabeled data. These embeddings facilitate downstream tasks—such as forecasting, classification, and anomaly detection—through lightweight task-specific heads. Analogous approaches have been adapted for time series, predominantly using contrastive self-supervised tasks (Yue et al., 2022; Fraikin et al., 2024; Franceschi et al., 2019; Tonekaboni et al., 2021). However, existing approaches typically produce models tailored to specific datasets, limiting their generalizability across arbitrary data sizes or channel configurations.

More recently, foundational models have revolutionized representation learning across natural language processing, computer vision, and audio (Devlin et al., 2019; Nussbaum et al., 2025; Assran et al., 2023; Kirillov et al., 2023; Baevski et al., 2020; Brown et al., 2020; Radford et al., 2021). In time series analysis, considerable progress has focused primarily on forecasting tasks (Das et al., 2024; Woo et al., 2024b; Ansari et al., 2024; Liu et al., 2024). Early foundational attempts predominantly addressed univariate series (Das et al., 2024; Ansari et al., 2024), though recent advancements have successfully extended to multivariate settings with sophisticated cross-channel modeling techniques (Woo et al., 2024b; Liu et al., 2024). Some more recent papers Cohen et al. (2025) have gone to great lengths to fully leverage the scaling laws observed in foundational time series models Edwards et al. (2025) in order to maximize their performance. Foundation embedding models specifically targeting time series representation learning have begun to emerge, leveraging reconstruction-based or next-step forecasting objectives (Goswami et al., 2024; Gao et al., 2024a; Trirat et al., 2024). However, these approaches either focus on univariate series or treat multivariate data as independent channels, inadequately capturing complex inter-channel dynamics. This substantially limits the representational richness and effectiveness of these models in realistic scenarios. See Table 6 for an overview of capabilities of key time series models.

Joint-Embedding Predictive Architectures have found notable success in visual domains by shifting the learning objective from pixel-level reconstruction to latent-space prediction. Extending this approach to video, Meta Al's Video JEPA with Variance-Covariance Regularization (VJ-VCR) (Drozdov et al., 2024) predicts future frame embeddings in a learned representation space while enforcing variance and covariance constraints to prevent collapse; this model outperforms generative reconstruction baselines on downstream tasks such as action recognition and video retrieval by capturing high-level spatiotemporal dynamics. Extensions such as MC-JEPA (Bardes et al., 2023) further demonstrate JEPA's flexibility by jointly learning motion (optical flow) and content features within a shared encoder-predictor framework, matching or surpassing unsupervised optical flow benchmarks and improving downstream segmentation tasks. In multimodal settings, TI-JEPA (Vo et al., 2025) integrates an energy-based JEPA with cross-modal encoders to align text and image embeddings, achieving superior results on multimodal sentiment analysis and visual question answering benchmarks by capturing complex semantic correspondences without reconstructing raw inputs. Complementing JEPA, bootstrapped embedding SSL methods like BYOL ("Bootstrap Your Own Latent'') (Grill et al., 2020b) train an online network to predict the target network's representation of differently augmented views—updating the target via momentum averaging—and achieve strong results on ImageNet under linear evaluation without requiring negative pairs; this demonstrates that simple latent-space prediction objectives can match or exceed contrastive and reconstruction-based approaches in learning robust, generalizable representations. Together, these concrete instantiations

highlight JEPA's core advantage of filtering out low-level noise and focusing learning on high-level semantic structure, while bootstrapped SSL offers a practical, decoder-free paradigm for self-supervised representation learning, and motivate further exploration of these methods for time series.

Multimodal text + time series models Recent works have explored combining textual information with time series data through several novel approaches. For instance, Jin et al. (2024), Pan et al. (2024), and Sun et al. (2024) reprogram pretrained LLMs to handle time series input. These approaches fall under the *LLM-for-TS* or *TS-for-LLM* paradigms, where either an LLM is finetuned for time series data or the time series are transformed into token sequences consumable by an LLM. However, such methods do not directly leverage textual metadata; rather, they exploit the language modeling capabilities of models pretrained on large corpora of text. In contrast, Zhou et al. (2023) and Cai et al. (2023) explicitly incorporate textual information tied to data instances to improve time series representations, typically through contrastive objectives that align text and time series embeddings in a shared semantic space.

CHARM takes a fundamentally different approach to incorporating textual information. Instead of relying on instance-level labels to build contrastive training pairs, CHARM leverages sensor-level descriptions as metadata. These textual embeddings are integrated directly into the featurization stage (via TCNs) or used to augment the self-attention mechanism. Rather than aligning modalities, CHARM learns mappings from textual metadata to guide representation learning. This design enables CHARM to scale to massive datasets where instance-level text labels are unavailable or impractical, requiring only sensor descriptions to improve the quality of learned time series representations.

Model	Multivariate	Channel Mixing	Equivariance	Foundational	Channel Aware
Tloss	✓	✓	Х	Х	Х
TS2Vec	✓	✓	Х	Х	X
TNC	✓	✓	Х	Х	X
Autoformer	/	✓	Х	Х	×
FEDformer	/	✓	Х	Х	×
PatchTST	/	Х	Х	Х	×
CrossFormer	/	✓	Х	Х	×
iTransformer	✓	✓	✓	✓	×
UniTS	/	✓	✓	✓	×
TimesFM	×	_	_	✓	×
MOIRAI	✓	✓	✓	✓	×
MOMENT	×	-	✓	✓	×
TREP	✓	✓	Х	Х	×
TOTO	/	✓	✓	✓	×
TimeMixer++	/	✓	Х	Х	×
CHARM	✓	✓	✓	✓	✓

Table 6: a) Multivariate: Can handle multivariate data¹

- b) Channel Mixing: Architecture enables learnable cross-channel interactions²
- c) Equivariance: Permuting the channels by a perturbation P ensures the outputs are also identically permuted.
- d) Foundational: Can flexibly accept data of any arbitrary number of channels or time window.
- e) Channel Aware: Uses sensor information to learn better representations.

B NOTATION

We denote matrices and tensors using boldface capital letters (e.g., \mathbf{T} , \mathbf{E}), and adopt NumPy -style indexing and slicing notation. Functions and operators are also denoted by bold capital letters, but are subscripted with θ to indicate parameterization, e.g., \mathbf{E}_{θ} . The parameters θ may be learnable or fixed, depending on context. We reserve, \mathbf{W} to represent the learnable weights in different layers of our architecture. An instance of a time series is represented as a tuple $\mathbf{t} = (\mathbf{T}, \mathbf{D}, \mathbf{pos})$. The first component, $\mathbf{T} \in \mathbb{R}^{T \times C}$, is a matrix of time series measurements, where T denotes the number of time points and C the number of channels. Each column $\mathbf{T}[:,i]$ corresponds to the uni-variate time series from channel i. The second component, \mathbf{D} , is an ordered list of length C, where each entry $\mathbf{D}[i]$ is a textual description of channel i, typically represented as a sentence or short passage. We assume that the descriptions in \mathbf{D} are aligned with the corresponding columns of \mathbf{T} . The third component, \mathbf{pos} , represents the positional indices associated with the time series. We assume $\mathbf{pos} \in \mathbb{I}_+^T$ such

¹Multivariate here simply refers to whether a model can ingest multiple input channels, i.e. whether it can feasibly operate on a $T \times C$ data input, where C > 1. This is independent of whether the model is able to learn channel interactions, which is explicitly outlined in the channel mixing column.

²We do not consider models that are fundamentally univariate, but perform late fusion of channels at the representation level (by pooling for example), to be capable of channel mixing.

that $|\mathbf{pos}| = T$. If not explicitly provided, we default to $\mathbf{pos} = [0, 1, \dots, T-1]$. We denote the maximum time window size considered in our framework as T_{max} .

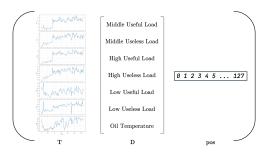


Figure 7: Visualized representation of our data structure. Note, that $\mathbf{T} \in \mathbb{R}^{T \times C}$, $|\mathbf{D}| = C$, and $\mathbf{pos} \in \mathbb{R}^T$

C IMPLEMENTATION DETAILS

We attempt to follow the general set of best practices developed in the field of self-supervised learning, specifically those applicable to the Self-Distillation (Balestriero et al., 2023) family of algorithms. We outline the key details here;

- Optimization Schedule We use an AdamW optimizer to optimize our model. The learning rate follows a linear warmup followed by a cosine decay.
- 2. Weight Initialization We use a fixed $\mathcal{N}(0, 0.02)$ initialization which is commonly used in pretraining large transformer models (OLMo et al., 2025).
- 3. **Weight Decay Scheduling** We use a cosine schedule for increasing the optimizer's weight decay over the course of training which has been shown to be crucial for training stability.
- 4. **EMA Schedule for Target Encoder** We use an exponentially moving average with a momentum schedule that is increased gradually over the course of training.

The weight decay scheduling and EMA schedule are identical to IJEPA (Assran et al., 2023). Besides sweeping over a few learning rates, we perform no additional hyperparameter tuning on the rest of the hyperparameters due to limited compute, and list them in Table 7.

C.1 ROTARY POSITION EMBEDDINGS

Rotary Position Embeddings (RoPE) (Su et al., 2024) differ from traditional additive positional embeddings in that they encode positional information by rotating the query and key vectors in a structured, position-dependent manner. Unlike fixed or learned additive embeddings, RoPE is applied at **each** layer of the self-attention computation, allowing the model to encode relative position information directly into the attention mechanism.

Let $\mathbf{Q}, \mathbf{K} \in \mathbb{R}^{B \times T \times D}$ denote the queries and keys, where B is the batch size, T is the sequence length, and D is the hidden dimension. After linear projection and splitting into H attention heads:

$$\mathbf{Q}_h, \mathbf{K}_h \in \mathbb{R}^{B \times T \times d}, \text{ with } d = D/H$$

RoPE applies a deterministic rotation to each head's query and key vectors. For each position t and dimension index i, the rotation is defined as:

$$RoPE(\mathbf{x}_t)[2i] = \mathbf{x}_t[2i]\cos(\theta_{t,i}) + \mathbf{x}_t[2i+1]\sin(\theta_{t,i})$$
(1)

$$RoPE(\mathbf{x}_t)[2i+1] = -\mathbf{x}_t[2i]\sin(\theta_{t,i}) + \mathbf{x}_t[2i+1]\cos(\theta_{t,i})$$
(2)

$$\theta_{t,i} = t \cdot \omega_i, \quad \omega_i = 10000^{-2i/d} \tag{3}$$

where \mathbf{x}_t denotes the t^{th} token's vector (query or key), and ω_i are predefined inverse frequency terms.

In our implementation, we operate on inputs of shape $\mathbf{X} \in \mathbb{R}^{B \times T \times C \times d}$, where C represents the number of channels or sensors. To apply RoPE consistently across all channels, we broadcast the position encodings across the channel axis:

$$\widetilde{\mathbf{P}}_{b,t,c,:} = \mathbf{P}_{t,:}, \quad \forall \ b \in [1, B], \ c \in [1, C], \ t \in [1, T]$$
 (4)

or equivalently, using broadcasting semantics:

$$\widetilde{\mathbf{P}} = \mathbf{P}[t,:] \longrightarrow \mathbb{R}^{B \times T \times C \times d}$$
(5)

This results in a broadcasted position encoding tensor $\widetilde{\mathbf{P}}$ where the same temporal position vector $\mathbf{P}_{t,:}$ is shared across all channels at time t, effectively associating the same position ID to multiple sensor tokens that occur at the same timestep.

C.2 TEXT CONVOLUTION LAYER

C.2.1 CONTRAST TO OTHER FEATURIZATION METHODS

Unlike typical TCNs, we concatenate activations across all intermediate layers to form a rich initial representation, see Figure 2. Our contextual TCN layer early in our model architecture closely relates to the concept of patching. Several recent foundation models for time series create non-overlapping static patches and project them through a single linear layer, e.g., (Das et al., 2024; Nie et al., 2023a; Woo et al., 2024b). These approaches can be generalized by interpreting convolution kernels as learnable linear mappings applied to strided segments of the data. Thus, our TCN layer represents a generalized, channel-aware extension of the patching concept.

C.2.2 IMPLEMENTATION

To compute convolutions efficiently across all sensors and batches, we stack the convolutional kernels corresponding to each sensor description and reshape the input to treat the $B \times C \times H$ channels as independent time series. We then apply a grouped 1D convolution using F . conv1d with $B \times C \times H$ groups, where each element in the original [B,T,C,H] input is treated as a separate time series along the time axis. This allows us to apply distinct filters for each batch, channel, and embedding dimension in parallel.

C.2.3 INITIALIZATION

Despite the effectiveness of this mechanism, careful numerical stabilization of the convolution kernels is essential. To achieve this, we first apply a non-parametric LayerNorm to z-normalize the sensor embeddings, \mathbf{E}_d . The projection matrix within the kernel network is then initialized using Xavier normal initialization (Glorot & Bengio, 2010). Subsequently, we re-normalize the resulting kernels \mathbf{W}_k as

$$\mathbf{W}_k = \mathbf{LayerNorm}(\mathbf{W}_k) \cdot \sqrt{\frac{2}{K}}$$

Since our TCN layer employs GeLU nonlinearities, this initialization approach aligns with Kaiming initialization principles, (He et al., 2015), and ensures stable activations, preventing them from progressively exploding or vanishing across convolution layers.

C.3 MODEL SIZING

For the given hyperparameter set $N=8, d=128, {\rm ff_{dim}}=4d,$ our pretrained model is $\sim 7.1 {\rm M}$ parameters.

C.4 Additional Modifications to the transformer layers

In line with recent developments in large scale pretraining of transformer based architectures, we implement several modifications that diverge from the original transformer architecture.

1027 1028

1029 1030

1031

1032

1033

1034

1035 1036

1037

1039 1040

1041 1042 1043

1044

1045 1046

1047

1048 1049

1050

1069 1070

1071 1072

1074

1075

1077

1078

1079

SwiGLU We replace the regular feedforward layers with a SwiGLU feedforward layer.

QK-norm We add a pre-attention layernorm to the queries and keys.

Rotary Position Embeddings Instead of using sinusoidal positional embeddings, we use rotary positional embeddings which are applied on the queries and keys at every layer. The positional indices are provided through the **pos** argument.

Reordering Sublayers We experiment with using 3 approaches to assess the optimal configuration of the transformer sublayers.

$$\begin{cases} x = \text{norm}(x + \text{SubLayer}(x)) & \text{Post Norm} \\ x = x + \text{SubLayer}(\text{norm}(x)) & \text{Pre Norm} \\ x = x + \text{norm}(\text{SubLayer}(x)) & \text{Swin Norm} \end{cases}$$
 (6)

In the case of Pre Norm and Swin Norm, we also experiment with adding LayerNorms in the main transformer branch every n layers, to ensure further stability.

C.5 EFFICIENT COMPUTATION TECHNIQUES

C.5.1 SLICE AND TILE ATTENTION LAYERS

To vectorize the process of generating the full $\bar{\Delta}$ tensor, we provide the pytorch pseudocode versions of the naive and vectorized versions in Figure 8 and Figure 9.

Figure 8: Naïve attention-weight matrix construction

```
1051
     def build_attention_weight_matrix(time_deltas: Tensor,
                                           T_proj: Tensor) -> Tensor:
1052
1053
           Constructs the full attention weight matrix by explicit loops.
1054
1055
               time_deltas: LongTensor, shape (T, T)
               T_proj: Tensor, shape (B, C, C, 2*T - 1)
1056
1057
    8
           Returns:
                            Tensor, shape (B, C*T, C*T)
    9
               attn:
1058
1059
           B, C, \_, T1 = T\_proj.shape
    11
1060
           T = time_deltas.size(0)
1061 <sub>13</sub>
           assert 2 * T - 1 == T1
1062 14
1063 15
           attn = torch.zeros((B, C * T, C * T), device=T_proj.device)
1064 16
           for i in range(T):
    17
               for j in range(T):
1065 <sub>18</sub>
                    delta = time_deltas[i, j].item()
1066 19
                   block = T_proj[..., delta] # (B, C, C)
                   attn[..., i*C: (i+1)*C, j*C: (j+1)*C] = block
1067 20
           return attn
    21
1068
```

D JEPA

D.1 DATASET GENERATION

The core principle of JEPA-based self-superived training involves producing representations for two augmented views originating from the same data instance. JEPA training aims to minimize a discrepancy measure (e.g., ℓ_1 or ℓ_2) between these representations. In vision, these views commonly result from image augmentations such as jittering, masking, or cropping.

Figure 10 presents a visual representation of our JEPA tasks, which rely on learning 1) causal representations and 2) smoothing representations.

Figure 9: Fast attention-weight matrix construction

```
1082
     def build_attention_weight_matrix_fast(time_deltas: Tensor,
                                                T_proj: Tensor) -> Tensor:
1084
           Block-wise assembly via tensor indexing and reshape.
1086
           B, C, \_, T1 = T\_proj.shape
1087
           T = time_deltas.size(0)
1088
           assert 2 * T - 1 == T1
1089
           # 1) Flatten index grid
1090
           flat_idx = time_deltas.view(-1)
    11
                                                    # shape (T*T,)
1091
    12
1092
    13
           # 2) Gather all needed projection slices at once
1093
           gathered = T_proj.index_select(dim=-1, index=flat_idx)
    14
                result: (B, C, C, T*T)
1094
1095
    16
           # 3) Reshape to (B, C, C, T, T)
1096
           gathered = gathered.view(B, C, C, T, T)
1097
1098
           # 4) Reorder to (B, T, C, T, C)
    20
1099
    21
           gathered = gathered.permute(0, 3, 1, 4, 2)
1100
           # 5) Collapse blocks into (B, C*T, C*T)
1101
           return gathered.contiguous().view(B, C * T, C * T)
1102
```


Figure 10: JEPA Tasks Visualized : Causal Prediction (left) Smoothing (right)

D.2 JEPA ENCODERS – DEEP DIVE

In this section we dive a bit deeper into our implementation of the JEPA framework. We denote the TCN layer that featurizes our input time series as \mathbf{F} and our encoder stack (of N layers), as \mathbf{E} .

As outlined earlier, our featurizing layer converts a multivariate time series instance to an embedded version of the time series with the same leading dimensions, i.e.;

$$\mathbf{F}: \mathbb{R}^{T \times C} \to \mathbb{R}^{T \times C \times H}$$

On the other hand our encoder ingests the embedded time series and returns a contextually embedded time series while maintaining the same output dimensions i.e.;

$$\mathbf{E}: \mathbb{R}^{T \times C \times H} \to \mathbb{R}^{T \times C \times H}$$

Given this notation, our 3 JEPA networks (Context, Target, Predictor) can be represented as:

$$Context \Rightarrow [F \to E_1] \tag{7}$$

$$Target \Rightarrow [F \to E_1] \tag{8}$$

$$\mathbf{Predictor} \Rightarrow [\mathbf{DownProj} \rightarrow \mathbf{E_2} \rightarrow \mathbf{UpProj}] \tag{9}$$

Now, with this featurization and encoder layer stack, we provide a PyTorch style pseudocode of the JEPA framework, i.e. the data flow between the Context, Target, and Predictor encoders in Section D.2, Section D.2, and Section D.2.

Category	Hyperparameter	Value	
	Optimizer	AdamW	
	ϵ	1e-8	
	β_1	0.95	
	eta_2	0.99	
Optimization Schedule	epochs	100	
	gradient clipping	2.0	
	λ_1, λ_2	1e-5	
	batch size ³	4	
	gradient accumulation	2	
	starting LR	le-8	
	final LR	1e-6	
	starting weight decay	0.04	
Scheduler	final weight decay	0.4	
	learning rate schedule	linear warmup \rightarrow cosine deca	
	weight decay schedule	cosine	
	fraction of warmup epochs	0.1	
	scale factor ⁴	1.25	
	window size	512	
Data	stride	128	
Data	minimum samples per dataset	400	
	maximum samples per dataset	1000	
	number of targets	4	
SSL Task Parameters	$C_{ m min}$	0.3	
SSL Task Farameters	$C_{ m max}$	0.4	
	$T_{ m min}$	0.1	
	$T_{ m max}$	0.2	
	encoder layers	8	
JEPA Architecture	predictor layers	4	
JEIA Arcintecture	encoder dim	128	
	predictor dim	64	
	feedforward layer	SwiGLU	
	ff_dim_multiplier	4	
Model Architecture	attention dropout	0.01	
	norm	non-parametric layernorm	
	attention configuration	pre-norm	

Table 7: Hyperparameters for full training pipeline

```
1173
     class ContextTgtEncoder:
1174
           def forward(self, x, ctx_idx):
1175
1176
               x : [..., T, C]
1177
1178
               x = self.featurizer(x)
               for layer in self.encoder_layers:
1179
                   x = layer(x, ctx_idx)
1180
               return x
1181
```

Figure 11: Context and Target Network

```
1188
     1 class Predictor:
1189
           def forward(self, ctx_embeds, ctx_idx, target_idx):
1190
1191
               embeds : [..., T, C, H]
1192
     5
                target_pos : [..., T2]
1193 <sup>6</sup>
               x = self.downproj(ctx\_embeds) # [..., T, C, H1]
1194
                                                                           # [..., T2,
               mask_tokens = broadcast(self.mask_token, target_idx)
1195
            C, H1]
1196 9
1197 10
                x = concat([x, mask\_tokens]) # [..., T+T2, C, H1]
               pos = concat([ctx_idx, target_idx])
1198 <sup>11</sup>
1199 12
               for layer in self.encoder_layers:
    13
1200
                    x = layer(x, pos)
1201 <sub>15</sub>
                x = self.upproj(x) # [..., T+T2, C, H]
               x = x[..., -target_idx.size(-2):, :, :] # [..., T2, C, H]
1202
               return x
    17
1203
```

Figure 12: Predictor Network

```
1208
     1 class JEPA:
1209 <sub>2</sub>
           def __init__(self):
                self.context_encoder = ContextTgtEncoder()
1210 3
                self.target_encoder = copy_and_freeze_params(self.context_encoder
1211
1212
                self.predictor = Predictor()
1213
1214
           def forward(self, x, ctx_idx, tgt_idx):
1215 8
                x : [..., T, C]
1216 9
1217 10
1218
                # get full embeddings
    12
1219 <sub>13</sub>
               full_embeds = self.target_encoder(x)
1220 14
                # get context embeddings
1221 15
1222 16
               context_embeds = self.context_encoder(x[..., ctx_idx, :])
    17
1223
                # get predicted embeddings
1224 19
                predicted_embeds = self.predictor(context_embeds, ctx_idx,
1225
           tgt_idx)
               target_embeds = full_embeds[..., tgt_idx, :, :]
1226 20
    21
1227
               # compute loss
1228
               loss = loss_fn(predicted_embeds, target_embeds)
1229 <sub>24</sub>
               return loss
1230
```

Figure 13: JEPA

E HARDWARE

1204 1205

1206 1207

1231

123212331234

1235 1236

1237

1238

1239

1240 1241 We use a cluster of 8 80GB NVIDIA A100 GPUs. We use Distributed Data Parallelism to speed up training, along with bf-16 mixed precision. Our models are implemented in PyTorch (Paszke et al., 2019), and training is done with PyTorch lightning (Falcon & The PyTorch Lightning team, 2019). We handle our configuration management using gin configs.

F LIMITATIONS

The primary limitations of our model are:

1. Limited context lengths

Given our model's architecture, we are required to compute attention scores over the entire $C \times T$ input. As we do not rely on downsampling/patching, we compute the full $\mathcal{O}(C^2T^2)$ attention matrix, which can be prohibitively large, especially for datasets with a large number of unrelated channels, or extremely long time horizons. Potential workarounds to this are computing the attention scores for only relevant channel pairs, based on pre-filtering similar channels based on the channel gating scores (high gating scores effectively clamp the attention scores completely, and self attention between these channels is effectively wasted compute). For large time horizons, a downsampling/patching layer can be appended to the encoder stack prior to the TCNs to operate on a lower effective time window.

2. Access to sensor descriptions

As our model leverages channel descriptions directly in the featurization, and attention layers, we require access to high quality sensor descriptions that are provided with the dataset. Through our ablations conducted in Section K, we observe that noisy/arbitrary descriptions result in a moderate drop in model performance, thus highlighting the need for accompanying good enough quality descriptions. While such metadata is commonly available in practice, this requirement poses an overhead requirement for training and utilizing CHARM. For the UEA dataset, which provides detailed descriptions of each dataset in an accompanying document, we manually curated the sensor descriptions, which was a time consuming, and labor-intensive effort, and is not scalable to large unlabeled datasets.

G MODEL COMPLEXITY

Our pretraining was conducted on **8 A100 GPUs** over approximately **18 hours**, inclusive of minor overheads for dataset preprocessing, downstream evaluations, and logging. Training was performed with **bf16 mixed precision** under **distributed data parallelism**. A frozen text embedding model was invoked during training, served independently on a single L4 GPU. The **peak GPU memory usage** per device was **72.7 GB**, while **peak CPU utilization** remained at **4 GB**.

G.1 ARCHITECTURAL CONTRIBUTIONS TO COMPLEXITY

Relative to conventional transformer architectures, the primary increase in model complexity arises from the inclusion of the **temporal convolutional (TCN) layer** and **text-attention layers**. For a representative configuration—where the text embedding dimension is 384, the time-series embedding dimension is 256, and the convolution kernel size is 8—the parameter counts for the additional modules are enumerated in Table 8.

Layer	Count	Number of Parameters
TCN	$\mathbf{D}_{\text{text}} \times H \times K$	$384 \times 256 \times 8 = 786,432$
Gating Layer	H^2	$256^2 = 65,536$
Time-Delta Layer	$2 \times \mathbf{D}_{\text{text}} \times T_{\text{max}}$	$2 \times 384 \times 1500 = 1,152,000$

Table 8: Parameter counts for the TCN and text-attention modules.

In total, these components introduce approximately **2 million additional parameters**, corresponding to \sim 25% of the overall model size.

ENCODER COMPOSITION

The pretraining framework employs **three modules**: a **context encoder**, a **target encoder**, and a **predictor**. The target encoder parameters are non-trainable and are tied to the context encoder parameters but consume GPU memory equivalent to the context encoder during forward passes. The predictor is comparatively lightweight, operating at lower dimensionality with fewer layers.

The **parameter distribution** across modules is as follows:

• Context encoder: 7.1M parameters

• Target encoder: 7.1M parameters (frozen)

1296

1297

1298 • Predictor: ∼4M parameters 1299 1300 The combined model therefore comprises \sim 18.2M parameters, of which \sim 11.1M are trainable. 1301 For computing the embeddings at inference we only utilize the context encoder, which means the 1302 embeddings are the output of a 7.1M parameters model. 1303 1304 DATASETS 1305 1306 Here we provide a list of dataset sources we used to train our model. Wherever sensor names were 1307 not readily available, we manually curate the sensor descriptions from the dataset specifications. 1308 1309 **UEA Dataset** The UEA Dataset is a popular publicly available dataset used for benchmarking time 1310 series classification algorithms. We restrict ourselves to a subset of the full 30 datasets, as not all 1311 of them have meaningful sensor descriptions. For a few of the datasets within UEA, we manually 1312 annotate the descriptions based on the official paper (Bagnall et al., 2018). 1313 1314 **Liu-ICE Machine Fault Dataset** The Liu-ICE Machine Fault Dataset is a real world fault diagnosis 1315 dataset which consists of data collected from an internal combustion engine test bench. The dataset 1316 consists of multiple different kinds of fault scenarios, and comes with a publicly available benchmark. 1317 1318 **Electricity Transformer Dataset** The Electricity Transformer Dataset (ETTDataset/ETDataset) is 1319 a widely used dataset for time series forecasting, which contains data of dynamic power loads in an 1320 electric power grid located in China. This dataset contains 4 sub-datasets (ETTh1, ETTh2, ETTm1, 1321 ETTm2), which operate at different granularities. 1322 **Weather** The Weather Dataset from the MPI is a real world dataset of meteorological indicators for 1323 1324 the year of 2020. 1325 **Electricity** The Electricity dataset contains hourly consumption from multiple consumers from 1326 2012 to 2014. 1327 1328 **Illness** The Illness Dataset includes weekly records for patients suffering from influenza like 1329 illnesses collected by the CDC. 1330 1331 SKAB - Skoltech Anomaly Benchmark Dataset The SKAB dataset is designed for evaluating 1332 anomaly detection, targeted at two main problems: outlier detection and changepoint detection 1333 1334 Gas Sensor Array Modulation The Gas Sensor Array Modulation from the UCI Machine Learning 1335 Repository is collection of time-series recordings obtained from an array of metal-oxide gas sensors. 1336 1337 **Machinery Fault Dataset** The Machinery Fault Dataset comprises six different simulated states: 1338 normal function, imbalance fault, horizontal and vertical misalignment faults and, inner and outer 1339 bearing faults from a machinery fault simulator. 1340 1341 Metro PT-3 Dataset The MetroPT-3 dataset is a multivariate time series collection created for 1342 predictive maintenance in the railway industry. It consists of over 1.5 million records (instances) 1343 captured at 1Hz from a train compressor's Air Production Unit (APU) over the period from February 1344 to August 2020. 1345 **Unleashing the Power of Wearables** The Human Activity Recognition Trondheim (HEART) 1346 1347 dataset is a professionally annotated collection designed for developing machine learning algorithms capable of recognizing human activities in a free-living environment. Created at the Norwegian 1348 University of Science and Technology (NTNU), it features 22 subjects who wore two 3-axis Axivity 1349 AX3 accelerometers for approximately 2 hours each while performing various daily tasks. The sensors

were placed on the right thigh and lower back, providing multivariate time series data sampled at 50Hz.

Predictive Maintenance of Hydraulic Systems The Predictive Maintenance of Hydraulic Systems dataset contains multivariate time series data collected from a hydraulic test rig. This dataset includes sensor readings—such as pressures, volume flows, temperatures, and more—recorded during load cycles of the hydraulic system.

We provide a summary of the specifications of each dataset in Table 9. If a dataset is present in a downstream benchmark, we only include the defined "train" subset of the full dataset, to prevent the model from optimizing an SSL loss over the test dataset samples.

Dataset Name	#Timestamps	#Channels
Open-Source/Kaggle Datasets		
Appliances Energy Prediction	19,735	26
Gas Sensor Array Temperature Modulation	3,843,160	19
Household Electric Power Consumption	2,075,259	7
Machinery Fault Diagnosis	487,748,049	8
MetroPT-3 Dataset	1,516,948	15
Predictive Maintenance of Hydraulics System	132,300	17
SKAB - Skoltech Anomaly Benchmark	46,860	8
Unleashing the Power of Wearables	6,461,328	6
Liu	288,623	10
UEA Datasets ⁵		
NATOPS	9180	24
Epilepsy	28222	3
Articulary Word Recognition	39600	9
UWave Gesture Library	37800	3
Cricket	129276	6
ERing	1950	4
Character Trajectories	169218	3
Finger Movements	15800	28
SelfRegulation SCP1	240128	6
Basic Motions	4000	6
Atrial Fibrillation	9600	2
Hand Movement Direction	64000	10
Handwriting	22800	3
Libras	8100	2
LSST	88,524	6
Racket Sports	4530	6
Forecasting Benchmark Datasets		
ETTh1	17,420	7
ETTh2	17,420	7
ETTm1	69,680	7
ETTm2	69,680	7
Weather	52,696	21
Illness	966	7

Table 9: Overview of datasets categorized into Open-Source/Kaggle, UEA, and Forecasting benchmark datasets.

 $^{^5}$ The UEA Datasets are provided as windowed instances, i.e. they are not hosted as contiguous, chronological blocks of shape $T\times C$, but rather stored as $N\times T'\times C$. Here, we compute the "# of timesteps" as $N\times T'$, although there may be redundant overlaps based on how the data was collected and labelled.

I DATA LOADING

To enable efficient data loading, we perform under/over sampling to balance the datasets. The degree of under/over sampling is controlled by the t_1 : min_samples_per_dataset and t_2 : max_samples_per_dataset parameters, which upsamples or downsamples the data if the number of samples is either $< t_1$ or $> t_2$ respectively.

Following this, each dataset is handled by its own dataloader, which cyclically yields batches of data from each dataset at every training step. This is handled internally by pytorch lightning's CombinedLoader method, which yields a batch from each dataloader (if the iterator is not yet exhausted). As a result, our effective batch size ⁶per step is now computed as:

(batch size)
$$\times$$
 (# of GPUs) \times (# of datasets) \times (grad_accum_steps) (10)

At the beginning of every epoch, we reload all datasets, which results in fresh under/over sampling indices. This enables the support of larger datasets to be incrementally covered over multiple epochs of training.

The JEPA tasks are randomly sampled after the datasets are sampled, which results in fresh context and target masks for repeated samples. This avoids the exact same sample being repeated several times in an epoch for underrepresented datasets, due to stochasticity in how the masks are generated.

I.1 PERTURBATIONS

Our augmentation design is directly motivated by failure modes frequently observed in real-world time-series data—particularly in industrial and sensor-driven applications— where channel- or block-level gaps occur due to intermittent sensor outages, network disruptions, or scheduled maintenance. To build robustness against such artifacts, we incorporate two principled time-domain masking strategies:

- Uniform segment masking: masks a contiguous temporal segment across all channels, simulating system-level events such as edge-cache dropout or network-wide packet loss.
- Channel-selective masking: applies the same temporal mask to a randomly selected subset of channels, capturing sensor-specific anomalies such as probe failure or drifting instrumentation.

These perturbations are applied solely to the context encoder's input during training, while the teacher view remains unperturbed. This asymmetry forces the model to leverage broader temporal and cross-channel structure for representation learning, in line with the JEPA framework's core principle of predicting masked target representations rather than raw values.

The augmentation functions are tailored to the time-series domain but echo proven techniques in analogous modalities. For instance, our segment masking is a temporal analogue to SpecAugment's TimeMasking, a canonical augmentation for large-scale speech models (implemented in torchaudio.transforms.TimeMasking). Similar masking-based augmentations have also been adopted in recent time-series representation learning methods such as TEST (Sun et al., 2024).

Hyperparameters controlling mask width and frequency were chosen based on prior experience with industrial time-series systems. Due to computational budget constraints, we did not conduct a systematic hyperparameter sweep, instead prioritizing augmentations with clear interpretability and real-world grounding.

Tasks	Supervision	Datasets	# datasets	Metrics	Baselines
Classification	Frozen SVM; Finetuned+Linear	UEA	21	Accuracy, Wins, Total Correct	MiniROCKET, TS2Vec, T-Loss, TS-TCC, T-Rep, MOMENT
Anomaly Detection	Frozen reconstructor (linear head)	UCR-AD	46	Adjusted Best F1	Anomaly Transformer, DGHL, GPT4TS, TimesNet, MOMENT (0, LP), TS2Vec, T-Rep
Anomaly Detection	Frozen reconstructor (linear head)	SKAB	34	F1, FAR, MAR	T^2 , T^2+Q (PCA), Isolation Forest, MSET, Feed-Forward AE, Conv-AE, LSTM-AE, VAE, LSTM-VAE, MSCRED, TS2Vec, T-Rep, MOMENT
Long-horizon Forecasting	Per-dataset linear probe (frozen); universal non-linear head (frozen encoder); universal non-linear head (unfrozen encoder)	ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange Rate Illness	7	MSE, MAE	T-Rep, TS2Vec, PatchTST, MOMENT, Toto, TIMEMIXER++, Moirai, VisionTS

Table 10: Unified baseline summary by task, now including dataset counts.

J EXPERIMENTS

J.1 CLASSIFICATION

J.1.1 UEA CLASSIFICATION BENCHMARK

Dataset We evaluate our model on the popular UEA Dataset which serves as a standard time series classification benchmark for multivariate data. We consider a subset of 21 UEA datasets (list in Table 11) that cover a diverse set of tasks and domains. We select these datasets on the basis of what our model's default context length can handle in a single GPU. As we modify the attention mechanism directly, we cannot leverage existing efficient implementations, and thus are restricted by a maximum context window size. Formally, we select the subsets based on the following rule: num channels < 50, num timestamps < 1500.

Task Description Given a labeled time series data instance (X,y), where X is a multivariate time series, and y corresponds to a supervised label corresponding to X, our goal is to learn a classifier h to minimize test error, i.e. $\epsilon = \mathbb{E}_{(x,y) \sim \mathbb{P}_{(x,y)}}[1(h(x) \neq y)]$.

Downstream Setup We evaluate the quality of our representations, $Z \in \mathbb{R}^{B \times T \times C \times H}$ in the following setups.

1. Frozen + off-the-shelf non-linear classifier (SVM)

Similar to Goswami et al. (2024), we flatten our embeddings, Z and feed them to an SVM with the standard set of hyperparameters proposed in Franceschi et al. (2019), which are also used in T-Rep, TS2Vec, T-Loss, etc. The hyperparameters are chosen for each dataset separately, using 5-fold cross validation on the train set.

2. Finetuned + linear probe

Similar to the linear probing setup in Goswami et al. (2024), we finetune the encoder for each dataset separately. We flatten the embeddings Z, and feed them to a single linear layer which maps the embeddings to a vector of logits, trained with a cross entropy loss. The training hyperparameters are listed in Table 12, which is the same for all UEA datasets.

⁶The "# of datasets" technically refers to the number of unexhausted datasets on that training step, as each dataset has a different number of samples.

Dataset	Channels	Length	Included
ArticularyWordRecognition	9	144	√
AtrialFibrillation	2	640	\checkmark
BasicMotions	6	100	\checkmark
CharacterTrajectories	3	182	\checkmark
Cricket	6	1 197	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Epilepsy	3	206	\checkmark
ERing	4	65	\checkmark
FingerMovements	28	50	\checkmark
HandMovementDirection	10	400	\checkmark
Handwriting	3	152	\checkmark
JapaneseVowels	12	29	\checkmark
Libras	2	45	\checkmark
LSST	6	36	\checkmark
NATOPS	24	51	\checkmark
PenDigits	2	8	\checkmark
Phoneme	11	217	\checkmark
RacketSports	6	30	\checkmark
SelfRegulationSCP1	6	896	\checkmark
SelfRegulationSCP2	7	1 152	\checkmark
SpokenArabicDigits	13	93	\checkmark
UWaveGestureLibrary	3	315	\checkmark
DuckDuckGeese	1 345	270	×
EigenWorms	6	17 984	×
EthanolConcentration	3	1751	×
FaceDetection	144	62	×
Heartbeat	61	405	×
InsectWingbeat	200	78	×
MotorImagery	64	3 000	×
PEMS-SF	963	144	×
StandWalkJump	4	2 500	×

Table 11: An overview of the subset of UAE data sets included in the evaluation of CHARM.

Hyperparameter	Value
Batch size	16
Learning rate	1e - 4
Weight decay	1e - 4
Epochs	500
Optimizer	Adam
Label smoothing	0

Table 12: Training hyperparameters for finetuning setup

Baselines To position ourselves in the existing landscape of time series classification methods, we include baselines from the following set of approaches:

- 1. Time Series Classification Models: MiniRocket
- 2. Semantic Representation Learning Models: T-Rep, TS2Vec, T-Loss, TS-TCC etc.
- 3. Reconstruction Based Representation Learning Models: MOMENT

Given our limited compute availability, all baseline results reported in the results table are drawn from prior published work. We restrict our comparison to models with results on the majority of the UEA datasets, and therefore exclude models with incomplete or missing UEA coverage (e.g., UniTS).

Metrics To compare our model's performance on the combined set of UEA Datasets, we measure 3 quantities:

Average Accuracy. For dataset i with n_i samples:

$$Acc_i = \frac{1}{n_i} \sum_{i=1}^{n_i} \mathbf{1}[h(x_{ij}) = y_{ij}],$$

and the average accuracy across D datasets is

$$\operatorname{AvgAcc} = \frac{1}{D} \sum_{i=1}^{D} \left(\frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{1}[h(x_{ij}) = y_{ij}] \right).$$

Number of Correctly Classified Samples.

NumCorrect =
$$\sum_{i=1}^{D} \sum_{j=1}^{n_i} \mathbf{1}[h(x_{ij}) = y_{ij}].$$

Number of Wins. For M models $\{h_m\}_{m=1}^M$, define accuracy of model m on dataset i as

$$Acc_{i,m} = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{1}[h_m(x_{ij}) = y_{ij}].$$

The number of wins for model m is

$$\operatorname{Wins}(m) = \sum_{i=1}^{D} \mathbf{1} \Big[\operatorname{Acc}_{i,m} = \max_{m'} \operatorname{Acc}_{i,m'} \Big] \,.$$

We report average accuracy and number of wins as they are standard measures used in other papers that use the UEA benchmark, however, as noted in Fleming & Wallace (1986), we would like to highlight that relying on averages of arithmetic means in such setups might be misleading, as the number of test samples vary significantly per dataset (see Figure 14). As a result we additionally include unnormalized scores, which we empirically observe to be a relatively less noisier metric to track during training.

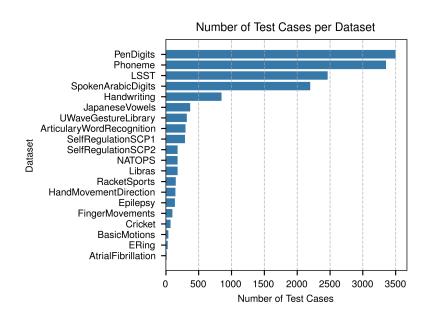


Figure 14: Sizes of different UEA Datasets

Results Results for CHARM under the frozen + SVM setup are presented in Table 13, while the finetuned version is reported in Table 15. Overall, CHARM demonstrates strong aggregate performance, particularly in terms of average accuracy and total correct predictions across datasets. Moreover, we observe competitive results on datasets excluded from pre-training (JapaneseVowels, PhonemeSpectra, PenDigits), highlighting the strong generalization ability of the learned embeddings. The substantial improvement from finetuning on individual datasets suggests that post-training strategies can be effectively used to adapt the model for classification tasks.

Dataset	TS2Vec	T-Loss	TS-TCC	T-Rep	MOMENT	MiniROCKET	CHARM _{frozen + SVM}
AtrialFibrillation	29	13	27	35	20	20	47
Articulary/WordRecognition	97	94	95	97	99	98	99
BasicMotions	100	100	100	100	100	100	98
CharacterTrajectories	99	99	99	99	_	99	98
Cricket	95	97	92	96	99	97	96
ERing	90	13	90	94	96	93	96
Epilepsy	96	97	96	97	99	100	98
FingerMovements	50	58	46	50	49	42	59
HandMovementDirection	42	35	24	54	32	41	54
Handwriting	46	45	50	41	31	24	33
LSST	56	51	47	53	41	67	60
Libras	86	88	82	83	85	94	83
NATOPS	90	92	82	80	83	92	82
RacketSports	89	86	82	88	80	88	86
SelfRegulationSCP1	79	84	82	82	84	88	82
UWaveGestureLibrary	88	88	75	89	91	91	91
SpokenArabicDigits	99	91	97	99	98	99	97
SelfRegulationSCP2	55	54	53	59	48	49	58
Japanese Vowels †	97	99	93	96	72	92	97
Phoneme Spectra †	24	22	25	23	23	28	20
Pen Digits †	98	98	97	97	97	97	98
Wins	2	5	2	3	3	7	4
Avg. Accuracy	76.4	71.6	73.1	76.8	71.3*	76.2	77.6
Total Correct	7171	6836	6835	7075	5204*	7284	7139

Table 13: Comparison of classification accuracy across multiple datasets and models. Datasets marked with † were not included in pre-training CHARM. *MOMENT does not report scores for CharacterTrajectories, and we exclude it while calculating MOMENT's scores.

Hyperparameter	Value
С	{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 10
kernel	{ 'rbf' }
degree	{3}
gamma	{'scale'}
coef0	{0}
shrinking	{True}
probability	{False}
tol	{0.001}
cache_size	{200}
class_weight	{None}
verbose	{False}
max_iter	{10000000}
decision_function_shape	{ 'ovr' }
random_state	{None}

Table 14: SVM Hyperparameter Grid

Dataset	TS2Vec	T-Loss	TS-TCC	T-Rep	MOMENT	MiniROCKET	CHARM _{frozen+SVM}	CHARM _{finetune}
AtrialFibrillation	29	13	27	35	20	20	47	40
Articulary/WordRecognition	97	94	95	97	99	98	99	99
BasicMotions	100	100	100	100	100	100	98	100
CharacterTrajectories	99	99	99	99	_	99	98	99
Cricket	95	97	92	96	99	97	96	94
ERing	90	13	90	94	96	93	96	94
Epilepsy	96	97	96	97	99	100	98	99
FingerMovements	50	58	46	50	49	42	59	57
HandMovementDirection	42	35	24	54	32	40	54	51
Handwriting	46	45	50	41	31	24	33	36
LSST	56	51	47	53	41	67	60	71
Libras	86	88	82	83	85	94	83	87
NATOPS	90	92	82	80	83	92	82	92
RacketSports	89	86	82	88	80	88	86	86
SelfRegulationSCP1	79	84	82	82	84	88	82	91
UWaveGestureLibrary	88	88	75	89	91	91	91	88
SpokenArabicDigits	99	91	97	99	98	99	97	98
SelfRegulationSCP2	55	54	53	59	48	49	58	57
Japanese Vowels	97	99	93	96	72	92	97	98
Wins	2	3	2	3	3	4	4	5
Avg. Accuracy	78.1	72.8	74.4	78.5	72.5*	77.6	79.6	80.9
Total Correct	7467	7141	7118	7363	5414*	7569	7431	7799

Table 15: Performance comparison across datasets in %. Best results per dataset are boldfaced, and the best count is reflected in the win statistics. PenDigits and PhonemeSpectra are omitted from the finetuned comparisons, due to the size of these datasets, and the associated training compute and time required. *MOMENT does not report scores for CharacterTrajectories, and we exclude it while calculating MOMENT's scores.

J.2 Anomaly Detection

J.2.1 UCR Anomaly Detection Benchmark

Dataset The UCR anomaly detection dataset Dau et al. (2018) is a popular open-source univariate anomaly detection dataset. The dataset consists of >100 datasets from varying domains. We restrict ourselves to the same subset of 46 datasets used in MOMENT (Goswami et al., 2024) which cover a diverse set of sources.

Task Description Each dataset in the UCR archive is provided with a "clean" train split, and a corresponding test split. The standard setup in this task involves training a model to reconstruct clean samples (i.e. with no anomalies), and then use this model on the test set to reconstruct the data. The mean squared error is computed in a point-wise sense on all timestamps in the test set. If the error corresponding to each timestamp exceeds a certain threshold, we classify that timestamp as anomalous. For a fair comparison, we use the same sweep over the error thresholds as used in MOMENT, which uses 100 samples on a linearly spaced grid from the lowest error to the highest error in the test set errors across all timestamps. Then, we compute an adjusted F1 score, which is standard practice in benchmarking anomaly detection models, for each threshold, and report the best adjusted

F1 score for each dataset. For this experiment, the embedding model is frozen and only the linear reconstruction head is trained.

Downstream Setup Our model is extended with a reconstruction head, which consists of a linear layer that maps embeddings back to the raw time series values, i.e. $Z \in \mathbb{R}^{T' \times 1 \times H} \to Z_t \in \mathbb{R}^T$. We empirically observe better results by applying an AvgPool on the embeddings (with a stride of 8) before the reconstruction head, as it potentially reduces the high fidelity of our per time point embeddings. Consequently, the linear layer is then of dimensions $\mathbb{R}^{H \times 8}$.

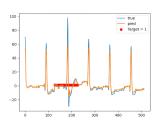
Baselines To ensure a fair comparison with models from varying classes, i.e. task-specific vs general representation learning, we benchmark ourselves against the same set of models used in MOMENT, which consist of state-of-the-art anomaly detection models, as well as general representation learning methods. These consist of: Anomaly Detection Transformer, DGHL, GPT4TS, TimesNet and MOMENT. Given our limited compute availability, all baseline results reported in the results table are drawn from prior published work and we limited ourselves to reported models in the MOMENT paper. We exclude T-Rep and TS2Vec, as they do not report results on this dataset/task.

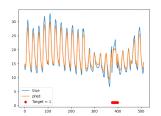
Metrics We evaluate performance by measuring an adjusted F1 score for each dataset after optimizing the threshold for each dataset separately.

Results We report adjusted F1 scores across all datasets and models in Table 16. While model performance varies considerably by dataset, CHARM achieves strong overall results in terms of both average F1 score and total wins.

Dataset	Anomaly Transformer	MOMENT	CHARM	DGHL	GPT4TS	TimesNet
1sddb40	0.03	0.54	0.99	0.39	0.19	0.68
BIDMC1	0.99	1.00	1.00	1.00	1.00	1.00
CHARISfive	0.01	0.13	1.00	0.02	0.02	0.08
CHARISten	0.02	0.11	0.12	0.01	0.01	0.03
CIMIS44AirTemperature3	0.06	0.98	0.98	0.50	0.18	0.47
CIMIS44AirTemperature5	0.39	0.99	0.85	0.96	0.20	0.71
ECG2	1.00	1.00	1.00	0.62	0.90	1.00
ECG3	0.36	0.98	0.93	0.80	0.84	0.48
Fantasia	0.75	0.95	0.97	0.66	0.87	0.55
GP711MarkerLFM5z4	0.93	1.00	0.64	0.50	0.64	0.95
GP711MarkerLFM5z5	0.76	0.97	0.75	0.31	0.48	0.90
InternalBleeding5	0.94	1.00	1.00	1.00	0.92	1.00
Italianpowerdemand	0.01	0.74	0.17	0.59	0.01	0.44
Lab2Cmac011215EPG5	0.99	0.98	1.00	0.34	0.60	0.99
Lab2Cmac011215EPG6	0.41	0.10	0.12	0.26	0.10	0.17
MesoplodonDensirostris	1.00	0.84	1.00	0.79	1.00	1.00
PowerDemand1	0.87	0.44	0.43	0.49	0.76	0.95
TkeepFirstMARS	0.02	0.15	0.03	0.02	0.02	0.23
TkeepSecondMARS	0.83	1.00	1.00	0.16	0.12	0.95
WalkingAceleration5	1.00	1.00	0.89	0.48	1.00	0.96
apneaecg	0.40	0.20	0.44	0.25	0.31	0.26
apneaecg2	0.65	1.00	0.92	1.00	1.00	0.90
gait1	0.18	0.36	0.53	0.51	0.48	0.47
gaitHunt1	0.08	0.43	0.99	0.02	0.10	0.30
insectEPG2	0.12	0.23	0.73	0.14	0.81	0.96
insectEPG4	0.98	1.00	0.70	0.46	0.21	0.85
lstdbs30791AS	1.00	1.00	1.00	1.00	1.00	1.00
mit14046longtermecg	0.45	0.59	0.98	0.43	0.97	0.97
park3m	0.15	0.64	0.61	0.20	0.63	0.93
qtdbSel1005V	0.41	0.65	0.75	0.44	0.39	0.90
qtdbSel100MLII	0.42	0.84	0.90	0.41	0.60	0.87
resperation1	0.16	0.15	0.83	0.03	0.59	0.96
s20101mML2	0.69	0.71	1.00	0.15	0.05	0.08
sddb49	0.89	1.00	1.00	0.88	0.94	1.00
sel840mECG1	0.41	0.66	1.00	0.32	0.28	0.36
sel840mECG2	0.15	0.39	0.60	0.32	0.28	0.21
tilt12744mtable	0.07	0.24	0.14	0.04	0.05	0.16
tilt12754table	0.23	0.64	0.04	0.04	0.06	0.14
tiltAPB2	0.92	0.98	1.00	0.36	0.83	0.38
tiltAPB3	0.17	0.85	0.62	0.03	0.05	0.29
weallwalk	0.00	0.58	1.00	0.07	0.13	0.17
Wins	5	18	24	4	5	12
Average	0.485	0.684	0.754	0.415	0.479	0.627

Table 16: Anomaly detection performance across 46 UCR datasets





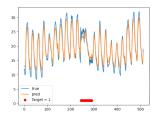


Figure 15: UCR Anomaly test set reconstructions visualized, with anomalous regions highlighted for 1sddb40, CIMIS44AirTemperature3 and CIMIS44AirTemperature5. true refers to the ground truth values, while pred refers to our reconstruction head's predictions.

J.2.2 SKOLTECH ANOMALY DETECTION BENCHMARK (SKAB)

Dataset To evaluate our performance on a real world industrial setup, we use the open-source Skoltech Anomaly Benchmark suite Katser & Kozitsin (2020), which consists of a point-wise anomaly detection task using data from 8 sensors attached to a mechanical testbed. The dataset itself consists of 34 sub-dataset instances consisting of both outlier detection, and changepoint detection anomalies.

Task Description We follow the standard setup accompanying the SKAB benchmark for our model, as well as reproducing other baselines on this dataset. This involves splitting the data into several train and test sets, where each instance in the train and test set is trained with a fresh model to reconstruct the training dataset, i.e. minimize MSE on the reconstruction task $||x_{\text{train}} - \hat{x}_{\text{train}}||_2$, and then evaluated by computing the reconstruction of the corresponding test instance, \hat{x}_{test} . Based on the train set reconstruction, we compute the Upper Control Limit (UCL), based on the 99th percentile quantiles, and apply an adjustment factor of $\frac{4}{3}$. Then, for the reconstructed test data \hat{x}_{test} , we classify anomalies if the absolute values of the residuals, i.e. $||x_{\text{test}} - \hat{x}_{\text{test}}||$ lie outside the UCL limit. This exact anomaly detection setup is commonly applied to all baseline models in the test suite.

Downstream Setup Similar to J.2.1, we rely on training a linear head to reconstruct "clean" training data. I.e., we use a single linear layer $\mathbb{R}^{H \times 1}$ to map our embeddings Z back to the raw time series values. The hyperparameters used for training the linear head are listed in 17.

Hyperparameter	Value		
Optimizer	AdamW		
Weight Decay	None		
Learning Rate	1e-3		
Epochs	1000		

Table 17: Hyperparameters to train reconstruction head for anomaly detection

Baselines To compare ourselves to a diverse set of models, we include all baselines available in SKAB leaderboard, as well as **T-Rep**, **TS2Vec**, **MOMENT**.

The baselines in the SKAB leaderboard come from a diverse set of modeling approaches, which rely on both statistical techniques, as well as more modern CNN/LSTM based methods. We list brief descriptions of the SKAB baselines here:

- Hotelling's T-squared statistic: Measures the Mahalanobis distance of new samples from the mean using variances for multivariate process monitoring.
- Hotelling's T-squared + Q statistic (PCA-based): Uses principal component analysis, where T^2 captures variation in the principal subspace and Q measures residuals, combined via logical OR for monitoring.
- **Isolation Forest (iForest)**: An ensemble-based method that isolates anomalies as points with short average path lengths in random trees.

1841

1843

1845

1849

1851

1855

1857

1860 1861

1862

1864

1866

1868

1872

1873

1874

1875

1876 1877

1878

1879

1880

1881

1885

- LSTM-based Neural Network: An LSTM network trained for anomaly detection using reconstruction error as the anomaly score.
 - Feed-Forward Autoencoder: A standard autoencoder that detects anomalies via reconstruction error in vector data.
 - Convolutional Autoencoder (Conv-AE): A CNN-based autoencoder for anomaly detection in time series via reconstruction error.
 - LSTM Autoencoder (LSTM-AE): A sequence-to-sequence LSTM autoencoder that reconstructs temporal patterns and flags anomalies via reconstruction error.
 - LSTM Variational Autoencoder (LSTM-VAE): A probabilistic LSTM autoencoder that models latent distributions and detects anomalies using reconstruction error.
 - Variational Autoencoder (VAE): A generative model that learns latent variable distributions of input data, with anomalies identified via reconstruction error.
 - MSCRED: A multi-scale convolutional recurrent encoder-decoder that reconstructs signature matrices of system statuses and uses residuals to detect anomalies.
 - MSET: A nonparametric statistical modeling technique that estimates values via weighted averages of historical data for anomaly detection.

Reproducing Baselines To ensure a fair comparison, we reproduce the baseline methods T-Rep, TS2Vec, and MOMENT following the protocols described below:

- 1. **T-Rep:** We train the model using the self-supervised contrastive loss used in the paper, on each dataset instance using the official implementation and author-recommended hyperparameters. Subsequently, we append a linear reconstruction head, which is trained using the hyperparameters specified in Table 17. The base encoder remains frozen during this stage.
- 2. **TS2Vec:** We adopt an identical procedure to that of T-Rep, i.e., training with the official implementation and hyperparameters, followed by the addition of a frozen base encoder with a trainable linear reconstruction head.
- 3. **MOMENT**₀: We directly evaluate the AutonLab/MOMENT-1-large checkpoint in *reconstruction mode*. This configuration utilizes the reconstruction head employed during pretraining and is applied to the test set without any further training or fine-tuning.
- 4. **MOMENT**_{LP}: We employ the same checkpoint in *embedding mode*, in which representations are extracted and paired with a linear reconstruction head. The linear head is trained on the training instances using the hyperparameters from Table 17, consistent with the setup applied to CHARM, T-Rep, and TS2Vec.

Note that the MOMENT model was not pre-trained on the SKAB dataset, whereas our model was. This suggests that there may be additional untapped performance potential for MOMENT on this benchmark, since pre-training it on SKAB could plausibly improve its results. However, due to the large computational demands of MOMENT and our limited access to compute resources, we were unable to conduct this experiment.

Metrics We reported the average F1 score over all instances, as well as the False Alarm Rate (FAR) and Missed Alarm Rate (MAR), for all baseline models. We outline the mathematical representation of these terms, and their relation to commonly used binary classification metrics here:

Missed Alarm Rate (FNR) =
$$\frac{FN}{TP+FN}$$
 = 1 - Recall Specificity (TNR) = $\frac{TN}{TN+FP}$ False Alarm Rate (FPR) = $\frac{FP}{TN+FP}$ = 1 - Specificity

Results We compile our results on the SKAB benchmark along with the different baseline models collected in separate classes (Self-Supervised vs Classical) in Table 18. Similar to UCR, we here also observe strong performance for CHARM.

Table 18: Comparison of anomaly detection performance across baselines and our method. Higher F1 scores are better (\uparrow) , while lower False Alarm Rate (FAR) and Missed Alarm Rate (MAR) are better (\downarrow) .

Category	Method	F 1 ↑	FAR (%) ↓	MAR (%) ↓
	T-Rep	0.78	12.60	28.51
Damescentation I coming	$MOMENT_0$	0.79	14.20	26.98
Representation Learning	TS2Vec	0.79	12.77	27.61
	$MOMENT_{LP}$	0.82	15.52	20.73
	Conv-AE	0.78	13.55	28.02
	MSET	0.78	39.73	14.13
Classical	T-squared+Q (PCA)	0.76	26.62	24.92
	Isolation Forest	0.29	2.56	82.89
	LSTM-VAE	0.56	9.13	55.03
	MSCRED	0.36	49.94	69.88
	CHARM	0.86	19.35	12.69

J.3 FORECASTING

Datasets We evaluated our model on the benchmarks introduced in Autoformer Wu et al. (2021), which have become standard multivariate time series forecasting benchmarks. Specifically, the benchmark suite includes the Electricity Transformer Dataset (ETT), Weather, Exchange Rate and Illness datasets. The model pretraining included the train splits of these datasets (Section H).

The train/valid/test split is identical to the standard protocol in the other baselines we compare with, which is a 6/2/2 split for the ETT datasets, and a 7/1/2 split for all other datasets.

To ensure a fair comparison, we adopt the standard set of lookback horizons and future horizon values across all forecasting datasets, as specified in Table 20. While earlier works primarily use a lookback horizon of 96, more recent studies have also incorporated a longer lookback horizon of 512. To maintain consistency and comparability, we therefore report our linear probing results under both lookback settings. Furthermore, since different papers also employ different prediction horizons, we follow each work's choice of horizons to respect their experimental setup and allow for direct comparison.

Task Description Forecasting tasks consist of taking a window of time series data and predicting future time steps. Formally, given an input of dimensions $(T_h \times C)$, where T_h denotes the "lookback" horizon, the goal is to predict the future T_f time steps for all channels.

Downstream Setup We use the embeddings of the input horizon data, stack the embeddings across all time steps for each channel, and train the model to minimize an aggregate loss metric⁷ between the predicted and true values for each channel.

Since the pretraining task was not designed for direct linear forecasting, nor to produce single-step predictions, we evaluate forecasting performance using the following modeling approaches:

- CHARM+LP A per-dataset, per-channel, per-horizon linear regression head is trained on top of frozen embeddings.
- CHARM+NLH: A common non-linear prediction head is trained across all datasets, channels, and horizons, with the encoder kept frozen.
- CHARM+NLH FT: The full model (encoder + non-linear prediction head) is trained end-to-end, shared across datasets, channels, and horizons.

Non-Linear Head (NLH) The head is designed to first mix information across both time and channels, then refine within each channel, and finally project to the forecasting horizon:

• Transformer across time & channels ($n_{\text{heads}} = 4$, $n_{\text{layers}} = 2$, hidden dimension 2048).

 $^{^{7}}$ loss = $\frac{MSE+MAE}{2}$

- Transformer per channel ($n_{\text{heads}} = 4$, $n_{\text{layers}} = 1$, hidden dimension 2048).
- Per-channel linear projection to a maximum horizon of 720.

It is important to note that in the non-linear head setup, the forecasting module is shared across all datasets, channels, and horizons. The transformer and projection layers are not customized or tuned for any specific dataset, horizon, or channel, ensuring a single common forecasting head is used throughout. If the target horizon T_f is less than the max horizon (720), we simply apply the loss to the first T_f predictions from the head.

Training protocol. All non-linear head models were trained on the full CHARM dataset collection (Section H) without hyperparameter optimization due to resource constraints. The training setup is summarized in Table 19. The linear heads were trained for each (dataset, horizon, channel) combination separately, which is standard for a linear probing setup in time series forecasting, and in line with other baseline implementations. To this end, we conducted hyperparameter optimization as reported in table 21 and present the best results.

Hyperparameter	Value
Lookback horizon	512
Datasets	All CHARM datasets (Section H)
Batch size	256 (gradients accumulated across datasets)
Epoch definition	10 steps across 4 nodes
Max epochs	60 (early stopping, patience = 5)
Optimizer	AdamW
Loss	(MSE + MAE)/2
Schedule	Cosine
Learning rate	1×10^{-3}
Weight decay	0.01

Table 19: Training protocol for non-linear forecasting (NLH) heads.

Dataset	Lookback Horizon T_h	Target Horizon T_f
ETTh1	96/512	{24, 48, 168, 336, 720}
ETTh2	96/512	{24, 48, 168, 336, 720}
ETTm1	96/512	{24, 48, 96, 288, 672} [†]
ETTm2	96/512	$\{24, 48, 96, 288, 672\}^{\dagger}$
Weather	96/512	{96, 192, 336, 672}
Exchange Rate	96/512	{96, 192, 336, 672}
Illness	96/512	{24, 36, 48, 60}

Table 20: Forecasting task specifications. †Some papers adopt the same prediction horizons as ETTh1/2 for ETTm1/2.

Hyperparameter	Value
Optimizer	AdamW
Weight Decay	[1e-2, 1e-4]
Learning Rate	[1e-2, 1e-4]
Epochs	1000
LR Schedule	ReduceLROnPlateau
Reduction Factor	0.1
Early Stopping: Patience	50
Early Stopping : Tolerance	1e-6

Table 21: Hyper-parameters to train linear prediction heads for forecasting tasks

Baselines To ensure a fair assessment, we distinguish between three categories of methods: representation learning methods, reconstruction-based methods, and hybrid approaches.

- Representation learning methods focus on extracting meaningful embeddings of the data, independent of the reconstruction objective.
- Reconstruction-based methods emphasize the model's ability to directly predict or reconstruct future values.
- Hybrid approaches combine both ideas: they primarily rely on reconstruction-based training but additionally evaluate the representational power of the learned embeddings.

An important distinction is in the evaluation protocol. Both representation learning methods and hybrid approaches employ linear probing to assess the forecasting power of the embeddings. In contrast, reconstruction-based methods directly evaluate the pretrained model, since their pretraining task is already aligned with forecasting.

To establish a strong baseline, we compare against SOTA foundational time series models from each category. For pure representation learning methods, we include T-REP Fraikin et al. (2024) and TS2Vec Yue et al. (2022). For hybrid methods, we consider MOMENT Goswami et al. (2024) and PatchTST Nie et al. (2023b). Finally, for reconstruction-based methods, we evaluate Toto Cohen et al. (2025), TIMEMIXER++ Wang et al. (2025), Moirai Woo et al. (2024a), and VisionTS Chen et al. (2025). We exclude results from works such as TimesFM Das et al. (2024), UniTS Gao et al. (2024b) and Chronos Ansari et al. (2024), as their experimental setups differ substantially from ours, making direct comparison infeasible.

Reproducing Baselines We reproduce the baseline methods T-Rep and TS2Vec on the Weather, ILI, and Exchange Rate datasets following the original papers' pretraining setup. Specifically, each model is first pretrained on the respective dataset, after which a linear forecasting head is added and trained while keeping the base model frozen. The forecasting head is trained using the same architecture and hyperparameters as specified in the original paper's downstream forecasting setup. For the ETT datasets, results for both models are taken directly from the original T-Rep paper (Fraikin et al., 2024). For reconstruction-based and hybrid models, we report the scores as presented in their respective papers for the corresponding datasets and horizons. The compiled results are shown in Table 23.

Metrics We quantitatively assess the model's performance using mean squared error (MSE) and mean absolute error (MAE) metrics averaged over all forecasted time steps and across all target variables, which is standard practice for multivariate forecasting benchmarks.

Results The results comparing CHARM with other state-of-the-art representation learning methods, along with the reproduced baselines, are summarized in Table 22. These results underscore the strong performance of CHARM embeddings relative to competing methods in this category. Further, Table 23 demonstrates that CHARM remains competitive with hybrid and reconstruction-based models—including substantially larger models trained on significantly larger datasets (e.g., TOTO, Moirai).

Dataset	Н	T-1	Rep	TS2	2Vec	CHAR	M+LP
		MSE	MAE	MSE	MAE	MSE	MAE
	24	0.511	0.496	0.575	0.529	0.310	0.350
	48	0.546	0.524	0.608	0.553	0.358	0.376
ETTh1	168	0.759	0.649	0.782	0.659	0.451	0.430
	336	0.936	0.742	0.956	0.753	0.517	0.466
	720	1.061	0.813	1.092	0.831	0.546	0.498
	24	0.560	0.565	0.448	0.506	0.186	0.267
	48	0.847	0.711	0.685	0.642	0.242	0.303
ETTh2	168	2.327	1.206	2.227	1.164	0.391	0.396
	336	2.665	1.324	2.803	1.360	0.430	0.427
	720	2.690	1.365	2.849	1.436	0.470	0.466
	24	0.417	0.420	0.438	0.435	0.218	0.283
	48	0.526	0.484	0.582	0.553	0.282	0.324
ETTm1	96	0.573	0.516	0.602	0.537	0.316	0.347
	288	0.648	0.577	0.709	0.610	0.395	0.391
	672	0.758	0.649	0.826	0.687	0.482	0.441
	24	0.172	0.293	0.189	0.310	0.099	0.192
	48	0.263	0.377	0.256	0.369	0.131	0.223
ETTm2	96	0.397	0.470	0.402	0.471	0.172	0.253
	288	0.897	0.733	0.879	0.724	0.284	0.326
	672	2.185	1.144	2.193	1.159	0.403	0.400
	96	0.195	0.280	1.672	0.904	0.158	0.199
Weather	192	0.235	0.316	1.569	0.894	0.207	0.246
Weather	336	0.288	0.359	2.075	1.064	0.265	0.287
	672	0.362	0.402	2.828	1.305	0.347	0.340
	96	1.180	0.806	0.462	0.544	0.084	0.203
Exchange Rate	192	3.947	1.344	0.968	0.765	0.182	0.302
Exchange Nate	336	6.683	1.699	1.759	1.037	0.353	0.429
	720	3.900	1.504	2.266	1.184	0.929	0.727
	24	3.631	1.227	3.463	1.173	2.799	1.080
ILI	36	3.979	1.313	3.889	1.282	1.754	0.797
T-11-1	48	4.290	1.363	4.219	1.339	1.699	0.820
	60	4.361	1.375	4.198	1.329	1.740	0.838

Table 22: Representation learning only Long-horizon forecasting results across datasets. Input length = 96. Lower is better. **Bold** = best, <u>Underline</u> = second best. We use a frozen encoder with a linear head for this experiment.

Dataset	Н						R	ec.							Hy	brid					Ours		
		Т	oto	Moi	rai_S	Moir	ai_B	Moir	ai_L	TimeN	lixer++	Visi	onTS	MOME	ENT-LP	PatchT	ST-LP	CHAR	M+LP	CHARM	M + NLH	CHARM	1 + NLH FT
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.382	0.381	0.375	0.402	0.384	0.402	0.380	0.398	0.361	0.403	0.353	0.383	0.387	0.410	0.371	0.400	0.452	0.464	0.467	0.478	0.465	0.464
	192	0.428	0.408	0.399	0.419	0.425	0.429	0.440	0.434	0.375	0.400	0.392	0.410	0.410	0.426	0.411	0.428	0.502	0.503	0.536	0.523	0.512	0.498
	336	0.457	0.422	0.422	0.429	0.450	0.456	0.514	0.474	0.416	0.441	0.407	0.423	0.422	0.437	0.445	0.446	0.565	0.540	0.600	0.564	0.560	0.530
	720	0.472	0.440	0.413	0.444	0.470	0.473	0.705	0.568	0.430	0.434	0.416	0.405	0.454	0.416	0.487	0.478	0.699	0.622	0.764	0.657	0.693	0.612
ETTh2	96	0.273	0.310	0.281	0.334	0.277	0.327	0.287	0.325	0.276	0.328	0.271	0.328	0.288	0.345	0.285	0.344	0.243	0.334	0.236	0.328	0.240	0.330
	192	0.339	0.356	0.340	0.373	0.340	0.374	0.347	0.367	0.342	0.379	0.328	0.367	0.349	0.386	0.356	0.387	0.294	0.368	0.296	0.369	0.298	0.369
	336	0.410	0.387	0.362	0.393	0.371	0.401	0.377	0.393	0.346	0.398	0.345	0.381	0.369	0.377	0.425	0.377	0.334	0.394	0.340	0.398	0.332	0.391
	720	0.375	0.400	<u>0.380</u>	0.416	0.394	0.426	0.404	0.421	0.392	0.415	0.388	0.422	0.403	0.439	0.395	0.434	0.424	0.448	0.421	0.446	0.395	0.432
ETTml	96	0.320	0.333	0.404	0.383	0.335	0.360	0.353	0.363	0.310	0.334	0.341	0.347	0.293	0.349	0.292	0.348	0.337	0.386	0.341	0.387	0.337	0.382
	192	0.371	0.364	0.435	0.402	0.379	0.402	0.376	0.380	0.348	0.362	0.360	0.360	0.326	0.368	0.329	0.369	0.392	0.419	0.398	0.423	0.390	0.412
	336	0.408	0.388	0.462	0.416	0.394	0.416	0.399	0.395	0.376	0.391	0.377	0.374	0.352	0.384	0.364	0.391	0.434	0.442	0.437	0.449	0.434	0.440
	720	0.485	0.426	0.490	0.437	0.419	0.437	0.432	0.417	0.440	0.423	0.416	0.405	0.405	0.416	0.415	0.419	0.491	0.482	0.489	0.488	0.484	0.478
ETTm2	96	0.172	0.237	0.205	0.282	0.195	0.269	0.189	0.260	0.170	0.245	0.228	0.282	0.170	0.260	0.167	0.257	0.154	0.255	0.155	0.255	0.150	0.254
	192	0.232	0.280	0.318	0.261	0.303	0.300	0.247	0.300	0.229	0.291	0.262	0.305	0.227	0.297	0.229	0.300	0.188	0.282	0.197	0.287	0.186	0.283
	336	0.290	0.320	0.355	0.319	0.333	0.334	0.334	0.334	0.303	0.343	0.293	0.328	0.275	0.328	0.289	0.343	0.223	0.309	0.236	0.317	0.220	0.309
	720	0.372	0.375	0.410	0.415	0.377	0.372	0.372	0.386	0.373	0.399	0.343	0.370	0.363	0.387	0.363	0.386	0.271	0.346	0.294	0.356	0.278	0.350
Weather	96	0.149	0.179	0.173	0.212	0.167	0.203	0.177	0.208	0.155	0.205	0.220	0.257	0.154	0.209	0.158	0.209	0.151	0.198	0.150	0.196	0.147	0.190
	192	0.192	0.223	0.216	0.250	0.209	0.241	0.219	0.249	0.201	0.245	0.244	0.275	0.197	0.248	0.203	0.249	0.197	0.240	0.198	0.239	0.191	0.232
	336	0.245	0.265	0.260	0.282	0.256	0.276	0.292	0.277	0.237	0.265	0.280	0.299	0.246	0.285	0.251	0.285	0.250	0.279	0.249	0.279	0.240	0.272
	720	0.310	0.312	0.320	0.322	0.321	0.323	0.365	0.350	0.312	0.334	0.330	0.337	0.315	0.322	0.321	0.336	0.324	0.332	0.324	0.334	0.310	0.324

Table 23: Long-horizon forecasting results across datasets. Input length = . Lower is better. **Bold** = best, <u>Underline</u> = second best. Last three columns are our CHARM variants; *CHARM+LP* is a **Rep.** approach, while *CHARM + NLH* and *CHARM + NLH FT* are **Rec.** approaches.

Visualizations We present a sample of forecasting results from **CHARM+LP** and using a lookback window of 96.

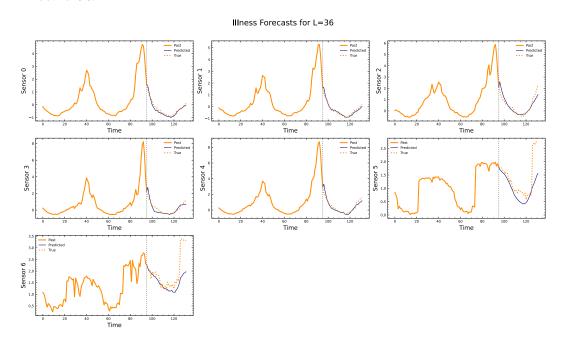


Figure 16: Illness Forecasts

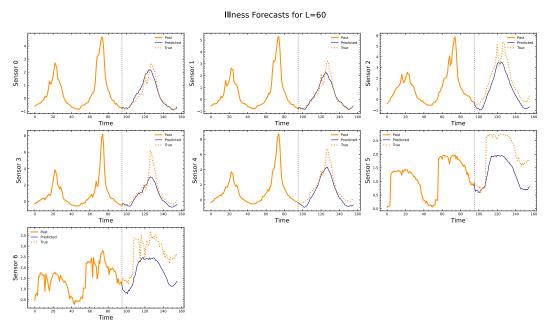


Figure 17: Illness Forecasts

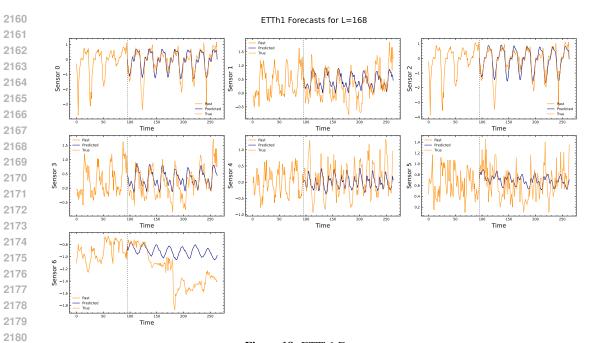


Figure 18: ETTh1 Forecasts

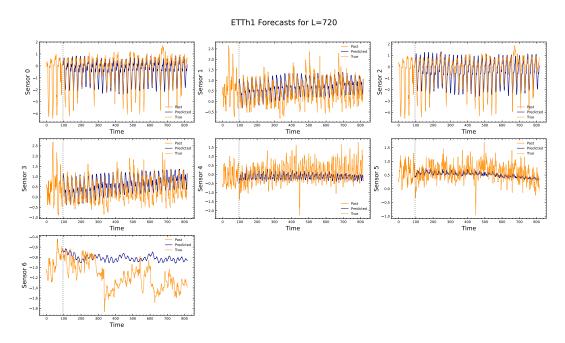


Figure 19: ETTh1 Forecasts

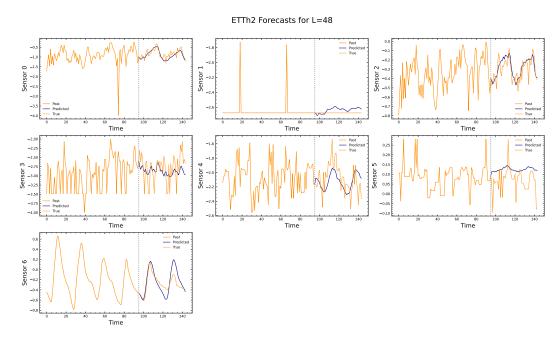


Figure 20: ETTh2 Forecasts

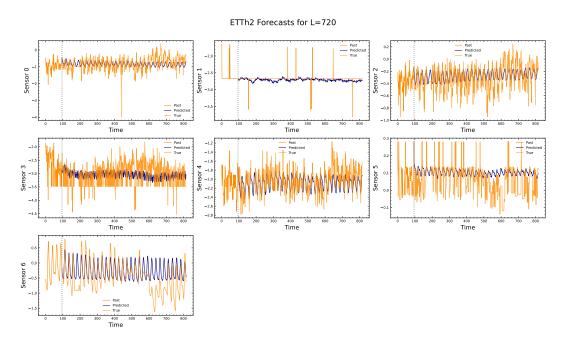


Figure 21: ETTh2 Forecasts

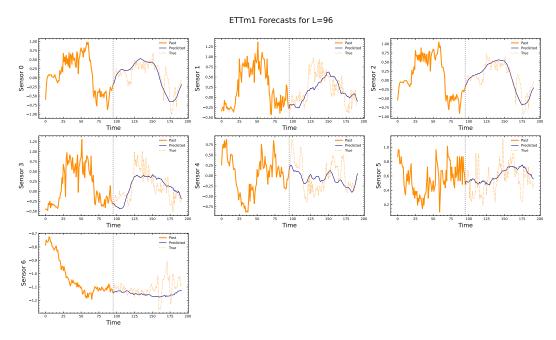


Figure 22: ETTm1 Forecasts

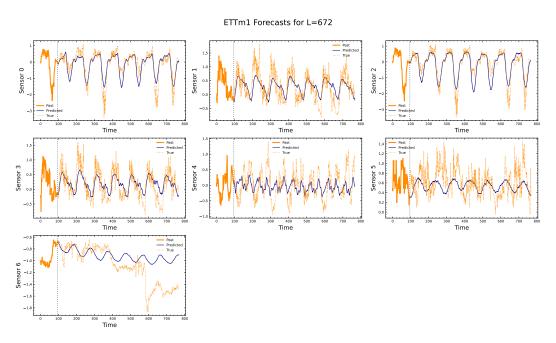


Figure 23: ETTm1 Forecasts

Linear Probing and Pooling Ablations Experiments related to pooling strategies, shown in Table 24, were designed to contrast different pooling approaches commonly used to aggregate data in other domains and to examine their applicability to time series. We also experimented with an MLP to investigate whether the embeddings benefit more from a non-linear model, since the training objective is not aimed at maximizing linear predictability. We only compare these methods using the ETTh1/2 datasets with a lookback window of 96 and forecasting horizons of 24, 48, 168, 336, 720.

To further study the effect of different pooling strategies, we evaluated the following three approaches:

1. **Flattening**: The embeddings are flattened into a single vector representation for each channel.

$$Z: \mathbb{R}^{T \times H} \to Z_{\mathsf{flat}} \in \mathbb{R}^{TH}$$

2. **Mean Pooling**: The embeddings are averaged over the time dimension (but not across channels), yielding an *H*-dimensional representation per channel.

$$Z: \mathbb{R}^{T \times H} \to Z_{\text{mean}} \in \mathbb{R}^{H}$$

3. **Last Time Step**: The embedding from the last time step of each channel is taken as the representative embedding.

$$Z: \mathbb{R}^{T \times H} \to Z_{-1} \in \mathbb{R}^{H}$$

In addition, we experimented with:

• Frozen Encoder + 2-Layer MLP: A per-dataset, per-channel, per-horizon MLP head (two linear layers with ReLU activations) trained on top of frozen embeddings.

Dataset	Pool	Head	24		48		168		336		720	
			MSE	MAE								
	$none^{1a}$	$linear^{1b}$	0.31	0.35	0.36	0.38	0.45	0.43	0.52	0.47	0.55	0.50
	none	MLP^{2b}	0.32	0.36	0.37	0.38	0.46	0.44	0.50	0.46	0.54	0.50
ETTh1	last time step ^{2a}	$linear^{1b}$	0.39	0.39	0.43	0.41	0.51	0.46	0.53	0.47	0.54	0.50
	last time step	MLP^{2b}	0.37	0.38	0.41	0.40	0.49	0.45	0.54	0.48	0.55	0.51
	$mean^{3a}$	${ m linear}^{1b}$	0.66	0.49	0.68	0.50	0.72	0.53	0.69	0.54	0.69	0.57
	mean	MLP^{2b}	0.61	0.50	0.74	0.51	0.77	0.54	0.74	0.55	0.73	0.58
	\mathbf{none}^{1a}	${\rm linear}^{1b}$	0.19	0.27	0.24	0.30	0.39	0.40	0.43	0.43	0.47	0.47
	none	MLP^{2b}	0.20	0.27	0.25	0.31	0.40	0.40	0.46	0.44	0.51	0.48
ETTh2	last time step 1a	${\rm linear}^{1b}$	0.19	0.28	0.25	0.31	0.40	0.40	0.44	0.43	0.49	0.48
	last time step	MLP^{2b}	0.20	0.28	0.26	0.32	0.40	0.40	0.45	0.44	0.49	0.48
	\mathbf{mean}^{1a}	$linear^{1b}$	0.25	0.32	0.29	0.35	0.44	0.43	0.44	0.45	0.50	0.49
	mean	MLP^{2b}	0.25	0.33	0.30	0.35	0.44	0.43	0.46	0.45	0.50	0.49

Table 24: Ablation results comparing pooling strategies and heads across ETTh1 and ETTh2. **Bolded** values denote best within each dataset and horizon. The encoder is kept frozen for this experiment.

From Table 24, we observe that no pooling (1a) combined with either a linear or MLP probe yields the best results on both ETTh1 and ETTh2. Interestingly, we observe that for ETTh1 using just the last time step's embedding (1b) yields competitive scores with an average increase of 8.7% (MSE) and 4.2% (MAE) when compared to no pooling (1a). Comparatively, mean pooling (1c) has an increase of 60.5% (MSE) and 24.4% (MAE) Similarly, for ETTh2, we observe that using the last time step embeddings (1b) has only a 0.85% (MSE) and 1.33% (MAE) increase in error, when compared to mean pooling which has a 9.32% (MSE) and 8.49% (MAE) increase in error.

This observation is in line with (Bardes et al., 2024), which demonstrated that using attentive probing to pool embeddings was empirically superior for downstream task performance compared to directly mean pooling the embeddings, which can potentially result in lossy, diffuse representations which fail to capture finer granularities in the data.

K ABLATIONS

To better understand the effects of different components in our model, we perform a series of ablations involving the proposed architectural additions - (i) TCN featurization layer, (ii) text based attention mechanisms, (iii) effect of description quality, (iv) effect of embedding model, and (v) alternative approaches to multi modal text + time series. To quantify the effect of each of these changes, we measure performance on forecasting and classification by measuring the following quantities:

1. Total number of correct classifications for UEA

- 2. Average accuracy for UEA
- 3. Mean Squared Error for ETTh1 ($T_f = 168$)
 - 4. Mean Absolute Error for ETTh1 ($T_f = 168$)
 - 5. Mean Squared Error for ETTh2 ($T_f = 168$)
 - 6. Mean Absolute Error for ETTh2 ($T_f = 168$)

For the ablation study, we train and probe the model with the following protocols:

Pretraining The base model is pretrained with a subset of datasets (UEA, ETTh, ETTm, Weather, Illness), for 50 epochs, with a learning rate of 5e-4.

Classification Evaluations The hyperparameters used for measuring classification performance are listed in Table 25. We use mean-pooled embeddings, i.e. $\bar{Z} \in \mathbb{R}^{B \times H}$, instead of flattened embeddings, $Z \in \mathbb{R}^{B \times T \times C \times H}$.

Forecasting Evaluations The forecasting setup is identical to the frozen linear model setup used in the downstream forecasting task. The hyperparameters are listed in Table 21. The embeddings are flattened for all timesteps and passed to a linear layer.

Hyperparameter	Value
С	{0.0001, 0.1, 1000}
kernel	{ 'rbf' }
degree	{3}
gamma	{'scale'}
coef0	{0}
shrinking	{True}
probability	{False}
tol	{0.001}
cache_size	{200}
class_weight	{None}
verbose	{False}
max_iter	{10000000}
decision_function_shape	{ 'ovr' }
random_state	{None}

Table 25: SVM Hyperparameter Grid for Ablations

The ablation results for (i) and (ii) can be found in the main text in Table 5.

We cover the setup for the remaining ablations (iii), (iv), and (v) here, along with their results.

• (iii) Effect of description quality

As channel descriptions are a first class citizen in training CHARM, we perform an ablation to investigate the effect of description quality on the model's performance. To this end we consider three cases:

- Annotated descriptions: manually curated sensor descriptions obtained from the official dataset metadata. These are obtained through either manual human annotation obtained by parsing the accompanying dataset metadata files, or are natively provided by the dataset provider.
- 2) **Noisy descriptions**: high quality annotated descriptions, but with words dropped at random (with p = 0.2) during both training and evaluation.
- 3) **Ordinal descriptions**: replace the annotated descriptions with structured, placeholder descriptions: [Sensor1, Sensor2, Sensor3...] for all datasets.

• (iv) Effect of text embedding model

We investigate the usage of different embedding models to assess the effect on downstream performance. We use 1) nomic (Nussbaum et al., 2025), 2) minilm (Wang et al., 2020), and 3) mpnet (Song et al., 2020) as representative models to assess the downstream impact on scores.

• (v) Alternative multi-modal approaches

To investigate how naive multimodal approaches compare to our setup, we remove the text based layers altogether, and simply add in the channel description embeddings (from an LLM embedding model) in a pointwise sense to the time series embeddings. This is analogous to adding in position embeddings in the first layer of a vanilla transformer (Vaswani et al., 2017). We investigate adding these solely in the first layer, as well as in all layers. For numerical stability, we apply a LayerNorm on these embeddings to ensure they are of an appropriate scale.

Configuration	# Correct	Accuracy	ETTh1 ₁₆₈ MSE	ETTh1 ₁₆₈ MAE	ETTh2 ₁₆₈ MSE	ETTh2 ₁₆₈ MAE
Ordinal descriptions	4792	70.3%	0.52	0.55	0.59	0.83
Noisy descriptions	4813	71.2%	0.44	0.48	0.59	0.85
w/ annotated descriptions	4897	71.4%	0.42	0.49	0.57	0.80

Table 26: Effect of Sensor Descriptions (TCN_{conv})

Embedding Model	# Correct	Accuracy	ETTh1 ₁₆₈ MSE	ETTh1 ₁₆₈ MAE	ETTh2 ₁₆₈ MSE	ETTh2 ₁₆₈ MAE
mpnet	4893	71.3%	0.41	0.45	0.63	0.85
minilm	4902	72%	0.43	0.47	0.65	0.95
nomic	4897	71.4%	0.42	0.49	0.57	0.80

Table 27: Effect of Text Embedding Models

Configuration	# Correct	Accuracy
w/ additive embeddings (all layers) w/ additive embeddings (layer 0)	4095 4375	60.5% 63.3%
$oldsymbol{\Delta} + \mathbf{G}$	4897	71.4%

Table 28: Alternative Multimodal Approaches: additive vs. custom attention

As shown in Table 26, perturbing or replacing channel descriptions leads to a moderate performance drop; however, the model remains reasonably robust to noisy descriptions. Table 27 reveals varied and inconclusive trends across different textual embedding models, with each performing well on distinct metrics. Finally, Table 28 suggests that the naive integration of text embeddings into the architecture is overly heavy-handed and results in performance degradation, particularly when embeddings are injected directly into all layers of the encoder stack. These findings indicate that incorporating channel descriptions into a time series transformer requires greater nuance and more principled design choices.

L EMBEDDING VISUALIZATIONS

L.1 EMERGENCE OF INTRA-CLASS LABEL SEPARATION

To analyze how our model's embeddings evolve over training, we plot similarity heatmaps of our embeddings on labelled datasets.

We first obtain embeddings for a dataset by sampling a subset (approximately 50 samples) of the full dataset, while ensuring we have full label coverage. Given this embedding matrix $\mathbf{Z} \in \mathbb{R}^{N_t \times T \times C \times H}$, we obtain our mean-pooled embeddings $\bar{\mathbf{Z}} \in \mathbb{R}^{N_t \times H}$ by averaging over the channel and time dimension.

Finally, the $N_t \times N_t$ similarity matrix, **S** is obtained as follows:

$$\mathbf{S}_{i,j} = ||\mathbf{Z}_{i,:} - \mathbf{Z}_{j,:}||_1 \tag{11}$$

We visualize the similarity matrix as a heatmap, as shown in Figures 24 to 26, and observe the emergence of structured clusters aligned with class labels. As training progresses, a block-diagonal structure⁸ becomes increasingly prominent, wherein samples sharing the same label exhibit reduced Euclidean separation compared to those from different classes. This pattern reflects a progressive tightening of intra-class representations, indicative of improved semantic organization in the learned embedding space.

⁸The heatmaps have a block structure because the labels are grouped together on each axis before plotting.

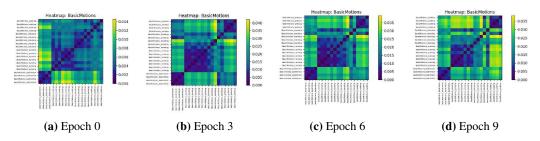


Figure 24: Evolution of BasicMotions similarity heatmaps over training epochs

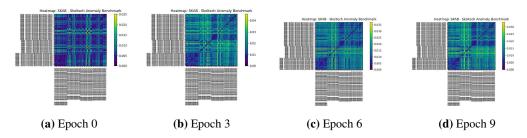


Figure 25: Evolution of Skoltech Anomaly Benchmark similarity heatmaps over training epochs



Figure 26: Evolution of Epilepsy similarity heatmaps over training epochs

L.2 EVOLUTION OF CHANNEL GATES

In this section we aim to visualize how channel gates, as defined in Paragraph Section 2.1.1, evolve over the course of training our model. We plot the gating matrix, G_d , for each dataset for different checkpoints.

As illustrated in Figure 28, the inter-channel gating mechanism enables the model to dynamically modulate attention across channels, selectively emphasizing or suppressing information based on configurations that minimize the self-supervised learning (SSL) loss. We also empirically observe that the regularization loss begins to increase after an initial decline which suggests that after a certain point the model's embeddings require richer contextual information to continue improving.

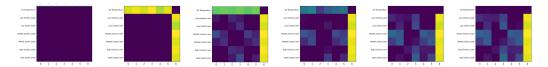


Figure 27: Evolution of Channel Gates for the ETT Dataset

The ETT dataset introduced by (Zhou et al., 2021a) comprises seven variables: High Useful Load, Middle Useful Load, Low Useful Load, High Useless Load, Middle

Useless Load, Low Useless Load, and Oil Temperature. Among these, Oil Temperature serves as the target variable, with the remaining six acting as input features. During training, we observe a notable evolution in the learned channel gating patterns. Initially, the Oil Temperature channel does not attend to any other inputs, as indicated by its high gating values across all dimensions in Figure 27. However, as training progresses, this channel begins to incorporate information from all other variables. Interestingly, this behavior is asymmetric: while the target channel attends to all input features, the reverse does not occur—the other channels do not attend to Oil Temperature. This asymmetry manifests as a distinctive row-column pattern in the gating matrix and aligns with the underlying data semantics, where the target variable is causally influenced by the independent variables but not vice versa. These observations suggest that introducing learnable gating mechanisms can reveal interpretable, directional dependencies between variables which also increases model interpretability.

Figure 28: Evolution of inter channel gates during training. Checkpoints extracted at epoch=0; step=49, epoch=0; step=499, epoch=2; step=49, epoch=2; step=49, epoch=8; step=49.

Each row represents a particular dataset. Each column represents a sampled checkpoint as training progresses. Each heatmap represents G_d for a particular dataset, which is a $C \times C$ matrix with values in [0,1]. Brighter colors on the heatmap represent **higher** gating values, i.e. decreased cross-channel interactions.