
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLOCKING FOUNDATION MODELS FOR TIME SERIES
WITH CHANNEL DESCRIPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional time series models are often task-specific and rely heavily on feature
engineering. While Transformer-based architectures have advanced sequence
modeling in other domains, their use for time series representation learning remains
limited. We introduce CHARM, a model that improves representation quality for
multivariate time series by incorporating channel-level textual descriptions into
its architecture. This design enables the model to exploit contextual information
associated with individual sensors while remaining invariant to channel order.
CHARM is trained using a Joint Embedding Predictive Architecture (JEPA) with a
novel loss function that encourages informative and temporally robust embeddings.
We find that integrating channel descriptions consistently enhances representation
quality, with supplementary ablations providing insight into the contributions of
different design choices. The learned embeddings yield strong performance across
diverse downstream tasks, underscoring the value of description-aware time series
modeling.

1 INTRODUCTION

Time series models play a pivotal role in critical real-world applications such as forecasting, classifica-
tion, and anomaly detection across domains including manufacturing, energy, healthcare, and finance
(Hannun et al., 2019; Susto et al., 2014; Ding et al., 2015). By converting temporal signals into
actionable insights, these models enable large-scale, data-driven decision-making. However, most
existing approaches remain narrowly scoped and task-specific, requiring significant manual effort
for development and maintenance. Even in ostensibly homogeneous settings—such as industrial
pump fleets with varied sensor configurations—models are often trained independently (Morgenthal
et al., 2024), despite underlying shared physical dynamics. This fragmentation is rooted in structural
limitations of conventional time series architectures, which typically assume fixed-length, uniformly
structured inputs and lack mechanisms for fusing information across heterogeneous sensors. Conse-
quently, current paradigms struggle to generalize across tasks, domains, and configurations, posing
challenges to scalability and adaptability.

Foundation models in other modalities In contrast, fields such as natural language processing,
computer vision, and audio have undergone transformative progress with the emergence of foundation
models—large-scale, pre-trained architectures that learn general-purpose representations across
diverse downstream tasks (Devlin et al., 2019; Nussbaum et al., 2025; Assran et al., 2023; Kirillov
et al., 2023; Baevski et al., 2020; Brown et al., 2020; Radford et al., 2021). These models, often trained
via Self-Supervised Learning (SSL) on massive unlabeled corpora, have demonstrated capabilities
such as Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) and robust task transfer via
lightweight fine-tuning (Devlin et al., 2019; Oquab et al., 2023; Kirillov et al., 2023). Their success
hinges on learning semantically meaningful representations that are modular, robust, and highly
transferable.

Foundation models for time series forecasting Inspired by these advances, the time-series com-
munity has begun developing foundation models, with a strong emphasis on supervised forecasting
objectives (Das et al., 2024; Woo et al., 2024b; Ansari et al., 2024; Liu et al., 2024). These models
achieve impressive performance on predictive benchmarks and introduce architectural innovations
tailored to multi-domain forecasting. However, because their training remains tightly coupled

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to a forecasting loss, the learned representations are often specialized and brittle—limiting their
applicability to downstream tasks such as classification, segmentation, or anomaly detection.

Foundation embedding models for time series Most self-supervised foundation models for time
series rely on objectives such as masked reconstruction or next-step forecasting, which require
the encoder to impute raw signal values. These signals are often noisy, low-resolution, and entan-
gled with domain-specific artifacts (Trirat et al., 2024), resulting in representations that overfit to
sensor-level noise rather than capturing higher-level process dynamics. While such objectives are
straightforward to implement, they tend to entangle semantic structure with noise, limiting robustness
and generalization across tasks or domains. Recent approaches such as MOMENT (univariate)
(Goswami et al., 2024) and UniTS (multivariate) (Gao et al., 2024a) extend this paradigm with
multi-task or reconstruction-based pretraining and report strong downstream performance, but remain
fundamentally grounded in raw signal-level prediction for pretraining.

JEPA-style latent prediction: a robust alternative In contrast, Joint Embedding Predictive
Architectures (JEPA) (LeCun, 2022) adopt a fundamentally different approach: predicting latent
representations of masked target segments from contextual embeddings rather than raw values. By
operating entirely in embedding space, JEPA filters out sensor noise and encourages the encoder to
model higher-level temporal structure. In vision, this paradigm has proven highly effective—Assran
et al. (2023) demonstrate that latent prediction yields representations that rival or surpass those
learned via supervised learning, while remaining more robust to noise and label scarcity. Compared
to contrastive learning, JEPA-style models also avoid the complexity of negative sampling and the
sensitivity to embedding space dimensionality, making them a more stable and scalable choice for
semantic representation learning.

Lack of channel-awareness in time series models Most time series models treat all input channels
uniformly as uncategorized streams of sensor data, without incorporating information about the
identity, modality, or semantics of the sensors generating the data. This lack of sensor-awareness
discards valuable contextual information, limiting the model’s ability to reason about sensor-specific
behavior or operate reliably across deployments with varying instrumentation.

1.1 CONTRIBUTIONS

This work aims to (1) develop a robust, semantically grounded SSL objective for time series data,
and (2) design an architecture capable of directly incorporating textual channel information. This
is inspired by how subject matter experts interpret time series data, by jointly considering the raw
signals and their accompanying channel descriptions. To this end, we introduce a CHannel-Aware
Representation Model (CHARM), trained to produce domain-aware, and performant representations
across tasks and datasets. Building such a model entails several key challenges, including channel
heterogeneity, variation in temporal dynamics across domains, and risks of negative transfer and
representational collapse. To realize these aims, we introduce the following core contributions:

Description-aware temporal featurization We modify temporal convolutional networks to incor-
porate channel descriptions directly into the convolutional layers. Unlike patch-based approaches,
our stacked, description-aware convolutions allow the model to seamlessly adapt across domains
without manual tuning of patch size. Details are provided in Section 2.1.1.

Inter-channel reasoning via attention and gating We augment the standard attention mechanism
with novel, learnable inter-channel attention layers and gating modules conditioned on channel
descriptions. These components enable the model to flexibly capture inter-channel dependencies,
selectively integrate signals in a structured manner, while maintaining invariance to channel ordering.
See Section 2.1.2 for details.

Self-supervised training with JEPA for time series We adapt the JEPA to the time series domain,
enabling semantic representation learning without reconstruction. To do so, we introduce a set of
tailored data augmentations and temporal perturbations that improve robustness to common time
series artifacts. This avoids the drawbacks of contrastive learning, such as sensitivity to sampling and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝐵

Text Embedding
Model

𝐵
𝐷!

Contextual Temporal
Convolutional

Network
𝐵 𝑇

𝐶

Inter-channel
Time-offset

Attention

Inter-channel
Attention Gate

Classic Self-
Attention

Calculation

Custom
Attention

Mechanism
𝐵 𝑇	×	𝐶	

𝐻

Contextual Attention Layer

𝐵
𝑇×𝐶

𝐻
Contextual Attention

Layer
Contextual Attention

Layer
…

𝐵
𝑇×𝐶

𝐻

Figure 1: Overview of the model architecture, featuring a context-aware temporal convolutional network and a
series of contextual attention layers, each guided by textual descriptions of the input time series channels.

Figure 2: Schematic of the context-aware temporal convolutional network, performing initial featurization of
multivariate time series inputs guided by granular textual descriptions of each channel.

dimensionality constraints (LeCun, 2022; Assran et al., 2023; Chen et al., 2020; 2022; Chuang et al.,
2020). Details are provided in Section 2.2.

We evaluate our model across a range of downstream tasks, including classification, forecasting, and
anomaly detection. Our approach consistently achieves strong performance across diverse datasets,
underscoring the effectiveness of both the model architecture and the training strategy.

2 METHODOLOGY

In this section, we first introduce a novel multi-modal transformer-based architecture for learning
embeddings from time series data, guided by underlying channel descriptions (Section 2.1). We then
describe how this architecture is trained using self-supervised learning with JEPA (Section 2.2). The
notation used throughout this section is provided in Appendix B.

2.1 MULTI-MODAL TIME SERIES EMBEDDING MODEL

Here, we present three key architectural contributions that enable learning high-quality time series
embeddings by incorporating textual channel descriptions. Our model employs convolutional layers
in conjunction with a series of custom attention layers, enhanced by a novel attention mechanism. An
overview of the full architecture is provided in Figure 1.

We begin by describing the contextual temporal convolutional network in Section 2.1.1, which
generates convolution-based embeddings. These embeddings are then passed to a series of contextual
attention layers, where our novel attention mechanism is applied. We describe the details of this layer
in Section 2.1.2, where we introduce two core extensions to the self-attention mechanism in sections.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.1.1 CONTEXTUAL TEMPORAL CONVOLUTIONAL NETWORK

We introduce a contextual Temporal Convolutional Network (TCN) that projects input time series
T ∈ RT×C into contextual embeddings Tc ∈ RT×C×H , where Tc[i, j, :] denotes the H-dimensional
embedding at time step i for channel j. The base architecture follows standard dilated TCNs (Bai et al.,
2018; Lin et al., 2021), which stack 1D convolutions with exponentially increasing dilation factors
(2l). However, standard TCNs are architecturally static and their learned kernels are input independent
and constant. This lack of flexibility hinders their ability to adapt across diverse domains, leading
to representation collapse or negative transfer when trained on heterogeneous datasets. To address
this, we make the TCN context-aware by incorporating channel descriptions into the convolutional
process. Given a time series tuple t = (T,D,pos) (see Figure 7), we extract text embeddings for the
descriptions using a frozen text embedding model, as Ed ∈ RC×De . We introduce two mechanisms
to inject this context, namely:

Contextual kernel gating Description embeddings are used to conduct soft gating through the
layers of the TCN. The gates are produced by the kernel gating network in Figure 2, which is given
as Gc = sigmoid(EdWg),Wg ∈ RDe×N , with N denoting the number of stacked convolutional
layers in the TCN. Each element Gc[i, j], which corresponds to the soft gate associated with channel
i and layer j of the TCN which is then incorporated multiplicatively in the network as depicted
in Figure 2. This enables the model to control the effective field of view of TCN informed by the
channel descriptions.

Contextual kernels Rather than learning fixed convolutional filters, we generate them from the
descriptions embeddings as Gk = EdWk,Wk ∈ RDe×(H×K

N), where K is the kernel size and N
the number of TCN layers. This mechanism directly ties channel semantics to filter generation and is
represented by the kernel network in Figure 2.

2.1.2 CONTEXTUAL ATTENTION LAYER

The embeddings generated by the contextual TCN layer are subsequently processed through a
sequence of contextual attention layers. The primary goal of these layers is to effectively fuse channel
and temporal dimensions into richer, more expressive representations, directly incorporating the
granular textual descriptions of each channel. To achieve this, we propose several novel extensions to
the classical self-attention mechanism (Vaswani et al., 2017). These and their inter-play are depicted
in Figure 1, under the contextual attention layer. Below we discuss the key details of these key
components in detail.

𝐷!

𝐶
EdE

T
d 𝐶

𝐶

Bilinear
Layer

𝐶

𝐶

Ed[i, :]WbEd[j, :]
T

ReLU(..... −)

Inter-channel Attention Gate

Figure 3: Description-aware gating mecha-
nism, selectively suppressing cross-channel
attention.

2𝐷!

𝐶

𝐶 [
Ed[i, :],Ed[j, :]

]

𝐷!

𝐶

Reshape and
Concat

ConstructLinear
Projection

2𝑇

𝐶

𝐶

∆i,j,t = ∆j,i,−t

Inter-channel Time-offset Attention

Figure 4: Symmetric construction of inter-channel
temporal-offset attention, encoding mutual dependen-
cies between channels at varying time lags.

Description-aware inter-channel attention gating This module introduces a gating mechanism
conditioned explicitly on channel descriptions, enabling our architecture to selectively co-attend
to the most relevant channels. Given the channel description embeddings Ed, this layer computes
the pairwise similarities, S, and the similarity threshold matrix, Z, as S = EdE

⊤
d , Z[i, j] =

sigmoid
(
Ed[i, :]Wb Ed[j, :]

⊤). The similarity threshold matrix governs our inter-channel gating
mechanism. Specifically, this layer outputs the gating matrix given as Gd = ReLU(Z − S). This
process, illustrated in Figure 3, allows the model to selectively suppress cross-attention between
channel pairs (i, j) by driving their corresponding similarity threshold Z[i, j] toward one.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Description-aware inter-channel time-offset attention This module improves the model’s ability
to capture inter-channel relationships by explicitly quantifying dependencies between channels at
different temporal offsets. Specifically, we introduce a learnable tensor ∆ ∈ RC×C×2Tmax , where
each entry ∆i,j,t encodes the learned dependency strength between channel i and channel j at
a temporal offset of t steps. We assume inherent symmetry within ∆, reflecting the intuition
that the relationship from channel i to channel j at step t should match the inverse relationship
from channel j to channel i at step −t, formally as ∆i,j,t = ∆j,i,−t. To explicitly enforce this
symmetry, we follow a structured construction procedure. Given the channel description embeddings
Ed, we first create a pairwise embedding tensor Ēd ∈ RC×C×2De defined by concatenation as
Ēd[i, j, :] = [Ed[i, :],Ed[j, :]] ∈ R2De .

Next, we apply a linear projection to these pairwise embeddings, parameterized by the matrix
Wd ∈ R2De×Tmax , yielding the intermediate tensor ∆+ = Ēd Wd. We then construct the full
symmetric tensor ∆ as below

∆[i, j, t] =

{
∆+[i, j, t] if t ≥ 0,

∆+[j, i,−t] if t < 0.

This symmetric construction, depicted in Figure 4, ensures parameter efficiency and explicitly
encodes symmetry constraints. We compute the final ∆̄ ∈ RCT×CT matrix using a "slice-and-
tile" operation, where ∆̄ is a block matrix with T blocks on each axis, and in block notation
∆̄[Ti, Tj] = ∆[:, :, Tj − Ti]. See Section C.5.1 for PyTorch style pseudocode for the naive and fast
versions of this operation.

Custom attention mechanism We unify the gating and attention mechanisms described above
into a single self-attention framework. Given embedding matrix the contextual TCN layer, Tc, we
reshape it into X ∈ RCT×H , where each channel-time pair is represented by an H-dimensional
embedding. To facilitate intuitive indexing, we employ a triple-index notation X[(ci,tj),k] rather than
a flattened indexing scheme X[m, k], with ci = m mod C and tj = ⌊m

C ⌋. First we apply rotary
position embeddings to the queries and keys given the pos indices as:

Q̂ = RoPE(WQX[(i,p),:],pos), K̂ = RoPE(WKX[(j,q),:],pos)

The custom attention matrix A ∈ RCT×CT is then constructed as

A[(i,p),(j,q)] = Softmax




Q̂[i,p,:]K̂
T
[j,q,:]√

De︸ ︷︷ ︸
Vanilla Self-Attention

+∆[i, j, q − p]︸ ︷︷ ︸
Channel Lags

−λGGd[i, j]︸ ︷︷ ︸
Channel Gates




Here, A[(i,p),(j,q)] represents the attention from channel i at time p to channel j at time q. The
scalar λG is typically a large positive number, enabling the gating matrix to serve as an attention
mask, selectively blocking certain cross-channel interactions based on the learnt thresholds. The
attention matrix can be efficiently computed using vectorized operations by appropriately tiling
the inter-channel gating and time-offset matrices. Following the standard transformer approach,
we multiply the attention matrix by the value matrix V = WV X to produce our contextualized
embeddings.

2.1.3 PUTTING IT ALL TOGETHER

This completes the integration of the various components within our multimodal time-series embed-
ding architecture. For a given input tuple t = (T,D,pos), we first generate the initial embeddings
X ∈ RT×C×H from our contextual TCN layer. These embeddings pass through a stack of N
contextual attention layers, each layer outputting X(l) ∈ R(T×C)×H , reshaped to Y(l) ∈ RT×C×H

for subsequent layers. Similar to (Grill et al., 2020a), we apply ℓ2 normalization to the final em-
beddings: Y[i, j, t] = Y[i,j,t]√∑

h Y[i,j,h]2
, with normalization computed along the embedding dimension

only. The complete architecture is denoted as Eθ, such that Y = Eθ(T,D,pos). While this
outlines the primary structure of our contextual embedding model, we have also introduced several
nuanced modifications aimed at enhancing training stability and convergence speed. These detailed
adjustments are presented in Section C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.2 SELF-SUPERVISED REPRESENTATION LEARNING

We adopt the JEPA framework (Assran et al., 2023; LeCun, 2022) to enable self-supervised learning
on time series data enriched with fine-grained textual context. JEPA comprises three core components,
namely predictor, context, and target encoders. In the following section, we detail the key components
of our training pipeline based on JEPA, namely, (i) the dataset generation process in Section 2.2.1, (ii)
the integration of JEPA with our embedding model in Section 2.2.2, and (iii) a novel loss formulation
tailored to JEPA training in Section 2.2.3.

2.2.1 DATASET GENERATION

Itgt

Ictx

Iprd

JEPA training task

Dataset Generation
IprdIctx

Itgt
Exponential

moving average

Predictor
Encoder

Perturbation
Module

Context
Encoder

L
Target

Encoder

Figure 5: JEPA architecture with three encoders pro-
cessing augmented views.

Figure 5 provides a high-level view of JEPA
and the interplay among JEPA’s three encoders,
and how they consume data points generated
by the dataset generation process. For time se-
ries data, we generate augmented views of the
same data point through data augmentation and
perturbation techniques. We refer to the data
augmentation as JEPA training tasks.

Formally, given an input instance t =
(T,D,pos), we define an augmented view of
this instance through three randomly generated
contiguous sets of indices, with Ictx, Itgt, Iprd ⊆
pos, denoting time indices that are fed into the
context, target and predictor encoders. We em-
ploy two self-supervised tasks, namely causal
prediction, where Ictx ⊂ Itgt, and smoothing,
where Ictx ∩ Itgt ̸= ∅ and Iprd ⊂ Ictx ∩ Itgt. See Figure 10 for an overview of the causal predic-
tion (left) and smoothing (right) tasks. The input to the context encoder is further perturbed (see
Section I.1) to encourage the model to learn robust representations under mild corruption.

2.2.2 JEPA SETUP

In JEPA the context and target encoders are architecturally identical. However, only the context
encoder is directly optimized during training while the target encoder is updated using an exponential
moving average of the context encoder’s parameters, see Figure 5. In contrast, the predictor is a
narrow/shallower version of the context encoder which is trained jointly with the context encoder
through standard backpropagation.

To leverage JEPA, we integrate our embedding model within the underlying encoders. Let us denote
the context, target and predictor encoders as, Ec

θ,E
t
θ and Ep

θ , respectively. The context and target
encoders are fully defined by our embedding model as

Xc = Ec
θ(T̄, D̄, Ictx) := Eθ(T̄, D̄, Ictx), Xt = Et

θ(T[Itgt, :],D, Itgt) := Eθ([Itgt, :],D, Itgt)

where Xc ∈ R|Ictx|×C×H and Xt ∈ R|Itgt|×C×H are the outputs from the context and target encoders,
respectively, and D̄ and T̄ ∈ R|Ictx|×C denote the perturbed descriptions and the perturbed time
series data T[Ictx, :]. The predictor encoder accepts the output of the context encoder as input.
Unlike the context and target encoders, the predictor encoder solely leverages the contextual attention
layer. Let Āθ denote the narrower and shallower version of the contextual attention layer. Also
let X̄c = [Xc, mθ, · · · ,mθ︸ ︷︷ ︸

repeated |Iprd| times

] where mθ represents learnable placeholders that guide the predictor

encoder to generate embeddings for masked positions, see (Assran et al., 2023) for more information.
We further define the concatenated set Īprd = Ictx + Iprd. The predictor encoder is then defined as
Xp = Ep

θ(X̄
c, D̄, Īprd) := Āθ(X̄

cWpd, D̄, Īprd)Wpu, where Xp ∈ R|Īprd|×C×H is the output of
the predictor encoder, and Wpu ∈ RHd×H , Wpd ∈ RH×Hd denote linear layers used for up and
down projecting.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2.2.3 TRAINING LOSS

The training loss for training our embedding model comprises two major components, self-supervised
objectives and regularization terms associated with key modules of the contextual attention layer.

Self-supervised loss Our embedding model produces embeddings at the level of each time point and
each channel. We employ a self-supervised objective based on the ℓ1 norm to measure discrepancies
between embeddings from two augmented views of the same time series instance. To promote
consistency not only at the most granular level but also across coarser aggregations, we extend the
objective to include progressively aggregated embeddings. Let X̄t = Xt[Iprd, :] ∈ R|Iprd|×C×H and
X̄p = Xp[−|Iprd| :, :] ∈ R|Iprd|×C×H . The self-supervised loss is then defined as

Lssl =
∑

i,j,t

∣∣X̄p
i,j,t − X̄t

i,j,t

∣∣+
∑

i,t

∣∣µj

(
X̄p

i,:,t

)
− µj

(
X̄t

i,:,t

)∣∣+
∑

t

∣∣µi,j

(
X̄p

:,:,t

)
− µi,j

(
X̄t

:,:,t

)∣∣

with µj(Xi,:,t) = 1
C

∑
j Xi,j,t, µi,j(X:,:,t) = 1

CT

∑
i

∑
j Xi,j,t. This multi-resolution loss

encourages the model to align representations both at the fine-grained level (per time point and
channel) and at higher levels of abstraction (per time point and globally), thereby enhancing regularity
and usability of the embeddings at different levels of granularity.

Regularization loss We include two regularization terms related to key modules of the contextual
attention layer, namely the inter-channel gating and inter-channel time-offset attention modules.
Given the inherent sparsity in meaningful channel relationships, we promote sparsity in the learned
channel relationships, by regularizing the similarity threshold matrix Z toward 1 and regularizing the
relationships among channels across temporal offsets using

R1 =
∑

i,j

|1− Z[i, j]| , R2 =

∑
i,j

∑
t ∆[i, j, t]2

C2
,

respectively. The regularization term R2 encourages consistency and stability in the learned inter-
channel temporal relationships. Combining these loss terms results in the following training objective
function to be applied across all data points L = Lssl + λ1R1 + λ2R2, where λ1 and λ2 control the
extent and strictness of gating and temporal attention suppression.

3 EXPERIMENTS

In this section, we evaluate our model’s embeddings on common downstream tasks, namely classifica-
tion, forecasting, and anomaly detection, and benchmark our model against the current state-of-the-art
models in each of the aforementioned downstream tasks. We expand on our datasets in Section H, and
provide more details on downstream task training and baselines in Section J and Table 10 respectively.

Forecasting We evaluate forecasting on the LSF benchmark suite (Wu et al. 2021, ETTh1/2,
ETTm1/2, Weather) in the standard multi-horizon, multivariate setting with horizons 96/192/336/720.
We compare against state-of-the-art foundation time-series models that are either (i) pre-trained for
forecasting or (ii) pre-trained for representation learning and evaluated via dataset-specific linear
probing (LP).

To produce point forecasts with CHARM, we consider three variants: (1) CHARM+LP — dataset-
specific linear probes trained on frozen CHARM embeddings; (2) CHARM + NLH — a single,
dataset-agnostic non-linear forecaster trained on frozen CHARM embeddings; and (3) CHARM +
NLH FT — end-to-end training that back-propagates through CHARM to align the embeddings with
the point-forecast objective. Per-dataset means (averaged across horizons) are reported in Table 1.

Dataset CHARM
Toto Moirai_Small Moirai_Base Moirai_Large TimeMixer++ VisionTS MOMENT-LP PatchTST-LP CHARM + LP CHARM+NLH CHARM+NLH FT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 0.224 0.245 0.242 0.267 0.238 0.261 0.263 0.271 0.226 0.262 0.269 0.292 0.228 0.266 0.233 0.270 0.230 0.262 0.230 0.262 0.222 0.255
ETTm1 0.396 0.378 0.448 0.410 0.382 0.404 0.390 0.389 0.368 0.378 0.373 0.371 0.344 0.379 0.350 0.382 0.413 0.432 0.416 0.437 0.411 0.428
ETTm2 0.266 0.303 0.322 0.319 0.302 0.295 0.285 0.320 0.269 0.320 0.281 0.321 0.259 0.318 0.262 0.322 0.209 0.298 0.220 0.304 0.208 0.299
ETTh1 0.435 0.413 0.400 0.423 0.432 0.440 0.510 0.469 0.395 0.419 0.392 0.405 0.418 0.422 0.428 0.438 0.554 0.532 0.592 0.555 0.557 0.526
ETTh2 0.349 0.363 0.341 0.379 0.346 0.382 0.354 0.377 0.339 0.380 0.333 0.374 0.352 0.395 0.365 0.386 0.324 0.386 0.323 0.385 0.316 0.381

Table 1: Per-dataset mean MSE/MAE (lower is better). Bold = best, underline = second-best. The last three
methods are grouped as Ours: CHARM-LP, CHARM + Non-linear Head, and Fully Fine-tuned.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Our fully fine-tuned model attains the lowest MSE on 3/5 datasets, outperforming significantly larger
models trained on substantially bigger corpora (e.g., Toto and Moirai). By contrast, MAE leaders
skew toward models optimized with MAE-aligned objectives (e.g., Toto, VisionTS, and Morai), which
explains our relative MAE gap under an MSE-optimized head. See Section J.3 for forecasting-head
details, training setup. Disaggregated results can be found in Table 23.

Method Wins↑ Avg. Acc.↑ Total Correct↑
TS2Vec 2 78.1 7467
T-Loss 3 72.8 7141
TS-TCC 2 74.4 7118
T-Rep 3 78.5 7363
MOMENT 3 72.5 5414
MiniROCKET 4 77.6 7569
CHARMfrozen+SVM 4 79.6 7431
CHARMfinetuned 5 80.9 7799

Table 2: Multivariate Classification Results.

Classification We evaluate our model on mul-
tivariate time series classification using the UEA
dataset (Bagnall et al., 2018), benchmarking
against semantic and reconstruction-based rep-
resentation learning methods as well as special-
ized classification models. Results are summa-
rized in Table 2. We test two protocols: (i)
frozen encoder embeddings passed to an SVM
with an rbf kernel, and (ii) a finetuned encoder
with a linear classification head trained via cross-
entropy loss. Finetuning yields substantial gains over the frozen setting and baselines, achieving
the highest number of wins, average accuracy, and unnormalized correct predictions. Against
MiniRocket—a SOTA task-specific method—our frozen model is competitive despite MiniRocket’s
stronger raw scores (see Table 13), showing that our pretraining produces strong embeddings without
task-specific adaptation. With finetuning, performance improves across all metrics, particularly in
unnormalized scores (see Table 15), providing evidence that post-training alignment can substantially
enhance downstream task performance.

Method F1↑ FAR↓ MAR↓

MSCRED 0.36 49.94 69.88
T-Rep 0.78 12.60 28.51
MOMENT0 0.79 14.20 26.98
TS2Vec 0.79 12.77 27.61
MOMENTLP 0.82 15.52 20.73
CHARM 0.86 19.35 12.69

Table 3: 34 SKAB Anomaly Detection Datasets

Anomaly Detection We use two tasks to evaluate our
model’s performance on anomaly detection. We use the
Skoltech Anomaly Detection Benchmark (SKAB), to as-
sess performance on real world multivariate datasets, as
well as the popular UCR univariate anomaly detection
dataset. For i) SKAB, we use baselines that consist of
classical anomaly detection, CNN/LSTM based models,
as well as more recent representation learning models. We
reproduce these baselines by training a linear reconstruc-
tion head on each of the 34 datasets in SKAB, and evaluating on the corresponding test instances.
The evaluation setup in the SKAB test suite is uniformly applied to all models, which relies on using
the errors at each time point in the test set to classify anomalies based on selecting an appropriate
threshold (Section J.2). The setup for the reconstruction head (including optimization setup) is
identical for all baselines for which the SKAB results were obtained by training1. As seen in Table 3,
CHARM has the highest F1 score, followed closely by MOMENT, demonstrating strong performance
on multivariate anomaly detection.

Method F1↑

Anomaly Transformer 0.485
DGHL 0.415
GPT4TS 0.479
TimesNet 0.627
MOMENT 0.684
CHARM 0.754

Table 4: 46 UCR Univari-
ate Datasets

For (ii) UCR, we train our model with a reconstruction head on 46 UCR
univariate anomaly detection datasets, which come from a diverse set of
domains with varying types of anomalies. We benchmark our model against
both task-specific anomaly detection methods and representation learning
approaches, using the average adjusted F1 score as the standard evaluation
metric. We report the per dataset scores, and wins in Table 16. Table 4 shows
that CHARM has the highest average F1 score across all datasets.

3.1 ABLATIONS

To assess the impact of our architectural contributions, we conduct a series of ablation studies
that isolate the benefits of (i) incorporating the proposed featurization layer based on temporal
convolutional networks (TCNs) and (ii) modifying the text-based attention mechanism. Additional
details on ablations experiments—covering description quality, choice of textual embedding model,
comparison to naive text integrations, and the full experimental details—are reported in Appendix K.

1MOMENT0 is used directly in reconstruction mode with no training, whereas MOMENTLP’s reconstruction
head is trained for each SKAB dataset, similar to other models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Category Configuration # Correct Accuracy
ETTh1Tf=168

MSE
ETTh1Tf=168

MAE
ETTh2Tf=168

MSE
ETTh2Tf=168

MAE

Featurization Layer w/ Patching 4200 63% 0.54 0.58 0.79 1.18
TCNno text 4713 68% 0.54 0.61 0.62 1.18

TCN Variants
TCNno text 4713 68% 0.54 0.61 0.62 1.19
TCNgate 4732 69% 0.52 0.56 0.74 1.04
TCNconv 4897 71.4% 0.42 0.49 0.57 0.80

Text Attention

∅ (vanilla self-attn) 4563 67.9% 0.46 0.50 0.64 0.93
∆ 4643 68.6% 0.50 0.55 0.68 0.97
G 4785 69.8% 0.46 0.51 0.59 0.94
∆+G 4897 71.4% 0.42 0.49 0.57 0.80

Table 5: Unified ablation study results.2 Top section compares TCN-based featurization to patching, middle
section compares TCN variants, and bottom section evaluates different text attention mechanisms. We evaluate
classification and forecasting metrics (ETTh1, ETTh2, horizon Tf = 168) (see Section K for full details).
Featurization Layer: w/Patching : using vanilla patch embedding layer; TCNno text = w/o text layers;
TCN Variants: TCNno text = w/o text layers; TCNgate = w/ text gating; TCNconv = w/ text-based convolutions.
Text Attention: G = text gating in attention layer; ∆ = time-delta in attention layer.

Table 5 demonstrates that augmenting the vanilla time-series transformer architecture with our
proposed text-based components yields consistent and substantial performance gains across both the
featurization layers, as well as the attention layers.

Figure 6: Evolution of Channel Gates for the ETT Dataset. A causal structure evolves over training, where
the target causal variable Oil Temperature attends to all other independent channels but not vice versa.
Extended discussion on evolution of channel gates can be found in Section L.2.

4 CONCLUSION

In this paper, we introduced CHARM, a foundation embedding model for multivariate time series
that combines a description-aware temporal convolutional network with contextual attention over
textual channel metadata. Using a JEPA-inspired self-supervised objective, CHARM learns enriched
representations that go beyond reconstruction- or contrastive-based methods. Across diverse datasets
and tasks, CHARM achieves competitive performance, with ablations confirming the importance of
text featurization and attention layers. Furthermore, its heatmap visualizations (see Figure 6) provide
interpretable insights into cross-channel dynamics.

As the first model to incorporate granular textual information into foundational time-series embed-
dings, CHARM opens promising avenues for deeper multimodal integration, multi-task architectures,
and retrieval-augmented interpretive frameworks. At the same time, the model is constrained by its
limited context length: it operates on the full-resolution input of length Teff = T × C, computing
attention scores across all channel–time pairs. Future work will explore more efficient attention
mechanisms to improve scalability to longer horizons and higher-dimensional inputs.

Finally, our results demonstrate that task-specific fine-tuning provides a noticeable lift in both
forecasting and classification performance. This highlights the potential of systematic multi-task
post-training strategies to further boost downstream performance and strengthen the role of foundation
models in time-series analysis.

2Featurization Layer and TCN ablations uses ∆+G; Text Attention ablations use TCNconv

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 LLM USAGE STATEMENT

All authors used large language models to assist with text rephrasing, correction of grammatical
errors, formatting, proof-reading for typos, and LaTeX typesetting.

6 REPRODUCIBILITY STATEMENT

We intend to release the pre-training dataset, including hand-annotated descriptions, along with
performant infrastructure for dataset storage, loading, and preprocessing via GitHub. Since different
datasets in our pipeline are subject to distinct usage licenses, we will additionally provide detailed
guidelines for sourcing datasets that cannot be directly hosted on GitHub.

The architecture and hyperparameter configurations used for pretraining CHARM, as well as for
downstream task-specific heads, are documented in the Appendix. We also include PyTorch-style
pseudocode for the JEPA architecture (see Figure 1), together with efficient vectorized implemen-
tations of the text-attention layers (see Figure 9). We hope that this detailed documentation of
architecture, hyperparameters, and pseudocode will enhance transparency and facilitate understand-
ing of our model.

7 ETHICS STATEMENT

This work presents CHARM, a time series representation learning model developed to advance
research on integrating textual information to enrich representation quality. As with other pretrained
models, risks include the propagation of biases in training data and the environmental costs of
compute-intensive training. To mitigate these concerns, we document data sources, model configura-
tions, and training details to promote transparency. This research is intended for academic use and is
not suitable for deployment in high-stakes decision-making contexts without additional safeguards.

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. Transactions on Machine Learning Research,
2024.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
ViViT: A video vision transformer, 2021. URL https://arxiv.org/abs/2103.15691.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture, 2023. URL https://arxiv.org/abs/2301.08243.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The UEA multivariate time series classification archive, 2018, 2018.
URL https://arxiv.org/abs/1811.00075.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gor-
don Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash,
Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023. URL
https://arxiv.org/abs/2304.12210.

10

https://arxiv.org/abs/2103.15691
https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/1811.00075
https://arxiv.org/abs/2304.12210

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adrien Bardes, Jean Ponce, and Yann LeCun. Mc-jepa: A joint-embedding predictive architecture for
self-supervised learning of motion and content features. arXiv preprint arXiv:2307.12698, 2023.
URL https://doi.org/10.48550/arXiv.2307.12698.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video, 2024. URL https://arxiv.org/abs/2404.08471.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yifu Cai, Mononito Goswami, Arjun Choudhry, Arvind Srinivasan, and Artur Dubrawski. Jolt: Jointly
learned representations of language and time-series. In Workshop on Deep Generative Models for
Health, NeurIPS 2023, 2023. URL https://openreview.net/pdf?id=UVF1AMBj9u.
poster.

Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu. Visionts:
Visual masked autoencoders are free-lunch zero-shot time series forecasters, 2025. URL https:
//arxiv.org/abs/2408.17253.

Shuo Chen, Chen Gong, Jun Li, Jian Yang, Gang Niu, and Masashi Sugiyama. Learning contrastive
embedding in low-dimensional space. Advances in Neural Information Processing Systems, 35:
6345–6357, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607, 2020.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
biased contrastive learning. Advances in neural information processing systems, 33:8765–8775,
2020.

Ben Cohen, Emaad Khwaja, Youssef Doubli, Salahidine Lemaachi, Chris Lettieri, Charles Masson,
Hugo Miccinilli, Elise Ramé, Qiqi Ren, Afshin Rostamizadeh, Jean Ogier du Terrail, Anna-Monica
Toon, Kan Wang, Stephan Xie, Zongzhe Xu, Viktoriya Zhukova, David Asker, Ameet Talwalkar,
and Othmane Abou-Amal. This time is different: An observability perspective on time series
foundation models, 2025. URL https://arxiv.org/abs/2505.14766.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Proceedings of the 41st International Conference on Machine Learning
(ICML), pp. 10148–10167, 2024.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The UCR time series classification archive,
October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. Deep learning for event-driven stock prediction.
In IJCAI, volume 15, pp. 2327–2333, 2015.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5884–5888, 2018. doi: 10.1109/ICASSP.2018.8462506.

11

https://doi.org/10.48550/arXiv.2307.12698
https://arxiv.org/abs/2404.08471
https://openreview.net/pdf?id=UVF1AMBj9u
https://arxiv.org/abs/2408.17253
https://arxiv.org/abs/2408.17253
https://arxiv.org/abs/2505.14766
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021. URL https://arxiv.org/abs/2010.11929.

Katrina Drozdov, Ravid Shwartz-Ziv, and Yann LeCun. Video representation learning with joint-
embedding predictive architectures. arXiv preprint arXiv:2412.10925, 2024. URL https:
//doi.org/10.48550/arXiv.2412.10925.

Thomas D. P. Edwards, James Alvey, Justin Alsing, Nam H. Nguyen, and Benjamin D. Wandelt.
Scaling-laws for large time-series models, 2025. URL https://arxiv.org/abs/2405.
13867.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:
//github.com/Lightning-AI/lightning.

Philip J. Fleming and John J. Wallace. How not to lie with statistics: the correct way to
summarize benchmark results. Commun. ACM, 29:218–221, 1986. URL https://api.
semanticscholar.org/CorpusID:1047380.

Archibald Felix Fraikin, Adrien Bennetot, and Stephanie Allassonniere. T-Rep: Representation
learning for time series using time-embeddings. In The 12th International Conference on Learning
Representations, 2024.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. In Advances in neural information processing systems,
volume 32, pp. 4650–4661, 2019.

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. UniTS: a unified multi-task time series model, 2024a. URL https://arxiv.
org/abs/2403.00131.

Shanghua Gao, Teddy Koker, Owen Queen, Tom Hartvigsen, Theodoros Tsiligkaridis, and Marinka
Zitnik. UniTS: A unified multi-task time series model. In Advances in Neural Information
Processing Systems, volume 37, pp. 140589–140631, 2024b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Yuan Gong, Yu-An Chung, and James Glass. AST: audio spectrogram transformer, 2021. URL
https://arxiv.org/abs/2104.01778.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
MOMENT: a family of open time-series foundation models, 2024. URL https://arxiv.
org/abs/2402.03885.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020a.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent:
A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020b. URL
https://doi.org/10.48550/arXiv.2006.07733.

Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie Bourn,
Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level arrhythmia detection and classification in
ambulatory electrocardiograms using a deep neural network. Nature medicine, 25(1):65–69, 2019.

12

https://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2412.10925
https://doi.org/10.48550/arXiv.2412.10925
https://arxiv.org/abs/2405.13867
https://arxiv.org/abs/2405.13867
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://api.semanticscholar.org/CorpusID:1047380
https://api.semanticscholar.org/CorpusID:1047380
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2104.01778
https://arxiv.org/abs/2402.03885
https://arxiv.org/abs/2402.03885
https://doi.org/10.48550/arXiv.2006.07733

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034, 2015.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis
Palpanas, and Ievgen Redko. SAMformer: Unlocking the potential of transformers in time
series forecasting with sharpness-aware minimization and channel-wise attention, 2024. URL
https://arxiv.org/abs/2402.10198.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models, 2024. URL https://arxiv.org/abs/2310.
01728.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099, 2016.

Iurii D. Katser and Vyacheslav O. Kozitsin. Skoltech anomaly benchmark (SKAB). https:
//www.kaggle.com/dsv/1693952, 2020.

Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive
survey of deep learning for time series forecasting: Architectural diversity and open challenges.
Artificial Intelligence Review, 58, 2025.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Yann LeCun. A path towards autonomous machine intelligence. Open Review, 62(1):1–62, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Yang Lin, Irena Koprinska, and Mashud Rana. Temporal convolutional attention neural networks for
time series forecasting. In 2021 International joint conference on neural networks (IJCNN), pp.
1–8, 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
iTransformer: Inverted transformers are effective for time series forecasting. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024.

Allyson Morgenthal, Akhilesh Jain, Michael Aman, Kevin Gullikson, Nkem Egboga, and Marcus
Horton. Global modeling: Scaling up machine learning models for predictive maintenance. 02
2024. doi: 10.1115/IMECE2023-112254.

Yiqin Nie, Zhaohan Wang, Zhiwei Li, Yujing Zhang, Yao Zhang, Yuxuan Wang, Yafeng Wang,
and Philip S. Yu. A time series is worth 64 words: Long-term forecasting with transformers. In
Proceedings of the 11th International Conference on Learning Representations (ICLR), 2023a.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers, 2023b. URL https://arxiv.org/abs/
2211.14730.

Zach Nussbaum, John Xavier Morris, Andriy Mulyar, and Brandon Duderstadt. Nomic embed:
Training a reproducible long context text embedder. Transactions on Machine Learning Research,
2025.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,

13

https://arxiv.org/abs/2402.10198
https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2310.01728
https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael
Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 OLMo 2
Furious, 2025. URL https://arxiv.org/abs/2501.00656.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song.
S2ip-llm: Semantic space informed prompt learning with llm for time series forecasting, 2024.
URL https://arxiv.org/abs/2403.05798.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. URL https://arxiv.org/abs/1912.01703.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf, 2018. OpenAI.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763, 2021.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36:
1181–1191, 2020.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding, 2020. URL https://arxiv.org/abs/2004.09297.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. Test: Text prototype aligned embedding to
activate llm’s ability for time series, 2024. URL https://arxiv.org/abs/2308.08241.

Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Seán McLoone, and Alessandro Beghi.
Machine learning for predictive maintenance: A multiple classifier approach. IEEE transactions
on industrial informatics, 11(3):812–820, 2014.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning
for time series with temporal neighborhood coding. In International Conference on Learning
Representations (ICLR), 2021.

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim,
Byunghyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A survey, 2024.
URL https://arxiv.org/abs/2401.03717.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, pp. 5998–6008, 2017.

Khang H. N. Vo, Duc P. T. Nguyen, Thong Nguyen, and Tho T. Quan. Ti-jepa: An innova-
tive energy-based joint embedding strategy for text-image multimodal systems. arXiv preprint
arXiv:2503.06380, 2025. URL https://doi.org/10.48550/arXiv.2503.06380.

14

https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2403.05798
https://arxiv.org/abs/1912.01703
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/2004.09297
https://arxiv.org/abs/2308.08241
https://arxiv.org/abs/2401.03717
https://doi.org/10.48550/arXiv.2503.06380

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis, 2025. URL https://arxiv.org/abs/2410.16032.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers, 2020. URL
https://arxiv.org/abs/2002.10957.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers, 2024a. URL https://arxiv.
org/abs/2402.02592.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Proceedings of the 41st
International Conference on Machine Learning (ICML), pp. 53140–53164, 2024b.

Haixu Wu, Yao Xu, Jindong Wang, Guodong Long, Chengqi Wang, and Lijun Yao. Autoformer:
Decomposition transformers with auto-correlation for long-term series forecasting. In Advances in
Neural Information Processing Systems, volume 34, pp. 22419–22430, 2021.

Ziheng Yue, Yuxuan Zhang, Yifan Sun, Yifan Wang, and Zenglin Huang. TS2Vec: Towards universal
representation of time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 8075–8083, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence (AAAI), pp. 11106–11115, 2021a.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021b. URL
https://arxiv.org/abs/2012.07436.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting, 2022. URL https://
arxiv.org/abs/2201.12740.

Yunjiao Zhou, Jianfei Yang, Han Zou, and Lihua Xie. Tent: Connect language models with iot sensors
for zero-shot activity recognition, 2023. URL https://arxiv.org/abs/2311.08245.

15

https://arxiv.org/abs/2410.16032
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2311.08245

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RELATED WORK

Historically, recurrent neural network architectures such as RNNs, LSTMs, and GRUs dominated
time series modeling by capturing temporal dependencies through recursive hidden-state updates,
achieving success across diverse tasks (Salinas et al., 2020). However, their sequential nature
impeded parallelization, leading to slow training and difficulties in modeling long-range dependencies
(Kalchbrenner et al., 2016; Pascanu et al., 2013; Zhou et al., 2021a; Kim et al., 2025).

With the emergence of Transformer architectures (Vaswani et al., 2017), significant advancements
have occurred across multiple modalities, including images (Dosovitskiy et al., 2021), audio (Gong
et al., 2021), video (Arnab et al., 2021), text (Devlin et al., 2018; Radford et al., 2018), and speech
(Dong et al., 2018). Inspired by these successes, the time series community has adopted Transformer-
based approaches, leading to notable innovations tailored specifically for temporal data (Zhou et al.,
2021b; 2022; Ilbert et al., 2024; Wu et al., 2021; Zhang & Yan, 2023).

Simultaneously, self-supervised representation learning (SSRL), widely successful in domains such
as vision and language, has demonstrated potential for extracting high-quality embeddings from vast
amounts of unlabeled data. These embeddings facilitate downstream tasks—such as forecasting, clas-
sification, and anomaly detection—through lightweight task-specific heads. Analogous approaches
have been adapted for time series, predominantly using contrastive self-supervised tasks (Yue et al.,
2022; Fraikin et al., 2024; Franceschi et al., 2019; Tonekaboni et al., 2021). However, existing
approaches typically produce models tailored to specific datasets, limiting their generalizability
across arbitrary data sizes or channel configurations.

More recently, foundational models have revolutionized representation learning across natural lan-
guage processing, computer vision, and audio (Devlin et al., 2019; Nussbaum et al., 2025; Assran
et al., 2023; Kirillov et al., 2023; Baevski et al., 2020; Brown et al., 2020; Radford et al., 2021). In
time series analysis, considerable progress has focused primarily on forecasting tasks (Das et al., 2024;
Woo et al., 2024b; Ansari et al., 2024; Liu et al., 2024). Early foundational attempts predominantly
addressed univariate series (Das et al., 2024; Ansari et al., 2024), though recent advancements have
successfully extended to multivariate settings with sophisticated cross-channel modeling techniques
(Woo et al., 2024b; Liu et al., 2024). Some more recent papers Cohen et al. (2025) have gone to
great lengths to fully leverage the scaling laws observed in foundational time series models Edwards
et al. (2025) in order to maximize their performance. Foundation embedding models specifically
targeting time series representation learning have begun to emerge, leveraging reconstruction-based
or next-step forecasting objectives (Goswami et al., 2024; Gao et al., 2024a; Trirat et al., 2024).
However, these approaches either focus on univariate series or treat multivariate data as independent
channels, inadequately capturing complex inter-channel dynamics. This substantially limits the
representational richness and effectiveness of these models in realistic scenarios. See Table 6 for an
overview of capabilities of key time series models.

Joint-Embedding Predictive Architectures have found notable success in visual domains by shift-
ing the learning objective from pixel-level reconstruction to latent-space prediction. Extending this
approach to video, Meta AI’s Video JEPA with Variance–Covariance Regularization (VJ-VCR)
(Drozdov et al., 2024) predicts future frame embeddings in a learned representation space while
enforcing variance and covariance constraints to prevent collapse; this model outperforms generative
reconstruction baselines on downstream tasks such as action recognition and video retrieval by
capturing high-level spatiotemporal dynamics. Extensions such as MC-JEPA (Bardes et al., 2023)
further demonstrate JEPA’s flexibility by jointly learning motion (optical flow) and content features
within a shared encoder–predictor framework, matching or surpassing unsupervised optical flow
benchmarks and improving downstream segmentation tasks. In multimodal settings, TI-JEPA (Vo
et al., 2025) integrates an energy-based JEPA with cross-modal encoders to align text and image
embeddings, achieving superior results on multimodal sentiment analysis and visual question answer-
ing benchmarks by capturing complex semantic correspondences without reconstructing raw inputs.
Complementing JEPA, bootstrapped embedding SSL methods like BYOL (“Bootstrap Your Own
Latent”) (Grill et al., 2020b) train an online network to predict the target network’s representation
of differently augmented views—updating the target via momentum averaging—and achieve strong
results on ImageNet under linear evaluation without requiring negative pairs; this demonstrates that
simple latent-space prediction objectives can match or exceed contrastive and reconstruction-based
approaches in learning robust, generalizable representations. Together, these concrete instantiations

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

highlight JEPA’s core advantage of filtering out low-level noise and focusing learning on high-level se-
mantic structure, while bootstrapped SSL offers a practical, decoder-free paradigm for self-supervised
representation learning, and motivate further exploration of these methods for time series.

Multimodal text + time series models Recent works have explored combining textual information
with time series data through several novel approaches. For instance, Jin et al. (2024), Pan et al. (2024),
and Sun et al. (2024) reprogram pretrained LLMs to handle time series input. These approaches
fall under the LLM-for-TS or TS-for-LLM paradigms, where either an LLM is finetuned for time
series data or the time series are transformed into token sequences consumable by an LLM. However,
such methods do not directly leverage textual metadata; rather, they exploit the language modeling
capabilities of models pretrained on large corpora of text. In contrast, Zhou et al. (2023) and Cai
et al. (2023) explicitly incorporate textual information tied to data instances to improve time series
representations, typically through contrastive objectives that align text and time series embeddings in
a shared semantic space.

CHARM takes a fundamentally different approach to incorporating textual information. Instead of
relying on instance-level labels to build contrastive training pairs, CHARM leverages sensor-level
descriptions as metadata. These textual embeddings are integrated directly into the featurization
stage (via TCNs) or used to augment the self-attention mechanism. Rather than aligning modalities,
CHARM learns mappings from textual metadata to guide representation learning. This design enables
CHARM to scale to massive datasets where instance-level text labels are unavailable or impractical,
requiring only sensor descriptions to improve the quality of learned time series representations.

Model Multivariate Channel Mixing Equivariance Foundational Channel Aware
Tloss ✓ ✓ ✗ ✗ ✗
TS2Vec ✓ ✓ ✗ ✗ ✗
TNC ✓ ✓ ✗ ✗ ✗
Autoformer ✓ ✓ ✗ ✗ ✗
FEDformer ✓ ✓ ✗ ✗ ✗
PatchTST ✓ ✗ ✗ ✗ ✗
CrossFormer ✓ ✓ ✗ ✗ ✗
iTransformer ✓ ✓ ✓ ✓ ✗
UniTS ✓ ✓ ✓ ✓ ✗
TimesFM ✗ – – ✓ ✗
MOIRAI ✓ ✓ ✓ ✓ ✗
MOMENT ✗ – ✓ ✓ ✗
TREP ✓ ✓ ✗ ✗ ✗
TOTO ✓ ✓ ✓ ✓ ✗
TimeMixer++ ✓ ✓ ✗ ✗ ✗
CHARM ✓ ✓ ✓ ✓ ✓

Table 6: a) Multivariate: Can handle multivariate data1

b) Channel Mixing: Architecture enables learnable cross-channel interactions2

c) Equivariance: Permuting the channels by a perturbation P ensures the outputs are also identically permuted.
d) Foundational: Can flexibly accept data of any arbitrary number of channels or time window.
e) Channel Aware: Uses sensor information to learn better representations.

B NOTATION

We denote matrices and tensors using boldface capital letters (e.g., T, E), and adopt NumPy-style
indexing and slicing notation. Functions and operators are also denoted by bold capital letters, but
are subscripted with θ to indicate parameterization, e.g., Eθ. The parameters θ may be learnable or
fixed, depending on context. We reserve, W to represent the learnable weights in different layers of
our architecture. An instance of a time series is represented as a tuple t = (T,D,pos). The first
component, T ∈ RT×C , is a matrix of time series measurements, where T denotes the number of
time points and C the number of channels. Each column T[:, i] corresponds to the uni-variate time
series from channel i. The second component, D, is an ordered list of length C, where each entry D[i]
is a textual description of channel i, typically represented as a sentence or short passage. We assume
that the descriptions in D are aligned with the corresponding columns of T. The third component,
pos, represents the positional indices associated with the time series. We assume pos ∈ IT+ such

1Multivariate here simply refers to whether a model can ingest multiple input channels, i.e. whether it can
feasibly operate on a T × C data input, where C > 1. This is independent of whether the model is able to learn
channel interactions, which is explicitly outlined in the channel mixing column.

2We do not consider models that are fundamentally univariate, but perform late fusion of channels at the
representation level (by pooling for example), to be capable of channel mixing.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

that |pos| = T . If not explicitly provided, we default to pos = [0, 1, . . . , T−1]. We denote the
maximum time window size considered in our framework as Tmax.

Figure 7: Visualized representation of our data structure. Note, that T ∈ RT×C , |D| = C, and pos ∈ RT

C IMPLEMENTATION DETAILS

We attempt to follow the general set of best practices developed in the field of self-supervised learning,
specifically those applicable to the Self-Distillation (Balestriero et al., 2023) family of algorithms.
We outline the key details here;

1. Optimization Schedule We use an AdamW optimizer to optimize our model. The learning
rate follows a linear warmup followed by a cosine decay.

2. Weight Initialization We use a fixed N (0, 0.02) initialization which is commonly used in
pretraining large transformer models (OLMo et al., 2025).

3. Weight Decay Scheduling We use a cosine schedule for increasing the optimizer’s weight
decay over the course of training which has been shown to be crucial for training stability.

4. EMA Schedule for Target Encoder We use an exponentially moving average with a
momentum schedule that is increased gradually over the course of training.

The weight decay scheduling and EMA schedule are identical to IJEPA (Assran et al., 2023). Besides
sweeping over a few learning rates, we perform no additional hyperparameter tuning on the rest of
the hyperparameters due to limited compute, and list them in Table 7.

C.1 ROTARY POSITION EMBEDDINGS

Rotary Position Embeddings (RoPE) (Su et al., 2024) differ from traditional additive positional
embeddings in that they encode positional information by rotating the query and key vectors in
a structured, position-dependent manner. Unlike fixed or learned additive embeddings, RoPE is
applied at each layer of the self-attention computation, allowing the model to encode relative position
information directly into the attention mechanism.

Let Q,K ∈ RB×T×D denote the queries and keys, where B is the batch size, T is the sequence
length, and D is the hidden dimension. After linear projection and splitting into H attention heads:

Qh,Kh ∈ RB×T×d, with d = D/H

RoPE applies a deterministic rotation to each head’s query and key vectors. For each position t and
dimension index i, the rotation is defined as:

RoPE(xt)[2i] = xt[2i] cos(θt,i) + xt[2i+ 1] sin(θt,i) (1)
RoPE(xt)[2i+ 1] = −xt[2i] sin(θt,i) + xt[2i+ 1] cos(θt,i) (2)

θt,i = t · ωi, ωi = 10000−2i/d (3)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where xt denotes the tth token’s vector (query or key), and ωi are predefined inverse frequency terms.

In our implementation, we operate on inputs of shape X ∈ RB×T×C×d, where C represents the
number of channels or sensors. To apply RoPE consistently across all channels, we broadcast the
position encodings across the channel axis:

P̃b,t,c,: = Pt,:, ∀ b ∈ [1, B], c ∈ [1, C], t ∈ [1, T] (4)

or equivalently, using broadcasting semantics:

P̃ = P[t, :] −→ RB×T×C×d (5)

This results in a broadcasted position encoding tensor P̃ where the same temporal position vector
Pt,: is shared across all channels at time t, effectively associating the same position ID to multiple
sensor tokens that occur at the same timestep.

C.2 TEXT CONVOLUTION LAYER

C.2.1 CONTRAST TO OTHER FEATURIZATION METHODS

Unlike typical TCNs, we concatenate activations across all intermediate layers to form a rich initial
representation, see Figure 2. Our contextual TCN layer early in our model architecture closely relates
to the concept of patching. Several recent foundation models for time series create non-overlapping
static patches and project them through a single linear layer, e.g., (Das et al., 2024; Nie et al., 2023a;
Woo et al., 2024b). These approaches can be generalized by interpreting convolution kernels as
learnable linear mappings applied to strided segments of the data. Thus, our TCN layer represents a
generalized, channel-aware extension of the patching concept.

C.2.2 IMPLEMENTATION

To compute convolutions efficiently across all sensors and batches, we stack the convolutional kernels
corresponding to each sensor description and reshape the input to treat the B × C ×H channels as
independent time series. We then apply a grouped 1D convolution using F.conv1d with B×C×H
groups, where each element in the original [B, T,C,H] input is treated as a separate time series
along the time axis. This allows us to apply distinct filters for each batch, channel, and embedding
dimension in parallel.

C.2.3 INITIALIZATION

Despite the effectiveness of this mechanism, careful numerical stabilization of the convolution kernels
is essential. To achieve this, we first apply a non-parametric LayerNorm to z-normalize the sensor
embeddings, Ed. The projection matrix within the kernel network is then initialized using Xavier
normal initialization (Glorot & Bengio, 2010). Subsequently, we re-normalize the resulting kernels
Wk as

Wk = LayerNorm(Wk) ·
√

2

K
Since our TCN layer employs GeLU nonlinearities, this initialization approach aligns with Kaiming
initialization principles, (He et al., 2015), and ensures stable activations, preventing them from
progressively exploding or vanishing across convolution layers.

C.3 MODEL SIZING

For the given hyperparameter set N = 8, d = 128, ffdim = 4d, our pretrained model is ∼7.1M
parameters.

C.4 ADDITIONAL MODIFICATIONS TO THE TRANSFORMER LAYERS

In line with recent developments in large scale pretraining of transformer based architectures, we
implement several modifications that diverge from the original transformer architecture.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

SwiGLU We replace the regular feedforward layers with a SwiGLU feedforward layer.

QK-norm We add a pre-attention layernorm to the queries and keys.

Rotary Position Embeddings Instead of using sinusoidal positional embeddings, we use rotary
positional embeddings which are applied on the queries and keys at every layer. The positional
indices are provided through the pos argument.

Reordering Sublayers We experiment with using 3 approaches to assess the optimal configuration
of the transformer sublayers.





x = norm(x+ SubLayer(x)) Post Norm
x = x+ SubLayer(norm(x)) Pre Norm
x = x+ norm(SubLayer(x)) Swin Norm

(6)

In the case of Pre Norm and Swin Norm, we also experiment with adding LayerNorms in the main
transformer branch every n layers, to ensure further stability.

C.5 EFFICIENT COMPUTATION TECHNIQUES

C.5.1 SLICE AND TILE ATTENTION LAYERS

To vectorize the process of generating the full ∆̄ tensor, we provide the pytorch pseudocode versions
of the naive and vectorized versions in Figure 8 and Figure 9.

Figure 8: Naïve attention-weight matrix construction

1 def build_attention_weight_matrix(time_deltas: Tensor,
2 T_proj: Tensor) -> Tensor:
3 """
4 Constructs the full attention weight matrix by explicit loops.
5 Args:
6 time_deltas: LongTensor, shape (T, T)
7 T_proj: Tensor, shape (B, C, C, 2*T - 1)
8 Returns:
9 attn: Tensor, shape (B, C*T, C*T)

10 """
11 B, C, _, T1 = T_proj.shape
12 T = time_deltas.size(0)
13 assert 2 * T - 1 == T1
14

15 attn = torch.zeros((B, C * T, C * T), device=T_proj.device)
16 for i in range(T):
17 for j in range(T):
18 delta = time_deltas[i, j].item()
19 block = T_proj[..., delta] # (B, C, C)
20 attn[..., i*C:(i+1)*C, j*C:(j+1)*C] = block
21 return attn

D JEPA

D.1 DATASET GENERATION

The core principle of JEPA-based self-superived training involves producing representations for
two augmented views originating from the same data instance. JEPA training aims to minimize a
discrepancy measure (e.g., ℓ1 or ℓ2) between these representations. In vision, these views commonly
result from image augmentations such as jittering, masking, or cropping.

Figure 10 presents a visual representation of our JEPA tasks, which rely on learning 1) causal
representations and 2) smoothing representations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Fast attention-weight matrix construction

1 def build_attention_weight_matrix_fast(time_deltas: Tensor,
2 T_proj: Tensor) -> Tensor:
3 """
4 Block-wise assembly via tensor indexing and reshape.
5 """
6 B, C, _, T1 = T_proj.shape
7 T = time_deltas.size(0)
8 assert 2 * T - 1 == T1
9

10 # 1) Flatten index grid
11 flat_idx = time_deltas.view(-1) # shape (T*T,)
12

13 # 2) Gather all needed projection slices at once
14 gathered = T_proj.index_select(dim=-1, index=flat_idx)
15 # result: (B, C, C, T*T)
16

17 # 3) Reshape to (B, C, C, T, T)
18 gathered = gathered.view(B, C, C, T, T)
19

20 # 4) Reorder to (B, T, C, T, C)
21 gathered = gathered.permute(0, 3, 1, 4, 2)
22

23 # 5) Collapse blocks into (B, C*T, C*T)
24 return gathered.contiguous().view(B, C * T, C * T)

ItgtIctx Iprd

ItgtIctx Iprd

Figure 10: JEPA Tasks Visualized : Causal Prediction (left) Smoothing (right)

D.2 JEPA ENCODERS – DEEP DIVE

In this section we dive a bit deeper into our implementation of the JEPA framework. We denote the
TCN layer that featurizes our input time series as F and our encoder stack (of N layers), as E.

As outlined earlier, our featurizing layer converts a multivariate time series instance to an embedded
version of the time series with the same leading dimensions, i.e.;

F : RT×C → RT×C×H

On the other hand our encoder ingests the embedded time series and returns a contextually embedded
time series while maintaining the same output dimensions i.e.;

E : RT×C×H → RT×C×H

Given this notation, our 3 JEPA networks (Context, Target, Predictor) can be represented as:

Context ⇒ [F → E1] (7)
Target ⇒ [F → E1] (8)

Predictor ⇒ [DownProj → E2 → UpProj] (9)

Now, with this featurization and encoder layer stack, we provide a PyTorch style pseudocode of
the JEPA framework, i.e. the data flow between the Context, Target, and Predictor encoders in
Section D.2, Section D.2, and Section D.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Category Hyperparameter Value

Optimization Schedule

Optimizer AdamW
ϵ 1e-8
β1 0.95
β2 0.99

epochs 100
gradient clipping 2.0

λ1, λ2 1e-5
batch size 3 4

gradient accumulation 2

Scheduler

starting LR 1e-8
final LR 1e-6

starting weight decay 0.04
final weight decay 0.4

learning rate schedule linear warmup → cosine decay
weight decay schedule cosine

fraction of warmup epochs 0.1
scale factor 4 1.25

Data

window size 512
stride 128

minimum samples per dataset 400
maximum samples per dataset 1000

SSL Task Parameters

number of targets 4
Cmin 0.3
Cmax 0.4
Tmin 0.1
Tmax 0.2

JEPA Architecture

encoder layers 8
predictor layers 4

encoder dim 128
predictor dim 64

Model Architecture

feedforward layer SwiGLU
ff_dim_multiplier 4
attention dropout 0.01

norm non-parametric layernorm
attention configuration pre-norm

Table 7: Hyperparameters for full training pipeline

1 class ContextTgtEncoder:
2 def forward(self, x, ctx_idx):
3 """
4 x : [..., T, C]
5 """
6 x = self.featurizer(x)
7 for layer in self.encoder_layers:
8 x = layer(x, ctx_idx)
9 return x

Figure 11: Context and Target Network

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1 class Predictor:
2 def forward(self, ctx_embeds, ctx_idx, target_idx):
3 """
4 embeds : [..., T, C, H]
5 target_pos : [..., T2]
6 """
7 x = self.downproj(ctx_embeds) # [..., T, C, H1]
8 mask_tokens = broadcast(self.mask_token, target_idx) # [..., T2,

C, H1]
9

10 x = concat([x, mask_tokens]) # [..., T+T2, C, H1]
11 pos = concat([ctx_idx, target_idx])
12

13 for layer in self.encoder_layers:
14 x = layer(x, pos)
15 x = self.upproj(x) # [..., T+T2, C, H]
16 x = x[..., -target_idx.size(-2):, :, :] # [..., T2, C, H]
17 return x

Figure 12: Predictor Network

1 class JEPA:
2 def __init__(self):
3 self.context_encoder = ContextTgtEncoder()
4 self.target_encoder = copy_and_freeze_params(self.context_encoder

)
5 self.predictor = Predictor()
6

7 def forward(self, x, ctx_idx, tgt_idx):
8 """
9 x : [..., T, C]

10 """
11

12 # get full embeddings
13 full_embeds = self.target_encoder(x)
14

15 # get context embeddings
16 context_embeds = self.context_encoder(x[..., ctx_idx, :])
17

18 # get predicted embeddings
19 predicted_embeds = self.predictor(context_embeds, ctx_idx,

tgt_idx)
20 target_embeds = full_embeds[..., tgt_idx, :, :]
21

22 # compute loss
23 loss = loss_fn(predicted_embeds, target_embeds)
24 return loss

Figure 13: JEPA

E HARDWARE

We use a cluster of 8 80GB NVIDIA A100 GPUs. We use Distributed Data Parallelism to speed up
training, along with bf-16 mixed precision. Our models are implemented in PyTorch (Paszke et al.,
2019), and training is done with PyTorch lightning (Falcon & The PyTorch Lightning team, 2019).
We handle our configuration management using gin configs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F LIMITATIONS

The primary limitations of our model are:

1. Limited context lengths
Given our model’s architecture, we are required to compute attention scores over the entire
C × T input. As we do not rely on downsampling/patching, we compute the full O(C2T 2)
attention matrix, which can be prohibitively large, especially for datasets with a large
number of unrelated channels, or extremely long time horizons. Potential workarounds to
this are computing the attention scores for only relevant channel pairs, based on pre-filtering
similar channels based on the channel gating scores (high gating scores effectively clamp the
attention scores completely, and self attention between these channels is effectively wasted
compute). For large time horizons, a downsampling/patching layer can be appended to the
encoder stack prior to the TCNs to operate on a lower effective time window.

2. Access to sensor descriptions
As our model leverages channel descriptions directly in the featurization, and attention layers,
we require access to high quality sensor descriptions that are provided with the dataset.
Through our ablations conducted in Section K, we observe that noisy/arbitrary descriptions
result in a moderate drop in model performance, thus highlighting the need for accompanying
good enough quality descriptions. While such metadata is commonly available in practice,
this requirement poses an overhead requirement for training and utilizing CHARM. For
the UEA dataset, which provides detailed descriptions of each dataset in an accompanying
document, we manually curated the sensor descriptions, which was a time consuming, and
labor-intensive effort, and is not scalable to large unlabeled datasets.

G MODEL COMPLEXITY

Our pretraining was conducted on 8 A100 GPUs over approximately 18 hours, inclusive of minor
overheads for dataset preprocessing, downstream evaluations, and logging. Training was performed
with bf16 mixed precision under distributed data parallelism. A frozen text embedding model was
invoked during training, served independently on a single L4 GPU. The peak GPU memory usage
per device was 72.7 GB, while peak CPU utilization remained at 4 GB.

G.1 ARCHITECTURAL CONTRIBUTIONS TO COMPLEXITY

Relative to conventional transformer architectures, the primary increase in model complexity arises
from the inclusion of the temporal convolutional (TCN) layer and text-attention layers. For a
representative configuration—where the text embedding dimension is 384, the time-series embedding
dimension is 256, and the convolution kernel size is 8—the parameter counts for the additional
modules are enumerated in Table 8.

Layer Count Number of Parameters
TCN Dtext ×H ×K 384× 256× 8 = 786,432

Gating Layer H2 2562 = 65,536
Time-Delta Layer 2×Dtext × Tmax 2× 384× 1500 = 1,152,000

Table 8: Parameter counts for the TCN and text-attention modules.

In total, these components introduce approximately 2 million additional parameters, corresponding
to ∼25% of the overall model size.

ENCODER COMPOSITION

The pretraining framework employs three modules: a context encoder, a target encoder, and
a predictor. The target encoder parameters are non-trainable and are tied to the context encoder
parameters but consume GPU memory equivalent to the context encoder during forward passes. The
predictor is comparatively lightweight, operating at lower dimensionality with fewer layers.

The parameter distribution across modules is as follows:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Context encoder: 7.1M parameters
• Target encoder: 7.1M parameters (frozen)
• Predictor: ∼4M parameters

The combined model therefore comprises ∼18.2M parameters, of which ∼11.1M are trainable.
For computing the embeddings at inference we only utilize the context encoder, which means the
embeddings are the output of a 7.1M parameters model.

H DATASETS

Here we provide a list of dataset sources we used to train our model. Wherever sensor names were
not readily available, we manually curate the sensor descriptions from the dataset specifications.

UEA Dataset The UEA Dataset is a popular publicly available dataset used for benchmarking time
series classification algorithms. We restrict ourselves to a subset of the full 30 datasets, as not all
of them have meaningful sensor descriptions. For a few of the datasets within UEA, we manually
annotate the descriptions based on the official paper (Bagnall et al., 2018).

Liu-ICE Machine Fault Dataset The Liu-ICE Machine Fault Dataset is a real world fault diagnosis
dataset which consists of data collected from an internal combustion engine test bench. The dataset
consists of multiple different kinds of fault scenarios, and comes with a publicly available benchmark.

Electricity Transformer Dataset The Electricity Transformer Dataset (ETTDataset/ETDataset) is
a widely used dataset for time series forecasting, which contains data of dynamic power loads in an
electric power grid located in China. This dataset contains 4 sub-datasets (ETTh1, ETTh2, ETTm1,
ETTm2), which operate at different granularities.

Weather The Weather Dataset from the MPI is a real world dataset of meteorological indicators for
the year of 2020.

Electricity The Electricity dataset contains hourly consumption from multiple consumers from
2012 to 2014.

Illness The Illness Dataset includes weekly records for patients suffering from influenza like
illnesses collected by the CDC.

SKAB - Skoltech Anomaly Benchmark Dataset The SKAB dataset is designed for evaluating
anomaly detection, targeted at two main problems : outlier detection and changepoint detection

Gas Sensor Array Modulation The Gas Sensor Array Modulation from the UCI Machine Learning
Repository is collection of time-series recordings obtained from an array of metal-oxide gas sensors.

Machinery Fault Dataset The Machinery Fault Dataset comprises six different simulated states:
normal function, imbalance fault, horizontal and vertical misalignment faults and, inner and outer
bearing faults from a machinery fault simulator.

Metro PT-3 Dataset The MetroPT-3 dataset is a multivariate time series collection created for
predictive maintenance in the railway industry. It consists of over 1.5 million records (instances)
captured at 1Hz from a train compressor’s Air Production Unit (APU) over the period from February
to August 2020.

Unleashing the Power of Wearables The Human Activity Recognition Trondheim (HEART)
dataset is a professionally annotated collection designed for developing machine learning algorithms
capable of recognizing human activities in a free-living environment. Created at the Norwegian
University of Science and Technology (NTNU), it features 22 subjects who wore two 3-axis Axivity
AX3 accelerometers for approximately 2 hours each while performing various daily tasks. The sensors

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

were placed on the right thigh and lower back, providing multivariate time series data sampled at
50Hz.

Predictive Maintenance of Hydraulic Systems The Predictive Maintenance of Hydraulic Systems
dataset contains multivariate time series data collected from a hydraulic test rig. This dataset includes
sensor readings—such as pressures, volume flows, temperatures, and more—recorded during load
cycles of the hydraulic system.

We provide a summary of the specifications of each dataset in Table 9. If a dataset is present in a
downstream benchmark, we only include the defined "train" subset of the full dataset, to prevent the
model from optimizing an SSL loss over the test dataset samples.

Dataset Name #Timestamps #Channels
Open-Source/Kaggle Datasets
Appliances Energy Prediction 19,735 26
Gas Sensor Array Temperature Modulation 3,843,160 19
Household Electric Power Consumption 2,075,259 7
Machinery Fault Diagnosis 487,748,049 8
MetroPT-3 Dataset 1,516,948 15
Predictive Maintenance of Hydraulics System 132,300 17
SKAB - Skoltech Anomaly Benchmark 46,860 8
Unleashing the Power of Wearables 6,461,328 6
Liu 288,623 10

UEA Datasets 5

NATOPS 9180 24
Epilepsy 28222 3
Articulary Word Recognition 39600 9
UWave Gesture Library 37800 3
Cricket 129276 6
ERing 1950 4
Character Trajectories 169218 3
Finger Movements 15800 28
SelfRegulation SCP1 240128 6
Basic Motions 4000 6
Atrial Fibrillation 9600 2
Hand Movement Direction 64000 10
Handwriting 22800 3
Libras 8100 2
LSST 88,524 6
Racket Sports 4530 6

Forecasting Benchmark Datasets
ETTh1 17,420 7
ETTh2 17,420 7
ETTm1 69,680 7
ETTm2 69,680 7
Weather 52,696 21
Illness 966 7

Table 9: Overview of datasets categorized into Open-Source/Kaggle, UEA, and Forecasting benchmark datasets.

5The UEA Datasets are provided as windowed instances, i.e. they are not hosted as contiguous, chronological
blocks of shape T × C, but rather stored as N × T ′ × C. Here, we compute the "# of timesteps" as N × T ′,
although there may be redundant overlaps based on how the data was collected and labelled.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I DATA LOADING

To enable efficient data loading, we perform under/over sampling to balance the datasets. The
degree of under/over sampling is controlled by the t1 : min_samples_per_dataset and t2
: max_samples_per_dataset parameters, which upsamples or downsamples the data if the
number of samples is either < t1 or > t2 respectively.

Following this, each dataset is handled by its own dataloader, which cyclically yields batches of data
from each dataset at every training step. This is handled internally by pytorch lightning’s
CombinedLoader method, which yields a batch from each dataloader (if the iterator is not yet
exhausted). As a result, our effective batch size 6per step is now computed as :

(batch size)× (# of GPUs)× (# of datasets)× (grad_accum_steps) (10)

At the beginning of every epoch, we reload all datasets, which results in fresh under/over sampling
indices. This enables the support of larger datasets to be incrementally covered over multiple epochs
of training.

The JEPA tasks are randomly sampled after the datasets are sampled, which results in fresh context
and target masks for repeated samples. This avoids the exact same sample being repeated several
times in an epoch for underrepresented datasets, due to stochasticity in how the masks are generated.

I.1 PERTURBATIONS

Our augmentation design is directly motivated by failure modes frequently observed in real-world
time-series data—particularly in industrial and sensor-driven applications— where channel- or block-
level gaps occur due to intermittent sensor outages, network disruptions, or scheduled maintenance.
To build robustness against such artifacts, we incorporate two principled time-domain masking
strategies:

• Uniform segment masking: masks a contiguous temporal segment across all channels,
simulating system-level events such as edge-cache dropout or network-wide packet loss.

• Channel-selective masking: applies the same temporal mask to a randomly selected
subset of channels, capturing sensor-specific anomalies such as probe failure or drifting
instrumentation.

These perturbations are applied solely to the context encoder’s input during training, while the teacher
view remains unperturbed. This asymmetry forces the model to leverage broader temporal and
cross-channel structure for representation learning, in line with the JEPA framework’s core principle
of predicting masked target representations rather than raw values.

The augmentation functions are tailored to the time-series domain but echo proven techniques in
analogous modalities. For instance, our segment masking is a temporal analogue to SpecAug-
ment’s TimeMasking, a canonical augmentation for large-scale speech models (implemented in
torchaudio.transforms.TimeMasking). Similar masking-based augmentations have also
been adopted in recent time-series representation learning methods such as TEST (Sun et al., 2024).

Hyperparameters controlling mask width and frequency were chosen based on prior experience
with industrial time-series systems. Due to computational budget constraints, we did not conduct a
systematic hyperparameter sweep, instead prioritizing augmentations with clear interpretability and
real-world grounding.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Tasks Supervision Datasets #
datasets

Metrics Baselines

Classification Frozen SVM;
Finetuned+Linear

UEA 21 Accuracy, Wins, Total
Correct

MiniROCKET,
TS2Vec, T-Loss,
TS-TCC, T-Rep,
MOMENT

Anomaly Detection Frozen reconstructor
(linear head)

UCR-AD 46 Adjusted Best F1 Anomaly
Transformer, DGHL,
GPT4TS, TimesNet,
MOMENT (0, LP),
TS2Vec, T-Rep

Anomaly Detection Frozen reconstructor
(linear head)

SKAB 34 F1, FAR, MAR T 2, T 2+Q (PCA),
Isolation Forest,
MSET, Feed-Forward
AE, Conv-AE,
LSTM-AE, VAE,
LSTM-VAE,
MSCRED, TS2Vec,
T-Rep, MOMENT

Long-horizon Forecasting Per-dataset linear
probe (frozen);
universal non-linear
head (frozen
encoder); universal
non-linear head
(unfrozen encoder)

ETTh1
ETTh2
ETTm1
ETTm2
Weather
Exchange Rate
Illness

7 MSE, MAE T-Rep, TS2Vec,
PatchTST,
MOMENT, Toto,
TIMEMIXER++,
Moirai, VisionTS

Table 10: Unified baseline summary by task, now including dataset counts.

J EXPERIMENTS

J.1 CLASSIFICATION

J.1.1 UEA CLASSIFICATION BENCHMARK

Dataset We evaluate our model on the popular UEA Dataset which serves as a standard time series
classification benchmark for multivariate data. We consider a subset of 21 UEA datasets (list in
Table 11) that cover a diverse set of tasks and domains. We select these datasets on the basis of
what our model’s default context length can handle in a single GPU. As we modify the attention
mechanism directly, we cannot leverage existing efficient implementations, and thus are restricted
by a maximum context window size. Formally, we select the subsets based on the following rule:
num channels < 50, num timestamps < 1500.

Task Description Given a labeled time series data instance (X, y), where X is a multivariate time
series, and y corresponds to a supervised label corresponding to X , our goal is to learn a classifier h
to minimize test error, i.e. ϵ = E(x,y)∼P(x,y)

[1(h(x) ̸= y)].

Downstream Setup We evaluate the quality of our representations, Z ∈ RB×T×C×H in the
following setups.

1. Frozen + off-the-shelf non-linear classifier (SVM)
Similar to Goswami et al. (2024), we flatten our embeddings, Z and feed them to an SVM
with the standard set of hyperparameters proposed in Franceschi et al. (2019), which are also
used in T-Rep, TS2Vec, T-Loss, etc. The hyperparameters are chosen for each dataset
separately, using 5-fold cross validation on the train set.

2. Finetuned + linear probe
Similar to the linear probing setup in Goswami et al. (2024), we finetune the encoder for
each dataset separately. We flatten the embeddings Z, and feed them to a single linear layer
which maps the embeddings to a vector of logits, trained with a cross entropy loss. The
training hyperparameters are listed in Table 12, which is the same for all UEA datasets.

6The "# of datasets" technically refers to the number of unexhausted datasets on that training step, as each
dataset has a different number of samples.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Dataset Channels Length Included

ArticularyWordRecognition 9 144 ✓
AtrialFibrillation 2 640 ✓

BasicMotions 6 100 ✓
CharacterTrajectories 3 182 ✓

Cricket 6 1 197 ✓
Epilepsy 3 206 ✓
ERing 4 65 ✓

FingerMovements 28 50 ✓
HandMovementDirection 10 400 ✓

Handwriting 3 152 ✓
JapaneseVowels 12 29 ✓

Libras 2 45 ✓
LSST 6 36 ✓

NATOPS 24 51 ✓
PenDigits 2 8 ✓
Phoneme 11 217 ✓

RacketSports 6 30 ✓
SelfRegulationSCP1 6 896 ✓
SelfRegulationSCP2 7 1 152 ✓
SpokenArabicDigits 13 93 ✓

UWaveGestureLibrary 3 315 ✓

DuckDuckGeese 1 345 270 ×
EigenWorms 6 17 984 ×

EthanolConcentration 3 1 751 ×
FaceDetection 144 62 ×

Heartbeat 61 405 ×
InsectWingbeat 200 78 ×
MotorImagery 64 3 000 ×

PEMS-SF 963 144 ×
StandWalkJump 4 2 500 ×

Table 11: An overview of the subset of UAE data sets included in the evaluation of CHARM.

Hyperparameter Value
Batch size 16
Learning rate 1e− 4
Weight decay 1e− 4
Epochs 500
Optimizer Adam
Label smoothing 0

Table 12: Training hyperparameters for finetuning setup

Baselines To position ourselves in the existing landscape of time series classification methods, we
include baselines from the following set of approaches:

1. Time Series Classification Models: MiniRocket
2. Semantic Representation Learning Models : T-Rep, TS2Vec, T-Loss, TS-TCC etc.
3. Reconstruction Based Representation Learning Models : MOMENT

Given our limited compute availability, all baseline results reported in the results table are drawn from
prior published work. We restrict our comparison to models with results on the majority of the UEA
datasets, and therefore exclude models with incomplete or missing UEA coverage (e.g., UniTS).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Metrics To compare our model’s performance on the combined set of UEA Datasets, we measure 3
quantities:

Average Accuracy. For dataset i with ni samples:

Acci =
1

ni

ni∑

j=1

1[h(xij) = yij] ,

and the average accuracy across D datasets is

AvgAcc =
1

D

D∑

i=1


 1

ni

ni∑

j=1

1[h(xij) = yij]


 .

Number of Correctly Classified Samples.

NumCorrect =
D∑

i=1

ni∑

j=1

1[h(xij) = yij] .

Number of Wins. For M models {hm}Mm=1, define accuracy of model m on dataset i as

Acci,m =
1

ni

ni∑

j=1

1[hm(xij) = yij] .

The number of wins for model m is

Wins(m) =

D∑

i=1

1
[
Acci,m = max

m′
Acci,m′

]
.

We report average accuracy and number of wins as they are standard measures used in other papers
that use the UEA benchmark, however, as noted in Fleming & Wallace (1986), we would like to
highlight that relying on averages of arithmetic means in such setups might be misleading, as the
number of test samples vary significantly per dataset (see Figure 14). As a result we additionally
include unnormalized scores, which we empirically observe to be a relatively less noisier metric to
track during training.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 14: Sizes of different UEA Datasets

Results Results for CHARM under the frozen + SVM setup are presented in Table 13, while the
finetuned version is reported in Table 15. Overall, CHARM demonstrates strong aggregate perfor-
mance, particularly in terms of average accuracy and total correct predictions across datasets. More-
over, we observe competitive results on datasets excluded from pre-training (JapaneseVowels,
PhonemeSpectra, PenDigits), highlighting the strong generalization ability of the learned
embeddings. The substantial improvement from finetuning on individual datasets suggests that
post-training strategies can be effectively used to adapt the model for classification tasks.

Dataset TS2Vec T-Loss TS-TCC T-Rep MOMENT MiniROCKET CHARMfrozen + SVM

AtrialFibrillation 29 13 27 35 20 20 47
Articulary/WordRecognition 97 94 95 97 99 98 99
BasicMotions 100 100 100 100 100 100 98
CharacterTrajectories 99 99 99 99 — 99 98
Cricket 95 97 92 96 99 97 96
ERing 90 13 90 94 96 93 96
Epilepsy 96 97 96 97 99 100 98
FingerMovements 50 58 46 50 49 42 59
HandMovementDirection 42 35 24 54 32 41 54
Handwriting 46 45 50 41 31 24 33
LSST 56 51 47 53 41 67 60
Libras 86 88 82 83 85 94 83
NATOPS 90 92 82 80 83 92 82
RacketSports 89 86 82 88 80 88 86
SelfRegulationSCP1 79 84 82 82 84 88 82
UWaveGestureLibrary 88 88 75 89 91 91 91
SpokenArabicDigits 99 91 97 99 98 99 97
SelfRegulationSCP2 55 54 53 59 48 49 58
Japanese Vowels † 97 99 93 96 72 92 97
Phoneme Spectra † 24 22 25 23 23 28 20
Pen Digits † 98 98 97 97 97 97 98

Wins 2 5 2 3 3 7 4
Avg. Accuracy 76.4 71.6 73.1 76.8 71.3∗ 76.2 77.6
Total Correct 7171 6836 6835 7075 5204∗ 7284 7139

Table 13: Comparison of classification accuracy across multiple datasets and models. Datasets
marked with † were not included in pre-training CHARM. *MOMENT does not report scores for
CharacterTrajectories, and we exclude it while calculating MOMENT’s scores.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Hyperparameter Value
C {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}

kernel {‘rbf’}
degree {3}
gamma {‘scale’}
coef0 {0}

shrinking {True}
probability {False}

tol {0.001}
cache_size {200}
class_weight {None}

verbose {False}
max_iter {10000000}

decision_function_shape {‘ovr’}
random_state {None}

Table 14: SVM Hyperparameter Grid

Dataset TS2Vec T-Loss TS-TCC T-Rep MOMENT MiniROCKET CHARMfrozen+SVM CHARMfinetune

AtrialFibrillation 29 13 27 35 20 20 47 40
Articulary/WordRecognition 97 94 95 97 99 98 99 99
BasicMotions 100 100 100 100 100 100 98 100
CharacterTrajectories 99 99 99 99 – 99 98 99
Cricket 95 97 92 96 99 97 96 94
ERing 90 13 90 94 96 93 96 94
Epilepsy 96 97 96 97 99 100 98 99
FingerMovements 50 58 46 50 49 42 59 57
HandMovementDirection 42 35 24 54 32 40 54 51
Handwriting 46 45 50 41 31 24 33 36
LSST 56 51 47 53 41 67 60 71
Libras 86 88 82 83 85 94 83 87
NATOPS 90 92 82 80 83 92 82 92
RacketSports 89 86 82 88 80 88 86 86
SelfRegulationSCP1 79 84 82 82 84 88 82 91
UWaveGestureLibrary 88 88 75 89 91 91 91 88
SpokenArabicDigits 99 91 97 99 98 99 97 98
SelfRegulationSCP2 55 54 53 59 48 49 58 57
Japanese Vowels 97 99 93 96 72 92 97 98

Wins 2 3 2 3 3 4 4 5
Avg. Accuracy 78.1 72.8 74.4 78.5 72.5∗ 77.6 79.6 80.9
Total Correct 7467 7141 7118 7363 5414∗ 7569 7431 7799

Table 15: Performance comparison across datasets in %. Best results per dataset are boldfaced, and the best
count is reflected in the win statistics. PenDigits and PhonemeSpectra are omitted from the finetuned
comparisons, due to the size of these datasets, and the associated training compute and time required. *MOMENT
does not report scores for CharacterTrajectories, and we exclude it while calculating MOMENT’s
scores.

J.2 ANOMALY DETECTION

J.2.1 UCR ANOMALY DETECTION BENCHMARK

Dataset The UCR anomaly detection dataset Dau et al. (2018) is a popular open-source univariate
anomaly detection dataset. The dataset consists of >100 datasets from varying domains. We restrict
ourselves to the same subset of 46 datasets used in MOMENT (Goswami et al., 2024) which cover a
diverse set of sources.

Task Description Each dataset in the UCR archive is provided with a “clean" train split, and a
corresponding test split. The standard setup in this task involves training a model to reconstruct
clean samples (i.e. with no anomalies), and then use this model on the test set to reconstruct the
data. The mean squared error is computed in a point-wise sense on all timestamps in the test set. If
the error corresponding to each timestamp exceeds a certain threshold, we classify that timestamp
as anomalous. For a fair comparison, we use the same sweep over the error thresholds as used in
MOMENT, which uses 100 samples on a linearly spaced grid from the lowest error to the highest error
in the test set errors across all timestamps. Then, we compute an adjusted F1 score, which is standard
practice in benchmarking anomaly detection models, for each threshold, and report the best adjusted

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F1 score for each dataset. For this experiment, the embedding model is frozen and only the linear
reconstruction head is trained.

Downstream Setup Our model is extended with a reconstruction head, which consists of a linear
layer that maps embeddings back to the raw time series values, i.e. Z ∈ RT ′×1×H → Zt ∈ RT .
We empirically observe better results by applying an AvgPool on the embeddings (with a stride
of 8) before the reconstruction head, as it potentially reduces the high fidelity of our per time point
embeddings. Consequently, the linear layer is then of dimensions RH×8.

Baselines To ensure a fair comparison with models from varying classes, i.e. task-specific vs
general representation learning, we benchmark ourselves against the same set of models used in
MOMENT, which consist of state-of-the-art anomaly detection models, as well as general representation
learning methods. These consist of: Anomaly Detection Transformer, DGHL, GPT4TS,
TimesNet and MOMENT. Given our limited compute availability, all baseline results reported in the
results table are drawn from prior published work and we limited ourselves to reported models in the
MOMENT paper. We exclude T-Rep and TS2Vec, as they do not report results on this dataset/task.

Metrics We evaluate performance by measuring an adjusted F1 score for each dataset after optimiz-
ing the threshold for each dataset separately.

Results We report adjusted F1 scores across all datasets and models in Table 16. While model
performance varies considerably by dataset, CHARM achieves strong overall results in terms of both
average F1 score and total wins.

Dataset Anomaly Transformer MOMENT CHARM DGHL GPT4TS TimesNet
1sddb40 0.03 0.54 0.99 0.39 0.19 0.68
BIDMC1 0.99 1.00 1.00 1.00 1.00 1.00
CHARISfive 0.01 0.13 1.00 0.02 0.02 0.08
CHARISten 0.02 0.11 0.12 0.01 0.01 0.03
CIMIS44AirTemperature3 0.06 0.98 0.98 0.50 0.18 0.47
CIMIS44AirTemperature5 0.39 0.99 0.85 0.96 0.20 0.71
ECG2 1.00 1.00 1.00 0.62 0.90 1.00
ECG3 0.36 0.98 0.93 0.80 0.84 0.48
Fantasia 0.75 0.95 0.97 0.66 0.87 0.55
GP711MarkerLFM5z4 0.93 1.00 0.64 0.50 0.64 0.95
GP711MarkerLFM5z5 0.76 0.97 0.75 0.31 0.48 0.90
InternalBleeding5 0.94 1.00 1.00 1.00 0.92 1.00
Italianpowerdemand 0.01 0.74 0.17 0.59 0.01 0.44
Lab2Cmac011215EPG5 0.99 0.98 1.00 0.34 0.60 0.99
Lab2Cmac011215EPG6 0.41 0.10 0.12 0.26 0.10 0.17
MesoplodonDensirostris 1.00 0.84 1.00 0.79 1.00 1.00
PowerDemand1 0.87 0.44 0.43 0.49 0.76 0.95
TkeepFirstMARS 0.02 0.15 0.03 0.02 0.02 0.23
TkeepSecondMARS 0.83 1.00 1.00 0.16 0.12 0.95
WalkingAceleration5 1.00 1.00 0.89 0.48 1.00 0.96
apneaecg 0.40 0.20 0.44 0.25 0.31 0.26
apneaecg2 0.65 1.00 0.92 1.00 1.00 0.90
gait1 0.18 0.36 0.53 0.51 0.48 0.47
gaitHunt1 0.08 0.43 0.99 0.02 0.10 0.30
insectEPG2 0.12 0.23 0.73 0.14 0.81 0.96
insectEPG4 0.98 1.00 0.70 0.46 0.21 0.85
lstdbs30791AS 1.00 1.00 1.00 1.00 1.00 1.00
mit14046longtermecg 0.45 0.59 0.98 0.43 0.97 0.97
park3m 0.15 0.64 0.61 0.20 0.63 0.93
qtdbSel1005V 0.41 0.65 0.75 0.44 0.39 0.90
qtdbSel100MLII 0.42 0.84 0.90 0.41 0.60 0.87
resperation1 0.16 0.15 0.83 0.03 0.59 0.96
s20101mML2 0.69 0.71 1.00 0.15 0.05 0.08
sddb49 0.89 1.00 1.00 0.88 0.94 1.00
sel840mECG1 0.41 0.66 1.00 0.32 0.28 0.36
sel840mECG2 0.15 0.39 0.60 0.32 0.28 0.21
tilt12744mtable 0.07 0.24 0.14 0.04 0.05 0.16
tilt12754table 0.23 0.64 0.04 0.04 0.06 0.14
tiltAPB2 0.92 0.98 1.00 0.36 0.83 0.38
tiltAPB3 0.17 0.85 0.62 0.03 0.05 0.29
weallwalk 0.00 0.58 1.00 0.07 0.13 0.17
Wins 5 18 24 4 5 12
Average 0.485 0.684 0.754 0.415 0.479 0.627

Table 16: Anomaly detection performance across 46 UCR datasets

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 15: UCR Anomaly test set reconstructions visualized, with anomalous regions highlighted for 1sddb40,
CIMIS44AirTemperature3 and CIMIS44AirTemperature5. true refers to the ground truth values,
while pred refers to our reconstruction head’s predictions.

J.2.2 SKOLTECH ANOMALY DETECTION BENCHMARK (SKAB)

Dataset To evaluate our performance on a real world industrial setup, we use the open-source
Skoltech Anomaly Benchmark suite Katser & Kozitsin (2020), which consists of a point-wise anomaly
detection task using data from 8 sensors attached to a mechanical testbed. The dataset itself consists
of 34 sub-dataset instances consisting of both outlier detection, and changepoint detection anomalies.

Task Description We follow the standard setup accompanying the SKAB benchmark for our model,
as well as reproducing other baselines on this dataset. This involves splitting the data into several
train and test sets, where each instance in the train and test set is trained with a fresh model to
reconstruct the training dataset, i.e. minimize MSE on the reconstruction task ||xtrain − x̂train||2, and
then evaluated by computing the reconstruction of the corresponding test instance, x̂test. Based on the
train set reconstruction, we compute the Upper Control Limit (UCL), based on the 99th percentile
quantiles, and apply an adjustment factor of 4

3 . Then, for the reconstructed test data x̂test, we classify
anomalies if the absolute values of the residuals, i.e. ||xtest − x̂test|| lie outside the UCL limit. This
exact anomaly detection setup is commonly applied to all baseline models in the test suite.

Downstream Setup Similar to J.2.1, we rely on training a linear head to reconstruct“clean" training
data. I.e., we use a single linear layer RH×1 to map our embeddings Z back to the raw time series
values. The hyperparameters used for training the linear head are listed in 17.

Hyperparameter Value
Optimizer AdamW

Weight Decay None
Learning Rate 1e-3

Epochs 1000

Table 17: Hyperparameters to train reconstruction head for anomaly detection

Baselines To compare ourselves to a diverse set of models, we include all baselines available in
SKAB leaderboard, as well as T-Rep, TS2Vec, MOMENT.

The baselines in the SKAB leaderboard come from a diverse set of modeling approaches, which rely
on both statistical techniques, as well as more modern CNN/LSTM based methods. We list brief
descriptions of the SKAB baselines here:

• Hotelling’s T-squared statistic: Measures the Mahalanobis distance of new samples from
the mean using variances for multivariate process monitoring.

• Hotelling’s T-squared + Q statistic (PCA-based): Uses principal component analysis,
where T 2 captures variation in the principal subspace and Q measures residuals, combined
via logical OR for monitoring.

• Isolation Forest (iForest): An ensemble-based method that isolates anomalies as points
with short average path lengths in random trees.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• LSTM-based Neural Network: An LSTM network trained for anomaly detection using
reconstruction error as the anomaly score.

• Feed-Forward Autoencoder: A standard autoencoder that detects anomalies via recon-
struction error in vector data.

• Convolutional Autoencoder (Conv-AE): A CNN-based autoencoder for anomaly detection
in time series via reconstruction error.

• LSTM Autoencoder (LSTM-AE): A sequence-to-sequence LSTM autoencoder that recon-
structs temporal patterns and flags anomalies via reconstruction error.

• LSTM Variational Autoencoder (LSTM-VAE): A probabilistic LSTM autoencoder that
models latent distributions and detects anomalies using reconstruction error.

• Variational Autoencoder (VAE): A generative model that learns latent variable distributions
of input data, with anomalies identified via reconstruction error.

• MSCRED: A multi-scale convolutional recurrent encoder-decoder that reconstructs signa-
ture matrices of system statuses and uses residuals to detect anomalies.

• MSET: A nonparametric statistical modeling technique that estimates values via weighted
averages of historical data for anomaly detection.

Reproducing Baselines To ensure a fair comparison, we reproduce the baseline methods T-Rep,
TS2Vec, and MOMENT following the protocols described below:

1. T-Rep: We train the model using the self-supervised contrastive loss used in the paper, on
each dataset instance using the official implementation and author-recommended hyperpa-
rameters. Subsequently, we append a linear reconstruction head, which is trained using the
hyperparameters specified in Table 17. The base encoder remains frozen during this stage.

2. TS2Vec: We adopt an identical procedure to that of T-Rep, i.e., training with the official
implementation and hyperparameters, followed by the addition of a frozen base encoder
with a trainable linear reconstruction head.

3. MOMENT0: We directly evaluate the AutonLab/MOMENT-1-large checkpoint in re-
construction mode. This configuration utilizes the reconstruction head employed during
pretraining and is applied to the test set without any further training or fine-tuning.

4. MOMENTLP: We employ the same checkpoint in embedding mode, in which representations
are extracted and paired with a linear reconstruction head. The linear head is trained on
the training instances using the hyperparameters from Table 17, consistent with the setup
applied to CHARM, T-Rep, and TS2Vec.

Note that the MOMENT model was not pre-trained on the SKAB dataset, whereas our model was.
This suggests that there may be additional untapped performance potential for MOMENT on this
benchmark, since pre-training it on SKAB could plausibly improve its results. However, due to the
large computational demands of MOMENT and our limited access to compute resources, we were
unable to conduct this experiment.

Metrics We reported the average F1 score over all instances, as well as the False Alarm Rate
(FAR) and Missed Alarm Rate (MAR), for all baseline models. We outline the mathematical
representation of these terms, and their relation to commonly used binary classification metrics here:

Missed Alarm Rate (FNR) =
FN

TP + FN
= 1− Recall

Specificity (TNR) =
TN

TN + FP

False Alarm Rate (FPR) =
FP

TN + FP
= 1− Specificity

Results We compile our results on the SKAB benchmark along with the different baseline models
collected in separate classes (Self-Supervised vs Classical) in Table 18. Similar to UCR, we here also
observe strong performance for CHARM.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 18: Comparison of anomaly detection performance across baselines and our method. Higher F1 scores
are better (↑), while lower False Alarm Rate (FAR) and Missed Alarm Rate (MAR) are better (↓).

Category Method F1 ↑ FAR (%) ↓ MAR (%) ↓

Representation Learning

T-Rep 0.78 12.60 28.51
MOMENT0 0.79 14.20 26.98
TS2Vec 0.79 12.77 27.61
MOMENTLP 0.82 15.52 20.73

Classical

Conv-AE 0.78 13.55 28.02
MSET 0.78 39.73 14.13
T-squared+Q (PCA) 0.76 26.62 24.92
Isolation Forest 0.29 2.56 82.89
LSTM-VAE 0.56 9.13 55.03
MSCRED 0.36 49.94 69.88

CHARM 0.86 19.35 12.69

J.3 FORECASTING

Datasets We evaluated our model on the benchmarks introduced in Autoformer Wu et al. (2021),
which have become standard multivariate time series forecasting benchmarks. Specifically, the
benchmark suite includes the Electricity Transformer Dataset (ETT), Weather, Exchange Rate and
Illness datasets. The model pretraining included the train splits of these datasets (Section H).

The train/valid/test split is identical to the standard protocol in the other baselines we compare with,
which is a 6/2/2 split for the ETT datasets, and a 7/1/2 split for all other datasets.

To ensure a fair comparison, we adopt the standard set of lookback horizons and future horizon
values across all forecasting datasets, as specified in Table 20. While earlier works primarily use a
lookback horizon of 96, more recent studies have also incorporated a longer lookback horizon of
512. To maintain consistency and comparability, we therefore report our linear probing results under
both lookback settings. Furthermore, since different papers also employ different prediction horizons,
we follow each work’s choice of horizons to respect their experimental setup and allow for direct
comparison.

Task Description Forecasting tasks consist of taking a window of time series data and predicting
future time steps. Formally, given an input of dimensions (Th×C), where Th denotes the "lookback"
horizon, the goal is to predict the future Tf time steps for all channels.

Downstream Setup We use the embeddings of the input horizon data, stack the embeddings across
all time steps for each channel, and train the model to minimize an aggregate loss metric7 between
the predicted and true values for each channel.

Since the pretraining task was not designed for direct linear forecasting, nor to produce single-step
predictions, we evaluate forecasting performance using the following modeling approaches:

1. CHARM+LP A per-dataset, per-channel, per-horizon linear regression head is trained on
top of frozen embeddings.

2. CHARM+NLH: A common non-linear prediction head is trained across all datasets, chan-
nels, and horizons, with the encoder kept frozen.

3. CHARM+NLH FT: The full model (encoder + non-linear prediction head) is trained
end-to-end, shared across datasets, channels, and horizons.

Non-Linear Head (NLH) The head is designed to first mix information across both time and
channels, then refine within each channel, and finally project to the forecasting horizon:

• Transformer across time & channels (nheads = 4, nlayers = 2, hidden dimension 2048).

7loss = MSE+MAE
2

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

• Transformer per channel (nheads = 4, nlayers = 1, hidden dimension 2048).
• Per-channel linear projection to a maximum horizon of 720.

It is important to note that in the non-linear head setup, the forecasting module is shared across
all datasets, channels, and horizons. The transformer and projection layers are not customized
or tuned for any specific dataset, horizon, or channel, ensuring a single common forecasting
head is used throughout. If the target horizon Tf is less than the max horizon (720), we simply
apply the loss to the first Tf predictions from the head.

Training protocol. All non-linear head models were trained on the full CHARM dataset collection
(Section H) without hyperparameter optimization due to resource constraints. The training setup
is summarized in Table 19. The linear heads were trained for each (dataset, horizon, channel)
combination separately, which is standard for a linear probing setup in time series forecasting, and in
line with other baseline implementations. To this end, we conducted hyperparameter optimization as
reported in table 21 and present the best results.

Hyperparameter Value
Lookback horizon 512
Datasets All CHARM datasets (Section H)
Batch size 256 (gradients accumulated across datasets)
Epoch definition 10 steps across 4 nodes
Max epochs 60 (early stopping, patience = 5)
Optimizer AdamW
Loss (MSE + MAE)/2
Schedule Cosine
Learning rate 1× 10−3

Weight decay 0.01

Table 19: Training protocol for non-linear forecasting (NLH) heads.

Dataset Lookback Horizon Th Target Horizon Tf

ETTh1 96/512 {24, 48, 168, 336, 720}
ETTh2 96/512 {24, 48, 168, 336, 720}
ETTm1 96/512 {24, 48, 96, 288, 672}†

ETTm2 96/512 {24, 48, 96, 288, 672}†

Weather 96/512 {96, 192, 336, 672}
Exchange Rate 96/512 {96, 192, 336, 672}

Illness 96/512 {24, 36, 48, 60}

Table 20: Forecasting task specifications. †Some papers adopt the same prediction horizons as ETTh1/2 for
ETTm1/2.

Hyperparameter Value
Optimizer AdamW

Weight Decay [1e-2, 1e-4]
Learning Rate [1e-2, 1e-4]

Epochs 1000
LR Schedule ReduceLROnPlateau

Reduction Factor 0.1
Early Stopping : Patience 50

Early Stopping : Tolerance 1e-6

Table 21: Hyper-parameters to train linear prediction heads for forecasting tasks

Baselines To ensure a fair assessment, we distinguish between three categories of methods: repre-
sentation learning methods, reconstruction-based methods, and hybrid approaches.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

• Representation learning methods focus on extracting meaningful embeddings of the data,
independent of the reconstruction objective.

• Reconstruction-based methods emphasize the model’s ability to directly predict or recon-
struct future values.

• Hybrid approaches combine both ideas: they primarily rely on reconstruction-based training
but additionally evaluate the representational power of the learned embeddings.

An important distinction is in the evaluation protocol. Both representation learning methods and
hybrid approaches employ linear probing to assess the forecasting power of the embeddings. In
contrast, reconstruction-based methods directly evaluate the pretrained model, since their pretraining
task is already aligned with forecasting.

To establish a strong baseline, we compare against SOTA foundational time series models from each
category. For pure representation learning methods, we include T-REP Fraikin et al. (2024) and
TS2Vec Yue et al. (2022). For hybrid methods, we consider MOMENT Goswami et al. (2024) and
PatchTST Nie et al. (2023b). Finally, for reconstruction-based methods, we evaluate Toto Cohen
et al. (2025), TIMEMIXER++ Wang et al. (2025), Moirai Woo et al. (2024a), and VisionTS
Chen et al. (2025). We exclude results from works such as TimesFM Das et al. (2024), UniTS Gao
et al. (2024b) and Chronos Ansari et al. (2024), as their experimental setups differ substantially
from ours, making direct comparison infeasible.

Reproducing Baselines We reproduce the baseline methods T-Rep and TS2Vec on the
Weather, ILI, and Exchange Rate datasets following the original papers’ pretraining setup.
Specifically, each model is first pretrained on the respective dataset, after which a linear forecasting
head is added and trained while keeping the base model frozen. The forecasting head is trained
using the same architecture and hyperparameters as specified in the original paper’s downstream
forecasting setup. For the ETT datasets, results for both models are taken directly from the original
T-Rep paper (Fraikin et al., 2024). For reconstruction-based and hybrid models, we report the scores
as presented in their respective papers for the corresponding datasets and horizons. The compiled
results are shown in Table 23.

Metrics We quantitatively assess the model’s performance using mean squared error (MSE) and
mean absolute error (MAE) metrics averaged over all forecasted time steps and across all target
variables, which is standard practice for multivariate forecasting benchmarks.

Results The results comparing CHARM with other state-of-the-art representation learning methods,
along with the reproduced baselines, are summarized in Table 22. These results underscore the
strong performance of CHARM embeddings relative to competing methods in this category. Further,
Table 23 demonstrates that CHARM remains competitive with hybrid and reconstruction-based
models—including substantially larger models trained on significantly larger datasets (e.g., TOTO,
Moirai).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Dataset H T-Rep TS2Vec CHARM+LP
MSE MAE MSE MAE MSE MAE

ETTh1

24 0.511 0.496 0.575 0.529 0.310 0.350
48 0.546 0.524 0.608 0.553 0.358 0.376
168 0.759 0.649 0.782 0.659 0.451 0.430
336 0.936 0.742 0.956 0.753 0.517 0.466
720 1.061 0.813 1.092 0.831 0.546 0.498

ETTh2

24 0.560 0.565 0.448 0.506 0.186 0.267
48 0.847 0.711 0.685 0.642 0.242 0.303
168 2.327 1.206 2.227 1.164 0.391 0.396
336 2.665 1.324 2.803 1.360 0.430 0.427
720 2.690 1.365 2.849 1.436 0.470 0.466

ETTm1

24 0.417 0.420 0.438 0.435 0.218 0.283
48 0.526 0.484 0.582 0.553 0.282 0.324
96 0.573 0.516 0.602 0.537 0.316 0.347
288 0.648 0.577 0.709 0.610 0.395 0.391
672 0.758 0.649 0.826 0.687 0.482 0.441

ETTm2

24 0.172 0.293 0.189 0.310 0.099 0.192
48 0.263 0.377 0.256 0.369 0.131 0.223
96 0.397 0.470 0.402 0.471 0.172 0.253
288 0.897 0.733 0.879 0.724 0.284 0.326
672 2.185 1.144 2.193 1.159 0.403 0.400

Weather

96 0.195 0.280 1.672 0.904 0.158 0.199
192 0.235 0.316 1.569 0.894 0.207 0.246
336 0.288 0.359 2.075 1.064 0.265 0.287
672 0.362 0.402 2.828 1.305 0.347 0.340

Exchange Rate

96 1.180 0.806 0.462 0.544 0.084 0.203
192 3.947 1.344 0.968 0.765 0.182 0.302
336 6.683 1.699 1.759 1.037 0.353 0.429
720 3.900 1.504 2.266 1.184 0.929 0.727

ILI

24 3.631 1.227 3.463 1.173 2.799 1.080
36 3.979 1.313 3.889 1.282 1.754 0.797
48 4.290 1.363 4.219 1.339 1.699 0.820
60 4.361 1.375 4.198 1.329 1.740 0.838

Table 22: Representation learning only Long-horizon forecasting results across datasets. Input length = 96.
Lower is better. Bold = best, Underline = second best. We use a frozen encoder with a linear head for this
experiment.

Dataset H Rec. Hybrid Ours

Toto Moirai_S Moirai_B Moirai_L TimeMixer++ VisionTS MOMENT-LP PatchTST-LP CHARM+LP CHARM + NLH CHARM + NLH FT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.382 0.381 0.375 0.402 0.384 0.402 0.380 0.398 0.361 0.403 0.353 0.383 0.387 0.410 0.371 0.400 0.452 0.464 0.467 0.478 0.465 0.464
192 0.428 0.408 0.399 0.419 0.425 0.429 0.440 0.434 0.375 0.400 0.392 0.410 0.410 0.426 0.411 0.428 0.502 0.503 0.536 0.523 0.512 0.498
336 0.457 0.422 0.422 0.429 0.450 0.456 0.514 0.474 0.416 0.441 0.407 0.423 0.422 0.437 0.445 0.446 0.565 0.540 0.600 0.564 0.560 0.530
720 0.472 0.440 0.413 0.444 0.470 0.473 0.705 0.568 0.430 0.434 0.416 0.405 0.454 0.416 0.487 0.478 0.699 0.622 0.764 0.657 0.693 0.612

ETTh2

96 0.273 0.310 0.281 0.334 0.277 0.327 0.287 0.325 0.276 0.328 0.271 0.328 0.288 0.345 0.285 0.344 0.243 0.334 0.236 0.328 0.240 0.330
192 0.339 0.356 0.340 0.373 0.340 0.374 0.347 0.367 0.342 0.379 0.328 0.367 0.349 0.386 0.356 0.387 0.294 0.368 0.296 0.369 0.298 0.369
336 0.410 0.387 0.362 0.393 0.371 0.401 0.377 0.393 0.346 0.398 0.345 0.381 0.369 0.377 0.425 0.377 0.334 0.394 0.340 0.398 0.332 0.391
720 0.375 0.400 0.380 0.416 0.394 0.426 0.404 0.421 0.392 0.415 0.388 0.422 0.403 0.439 0.395 0.434 0.424 0.448 0.421 0.446 0.395 0.432

ETTm1

96 0.320 0.333 0.404 0.383 0.335 0.360 0.353 0.363 0.310 0.334 0.341 0.347 0.293 0.349 0.292 0.348 0.337 0.386 0.341 0.387 0.337 0.382
192 0.371 0.364 0.435 0.402 0.379 0.402 0.376 0.380 0.348 0.362 0.360 0.360 0.326 0.368 0.329 0.369 0.392 0.419 0.398 0.423 0.390 0.412
336 0.408 0.388 0.462 0.416 0.394 0.416 0.399 0.395 0.376 0.391 0.377 0.374 0.352 0.384 0.364 0.391 0.434 0.442 0.437 0.449 0.434 0.440
720 0.485 0.426 0.490 0.437 0.419 0.437 0.432 0.417 0.440 0.423 0.416 0.405 0.405 0.416 0.415 0.419 0.491 0.482 0.489 0.488 0.484 0.478

ETTm2

96 0.172 0.237 0.205 0.282 0.195 0.269 0.189 0.260 0.170 0.245 0.228 0.282 0.170 0.260 0.167 0.257 0.154 0.255 0.155 0.255 0.150 0.254
192 0.232 0.280 0.318 0.261 0.303 0.300 0.247 0.300 0.229 0.291 0.262 0.305 0.227 0.297 0.229 0.300 0.188 0.282 0.197 0.287 0.186 0.283
336 0.290 0.320 0.355 0.319 0.333 0.334 0.334 0.334 0.303 0.343 0.293 0.328 0.275 0.328 0.289 0.343 0.223 0.309 0.236 0.317 0.220 0.309
720 0.372 0.375 0.410 0.415 0.377 0.372 0.372 0.386 0.373 0.399 0.343 0.370 0.363 0.387 0.363 0.386 0.271 0.346 0.294 0.356 0.278 0.350

Weather

96 0.149 0.179 0.173 0.212 0.167 0.203 0.177 0.208 0.155 0.205 0.220 0.257 0.154 0.209 0.158 0.209 0.151 0.198 0.150 0.196 0.147 0.190
192 0.192 0.223 0.216 0.250 0.209 0.241 0.219 0.249 0.201 0.245 0.244 0.275 0.197 0.248 0.203 0.249 0.197 0.240 0.198 0.239 0.191 0.232
336 0.245 0.265 0.260 0.282 0.256 0.276 0.292 0.277 0.237 0.265 0.280 0.299 0.246 0.285 0.251 0.285 0.250 0.279 0.249 0.279 0.240 0.272
720 0.310 0.312 0.320 0.322 0.321 0.323 0.365 0.350 0.312 0.334 0.330 0.337 0.315 0.322 0.321 0.336 0.324 0.332 0.324 0.334 0.310 0.324

Table 23: Long-horizon forecasting results across datasets. Input length = 512. Lower is better. Bold = best,
Underline = second best. Last three columns are our CHARM variants; CHARM+LP is a Rep. approach, while
CHARM + NLH and CHARM + NLH FT are Rec. approaches.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Visualizations We present a sample of forecasting results from CHARM+LP and using a lookback
window of 96.

Figure 16: Illness Forecasts

Figure 17: Illness Forecasts

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 18: ETTh1 Forecasts

Figure 19: ETTh1 Forecasts

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 20: ETTh2 Forecasts

Figure 21: ETTh2 Forecasts

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Figure 22: ETTm1 Forecasts

Figure 23: ETTm1 Forecasts

Linear Probing and Pooling Ablations Experiments related to pooling strategies, shown in
Table 24, were designed to contrast different pooling approaches commonly used to aggregate data
in other domains and to examine their applicability to time series. We also experimented with an
MLP to investigate whether the embeddings benefit more from a non-linear model, since the training
objective is not aimed at maximizing linear predictability. We only compare these methods using the
ETTh1/2 datasets with a lookback window of 96 and forecasting horizons of 24, 48, 168, 336, 720.

To further study the effect of different pooling strategies, we evaluated the following three approaches:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

1. Flattening: The embeddings are flattened into a single vector representation for each
channel.

Z : RT×H → Zflat ∈ RTH

2. Mean Pooling: The embeddings are averaged over the time dimension (but not across
channels), yielding an H-dimensional representation per channel.

Z : RT×H → Zmean ∈ RH

3. Last Time Step: The embedding from the last time step of each channel is taken as the
representative embedding.

Z : RT×H → Z−1 ∈ RH

In addition, we experimented with:

• Frozen Encoder + 2-Layer MLP: A per-dataset, per-channel, per-horizon MLP head (two
linear layers with ReLU activations) trained on top of frozen embeddings.

Dataset Pool Head 24 48 168 336 720
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

none1a linear1b 0.31 0.35 0.36 0.38 0.45 0.43 0.52 0.47 0.55 0.50
MLP2b 0.32 0.36 0.37 0.38 0.46 0.44 0.50 0.46 0.54 0.50

last time step2a linear1b 0.39 0.39 0.43 0.41 0.51 0.46 0.53 0.47 0.54 0.50
MLP2b 0.37 0.38 0.41 0.40 0.49 0.45 0.54 0.48 0.55 0.51

mean3a linear1b 0.66 0.49 0.68 0.50 0.72 0.53 0.69 0.54 0.69 0.57
MLP2b 0.61 0.50 0.74 0.51 0.77 0.54 0.74 0.55 0.73 0.58

ETTh2

none1a linear1b 0.19 0.27 0.24 0.30 0.39 0.40 0.43 0.43 0.47 0.47
MLP2b 0.20 0.27 0.25 0.31 0.40 0.40 0.46 0.44 0.51 0.48

last time step1a linear1b 0.19 0.28 0.25 0.31 0.40 0.40 0.44 0.43 0.49 0.48
MLP2b 0.20 0.28 0.26 0.32 0.40 0.40 0.45 0.44 0.49 0.48

mean1a linear1b 0.25 0.32 0.29 0.35 0.44 0.43 0.44 0.45 0.50 0.49
MLP2b 0.25 0.33 0.30 0.35 0.44 0.43 0.46 0.45 0.50 0.49

Table 24: Ablation results comparing pooling strategies and heads across ETTh1 and ETTh2. Bolded values
denote best within each dataset and horizon. The encoder is kept frozen for this experiment.

From Table 24, we observe that no pooling (1a) combined with either a linear or MLP probe yields the
best results on both ETTh1 and ETTh2. Interestingly, we observe that for ETTh1 using just the last
time step’s embedding (1b) yields competitive scores with an average increase of 8.7% (MSE) and
4.2% (MAE) when compared to no pooling (1a). Comparatively, mean pooling (1c) has an increase
of 60.5% (MSE) and 24.4% (MAE) Similarly, for ETTh2, we observe that using the last time step
embeddings (1b) has only a 0.85% (MSE) and 1.33% (MAE) increase in error, when compared to
mean pooling which has a 9.32% (MSE) and 8.49% (MAE) increase in error.

This observation is in line with (Bardes et al., 2024), which demonstrated that using attentive probing
to pool embeddings was empirically superior for downstream task performance compared to directly
mean pooling the embeddings, which can potentially result in lossy, diffuse representations which
fail to capture finer granularities in the data.

K ABLATIONS

To better understand the effects of different components in our model, we perform a series of ablations
involving the proposed architectural additions - (i) TCN featurization layer, (ii) text based attention
mechanisms, (iii) effect of description quality, (iv) effect of embedding model, and (v) alternative
approaches to multi modal text + time series. To quantify the effect of each of these changes, we
measure performance on forecasting and classification by measuring the following quantities:

1. Total number of correct classifications for UEA

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

2. Average accuracy for UEA
3. Mean Squared Error for ETTh1 (Tf = 168)

4. Mean Absolute Error for ETTh1 (Tf = 168)

5. Mean Squared Error for ETTh2 (Tf = 168)

6. Mean Absolute Error for ETTh2 (Tf = 168)

For the ablation study, we train and probe the model with the following protocols:

Pretraining The base model is pretrained with a subset of datasets (UEA, ETTh, ETTm, Weather,
Illness), for 50 epochs, with a learning rate of 5e-4.

Classification Evaluations The hyperparameters used for measuring classification performance
are listed in Table 25. We use mean-pooled embeddings, i.e. Z̄ ∈ RB×H , instead of flattened
embeddings, Z ∈ RB×T×C×H .

Forecasting Evaluations The forecasting setup is identical to the frozen linear model setup used in
the downstream forecasting task. The hyperparameters are listed in Table 21. The embeddings are
flattened for all timesteps and passed to a linear layer.

Hyperparameter Value
C {0.0001, 0.1, 1000}

kernel {‘rbf’}
degree {3}
gamma {‘scale’}
coef0 {0}

shrinking {True}
probability {False}

tol {0.001}
cache_size {200}

class_weight {None}
verbose {False}
max_iter {10000000}

decision_function_shape {‘ovr’}
random_state {None}

Table 25: SVM Hyperparameter Grid for Ablations

The ablation results for (i) and (ii) can be found in the main text in Table 5.

We cover the setup for the remaining ablations (iii), (iv), and (v) here, along with their results.

• (iii) Effect of description quality
As channel descriptions are a first class citizen in training CHARM, we perform an ablation to
investigate the effect of description quality on the model’s performance. To this end we consider
three cases:

1) Annotated descriptions: manually curated sensor descriptions obtained from the official
dataset metadata. These are obtained through either manual human annotation obtained by
parsing the accompanying dataset metadata files, or are natively provided by the dataset
provider.

2) Noisy descriptions: high quality annotated descriptions, but with words dropped at random
(with p = 0.2) during both training and evaluation.

3) Ordinal descriptions: replace the annotated descriptions with structured, placeholder descrip-
tions: [Sensor1, Sensor2, Sensor3...] for all datasets.

• (iv) Effect of text embedding model
We investigate the usage of different embedding models to assess the effect on downstream
performance. We use 1) nomic (Nussbaum et al., 2025), 2) minilm (Wang et al., 2020), and 3)
mpnet (Song et al., 2020) as representative models to assess the downstream impact on scores.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

• (v) Alternative multi-modal approaches
To investigate how naive multimodal approaches compare to our setup, we remove the text based
layers altogether, and simply add in the channel description embeddings (from an LLM embedding
model) in a pointwise sense to the time series embeddings. This is analogous to adding in position
embeddings in the first layer of a vanilla transformer (Vaswani et al., 2017). We investigate
adding these solely in the first layer, as well as in all layers. For numerical stability, we apply a
LayerNorm on these embeddings to ensure they are of an appropriate scale.

Configuration # Correct Accuracy ETTh1168 MSE ETTh1168 MAE ETTh2168 MSE ETTh2168 MAE

Ordinal descriptions 4792 70.3% 0.52 0.55 0.59 0.83
Noisy descriptions 4813 71.2% 0.44 0.48 0.59 0.85
w/ annotated descriptions 4897 71.4% 0.42 0.49 0.57 0.80

Table 26: Effect of Sensor Descriptions (TCNconv)

Embedding Model # Correct Accuracy ETTh1168 MSE ETTh1168 MAE ETTh2168 MSE ETTh2168 MAE

mpnet 4893 71.3% 0.41 0.45 0.63 0.85
minilm 4902 72% 0.43 0.47 0.65 0.95
nomic 4897 71.4% 0.42 0.49 0.57 0.80

Table 27: Effect of Text Embedding Models

Configuration # Correct Accuracy
w/ additive embeddings (all layers) 4095 60.5%
w/ additive embeddings (layer 0) 4375 63.3%
∆+G 4897 71.4%

Table 28: Alternative Multimodal Approaches: additive vs. custom attention

As shown in Table 26, perturbing or replacing channel descriptions leads to a moderate performance
drop; however, the model remains reasonably robust to noisy descriptions. Table 27 reveals varied and
inconclusive trends across different textual embedding models, with each performing well on distinct
metrics. Finally, Table 28 suggests that the naive integration of text embeddings into the architecture
is overly heavy-handed and results in performance degradation, particularly when embeddings are
injected directly into all layers of the encoder stack. These findings indicate that incorporating
channel descriptions into a time series transformer requires greater nuance and more principled
design choices.

L EMBEDDING VISUALIZATIONS

L.1 EMERGENCE OF INTRA-CLASS LABEL SEPARATION

To analyze how our model’s embeddings evolve over training, we plot similarity heatmaps of our
embeddings on labelled datasets.

We first obtain embeddings for a dataset by sampling a subset (approximately 50 samples) of the full
dataset, while ensuring we have full label coverage. Given this embedding matrix Z ∈ RNt×T×C×H ,
we obtain our mean-pooled embeddings Z̄ ∈ RNt×H by averaging over the channel and time
dimension.

Finally, the Nt ×Nt similarity matrix, S is obtained as follows:

Si,j = ||Zi,: − Zj,:||1 (11)

We visualize the similarity matrix as a heatmap, as shown in Figures 24 to 26, and observe the
emergence of structured clusters aligned with class labels. As training progresses, a block-diagonal
structure8becomes increasingly prominent, wherein samples sharing the same label exhibit reduced
Euclidean separation compared to those from different classes. This pattern reflects a progressive
tightening of intra-class representations, indicative of improved semantic organization in the learned
embedding space.

8The heatmaps have a block structure because the labels are grouped together on each axis before plotting.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

(a) Epoch 0 (b) Epoch 3 (c) Epoch 6 (d) Epoch 9

Figure 24: Evolution of BasicMotions similarity heatmaps over training epochs

(a) Epoch 0 (b) Epoch 3 (c) Epoch 6 (d) Epoch 9

Figure 25: Evolution of Skoltech Anomaly Benchmark similarity heatmaps over training epochs

(a) Epoch 0 (b) Epoch 3 (c) Epoch 6 (d) Epoch 9

Figure 26: Evolution of Epilepsy similarity heatmaps over training epochs

L.2 EVOLUTION OF CHANNEL GATES

In this section we aim to visualize how channel gates, as defined in Paragraph Section 2.1.1, evolve
over the course of training our model. We plot the gating matrix, Gd, for each dataset for different
checkpoints.

As illustrated in Figure 28, the inter-channel gating mechanism enables the model to dynamically
modulate attention across channels, selectively emphasizing or suppressing information based on
configurations that minimize the self-supervised learning (SSL) loss. We also empirically observe
that the regularization loss begins to increase after an initial decline which suggests that after a certain
point the model’s embeddings require richer contextual information to continue improving.

Figure 27: Evolution of Channel Gates for the ETT Dataset

The ETT dataset introduced by (Zhou et al., 2021a) comprises seven variables: High Useful
Load, Middle Useful Load, Low Useful Load, High Useless Load, Middle

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Useless Load, Low Useless Load, and Oil Temperature. Among these, Oil
Temperature serves as the target variable, with the remaining six acting as input features. During
training, we observe a notable evolution in the learned channel gating patterns. Initially, the Oil
Temperature channel does not attend to any other inputs, as indicated by its high gating values
across all dimensions in Figure 27. However, as training progresses, this channel begins to incorporate
information from all other variables. Interestingly, this behavior is asymmetric: while the target
channel attends to all input features, the reverse does not occur—the other channels do not attend to
Oil Temperature. This asymmetry manifests as a distinctive row-column pattern in the gating
matrix and aligns with the underlying data semantics, where the target variable is causally influenced
by the independent variables but not vice versa. These observations suggest that introducing learnable
gating mechanisms can reveal interpretable, directional dependencies between variables which also
increases model interpretability.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Figure 28: Evolution of inter channel gates during training. Checkpoints extracted at epoch=0;step=49,
epoch=0;step=499, epoch=0;step=999, epoch=2;step=49, epoch=6;step=49,
epoch=8;step=49.
Each row represents a particular dataset. Each column represents a sampled checkpoint as training progresses.
Each heatmap represents Gd for a particular dataset, which is a C × C matrix with values in [0, 1]. Brighter
colors on the heatmap represent higher gating values, i.e. decreased cross-channel interactions.

49

	Introduction
	Contributions

	Methodology
	Multi-Modal Time Series Embedding Model
	Contextual Temporal Convolutional Network
	Contextual Attention Layer
	Putting It All Together

	Self-supervised Representation Learning
	Dataset Generation
	JEPA Setup
	Training Loss

	Experiments
	Ablations

	Conclusion
	LLM Usage Statement
	Reproducibility Statement
	Ethics Statement
	Related Work
	Notation
	Implementation Details
	Rotary Position Embeddings
	Text Convolution Layer
	Contrast to other featurization methods
	Implementation
	Initialization

	Model Sizing
	Additional Modifications to the transformer layers
	Efficient Computation Techniques
	Slice And Tile Attention Layers

	JEPA
	Dataset Generation
	JEPA Encoders – Deep Dive

	Hardware
	Limitations
	Model Complexity
	Architectural Contributions to Complexity

	Datasets
	Data Loading
	Perturbations

	Experiments
	Classification
	UEA Classification Benchmark

	Anomaly Detection
	UCR Anomaly Detection Benchmark
	Skoltech Anomaly Detection Benchmark (SKAB)

	Forecasting

	Ablations
	Embedding Visualizations
	Emergence of intra-class label separation
	Evolution of Channel Gates

