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ABSTRACT

Traditional time series models are often task-specific and rely heavily on feature
engineering. While Transformer-based architectures have advanced sequence
modeling in other domains, their use for time series representation learning remains
limited. We introduce CHARM, a model that improves representation quality for
multivariate time series by incorporating channel-level textual descriptions into
its architecture. This design enables the model to exploit contextual information
associated with individual sensors while remaining invariant to channel order.
CHARM is trained using a Joint Embedding Predictive Architecture (JEPA) with a
novel loss function that encourages informative and temporally robust embeddings.
We find that integrating channel descriptions consistently enhances representation
quality, with supplementary ablations providing insight into the contributions of
different design choices. The learned embeddings yield strong performance across
diverse downstream tasks, underscoring the value of description-aware time series
modeling.

1 INTRODUCTION

Time series models play a pivotal role in critical real-world applications such as forecasting, classifica-
tion, and anomaly detection across domains including manufacturing, energy, healthcare, and finance
(Hannun et al., 2019; Susto et al., 2014; Ding et al., 2015). By converting temporal signals into
actionable insights, these models enable large-scale, data-driven decision-making. However, most
existing approaches remain narrowly scoped and task-specific, requiring significant manual effort
for development and maintenance. Even in ostensibly homogeneous settings—such as industrial
pump fleets with varied sensor configurations—models are often trained independently (Morgenthal
et al., 2024), despite underlying shared physical dynamics. This fragmentation is rooted in structural
limitations of conventional time series architectures, which typically assume fixed-length, uniformly
structured inputs and lack mechanisms for fusing information across heterogeneous sensors. Conse-
quently, current paradigms struggle to generalize across tasks, domains, and configurations, posing
challenges to scalability and adaptability.

Foundation models in other modalities In contrast, fields such as natural language processing,
computer vision, and audio have undergone transformative progress with the emergence of foundation
models—large-scale, pre-trained architectures that learn general-purpose representations across
diverse downstream tasks (Devlin et al., 2019; Nussbaum et al., 2025; Assran et al., 2023; Kirillov
et al., 2023; Baevski et al., 2020; Brown et al., 2020; Radford et al., 2021). These models, often trained
via Self-Supervised Learning (SSL) on massive unlabeled corpora, have demonstrated capabilities
such as Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) and robust task transfer via
lightweight fine-tuning (Devlin et al., 2019; Oquab et al., 2023; Kirillov et al., 2023). Their success
hinges on learning semantically meaningful representations that are modular, robust, and highly
transferable.

Foundation models for time series forecasting Inspired by these advances, the time-series com-
munity has begun developing foundation models, with a strong emphasis on supervised forecasting
objectives (Das et al., 2024; Woo et al., 2024b; Ansari et al., 2024; Liu et al., 2024). These models
achieve impressive performance on predictive benchmarks and introduce architectural innovations
tailored to multi-domain forecasting. However, because their training remains tightly coupled
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to a forecasting loss, the learned representations are often specialized and brittle—limiting their
applicability to downstream tasks such as classification, segmentation, or anomaly detection.

Foundation embedding models for time series Most self-supervised foundation models for time
series rely on objectives such as masked reconstruction or next-step forecasting, which require
the encoder to impute raw signal values. These signals are often noisy, low-resolution, and entan-
gled with domain-specific artifacts (Trirat et al., 2024), resulting in representations that overfit to
sensor-level noise rather than capturing higher-level process dynamics. While such objectives are
straightforward to implement, they tend to entangle semantic structure with noise, limiting robustness
and generalization across tasks or domains. Recent approaches such as MOMENT (univariate)
(Goswami et al., 2024) and UniTS (multivariate) (Gao et al., 2024a) extend this paradigm with
multi-task or reconstruction-based pretraining and report strong downstream performance, but remain
fundamentally grounded in raw signal-level prediction for pretraining.

JEPA-style latent prediction: a robust alternative In contrast, Joint Embedding Predictive
Architectures (JEPA) (LeCun, 2022) adopt a fundamentally different approach: predicting latent
representations of masked target segments from contextual embeddings rather than raw values. By
operating entirely in embedding space, JEPA filters out sensor noise and encourages the encoder to
model higher-level temporal structure. In vision, this paradigm has proven highly effective—Assran
et al. (2023) demonstrate that latent prediction yields representations that rival or surpass those
learned via supervised learning, while remaining more robust to noise and label scarcity. Compared
to contrastive learning, JEPA-style models also avoid the complexity of negative sampling and the
sensitivity to embedding space dimensionality, making them a more stable and scalable choice for
semantic representation learning.

Lack of channel-awareness in time series models Most time series models treat all input channels
uniformly as uncategorized streams of sensor data, without incorporating information about the
identity, modality, or semantics of the sensors generating the data. This lack of sensor-awareness
discards valuable contextual information, limiting the model’s ability to reason about sensor-specific
behavior or operate reliably across deployments with varying instrumentation.

1.1 CONTRIBUTIONS

This work aims to (1) develop a robust, semantically grounded SSL objective for time series data,
and (2) design an architecture capable of directly incorporating textual channel information. This
is inspired by how subject matter experts interpret time series data, by jointly considering the raw
signals and their accompanying channel descriptions. To this end, we introduce a CHannel-Aware
Representation Model (CHARM), trained to produce domain-aware, and performant representations
across tasks and datasets. Building such a model entails several key challenges, including channel
heterogeneity, variation in temporal dynamics across domains, and risks of negative transfer and
representational collapse. To realize these aims, we introduce the following core contributions:

Description-aware temporal featurization We modify temporal convolutional networks to incor-
porate channel descriptions directly into the convolutional layers. Unlike patch-based approaches,
our stacked, description-aware convolutions allow the model to seamlessly adapt across domains
without manual tuning of patch size. Details are provided in Section 2.1.1.

Inter-channel reasoning via attention and gating We augment the standard attention mechanism
with novel, learnable inter-channel attention layers and gating modules conditioned on channel
descriptions. These components enable the model to flexibly capture inter-channel dependencies,
selectively integrate signals in a structured manner, while maintaining invariance to channel ordering.
See Section 2.1.2 for details.

Self-supervised training with JEPA for time series We adapt the JEPA to the time series domain,
enabling semantic representation learning without reconstruction. To do so, we introduce a set of
tailored data augmentations and temporal perturbations that improve robustness to common time
series artifacts. This avoids the drawbacks of contrastive learning, such as sensitivity to sampling and
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Figure 1: Overview of the model architecture, featuring a context-aware temporal convolutional network and a
series of contextual attention layers, each guided by textual descriptions of the input time series channels.

Figure 2: Schematic of the context-aware temporal convolutional network, performing initial featurization of
multivariate time series inputs guided by granular textual descriptions of each channel.

dimensionality constraints (LeCun, 2022; Assran et al., 2023; Chen et al., 2020; 2022; Chuang et al.,
2020). Details are provided in Section 2.2.

We evaluate our model across a range of downstream tasks, including classification, forecasting, and
anomaly detection. Our approach consistently achieves strong performance across diverse datasets,
underscoring the effectiveness of both the model architecture and the training strategy.

2 METHODOLOGY

In this section, we first introduce a novel multi-modal transformer-based architecture for learning
embeddings from time series data, guided by underlying channel descriptions (Section 2.1). We then
describe how this architecture is trained using self-supervised learning with JEPA (Section 2.2). The
notation used throughout this section is provided in Appendix B.

2.1 MULTI-MODAL TIME SERIES EMBEDDING MODEL

Here, we present three key architectural contributions that enable learning high-quality time series
embeddings by incorporating textual channel descriptions. Our model employs convolutional layers
in conjunction with a series of custom attention layers, enhanced by a novel attention mechanism. An
overview of the full architecture is provided in Figure 1.

We begin by describing the contextual temporal convolutional network in Section 2.1.1, which
generates convolution-based embeddings. These embeddings are then passed to a series of contextual
attention layers, where our novel attention mechanism is applied. We describe the details of this layer
in Section 2.1.2, where we introduce two core extensions to the self-attention mechanism in sections.
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2.1.1 CONTEXTUAL TEMPORAL CONVOLUTIONAL NETWORK

We introduce a contextual Temporal Convolutional Network (TCN) that projects input time series
T ∈ RT×C into contextual embeddings Tc ∈ RT×C×H , where Tc[i, j, :] denotes the H-dimensional
embedding at time step i for channel j. The base architecture follows standard dilated TCNs (Bai et al.,
2018; Lin et al., 2021), which stack 1D convolutions with exponentially increasing dilation factors
(2l). However, standard TCNs are architecturally static and their learned kernels are input independent
and constant. This lack of flexibility hinders their ability to adapt across diverse domains, leading
to representation collapse or negative transfer when trained on heterogeneous datasets. To address
this, we make the TCN context-aware by incorporating channel descriptions into the convolutional
process. Given a time series tuple t = (T,D,pos) (see Figure 7), we extract text embeddings for the
descriptions using a frozen text embedding model, as Ed ∈ RC×De . We introduce two mechanisms
to inject this context, namely:

Contextual kernel gating Description embeddings are used to conduct soft gating through the
layers of the TCN. The gates are produced by the kernel gating network in Figure 2, which is given
as Gc = sigmoid(EdWg),Wg ∈ RDe×N , with N denoting the number of stacked convolutional
layers in the TCN. Each element Gc[i, j], which corresponds to the soft gate associated with channel
i and layer j of the TCN which is then incorporated multiplicatively in the network as depicted
in Figure 2. This enables the model to control the effective field of view of TCN informed by the
channel descriptions.

Contextual kernels Rather than learning fixed convolutional filters, we generate them from the
descriptions embeddings as Gk = EdWk,Wk ∈ RDe×(H×K

N ), where K is the kernel size and N
the number of TCN layers. This mechanism directly ties channel semantics to filter generation and is
represented by the kernel network in Figure 2.

2.1.2 CONTEXTUAL ATTENTION LAYER

The embeddings generated by the contextual TCN layer are subsequently processed through a
sequence of contextual attention layers. The primary goal of these layers is to effectively fuse channel
and temporal dimensions into richer, more expressive representations, directly incorporating the
granular textual descriptions of each channel. To achieve this, we propose several novel extensions to
the classical self-attention mechanism (Vaswani et al., 2017). These and their inter-play are depicted
in Figure 1, under the contextual attention layer. Below we discuss the key details of these key
components in detail.

𝐷!

𝐶
EdE

T
d 𝐶

𝐶

Bilinear 
Layer

𝐶

𝐶

Ed[i, :]WbEd[j, :]
T

ReLU(..... − .....)

Inter-channel Attention Gate

Figure 3: Description-aware gating mecha-
nism, selectively suppressing cross-channel
attention.
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𝐶
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Figure 4: Symmetric construction of inter-channel
temporal-offset attention, encoding mutual dependen-
cies between channels at varying time lags.

Description-aware inter-channel attention gating This module introduces a gating mechanism
conditioned explicitly on channel descriptions, enabling our architecture to selectively co-attend
to the most relevant channels. Given the channel description embeddings Ed, this layer computes
the pairwise similarities, S, and the similarity threshold matrix, Z, as S = EdE

⊤
d , Z[i, j] =

sigmoid
(
Ed[i, :]Wb Ed[j, :]

⊤). The similarity threshold matrix governs our inter-channel gating
mechanism. Specifically, this layer outputs the gating matrix given as Gd = ReLU(Z − S). This
process, illustrated in Figure 3, allows the model to selectively suppress cross-attention between
channel pairs (i, j) by driving their corresponding similarity threshold Z[i, j] toward one.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Description-aware inter-channel time-offset attention This module improves the model’s ability
to capture inter-channel relationships by explicitly quantifying dependencies between channels at
different temporal offsets. Specifically, we introduce a learnable tensor ∆ ∈ RC×C×2Tmax , where
each entry ∆i,j,t encodes the learned dependency strength between channel i and channel j at
a temporal offset of t steps. We assume inherent symmetry within ∆, reflecting the intuition
that the relationship from channel i to channel j at step t should match the inverse relationship
from channel j to channel i at step −t, formally as ∆i,j,t = ∆j,i,−t. To explicitly enforce this
symmetry, we follow a structured construction procedure. Given the channel description embeddings
Ed, we first create a pairwise embedding tensor Ēd ∈ RC×C×2De defined by concatenation as
Ēd[i, j, :] = [Ed[i, :],Ed[j, :]] ∈ R2De .

Next, we apply a linear projection to these pairwise embeddings, parameterized by the matrix
Wd ∈ R2De×Tmax , yielding the intermediate tensor ∆+ = Ēd Wd. We then construct the full
symmetric tensor ∆ as below

∆[i, j, t] =

{
∆+[i, j, t] if t ≥ 0,

∆+[j, i,−t] if t < 0.

This symmetric construction, depicted in Figure 4, ensures parameter efficiency and explicitly
encodes symmetry constraints. We compute the final ∆̄ ∈ RCT×CT matrix using a "slice-and-
tile" operation, where ∆̄ is a block matrix with T blocks on each axis, and in block notation
∆̄[Ti, Tj ] = ∆[:, :, Tj − Ti]. See Section C.5.1 for PyTorch style pseudocode for the naive and fast
versions of this operation.

Custom attention mechanism We unify the gating and attention mechanisms described above
into a single self-attention framework. Given embedding matrix the contextual TCN layer, Tc, we
reshape it into X ∈ RCT×H , where each channel-time pair is represented by an H-dimensional
embedding. To facilitate intuitive indexing, we employ a triple-index notation X[(ci,tj),k] rather than
a flattened indexing scheme X[m, k], with ci = m mod C and tj = ⌊m

C ⌋. First we apply rotary
position embeddings to the queries and keys given the pos indices as:

Q̂ = RoPE(WQX[(i,p),:],pos), K̂ = RoPE(WKX[(j,q),:],pos)

The custom attention matrix A ∈ RCT×CT is then constructed as

A[(i,p),(j,q)] = Softmax




Q̂[i,p,:]K̂
T
[j,q,:]√

De︸ ︷︷ ︸
Vanilla Self-Attention

+∆[i, j, q − p]︸ ︷︷ ︸
Channel Lags

−λGGd[i, j]︸ ︷︷ ︸
Channel Gates




Here, A[(i,p),(j,q)] represents the attention from channel i at time p to channel j at time q. The
scalar λG is typically a large positive number, enabling the gating matrix to serve as an attention
mask, selectively blocking certain cross-channel interactions based on the learnt thresholds. The
attention matrix can be efficiently computed using vectorized operations by appropriately tiling
the inter-channel gating and time-offset matrices. Following the standard transformer approach,
we multiply the attention matrix by the value matrix V = WV X to produce our contextualized
embeddings.

2.1.3 PUTTING IT ALL TOGETHER

This completes the integration of the various components within our multimodal time-series embed-
ding architecture. For a given input tuple t = (T,D,pos), we first generate the initial embeddings
X ∈ RT×C×H from our contextual TCN layer. These embeddings pass through a stack of N
contextual attention layers, each layer outputting X(l) ∈ R(T×C)×H , reshaped to Y(l) ∈ RT×C×H

for subsequent layers. Similar to (Grill et al., 2020a), we apply ℓ2 normalization to the final em-
beddings: Y[i, j, t] = Y[i,j,t]√∑

h Y[i,j,h]2
, with normalization computed along the embedding dimension

only. The complete architecture is denoted as Eθ, such that Y = Eθ(T,D,pos). While this
outlines the primary structure of our contextual embedding model, we have also introduced several
nuanced modifications aimed at enhancing training stability and convergence speed. These detailed
adjustments are presented in Section C.
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2.2 SELF-SUPERVISED REPRESENTATION LEARNING

We adopt the JEPA framework (Assran et al., 2023; LeCun, 2022) to enable self-supervised learning
on time series data enriched with fine-grained textual context. JEPA comprises three core components,
namely predictor, context, and target encoders. In the following section, we detail the key components
of our training pipeline based on JEPA, namely, (i) the dataset generation process in Section 2.2.1, (ii)
the integration of JEPA with our embedding model in Section 2.2.2, and (iii) a novel loss formulation
tailored to JEPA training in Section 2.2.3.

2.2.1 DATASET GENERATION

Itgt

Ictx

Iprd

JEPA training task

Dataset Generation
IprdIctx

Itgt
Exponential 

moving average

Predictor 
Encoder

Perturbation 
Module

Context 
Encoder

L
Target 

Encoder

Figure 5: JEPA architecture with three encoders pro-
cessing augmented views.

Figure 5 provides a high-level view of JEPA
and the interplay among JEPA’s three encoders,
and how they consume data points generated
by the dataset generation process. For time se-
ries data, we generate augmented views of the
same data point through data augmentation and
perturbation techniques. We refer to the data
augmentation as JEPA training tasks.

Formally, given an input instance t =
(T,D,pos), we define an augmented view of
this instance through three randomly generated
contiguous sets of indices, with Ictx, Itgt, Iprd ⊆
pos, denoting time indices that are fed into the
context, target and predictor encoders. We em-
ploy two self-supervised tasks, namely causal
prediction, where Ictx ⊂ Itgt, and smoothing,
where Ictx ∩ Itgt ̸= ∅ and Iprd ⊂ Ictx ∩ Itgt. See Figure 10 for an overview of the causal predic-
tion (left) and smoothing (right) tasks. The input to the context encoder is further perturbed (see
Section I.1) to encourage the model to learn robust representations under mild corruption.

2.2.2 JEPA SETUP

In JEPA the context and target encoders are architecturally identical. However, only the context
encoder is directly optimized during training while the target encoder is updated using an exponential
moving average of the context encoder’s parameters, see Figure 5. In contrast, the predictor is a
narrow/shallower version of the context encoder which is trained jointly with the context encoder
through standard backpropagation.

To leverage JEPA, we integrate our embedding model within the underlying encoders. Let us denote
the context, target and predictor encoders as, Ec

θ,E
t
θ and Ep

θ , respectively. The context and target
encoders are fully defined by our embedding model as

Xc = Ec
θ(T̄, D̄, Ictx) := Eθ(T̄, D̄, Ictx), Xt = Et

θ(T[Itgt, :],D, Itgt) := Eθ([Itgt, :],D, Itgt)

where Xc ∈ R|Ictx|×C×H and Xt ∈ R|Itgt|×C×H are the outputs from the context and target encoders,
respectively, and D̄ and T̄ ∈ R|Ictx|×C denote the perturbed descriptions and the perturbed time
series data T[Ictx, :]. The predictor encoder accepts the output of the context encoder as input.
Unlike the context and target encoders, the predictor encoder solely leverages the contextual attention
layer. Let Āθ denote the narrower and shallower version of the contextual attention layer. Also
let X̄c = [Xc, mθ, · · · ,mθ︸ ︷︷ ︸

repeated |Iprd| times

] where mθ represents learnable placeholders that guide the predictor

encoder to generate embeddings for masked positions, see (Assran et al., 2023) for more information.
We further define the concatenated set Īprd = Ictx + Iprd. The predictor encoder is then defined as
Xp = Ep

θ(X̄
c, D̄, Īprd) := Āθ(X̄

cWpd, D̄, Īprd)Wpu, where Xp ∈ R|Īprd|×C×H is the output of
the predictor encoder, and Wpu ∈ RHd×H , Wpd ∈ RH×Hd denote linear layers used for up and
down projecting.
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2.2.3 TRAINING LOSS

The training loss for training our embedding model comprises two major components, self-supervised
objectives and regularization terms associated with key modules of the contextual attention layer.

Self-supervised loss Our embedding model produces embeddings at the level of each time point and
each channel. We employ a self-supervised objective based on the ℓ1 norm to measure discrepancies
between embeddings from two augmented views of the same time series instance. To promote
consistency not only at the most granular level but also across coarser aggregations, we extend the
objective to include progressively aggregated embeddings. Let X̄t = Xt[Iprd, :] ∈ R|Iprd|×C×H and
X̄p = Xp[−|Iprd| :, :] ∈ R|Iprd|×C×H . The self-supervised loss is then defined as

Lssl =
∑

i,j,t

∣∣X̄p
i,j,t − X̄t

i,j,t

∣∣+
∑

i,t

∣∣µj

(
X̄p

i,:,t

)
− µj

(
X̄t

i,:,t

)∣∣+
∑

t

∣∣µi,j

(
X̄p

:,:,t

)
− µi,j

(
X̄t

:,:,t

)∣∣

with µj(Xi,:,t) = 1
C

∑
j Xi,j,t, µi,j(X:,:,t) = 1

CT

∑
i

∑
j Xi,j,t. This multi-resolution loss

encourages the model to align representations both at the fine-grained level (per time point and
channel) and at higher levels of abstraction (per time point and globally), thereby enhancing regularity
and usability of the embeddings at different levels of granularity.

Regularization loss We include two regularization terms related to key modules of the contextual
attention layer, namely the inter-channel gating and inter-channel time-offset attention modules.
Given the inherent sparsity in meaningful channel relationships, we promote sparsity in the learned
channel relationships, by regularizing the similarity threshold matrix Z toward 1 and regularizing the
relationships among channels across temporal offsets using

R1 =
∑

i,j

|1− Z[i, j]| , R2 =

∑
i,j

∑
t ∆[i, j, t]2

C2
,

respectively. The regularization term R2 encourages consistency and stability in the learned inter-
channel temporal relationships. Combining these loss terms results in the following training objective
function to be applied across all data points L = Lssl + λ1R1 + λ2R2, where λ1 and λ2 control the
extent and strictness of gating and temporal attention suppression.

3 EXPERIMENTS

In this section, we evaluate our model’s embeddings on common downstream tasks, namely classifica-
tion, forecasting, and anomaly detection, and benchmark our model against the current state-of-the-art
models in each of the aforementioned downstream tasks. We expand on our datasets in Section H, and
provide more details on downstream task training and baselines in Section J and Table 10 respectively.

Forecasting We evaluate forecasting on the LSF benchmark suite (Wu et al. 2021, ETTh1/2,
ETTm1/2, Weather) in the standard multi-horizon, multivariate setting with horizons 96/192/336/720.
We compare against state-of-the-art foundation time-series models that are either (i) pre-trained for
forecasting or (ii) pre-trained for representation learning and evaluated via dataset-specific linear
probing (LP).

To produce point forecasts with CHARM, we consider three variants: (1) CHARM+LP — dataset-
specific linear probes trained on frozen CHARM embeddings; (2) CHARM + NLH — a single,
dataset-agnostic non-linear forecaster trained on frozen CHARM embeddings; and (3) CHARM +
NLH FT — end-to-end training that back-propagates through CHARM to align the embeddings with
the point-forecast objective. Per-dataset means (averaged across horizons) are reported in Table 1.

Dataset CHARM
Toto Moirai_Small Moirai_Base Moirai_Large TimeMixer++ VisionTS MOMENT-LP PatchTST-LP CHARM + LP CHARM+NLH CHARM+NLH FT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 0.224 0.245 0.242 0.267 0.238 0.261 0.263 0.271 0.226 0.262 0.269 0.292 0.228 0.266 0.233 0.270 0.230 0.262 0.230 0.262 0.222 0.255
ETTm1 0.396 0.378 0.448 0.410 0.382 0.404 0.390 0.389 0.368 0.378 0.373 0.371 0.344 0.379 0.350 0.382 0.413 0.432 0.416 0.437 0.411 0.428
ETTm2 0.266 0.303 0.322 0.319 0.302 0.295 0.285 0.320 0.269 0.320 0.281 0.321 0.259 0.318 0.262 0.322 0.209 0.298 0.220 0.304 0.208 0.299
ETTh1 0.435 0.413 0.400 0.423 0.432 0.440 0.510 0.469 0.395 0.419 0.392 0.405 0.418 0.422 0.428 0.438 0.554 0.532 0.592 0.555 0.557 0.526
ETTh2 0.349 0.363 0.341 0.379 0.346 0.382 0.354 0.377 0.339 0.380 0.333 0.374 0.352 0.395 0.365 0.386 0.324 0.386 0.323 0.385 0.316 0.381

Table 1: Per-dataset mean MSE/MAE (lower is better). Bold = best, underline = second-best. The last three
methods are grouped as Ours: CHARM-LP, CHARM + Non-linear Head, and Fully Fine-tuned.
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Our fully fine-tuned model attains the lowest MSE on 3/5 datasets, outperforming significantly larger
models trained on substantially bigger corpora (e.g., Toto and Moirai). By contrast, MAE leaders
skew toward models optimized with MAE-aligned objectives (e.g., Toto, VisionTS, and Morai), which
explains our relative MAE gap under an MSE-optimized head. See Section J.3 for forecasting-head
details, training setup. Disaggregated results can be found in Table 23.

Method Wins↑ Avg. Acc.↑ Total Correct↑
TS2Vec 2 78.1 7467
T-Loss 3 72.8 7141
TS-TCC 2 74.4 7118
T-Rep 3 78.5 7363
MOMENT 3 72.5 5414
MiniROCKET 4 77.6 7569
CHARMfrozen+SVM 4 79.6 7431
CHARMfinetuned 5 80.9 7799

Table 2: Multivariate Classification Results.

Classification We evaluate our model on mul-
tivariate time series classification using the UEA
dataset (Bagnall et al., 2018), benchmarking
against semantic and reconstruction-based rep-
resentation learning methods as well as special-
ized classification models. Results are summa-
rized in Table 2. We test two protocols: (i)
frozen encoder embeddings passed to an SVM
with an rbf kernel, and (ii) a finetuned encoder
with a linear classification head trained via cross-
entropy loss. Finetuning yields substantial gains over the frozen setting and baselines, achieving
the highest number of wins, average accuracy, and unnormalized correct predictions. Against
MiniRocket—a SOTA task-specific method—our frozen model is competitive despite MiniRocket’s
stronger raw scores (see Table 13), showing that our pretraining produces strong embeddings without
task-specific adaptation. With finetuning, performance improves across all metrics, particularly in
unnormalized scores (see Table 15), providing evidence that post-training alignment can substantially
enhance downstream task performance.

Method F1↑ FAR↓ MAR↓

MSCRED 0.36 49.94 69.88
T-Rep 0.78 12.60 28.51
MOMENT0 0.79 14.20 26.98
TS2Vec 0.79 12.77 27.61
MOMENTLP 0.82 15.52 20.73
CHARM 0.86 19.35 12.69

Table 3: 34 SKAB Anomaly Detection Datasets

Anomaly Detection We use two tasks to evaluate our
model’s performance on anomaly detection. We use the
Skoltech Anomaly Detection Benchmark (SKAB), to as-
sess performance on real world multivariate datasets, as
well as the popular UCR univariate anomaly detection
dataset. For i) SKAB, we use baselines that consist of
classical anomaly detection, CNN/LSTM based models,
as well as more recent representation learning models. We
reproduce these baselines by training a linear reconstruc-
tion head on each of the 34 datasets in SKAB, and evaluating on the corresponding test instances.
The evaluation setup in the SKAB test suite is uniformly applied to all models, which relies on using
the errors at each time point in the test set to classify anomalies based on selecting an appropriate
threshold (Section J.2). The setup for the reconstruction head (including optimization setup) is
identical for all baselines for which the SKAB results were obtained by training1. As seen in Table 3,
CHARM has the highest F1 score, followed closely by MOMENT, demonstrating strong performance
on multivariate anomaly detection.

Method F1↑

Anomaly Transformer 0.485
DGHL 0.415
GPT4TS 0.479
TimesNet 0.627
MOMENT 0.684
CHARM 0.754

Table 4: 46 UCR Univari-
ate Datasets

For (ii) UCR, we train our model with a reconstruction head on 46 UCR
univariate anomaly detection datasets, which come from a diverse set of
domains with varying types of anomalies. We benchmark our model against
both task-specific anomaly detection methods and representation learning
approaches, using the average adjusted F1 score as the standard evaluation
metric. We report the per dataset scores, and wins in Table 16. Table 4 shows
that CHARM has the highest average F1 score across all datasets.

3.1 ABLATIONS

To assess the impact of our architectural contributions, we conduct a series of ablation studies
that isolate the benefits of (i) incorporating the proposed featurization layer based on temporal
convolutional networks (TCNs) and (ii) modifying the text-based attention mechanism. Additional
details on ablations experiments—covering description quality, choice of textual embedding model,
comparison to naive text integrations, and the full experimental details—are reported in Appendix K.

1MOMENT0 is used directly in reconstruction mode with no training, whereas MOMENTLP’s reconstruction
head is trained for each SKAB dataset, similar to other models.
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Category Configuration # Correct Accuracy
ETTh1Tf=168

MSE
ETTh1Tf=168

MAE
ETTh2Tf=168

MSE
ETTh2Tf=168

MAE

Featurization Layer w/ Patching 4200 63% 0.54 0.58 0.79 1.18
TCNno text 4713 68% 0.54 0.61 0.62 1.18

TCN Variants
TCNno text 4713 68% 0.54 0.61 0.62 1.19
TCNgate 4732 69% 0.52 0.56 0.74 1.04
TCNconv 4897 71.4% 0.42 0.49 0.57 0.80

Text Attention

∅ (vanilla self-attn) 4563 67.9% 0.46 0.50 0.64 0.93
∆ 4643 68.6% 0.50 0.55 0.68 0.97
G 4785 69.8% 0.46 0.51 0.59 0.94
∆+G 4897 71.4% 0.42 0.49 0.57 0.80

Table 5: Unified ablation study results.2 Top section compares TCN-based featurization to patching, middle
section compares TCN variants, and bottom section evaluates different text attention mechanisms. We evaluate
classification and forecasting metrics (ETTh1, ETTh2, horizon Tf = 168) (see Section K for full details).
Featurization Layer: w/Patching : using vanilla patch embedding layer; TCNno text = w/o text layers;
TCN Variants: TCNno text = w/o text layers; TCNgate = w/ text gating; TCNconv = w/ text-based convolutions.
Text Attention: G = text gating in attention layer; ∆ = time-delta in attention layer.

Table 5 demonstrates that augmenting the vanilla time-series transformer architecture with our
proposed text-based components yields consistent and substantial performance gains across both the
featurization layers, as well as the attention layers.

Figure 6: Evolution of Channel Gates for the ETT Dataset. A causal structure evolves over training, where
the target causal variable Oil Temperature attends to all other independent channels but not vice versa.
Extended discussion on evolution of channel gates can be found in Section L.2.

4 CONCLUSION

In this paper, we introduced CHARM, a foundation embedding model for multivariate time series
that combines a description-aware temporal convolutional network with contextual attention over
textual channel metadata. Using a JEPA-inspired self-supervised objective, CHARM learns enriched
representations that go beyond reconstruction- or contrastive-based methods. Across diverse datasets
and tasks, CHARM achieves competitive performance, with ablations confirming the importance of
text featurization and attention layers. Furthermore, its heatmap visualizations (see Figure 6) provide
interpretable insights into cross-channel dynamics.

As the first model to incorporate granular textual information into foundational time-series embed-
dings, CHARM opens promising avenues for deeper multimodal integration, multi-task architectures,
and retrieval-augmented interpretive frameworks. At the same time, the model is constrained by its
limited context length: it operates on the full-resolution input of length Teff = T × C, computing
attention scores across all channel–time pairs. Future work will explore more efficient attention
mechanisms to improve scalability to longer horizons and higher-dimensional inputs.

Finally, our results demonstrate that task-specific fine-tuning provides a noticeable lift in both
forecasting and classification performance. This highlights the potential of systematic multi-task
post-training strategies to further boost downstream performance and strengthen the role of foundation
models in time-series analysis.

2Featurization Layer and TCN ablations uses ∆+G; Text Attention ablations use TCNconv
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5 LLM USAGE STATEMENT

All authors used large language models to assist with text rephrasing, correction of grammatical
errors, formatting, proof-reading for typos, and LaTeX typesetting.

6 REPRODUCIBILITY STATEMENT

We intend to release the pre-training dataset, including hand-annotated descriptions, along with
performant infrastructure for dataset storage, loading, and preprocessing via GitHub. Since different
datasets in our pipeline are subject to distinct usage licenses, we will additionally provide detailed
guidelines for sourcing datasets that cannot be directly hosted on GitHub.

The architecture and hyperparameter configurations used for pretraining CHARM, as well as for
downstream task-specific heads, are documented in the Appendix. We also include PyTorch-style
pseudocode for the JEPA architecture (see Figure 1), together with efficient vectorized implemen-
tations of the text-attention layers (see Figure 9). We hope that this detailed documentation of
architecture, hyperparameters, and pseudocode will enhance transparency and facilitate understand-
ing of our model.

7 ETHICS STATEMENT

This work presents CHARM, a time series representation learning model developed to advance
research on integrating textual information to enrich representation quality. As with other pretrained
models, risks include the propagation of biases in training data and the environmental costs of
compute-intensive training. To mitigate these concerns, we document data sources, model configura-
tions, and training details to promote transparency. This research is intended for academic use and is
not suitable for deployment in high-stakes decision-making contexts without additional safeguards.
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A RELATED WORK

Historically, recurrent neural network architectures such as RNNs, LSTMs, and GRUs dominated
time series modeling by capturing temporal dependencies through recursive hidden-state updates,
achieving success across diverse tasks (Salinas et al., 2020). However, their sequential nature
impeded parallelization, leading to slow training and difficulties in modeling long-range dependencies
(Kalchbrenner et al., 2016; Pascanu et al., 2013; Zhou et al., 2021a; Kim et al., 2025).

With the emergence of Transformer architectures (Vaswani et al., 2017), significant advancements
have occurred across multiple modalities, including images (Dosovitskiy et al., 2021), audio (Gong
et al., 2021), video (Arnab et al., 2021), text (Devlin et al., 2018; Radford et al., 2018), and speech
(Dong et al., 2018). Inspired by these successes, the time series community has adopted Transformer-
based approaches, leading to notable innovations tailored specifically for temporal data (Zhou et al.,
2021b; 2022; Ilbert et al., 2024; Wu et al., 2021; Zhang & Yan, 2023).

Simultaneously, self-supervised representation learning (SSRL), widely successful in domains such
as vision and language, has demonstrated potential for extracting high-quality embeddings from vast
amounts of unlabeled data. These embeddings facilitate downstream tasks—such as forecasting, clas-
sification, and anomaly detection—through lightweight task-specific heads. Analogous approaches
have been adapted for time series, predominantly using contrastive self-supervised tasks (Yue et al.,
2022; Fraikin et al., 2024; Franceschi et al., 2019; Tonekaboni et al., 2021). However, existing
approaches typically produce models tailored to specific datasets, limiting their generalizability
across arbitrary data sizes or channel configurations.

More recently, foundational models have revolutionized representation learning across natural lan-
guage processing, computer vision, and audio (Devlin et al., 2019; Nussbaum et al., 2025; Assran
et al., 2023; Kirillov et al., 2023; Baevski et al., 2020; Brown et al., 2020; Radford et al., 2021). In
time series analysis, considerable progress has focused primarily on forecasting tasks (Das et al., 2024;
Woo et al., 2024b; Ansari et al., 2024; Liu et al., 2024). Early foundational attempts predominantly
addressed univariate series (Das et al., 2024; Ansari et al., 2024), though recent advancements have
successfully extended to multivariate settings with sophisticated cross-channel modeling techniques
(Woo et al., 2024b; Liu et al., 2024). Some more recent papers Cohen et al. (2025) have gone to
great lengths to fully leverage the scaling laws observed in foundational time series models Edwards
et al. (2025) in order to maximize their performance. Foundation embedding models specifically
targeting time series representation learning have begun to emerge, leveraging reconstruction-based
or next-step forecasting objectives (Goswami et al., 2024; Gao et al., 2024a; Trirat et al., 2024).
However, these approaches either focus on univariate series or treat multivariate data as independent
channels, inadequately capturing complex inter-channel dynamics. This substantially limits the
representational richness and effectiveness of these models in realistic scenarios. See Table 6 for an
overview of capabilities of key time series models.

Joint-Embedding Predictive Architectures have found notable success in visual domains by shift-
ing the learning objective from pixel-level reconstruction to latent-space prediction. Extending this
approach to video, Meta AI’s Video JEPA with Variance–Covariance Regularization (VJ-VCR)
(Drozdov et al., 2024) predicts future frame embeddings in a learned representation space while
enforcing variance and covariance constraints to prevent collapse; this model outperforms generative
reconstruction baselines on downstream tasks such as action recognition and video retrieval by
capturing high-level spatiotemporal dynamics. Extensions such as MC-JEPA (Bardes et al., 2023)
further demonstrate JEPA’s flexibility by jointly learning motion (optical flow) and content features
within a shared encoder–predictor framework, matching or surpassing unsupervised optical flow
benchmarks and improving downstream segmentation tasks. In multimodal settings, TI-JEPA (Vo
et al., 2025) integrates an energy-based JEPA with cross-modal encoders to align text and image
embeddings, achieving superior results on multimodal sentiment analysis and visual question answer-
ing benchmarks by capturing complex semantic correspondences without reconstructing raw inputs.
Complementing JEPA, bootstrapped embedding SSL methods like BYOL (“Bootstrap Your Own
Latent”) (Grill et al., 2020b) train an online network to predict the target network’s representation
of differently augmented views—updating the target via momentum averaging—and achieve strong
results on ImageNet under linear evaluation without requiring negative pairs; this demonstrates that
simple latent-space prediction objectives can match or exceed contrastive and reconstruction-based
approaches in learning robust, generalizable representations. Together, these concrete instantiations
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highlight JEPA’s core advantage of filtering out low-level noise and focusing learning on high-level se-
mantic structure, while bootstrapped SSL offers a practical, decoder-free paradigm for self-supervised
representation learning, and motivate further exploration of these methods for time series.

Multimodal text + time series models Recent works have explored combining textual information
with time series data through several novel approaches. For instance, Jin et al. (2024), Pan et al. (2024),
and Sun et al. (2024) reprogram pretrained LLMs to handle time series input. These approaches
fall under the LLM-for-TS or TS-for-LLM paradigms, where either an LLM is finetuned for time
series data or the time series are transformed into token sequences consumable by an LLM. However,
such methods do not directly leverage textual metadata; rather, they exploit the language modeling
capabilities of models pretrained on large corpora of text. In contrast, Zhou et al. (2023) and Cai
et al. (2023) explicitly incorporate textual information tied to data instances to improve time series
representations, typically through contrastive objectives that align text and time series embeddings in
a shared semantic space.

CHARM takes a fundamentally different approach to incorporating textual information. Instead of
relying on instance-level labels to build contrastive training pairs, CHARM leverages sensor-level
descriptions as metadata. These textual embeddings are integrated directly into the featurization
stage (via TCNs) or used to augment the self-attention mechanism. Rather than aligning modalities,
CHARM learns mappings from textual metadata to guide representation learning. This design enables
CHARM to scale to massive datasets where instance-level text labels are unavailable or impractical,
requiring only sensor descriptions to improve the quality of learned time series representations.

Model Multivariate Channel Mixing Equivariance Foundational Channel Aware
Tloss ✓ ✓ ✗ ✗ ✗
TS2Vec ✓ ✓ ✗ ✗ ✗
TNC ✓ ✓ ✗ ✗ ✗
Autoformer ✓ ✓ ✗ ✗ ✗
FEDformer ✓ ✓ ✗ ✗ ✗
PatchTST ✓ ✗ ✗ ✗ ✗
CrossFormer ✓ ✓ ✗ ✗ ✗
iTransformer ✓ ✓ ✓ ✓ ✗
UniTS ✓ ✓ ✓ ✓ ✗
TimesFM ✗ – – ✓ ✗
MOIRAI ✓ ✓ ✓ ✓ ✗
MOMENT ✗ – ✓ ✓ ✗
TREP ✓ ✓ ✗ ✗ ✗
TOTO ✓ ✓ ✓ ✓ ✗
TimeMixer++ ✓ ✓ ✗ ✗ ✗
CHARM ✓ ✓ ✓ ✓ ✓

Table 6: a) Multivariate: Can handle multivariate data1

b) Channel Mixing: Architecture enables learnable cross-channel interactions2

c) Equivariance: Permuting the channels by a perturbation P ensures the outputs are also identically permuted.
d) Foundational: Can flexibly accept data of any arbitrary number of channels or time window.
e) Channel Aware: Uses sensor information to learn better representations.

B NOTATION

We denote matrices and tensors using boldface capital letters (e.g., T, E), and adopt NumPy-style
indexing and slicing notation. Functions and operators are also denoted by bold capital letters, but
are subscripted with θ to indicate parameterization, e.g., Eθ. The parameters θ may be learnable or
fixed, depending on context. We reserve, W to represent the learnable weights in different layers of
our architecture. An instance of a time series is represented as a tuple t = (T,D,pos). The first
component, T ∈ RT×C , is a matrix of time series measurements, where T denotes the number of
time points and C the number of channels. Each column T[:, i] corresponds to the uni-variate time
series from channel i. The second component, D, is an ordered list of length C, where each entry D[i]
is a textual description of channel i, typically represented as a sentence or short passage. We assume
that the descriptions in D are aligned with the corresponding columns of T. The third component,
pos, represents the positional indices associated with the time series. We assume pos ∈ IT+ such

1Multivariate here simply refers to whether a model can ingest multiple input channels, i.e. whether it can
feasibly operate on a T × C data input, where C > 1. This is independent of whether the model is able to learn
channel interactions, which is explicitly outlined in the channel mixing column.

2We do not consider models that are fundamentally univariate, but perform late fusion of channels at the
representation level (by pooling for example), to be capable of channel mixing.
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that |pos| = T . If not explicitly provided, we default to pos = [0, 1, . . . , T−1]. We denote the
maximum time window size considered in our framework as Tmax.

Figure 7: Visualized representation of our data structure. Note, that T ∈ RT×C , |D| = C, and pos ∈ RT

C IMPLEMENTATION DETAILS

We attempt to follow the general set of best practices developed in the field of self-supervised learning,
specifically those applicable to the Self-Distillation (Balestriero et al., 2023) family of algorithms.
We outline the key details here;

1. Optimization Schedule We use an AdamW optimizer to optimize our model. The learning
rate follows a linear warmup followed by a cosine decay.

2. Weight Initialization We use a fixed N (0, 0.02) initialization which is commonly used in
pretraining large transformer models (OLMo et al., 2025).

3. Weight Decay Scheduling We use a cosine schedule for increasing the optimizer’s weight
decay over the course of training which has been shown to be crucial for training stability.

4. EMA Schedule for Target Encoder We use an exponentially moving average with a
momentum schedule that is increased gradually over the course of training.

The weight decay scheduling and EMA schedule are identical to IJEPA (Assran et al., 2023). Besides
sweeping over a few learning rates, we perform no additional hyperparameter tuning on the rest of
the hyperparameters due to limited compute, and list them in Table 7.

C.1 ROTARY POSITION EMBEDDINGS

Rotary Position Embeddings (RoPE) (Su et al., 2024) differ from traditional additive positional
embeddings in that they encode positional information by rotating the query and key vectors in
a structured, position-dependent manner. Unlike fixed or learned additive embeddings, RoPE is
applied at each layer of the self-attention computation, allowing the model to encode relative position
information directly into the attention mechanism.

Let Q,K ∈ RB×T×D denote the queries and keys, where B is the batch size, T is the sequence
length, and D is the hidden dimension. After linear projection and splitting into H attention heads:

Qh,Kh ∈ RB×T×d, with d = D/H

RoPE applies a deterministic rotation to each head’s query and key vectors. For each position t and
dimension index i, the rotation is defined as:

RoPE(xt)[2i] = xt[2i] cos(θt,i) + xt[2i+ 1] sin(θt,i) (1)
RoPE(xt)[2i+ 1] = −xt[2i] sin(θt,i) + xt[2i+ 1] cos(θt,i) (2)

θt,i = t · ωi, ωi = 10000−2i/d (3)
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where xt denotes the tth token’s vector (query or key), and ωi are predefined inverse frequency terms.

In our implementation, we operate on inputs of shape X ∈ RB×T×C×d, where C represents the
number of channels or sensors. To apply RoPE consistently across all channels, we broadcast the
position encodings across the channel axis:

P̃b,t,c,: = Pt,:, ∀ b ∈ [1, B], c ∈ [1, C], t ∈ [1, T ] (4)

or equivalently, using broadcasting semantics:

P̃ = P[t, :] −→ RB×T×C×d (5)

This results in a broadcasted position encoding tensor P̃ where the same temporal position vector
Pt,: is shared across all channels at time t, effectively associating the same position ID to multiple
sensor tokens that occur at the same timestep.

C.2 TEXT CONVOLUTION LAYER

C.2.1 CONTRAST TO OTHER FEATURIZATION METHODS

Unlike typical TCNs, we concatenate activations across all intermediate layers to form a rich initial
representation, see Figure 2. Our contextual TCN layer early in our model architecture closely relates
to the concept of patching. Several recent foundation models for time series create non-overlapping
static patches and project them through a single linear layer, e.g., (Das et al., 2024; Nie et al., 2023a;
Woo et al., 2024b). These approaches can be generalized by interpreting convolution kernels as
learnable linear mappings applied to strided segments of the data. Thus, our TCN layer represents a
generalized, channel-aware extension of the patching concept.

C.2.2 IMPLEMENTATION

To compute convolutions efficiently across all sensors and batches, we stack the convolutional kernels
corresponding to each sensor description and reshape the input to treat the B × C ×H channels as
independent time series. We then apply a grouped 1D convolution using F.conv1d with B×C×H
groups, where each element in the original [B, T,C,H] input is treated as a separate time series
along the time axis. This allows us to apply distinct filters for each batch, channel, and embedding
dimension in parallel.

C.2.3 INITIALIZATION

Despite the effectiveness of this mechanism, careful numerical stabilization of the convolution kernels
is essential. To achieve this, we first apply a non-parametric LayerNorm to z-normalize the sensor
embeddings, Ed. The projection matrix within the kernel network is then initialized using Xavier
normal initialization (Glorot & Bengio, 2010). Subsequently, we re-normalize the resulting kernels
Wk as

Wk = LayerNorm(Wk) ·
√

2

K
Since our TCN layer employs GeLU nonlinearities, this initialization approach aligns with Kaiming
initialization principles, (He et al., 2015), and ensures stable activations, preventing them from
progressively exploding or vanishing across convolution layers.

C.3 MODEL SIZING

For the given hyperparameter set N = 8, d = 128, ffdim = 4d, our pretrained model is ∼7.1M
parameters.

C.4 ADDITIONAL MODIFICATIONS TO THE TRANSFORMER LAYERS

In line with recent developments in large scale pretraining of transformer based architectures, we
implement several modifications that diverge from the original transformer architecture.
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SwiGLU We replace the regular feedforward layers with a SwiGLU feedforward layer.

QK-norm We add a pre-attention layernorm to the queries and keys.

Rotary Position Embeddings Instead of using sinusoidal positional embeddings, we use rotary
positional embeddings which are applied on the queries and keys at every layer. The positional
indices are provided through the pos argument.

Reordering Sublayers We experiment with using 3 approaches to assess the optimal configuration
of the transformer sublayers.





x = norm(x+ SubLayer(x)) Post Norm
x = x+ SubLayer(norm(x)) Pre Norm
x = x+ norm(SubLayer(x)) Swin Norm

(6)

In the case of Pre Norm and Swin Norm, we also experiment with adding LayerNorms in the main
transformer branch every n layers, to ensure further stability.

C.5 EFFICIENT COMPUTATION TECHNIQUES

C.5.1 SLICE AND TILE ATTENTION LAYERS

To vectorize the process of generating the full ∆̄ tensor, we provide the pytorch pseudocode versions
of the naive and vectorized versions in Figure 8 and Figure 9.

Figure 8: Naïve attention-weight matrix construction

1 def build_attention_weight_matrix(time_deltas: Tensor,
2 T_proj: Tensor) -> Tensor:
3 """
4 Constructs the full attention weight matrix by explicit loops.
5 Args:
6 time_deltas: LongTensor, shape (T, T)
7 T_proj: Tensor, shape (B, C, C, 2*T - 1)
8 Returns:
9 attn: Tensor, shape (B, C*T, C*T)

10 """
11 B, C, _, T1 = T_proj.shape
12 T = time_deltas.size(0)
13 assert 2 * T - 1 == T1
14

15 attn = torch.zeros((B, C * T, C * T), device=T_proj.device)
16 for i in range(T):
17 for j in range(T):
18 delta = time_deltas[i, j].item()
19 block = T_proj[..., delta] # (B, C, C)
20 attn[..., i*C:(i+1)*C, j*C:(j+1)*C] = block
21 return attn

D JEPA

D.1 DATASET GENERATION

The core principle of JEPA-based self-superived training involves producing representations for
two augmented views originating from the same data instance. JEPA training aims to minimize a
discrepancy measure (e.g., ℓ1 or ℓ2) between these representations. In vision, these views commonly
result from image augmentations such as jittering, masking, or cropping.

Figure 10 presents a visual representation of our JEPA tasks, which rely on learning 1) causal
representations and 2) smoothing representations.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Fast attention-weight matrix construction

1 def build_attention_weight_matrix_fast(time_deltas: Tensor,
2 T_proj: Tensor) -> Tensor:
3 """
4 Block-wise assembly via tensor indexing and reshape.
5 """
6 B, C, _, T1 = T_proj.shape
7 T = time_deltas.size(0)
8 assert 2 * T - 1 == T1
9

10 # 1) Flatten index grid
11 flat_idx = time_deltas.view(-1) # shape (T*T,)
12

13 # 2) Gather all needed projection slices at once
14 gathered = T_proj.index_select(dim=-1, index=flat_idx)
15 # result: (B, C, C, T*T)
16

17 # 3) Reshape to (B, C, C, T, T)
18 gathered = gathered.view(B, C, C, T, T)
19

20 # 4) Reorder to (B, T, C, T, C)
21 gathered = gathered.permute(0, 3, 1, 4, 2)
22

23 # 5) Collapse blocks into (B, C*T, C*T)
24 return gathered.contiguous().view(B, C * T, C * T)

ItgtIctx Iprd

ItgtIctx Iprd

Figure 10: JEPA Tasks Visualized : Causal Prediction (left) Smoothing (right)

D.2 JEPA ENCODERS – DEEP DIVE

In this section we dive a bit deeper into our implementation of the JEPA framework. We denote the
TCN layer that featurizes our input time series as F and our encoder stack (of N layers), as E.

As outlined earlier, our featurizing layer converts a multivariate time series instance to an embedded
version of the time series with the same leading dimensions, i.e.;

F : RT×C → RT×C×H

On the other hand our encoder ingests the embedded time series and returns a contextually embedded
time series while maintaining the same output dimensions i.e.;

E : RT×C×H → RT×C×H

Given this notation, our 3 JEPA networks (Context, Target, Predictor) can be represented as:

Context ⇒ [F → E1] (7)
Target ⇒ [F → E1] (8)

Predictor ⇒ [DownProj → E2 → UpProj] (9)

Now, with this featurization and encoder layer stack, we provide a PyTorch style pseudocode of
the JEPA framework, i.e. the data flow between the Context, Target, and Predictor encoders in
Section D.2, Section D.2, and Section D.2.
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Category Hyperparameter Value

Optimization Schedule

Optimizer AdamW
ϵ 1e-8
β1 0.95
β2 0.99

epochs 100
gradient clipping 2.0

λ1, λ2 1e-5
batch size 3 4

gradient accumulation 2

Scheduler

starting LR 1e-8
final LR 1e-6

starting weight decay 0.04
final weight decay 0.4

learning rate schedule linear warmup → cosine decay
weight decay schedule cosine

fraction of warmup epochs 0.1
scale factor 4 1.25

Data

window size 512
stride 128

minimum samples per dataset 400
maximum samples per dataset 1000

SSL Task Parameters

number of targets 4
Cmin 0.3
Cmax 0.4
Tmin 0.1
Tmax 0.2

JEPA Architecture

encoder layers 8
predictor layers 4

encoder dim 128
predictor dim 64

Model Architecture

feedforward layer SwiGLU
ff_dim_multiplier 4
attention dropout 0.01

norm non-parametric layernorm
attention configuration pre-norm

Table 7: Hyperparameters for full training pipeline

1 class ContextTgtEncoder:
2 def forward(self, x, ctx_idx):
3 """
4 x : [..., T, C]
5 """
6 x = self.featurizer(x)
7 for layer in self.encoder_layers:
8 x = layer(x, ctx_idx)
9 return x

Figure 11: Context and Target Network
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1 class Predictor:
2 def forward(self, ctx_embeds, ctx_idx, target_idx):
3 """
4 embeds : [..., T, C, H]
5 target_pos : [..., T2]
6 """
7 x = self.downproj(ctx_embeds) # [..., T, C, H1]
8 mask_tokens = broadcast(self.mask_token, target_idx) # [..., T2,

C, H1]
9

10 x = concat([x, mask_tokens]) # [..., T+T2, C, H1]
11 pos = concat([ctx_idx, target_idx])
12

13 for layer in self.encoder_layers:
14 x = layer(x, pos)
15 x = self.upproj(x) # [..., T+T2, C, H]
16 x = x[..., -target_idx.size(-2):, :, :] # [..., T2, C, H]
17 return x

Figure 12: Predictor Network

1 class JEPA:
2 def __init__(self):
3 self.context_encoder = ContextTgtEncoder()
4 self.target_encoder = copy_and_freeze_params(self.context_encoder

)
5 self.predictor = Predictor()
6

7 def forward(self, x, ctx_idx, tgt_idx):
8 """
9 x : [..., T, C]

10 """
11

12 # get full embeddings
13 full_embeds = self.target_encoder(x)
14

15 # get context embeddings
16 context_embeds = self.context_encoder(x[..., ctx_idx, :])
17

18 # get predicted embeddings
19 predicted_embeds = self.predictor(context_embeds, ctx_idx,

tgt_idx)
20 target_embeds = full_embeds[..., tgt_idx, :, :]
21

22 # compute loss
23 loss = loss_fn(predicted_embeds, target_embeds)
24 return loss

Figure 13: JEPA

E HARDWARE

We use a cluster of 8 80GB NVIDIA A100 GPUs. We use Distributed Data Parallelism to speed up
training, along with bf-16 mixed precision. Our models are implemented in PyTorch (Paszke et al.,
2019), and training is done with PyTorch lightning (Falcon & The PyTorch Lightning team, 2019).
We handle our configuration management using gin configs.
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F LIMITATIONS

The primary limitations of our model are:

1. Limited context lengths
Given our model’s architecture, we are required to compute attention scores over the entire
C × T input. As we do not rely on downsampling/patching, we compute the full O(C2T 2)
attention matrix, which can be prohibitively large, especially for datasets with a large
number of unrelated channels, or extremely long time horizons. Potential workarounds to
this are computing the attention scores for only relevant channel pairs, based on pre-filtering
similar channels based on the channel gating scores (high gating scores effectively clamp the
attention scores completely, and self attention between these channels is effectively wasted
compute). For large time horizons, a downsampling/patching layer can be appended to the
encoder stack prior to the TCNs to operate on a lower effective time window.

2. Access to sensor descriptions
As our model leverages channel descriptions directly in the featurization, and attention layers,
we require access to high quality sensor descriptions that are provided with the dataset.
Through our ablations conducted in Section K, we observe that noisy/arbitrary descriptions
result in a moderate drop in model performance, thus highlighting the need for accompanying
good enough quality descriptions. While such metadata is commonly available in practice,
this requirement poses an overhead requirement for training and utilizing CHARM. For
the UEA dataset, which provides detailed descriptions of each dataset in an accompanying
document, we manually curated the sensor descriptions, which was a time consuming, and
labor-intensive effort, and is not scalable to large unlabeled datasets.

G MODEL COMPLEXITY

Our pretraining was conducted on 8 A100 GPUs over approximately 18 hours, inclusive of minor
overheads for dataset preprocessing, downstream evaluations, and logging. Training was performed
with bf16 mixed precision under distributed data parallelism. A frozen text embedding model was
invoked during training, served independently on a single L4 GPU. The peak GPU memory usage
per device was 72.7 GB, while peak CPU utilization remained at 4 GB.

G.1 ARCHITECTURAL CONTRIBUTIONS TO COMPLEXITY

Relative to conventional transformer architectures, the primary increase in model complexity arises
from the inclusion of the temporal convolutional (TCN) layer and text-attention layers. For a
representative configuration—where the text embedding dimension is 384, the time-series embedding
dimension is 256, and the convolution kernel size is 8—the parameter counts for the additional
modules are enumerated in Table 8.

Layer Count Number of Parameters
TCN Dtext ×H ×K 384× 256× 8 = 786,432

Gating Layer H2 2562 = 65,536
Time-Delta Layer 2×Dtext × Tmax 2× 384× 1500 = 1,152,000

Table 8: Parameter counts for the TCN and text-attention modules.

In total, these components introduce approximately 2 million additional parameters, corresponding
to ∼25% of the overall model size.

ENCODER COMPOSITION

The pretraining framework employs three modules: a context encoder, a target encoder, and
a predictor. The target encoder parameters are non-trainable and are tied to the context encoder
parameters but consume GPU memory equivalent to the context encoder during forward passes. The
predictor is comparatively lightweight, operating at lower dimensionality with fewer layers.

The parameter distribution across modules is as follows:
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• Context encoder: 7.1M parameters
• Target encoder: 7.1M parameters (frozen)
• Predictor: ∼4M parameters

The combined model therefore comprises ∼18.2M parameters, of which ∼11.1M are trainable.
For computing the embeddings at inference we only utilize the context encoder, which means the
embeddings are the output of a 7.1M parameters model.

H DATASETS

Here we provide a list of dataset sources we used to train our model. Wherever sensor names were
not readily available, we manually curate the sensor descriptions from the dataset specifications.

UEA Dataset The UEA Dataset is a popular publicly available dataset used for benchmarking time
series classification algorithms. We restrict ourselves to a subset of the full 30 datasets, as not all
of them have meaningful sensor descriptions. For a few of the datasets within UEA, we manually
annotate the descriptions based on the official paper (Bagnall et al., 2018).

Liu-ICE Machine Fault Dataset The Liu-ICE Machine Fault Dataset is a real world fault diagnosis
dataset which consists of data collected from an internal combustion engine test bench. The dataset
consists of multiple different kinds of fault scenarios, and comes with a publicly available benchmark.

Electricity Transformer Dataset The Electricity Transformer Dataset (ETTDataset/ETDataset) is
a widely used dataset for time series forecasting, which contains data of dynamic power loads in an
electric power grid located in China. This dataset contains 4 sub-datasets (ETTh1, ETTh2, ETTm1,
ETTm2), which operate at different granularities.

Weather The Weather Dataset from the MPI is a real world dataset of meteorological indicators for
the year of 2020.

Electricity The Electricity dataset contains hourly consumption from multiple consumers from
2012 to 2014.

Illness The Illness Dataset includes weekly records for patients suffering from influenza like
illnesses collected by the CDC.

SKAB - Skoltech Anomaly Benchmark Dataset The SKAB dataset is designed for evaluating
anomaly detection, targeted at two main problems : outlier detection and changepoint detection

Gas Sensor Array Modulation The Gas Sensor Array Modulation from the UCI Machine Learning
Repository is collection of time-series recordings obtained from an array of metal-oxide gas sensors.

Machinery Fault Dataset The Machinery Fault Dataset comprises six different simulated states:
normal function, imbalance fault, horizontal and vertical misalignment faults and, inner and outer
bearing faults from a machinery fault simulator.

Metro PT-3 Dataset The MetroPT-3 dataset is a multivariate time series collection created for
predictive maintenance in the railway industry. It consists of over 1.5 million records (instances)
captured at 1Hz from a train compressor’s Air Production Unit (APU) over the period from February
to August 2020.

Unleashing the Power of Wearables The Human Activity Recognition Trondheim (HEART)
dataset is a professionally annotated collection designed for developing machine learning algorithms
capable of recognizing human activities in a free-living environment. Created at the Norwegian
University of Science and Technology (NTNU), it features 22 subjects who wore two 3-axis Axivity
AX3 accelerometers for approximately 2 hours each while performing various daily tasks. The sensors
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were placed on the right thigh and lower back, providing multivariate time series data sampled at
50Hz.

Predictive Maintenance of Hydraulic Systems The Predictive Maintenance of Hydraulic Systems
dataset contains multivariate time series data collected from a hydraulic test rig. This dataset includes
sensor readings—such as pressures, volume flows, temperatures, and more—recorded during load
cycles of the hydraulic system.

We provide a summary of the specifications of each dataset in Table 9. If a dataset is present in a
downstream benchmark, we only include the defined "train" subset of the full dataset, to prevent the
model from optimizing an SSL loss over the test dataset samples.

Dataset Name #Timestamps #Channels
Open-Source/Kaggle Datasets
Appliances Energy Prediction 19,735 26
Gas Sensor Array Temperature Modulation 3,843,160 19
Household Electric Power Consumption 2,075,259 7
Machinery Fault Diagnosis 487,748,049 8
MetroPT-3 Dataset 1,516,948 15
Predictive Maintenance of Hydraulics System 132,300 17
SKAB - Skoltech Anomaly Benchmark 46,860 8
Unleashing the Power of Wearables 6,461,328 6
Liu 288,623 10

UEA Datasets 5

NATOPS 9180 24
Epilepsy 28222 3
Articulary Word Recognition 39600 9
UWave Gesture Library 37800 3
Cricket 129276 6
ERing 1950 4
Character Trajectories 169218 3
Finger Movements 15800 28
SelfRegulation SCP1 240128 6
Basic Motions 4000 6
Atrial Fibrillation 9600 2
Hand Movement Direction 64000 10
Handwriting 22800 3
Libras 8100 2
LSST 88,524 6
Racket Sports 4530 6

Forecasting Benchmark Datasets
ETTh1 17,420 7
ETTh2 17,420 7
ETTm1 69,680 7
ETTm2 69,680 7
Weather 52,696 21
Illness 966 7

Table 9: Overview of datasets categorized into Open-Source/Kaggle, UEA, and Forecasting benchmark datasets.

5The UEA Datasets are provided as windowed instances, i.e. they are not hosted as contiguous, chronological
blocks of shape T × C, but rather stored as N × T ′ × C. Here, we compute the "# of timesteps" as N × T ′,
although there may be redundant overlaps based on how the data was collected and labelled.
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I DATA LOADING

To enable efficient data loading, we perform under/over sampling to balance the datasets. The
degree of under/over sampling is controlled by the t1 : min_samples_per_dataset and t2
: max_samples_per_dataset parameters, which upsamples or downsamples the data if the
number of samples is either < t1 or > t2 respectively.

Following this, each dataset is handled by its own dataloader, which cyclically yields batches of data
from each dataset at every training step. This is handled internally by pytorch lightning’s
CombinedLoader method, which yields a batch from each dataloader (if the iterator is not yet
exhausted). As a result, our effective batch size 6per step is now computed as :

(batch size)× (# of GPUs)× (# of datasets)× (grad_accum_steps) (10)

At the beginning of every epoch, we reload all datasets, which results in fresh under/over sampling
indices. This enables the support of larger datasets to be incrementally covered over multiple epochs
of training.

The JEPA tasks are randomly sampled after the datasets are sampled, which results in fresh context
and target masks for repeated samples. This avoids the exact same sample being repeated several
times in an epoch for underrepresented datasets, due to stochasticity in how the masks are generated.

I.1 PERTURBATIONS

Our augmentation design is directly motivated by failure modes frequently observed in real-world
time-series data—particularly in industrial and sensor-driven applications— where channel- or block-
level gaps occur due to intermittent sensor outages, network disruptions, or scheduled maintenance.
To build robustness against such artifacts, we incorporate two principled time-domain masking
strategies:

• Uniform segment masking: masks a contiguous temporal segment across all channels,
simulating system-level events such as edge-cache dropout or network-wide packet loss.

• Channel-selective masking: applies the same temporal mask to a randomly selected
subset of channels, capturing sensor-specific anomalies such as probe failure or drifting
instrumentation.

These perturbations are applied solely to the context encoder’s input during training, while the teacher
view remains unperturbed. This asymmetry forces the model to leverage broader temporal and
cross-channel structure for representation learning, in line with the JEPA framework’s core principle
of predicting masked target representations rather than raw values.

The augmentation functions are tailored to the time-series domain but echo proven techniques in
analogous modalities. For instance, our segment masking is a temporal analogue to SpecAug-
ment’s TimeMasking, a canonical augmentation for large-scale speech models (implemented in
torchaudio.transforms.TimeMasking). Similar masking-based augmentations have also
been adopted in recent time-series representation learning methods such as TEST (Sun et al., 2024).

Hyperparameters controlling mask width and frequency were chosen based on prior experience
with industrial time-series systems. Due to computational budget constraints, we did not conduct a
systematic hyperparameter sweep, instead prioritizing augmentations with clear interpretability and
real-world grounding.
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Tasks Supervision Datasets #
datasets

Metrics Baselines

Classification Frozen SVM;
Finetuned+Linear

UEA 21 Accuracy, Wins, Total
Correct

MiniROCKET,
TS2Vec, T-Loss,
TS-TCC, T-Rep,
MOMENT

Anomaly Detection Frozen reconstructor
(linear head)

UCR-AD 46 Adjusted Best F1 Anomaly
Transformer, DGHL,
GPT4TS, TimesNet,
MOMENT (0, LP),
TS2Vec, T-Rep

Anomaly Detection Frozen reconstructor
(linear head)

SKAB 34 F1, FAR, MAR T 2, T 2+Q (PCA),
Isolation Forest,
MSET, Feed-Forward
AE, Conv-AE,
LSTM-AE, VAE,
LSTM-VAE,
MSCRED, TS2Vec,
T-Rep, MOMENT

Long-horizon Forecasting Per-dataset linear
probe (frozen);
universal non-linear
head (frozen
encoder); universal
non-linear head
(unfrozen encoder)

ETTh1
ETTh2
ETTm1
ETTm2
Weather
Exchange Rate
Illness

7 MSE, MAE T-Rep, TS2Vec,
PatchTST,
MOMENT, Toto,
TIMEMIXER++,
Moirai, VisionTS

Table 10: Unified baseline summary by task, now including dataset counts.

J EXPERIMENTS

J.1 CLASSIFICATION

J.1.1 UEA CLASSIFICATION BENCHMARK

Dataset We evaluate our model on the popular UEA Dataset which serves as a standard time series
classification benchmark for multivariate data. We consider a subset of 21 UEA datasets (list in
Table 11) that cover a diverse set of tasks and domains. We select these datasets on the basis of
what our model’s default context length can handle in a single GPU. As we modify the attention
mechanism directly, we cannot leverage existing efficient implementations, and thus are restricted
by a maximum context window size. Formally, we select the subsets based on the following rule:
num channels < 50, num timestamps < 1500.

Task Description Given a labeled time series data instance (X, y), where X is a multivariate time
series, and y corresponds to a supervised label corresponding to X , our goal is to learn a classifier h
to minimize test error, i.e. ϵ = E(x,y)∼P(x,y)

[1(h(x) ̸= y)].

Downstream Setup We evaluate the quality of our representations, Z ∈ RB×T×C×H in the
following setups.

1. Frozen + off-the-shelf non-linear classifier (SVM)
Similar to Goswami et al. (2024), we flatten our embeddings, Z and feed them to an SVM
with the standard set of hyperparameters proposed in Franceschi et al. (2019), which are also
used in T-Rep, TS2Vec, T-Loss, etc. The hyperparameters are chosen for each dataset
separately, using 5-fold cross validation on the train set.

2. Finetuned + linear probe
Similar to the linear probing setup in Goswami et al. (2024), we finetune the encoder for
each dataset separately. We flatten the embeddings Z, and feed them to a single linear layer
which maps the embeddings to a vector of logits, trained with a cross entropy loss. The
training hyperparameters are listed in Table 12, which is the same for all UEA datasets.

6The "# of datasets" technically refers to the number of unexhausted datasets on that training step, as each
dataset has a different number of samples.
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Dataset Channels Length Included

ArticularyWordRecognition 9 144 ✓
AtrialFibrillation 2 640 ✓

BasicMotions 6 100 ✓
CharacterTrajectories 3 182 ✓

Cricket 6 1 197 ✓
Epilepsy 3 206 ✓
ERing 4 65 ✓

FingerMovements 28 50 ✓
HandMovementDirection 10 400 ✓

Handwriting 3 152 ✓
JapaneseVowels 12 29 ✓

Libras 2 45 ✓
LSST 6 36 ✓

NATOPS 24 51 ✓
PenDigits 2 8 ✓
Phoneme 11 217 ✓

RacketSports 6 30 ✓
SelfRegulationSCP1 6 896 ✓
SelfRegulationSCP2 7 1 152 ✓
SpokenArabicDigits 13 93 ✓

UWaveGestureLibrary 3 315 ✓

DuckDuckGeese 1 345 270 ×
EigenWorms 6 17 984 ×

EthanolConcentration 3 1 751 ×
FaceDetection 144 62 ×

Heartbeat 61 405 ×
InsectWingbeat 200 78 ×
MotorImagery 64 3 000 ×

PEMS-SF 963 144 ×
StandWalkJump 4 2 500 ×

Table 11: An overview of the subset of UAE data sets included in the evaluation of CHARM.

Hyperparameter Value
Batch size 16
Learning rate 1e− 4
Weight decay 1e− 4
Epochs 500
Optimizer Adam
Label smoothing 0

Table 12: Training hyperparameters for finetuning setup

Baselines To position ourselves in the existing landscape of time series classification methods, we
include baselines from the following set of approaches:

1. Time Series Classification Models: MiniRocket
2. Semantic Representation Learning Models : T-Rep, TS2Vec, T-Loss, TS-TCC etc.
3. Reconstruction Based Representation Learning Models : MOMENT

Given our limited compute availability, all baseline results reported in the results table are drawn from
prior published work. We restrict our comparison to models with results on the majority of the UEA
datasets, and therefore exclude models with incomplete or missing UEA coverage (e.g., UniTS).
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Metrics To compare our model’s performance on the combined set of UEA Datasets, we measure 3
quantities:

Average Accuracy. For dataset i with ni samples:

Acci =
1

ni

ni∑

j=1

1[h(xij) = yij ] ,

and the average accuracy across D datasets is

AvgAcc =
1

D

D∑

i=1


 1

ni

ni∑

j=1

1[h(xij) = yij ]


 .

Number of Correctly Classified Samples.

NumCorrect =
D∑

i=1

ni∑

j=1

1[h(xij) = yij ] .

Number of Wins. For M models {hm}Mm=1, define accuracy of model m on dataset i as

Acci,m =
1

ni

ni∑

j=1

1[hm(xij) = yij ] .

The number of wins for model m is

Wins(m) =

D∑

i=1

1
[
Acci,m = max

m′
Acci,m′

]
.

We report average accuracy and number of wins as they are standard measures used in other papers
that use the UEA benchmark, however, as noted in Fleming & Wallace (1986), we would like to
highlight that relying on averages of arithmetic means in such setups might be misleading, as the
number of test samples vary significantly per dataset (see Figure 14). As a result we additionally
include unnormalized scores, which we empirically observe to be a relatively less noisier metric to
track during training.
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Figure 14: Sizes of different UEA Datasets

Results Results for CHARM under the frozen + SVM setup are presented in Table 13, while the
finetuned version is reported in Table 15. Overall, CHARM demonstrates strong aggregate perfor-
mance, particularly in terms of average accuracy and total correct predictions across datasets. More-
over, we observe competitive results on datasets excluded from pre-training (JapaneseVowels,
PhonemeSpectra, PenDigits), highlighting the strong generalization ability of the learned
embeddings. The substantial improvement from finetuning on individual datasets suggests that
post-training strategies can be effectively used to adapt the model for classification tasks.

Dataset TS2Vec T-Loss TS-TCC T-Rep MOMENT MiniROCKET CHARMfrozen + SVM

AtrialFibrillation 29 13 27 35 20 20 47
Articulary/WordRecognition 97 94 95 97 99 98 99
BasicMotions 100 100 100 100 100 100 98
CharacterTrajectories 99 99 99 99 — 99 98
Cricket 95 97 92 96 99 97 96
ERing 90 13 90 94 96 93 96
Epilepsy 96 97 96 97 99 100 98
FingerMovements 50 58 46 50 49 42 59
HandMovementDirection 42 35 24 54 32 41 54
Handwriting 46 45 50 41 31 24 33
LSST 56 51 47 53 41 67 60
Libras 86 88 82 83 85 94 83
NATOPS 90 92 82 80 83 92 82
RacketSports 89 86 82 88 80 88 86
SelfRegulationSCP1 79 84 82 82 84 88 82
UWaveGestureLibrary 88 88 75 89 91 91 91
SpokenArabicDigits 99 91 97 99 98 99 97
SelfRegulationSCP2 55 54 53 59 48 49 58
Japanese Vowels † 97 99 93 96 72 92 97
Phoneme Spectra † 24 22 25 23 23 28 20
Pen Digits † 98 98 97 97 97 97 98

Wins 2 5 2 3 3 7 4
Avg. Accuracy 76.4 71.6 73.1 76.8 71.3∗ 76.2 77.6
Total Correct 7171 6836 6835 7075 5204∗ 7284 7139

Table 13: Comparison of classification accuracy across multiple datasets and models. Datasets
marked with † were not included in pre-training CHARM. *MOMENT does not report scores for
CharacterTrajectories, and we exclude it while calculating MOMENT’s scores.
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Hyperparameter Value
C {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}

kernel {‘rbf’}
degree {3}
gamma {‘scale’}
coef0 {0}

shrinking {True}
probability {False}

tol {0.001}
cache_size {200}
class_weight {None}

verbose {False}
max_iter {10000000}

decision_function_shape {‘ovr’}
random_state {None}

Table 14: SVM Hyperparameter Grid

Dataset TS2Vec T-Loss TS-TCC T-Rep MOMENT MiniROCKET CHARMfrozen+SVM CHARMfinetune

AtrialFibrillation 29 13 27 35 20 20 47 40
Articulary/WordRecognition 97 94 95 97 99 98 99 99
BasicMotions 100 100 100 100 100 100 98 100
CharacterTrajectories 99 99 99 99 – 99 98 99
Cricket 95 97 92 96 99 97 96 94
ERing 90 13 90 94 96 93 96 94
Epilepsy 96 97 96 97 99 100 98 99
FingerMovements 50 58 46 50 49 42 59 57
HandMovementDirection 42 35 24 54 32 40 54 51
Handwriting 46 45 50 41 31 24 33 36
LSST 56 51 47 53 41 67 60 71
Libras 86 88 82 83 85 94 83 87
NATOPS 90 92 82 80 83 92 82 92
RacketSports 89 86 82 88 80 88 86 86
SelfRegulationSCP1 79 84 82 82 84 88 82 91
UWaveGestureLibrary 88 88 75 89 91 91 91 88
SpokenArabicDigits 99 91 97 99 98 99 97 98
SelfRegulationSCP2 55 54 53 59 48 49 58 57
Japanese Vowels 97 99 93 96 72 92 97 98

Wins 2 3 2 3 3 4 4 5
Avg. Accuracy 78.1 72.8 74.4 78.5 72.5∗ 77.6 79.6 80.9
Total Correct 7467 7141 7118 7363 5414∗ 7569 7431 7799

Table 15: Performance comparison across datasets in %. Best results per dataset are boldfaced, and the best
count is reflected in the win statistics. PenDigits and PhonemeSpectra are omitted from the finetuned
comparisons, due to the size of these datasets, and the associated training compute and time required. *MOMENT
does not report scores for CharacterTrajectories, and we exclude it while calculating MOMENT’s
scores.

J.2 ANOMALY DETECTION

J.2.1 UCR ANOMALY DETECTION BENCHMARK

Dataset The UCR anomaly detection dataset Dau et al. (2018) is a popular open-source univariate
anomaly detection dataset. The dataset consists of >100 datasets from varying domains. We restrict
ourselves to the same subset of 46 datasets used in MOMENT (Goswami et al., 2024) which cover a
diverse set of sources.

Task Description Each dataset in the UCR archive is provided with a “clean" train split, and a
corresponding test split. The standard setup in this task involves training a model to reconstruct
clean samples (i.e. with no anomalies), and then use this model on the test set to reconstruct the
data. The mean squared error is computed in a point-wise sense on all timestamps in the test set. If
the error corresponding to each timestamp exceeds a certain threshold, we classify that timestamp
as anomalous. For a fair comparison, we use the same sweep over the error thresholds as used in
MOMENT, which uses 100 samples on a linearly spaced grid from the lowest error to the highest error
in the test set errors across all timestamps. Then, we compute an adjusted F1 score, which is standard
practice in benchmarking anomaly detection models, for each threshold, and report the best adjusted
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F1 score for each dataset. For this experiment, the embedding model is frozen and only the linear
reconstruction head is trained.

Downstream Setup Our model is extended with a reconstruction head, which consists of a linear
layer that maps embeddings back to the raw time series values, i.e. Z ∈ RT ′×1×H → Zt ∈ RT .
We empirically observe better results by applying an AvgPool on the embeddings (with a stride
of 8) before the reconstruction head, as it potentially reduces the high fidelity of our per time point
embeddings. Consequently, the linear layer is then of dimensions RH×8.

Baselines To ensure a fair comparison with models from varying classes, i.e. task-specific vs
general representation learning, we benchmark ourselves against the same set of models used in
MOMENT, which consist of state-of-the-art anomaly detection models, as well as general representation
learning methods. These consist of: Anomaly Detection Transformer, DGHL, GPT4TS,
TimesNet and MOMENT. Given our limited compute availability, all baseline results reported in the
results table are drawn from prior published work and we limited ourselves to reported models in the
MOMENT paper. We exclude T-Rep and TS2Vec, as they do not report results on this dataset/task.

Metrics We evaluate performance by measuring an adjusted F1 score for each dataset after optimiz-
ing the threshold for each dataset separately.

Results We report adjusted F1 scores across all datasets and models in Table 16. While model
performance varies considerably by dataset, CHARM achieves strong overall results in terms of both
average F1 score and total wins.

Dataset Anomaly Transformer MOMENT CHARM DGHL GPT4TS TimesNet
1sddb40 0.03 0.54 0.99 0.39 0.19 0.68
BIDMC1 0.99 1.00 1.00 1.00 1.00 1.00
CHARISfive 0.01 0.13 1.00 0.02 0.02 0.08
CHARISten 0.02 0.11 0.12 0.01 0.01 0.03
CIMIS44AirTemperature3 0.06 0.98 0.98 0.50 0.18 0.47
CIMIS44AirTemperature5 0.39 0.99 0.85 0.96 0.20 0.71
ECG2 1.00 1.00 1.00 0.62 0.90 1.00
ECG3 0.36 0.98 0.93 0.80 0.84 0.48
Fantasia 0.75 0.95 0.97 0.66 0.87 0.55
GP711MarkerLFM5z4 0.93 1.00 0.64 0.50 0.64 0.95
GP711MarkerLFM5z5 0.76 0.97 0.75 0.31 0.48 0.90
InternalBleeding5 0.94 1.00 1.00 1.00 0.92 1.00
Italianpowerdemand 0.01 0.74 0.17 0.59 0.01 0.44
Lab2Cmac011215EPG5 0.99 0.98 1.00 0.34 0.60 0.99
Lab2Cmac011215EPG6 0.41 0.10 0.12 0.26 0.10 0.17
MesoplodonDensirostris 1.00 0.84 1.00 0.79 1.00 1.00
PowerDemand1 0.87 0.44 0.43 0.49 0.76 0.95
TkeepFirstMARS 0.02 0.15 0.03 0.02 0.02 0.23
TkeepSecondMARS 0.83 1.00 1.00 0.16 0.12 0.95
WalkingAceleration5 1.00 1.00 0.89 0.48 1.00 0.96
apneaecg 0.40 0.20 0.44 0.25 0.31 0.26
apneaecg2 0.65 1.00 0.92 1.00 1.00 0.90
gait1 0.18 0.36 0.53 0.51 0.48 0.47
gaitHunt1 0.08 0.43 0.99 0.02 0.10 0.30
insectEPG2 0.12 0.23 0.73 0.14 0.81 0.96
insectEPG4 0.98 1.00 0.70 0.46 0.21 0.85
lstdbs30791AS 1.00 1.00 1.00 1.00 1.00 1.00
mit14046longtermecg 0.45 0.59 0.98 0.43 0.97 0.97
park3m 0.15 0.64 0.61 0.20 0.63 0.93
qtdbSel1005V 0.41 0.65 0.75 0.44 0.39 0.90
qtdbSel100MLII 0.42 0.84 0.90 0.41 0.60 0.87
resperation1 0.16 0.15 0.83 0.03 0.59 0.96
s20101mML2 0.69 0.71 1.00 0.15 0.05 0.08
sddb49 0.89 1.00 1.00 0.88 0.94 1.00
sel840mECG1 0.41 0.66 1.00 0.32 0.28 0.36
sel840mECG2 0.15 0.39 0.60 0.32 0.28 0.21
tilt12744mtable 0.07 0.24 0.14 0.04 0.05 0.16
tilt12754table 0.23 0.64 0.04 0.04 0.06 0.14
tiltAPB2 0.92 0.98 1.00 0.36 0.83 0.38
tiltAPB3 0.17 0.85 0.62 0.03 0.05 0.29
weallwalk 0.00 0.58 1.00 0.07 0.13 0.17
Wins 5 18 24 4 5 12
Average 0.485 0.684 0.754 0.415 0.479 0.627

Table 16: Anomaly detection performance across 46 UCR datasets
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Figure 15: UCR Anomaly test set reconstructions visualized, with anomalous regions highlighted for 1sddb40,
CIMIS44AirTemperature3 and CIMIS44AirTemperature5. true refers to the ground truth values,
while pred refers to our reconstruction head’s predictions.

J.2.2 SKOLTECH ANOMALY DETECTION BENCHMARK (SKAB)

Dataset To evaluate our performance on a real world industrial setup, we use the open-source
Skoltech Anomaly Benchmark suite Katser & Kozitsin (2020), which consists of a point-wise anomaly
detection task using data from 8 sensors attached to a mechanical testbed. The dataset itself consists
of 34 sub-dataset instances consisting of both outlier detection, and changepoint detection anomalies.

Task Description We follow the standard setup accompanying the SKAB benchmark for our model,
as well as reproducing other baselines on this dataset. This involves splitting the data into several
train and test sets, where each instance in the train and test set is trained with a fresh model to
reconstruct the training dataset, i.e. minimize MSE on the reconstruction task ||xtrain − x̂train||2, and
then evaluated by computing the reconstruction of the corresponding test instance, x̂test. Based on the
train set reconstruction, we compute the Upper Control Limit (UCL), based on the 99th percentile
quantiles, and apply an adjustment factor of 4

3 . Then, for the reconstructed test data x̂test, we classify
anomalies if the absolute values of the residuals, i.e. ||xtest − x̂test|| lie outside the UCL limit. This
exact anomaly detection setup is commonly applied to all baseline models in the test suite.

Downstream Setup Similar to J.2.1, we rely on training a linear head to reconstruct“clean" training
data. I.e., we use a single linear layer RH×1 to map our embeddings Z back to the raw time series
values. The hyperparameters used for training the linear head are listed in 17.

Hyperparameter Value
Optimizer AdamW

Weight Decay None
Learning Rate 1e-3

Epochs 1000

Table 17: Hyperparameters to train reconstruction head for anomaly detection

Baselines To compare ourselves to a diverse set of models, we include all baselines available in
SKAB leaderboard, as well as T-Rep, TS2Vec, MOMENT.

The baselines in the SKAB leaderboard come from a diverse set of modeling approaches, which rely
on both statistical techniques, as well as more modern CNN/LSTM based methods. We list brief
descriptions of the SKAB baselines here:

• Hotelling’s T-squared statistic: Measures the Mahalanobis distance of new samples from
the mean using variances for multivariate process monitoring.

• Hotelling’s T-squared + Q statistic (PCA-based): Uses principal component analysis,
where T 2 captures variation in the principal subspace and Q measures residuals, combined
via logical OR for monitoring.

• Isolation Forest (iForest): An ensemble-based method that isolates anomalies as points
with short average path lengths in random trees.
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• LSTM-based Neural Network: An LSTM network trained for anomaly detection using
reconstruction error as the anomaly score.

• Feed-Forward Autoencoder: A standard autoencoder that detects anomalies via recon-
struction error in vector data.

• Convolutional Autoencoder (Conv-AE): A CNN-based autoencoder for anomaly detection
in time series via reconstruction error.

• LSTM Autoencoder (LSTM-AE): A sequence-to-sequence LSTM autoencoder that recon-
structs temporal patterns and flags anomalies via reconstruction error.

• LSTM Variational Autoencoder (LSTM-VAE): A probabilistic LSTM autoencoder that
models latent distributions and detects anomalies using reconstruction error.

• Variational Autoencoder (VAE): A generative model that learns latent variable distributions
of input data, with anomalies identified via reconstruction error.

• MSCRED: A multi-scale convolutional recurrent encoder-decoder that reconstructs signa-
ture matrices of system statuses and uses residuals to detect anomalies.

• MSET: A nonparametric statistical modeling technique that estimates values via weighted
averages of historical data for anomaly detection.

Reproducing Baselines To ensure a fair comparison, we reproduce the baseline methods T-Rep,
TS2Vec, and MOMENT following the protocols described below:

1. T-Rep: We train the model using the self-supervised contrastive loss used in the paper, on
each dataset instance using the official implementation and author-recommended hyperpa-
rameters. Subsequently, we append a linear reconstruction head, which is trained using the
hyperparameters specified in Table 17. The base encoder remains frozen during this stage.

2. TS2Vec: We adopt an identical procedure to that of T-Rep, i.e., training with the official
implementation and hyperparameters, followed by the addition of a frozen base encoder
with a trainable linear reconstruction head.

3. MOMENT0: We directly evaluate the AutonLab/MOMENT-1-large checkpoint in re-
construction mode. This configuration utilizes the reconstruction head employed during
pretraining and is applied to the test set without any further training or fine-tuning.

4. MOMENTLP: We employ the same checkpoint in embedding mode, in which representations
are extracted and paired with a linear reconstruction head. The linear head is trained on
the training instances using the hyperparameters from Table 17, consistent with the setup
applied to CHARM, T-Rep, and TS2Vec.

Note that the MOMENT model was not pre-trained on the SKAB dataset, whereas our model was.
This suggests that there may be additional untapped performance potential for MOMENT on this
benchmark, since pre-training it on SKAB could plausibly improve its results. However, due to the
large computational demands of MOMENT and our limited access to compute resources, we were
unable to conduct this experiment.

Metrics We reported the average F1 score over all instances, as well as the False Alarm Rate
(FAR) and Missed Alarm Rate (MAR), for all baseline models. We outline the mathematical
representation of these terms, and their relation to commonly used binary classification metrics here:

Missed Alarm Rate (FNR) =
FN

TP + FN
= 1− Recall

Specificity (TNR) =
TN

TN + FP

False Alarm Rate (FPR) =
FP

TN + FP
= 1− Specificity

Results We compile our results on the SKAB benchmark along with the different baseline models
collected in separate classes (Self-Supervised vs Classical) in Table 18. Similar to UCR, we here also
observe strong performance for CHARM.
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Table 18: Comparison of anomaly detection performance across baselines and our method. Higher F1 scores
are better (↑), while lower False Alarm Rate (FAR) and Missed Alarm Rate (MAR) are better (↓).

Category Method F1 ↑ FAR (%) ↓ MAR (%) ↓

Representation Learning

T-Rep 0.78 12.60 28.51
MOMENT0 0.79 14.20 26.98
TS2Vec 0.79 12.77 27.61
MOMENTLP 0.82 15.52 20.73

Classical

Conv-AE 0.78 13.55 28.02
MSET 0.78 39.73 14.13
T-squared+Q (PCA) 0.76 26.62 24.92
Isolation Forest 0.29 2.56 82.89
LSTM-VAE 0.56 9.13 55.03
MSCRED 0.36 49.94 69.88

CHARM 0.86 19.35 12.69

J.3 FORECASTING

Datasets We evaluated our model on the benchmarks introduced in Autoformer Wu et al. (2021),
which have become standard multivariate time series forecasting benchmarks. Specifically, the
benchmark suite includes the Electricity Transformer Dataset (ETT), Weather, Exchange Rate and
Illness datasets. The model pretraining included the train splits of these datasets (Section H).

The train/valid/test split is identical to the standard protocol in the other baselines we compare with,
which is a 6/2/2 split for the ETT datasets, and a 7/1/2 split for all other datasets.

To ensure a fair comparison, we adopt the standard set of lookback horizons and future horizon
values across all forecasting datasets, as specified in Table 20. While earlier works primarily use a
lookback horizon of 96, more recent studies have also incorporated a longer lookback horizon of
512. To maintain consistency and comparability, we therefore report our linear probing results under
both lookback settings. Furthermore, since different papers also employ different prediction horizons,
we follow each work’s choice of horizons to respect their experimental setup and allow for direct
comparison.

Task Description Forecasting tasks consist of taking a window of time series data and predicting
future time steps. Formally, given an input of dimensions (Th×C), where Th denotes the "lookback"
horizon, the goal is to predict the future Tf time steps for all channels.

Downstream Setup We use the embeddings of the input horizon data, stack the embeddings across
all time steps for each channel, and train the model to minimize an aggregate loss metric7 between
the predicted and true values for each channel.

Since the pretraining task was not designed for direct linear forecasting, nor to produce single-step
predictions, we evaluate forecasting performance using the following modeling approaches:

1. CHARM+LP A per-dataset, per-channel, per-horizon linear regression head is trained on
top of frozen embeddings.

2. CHARM+NLH: A common non-linear prediction head is trained across all datasets, chan-
nels, and horizons, with the encoder kept frozen.

3. CHARM+NLH FT: The full model (encoder + non-linear prediction head) is trained
end-to-end, shared across datasets, channels, and horizons.

Non-Linear Head (NLH) The head is designed to first mix information across both time and
channels, then refine within each channel, and finally project to the forecasting horizon:

• Transformer across time & channels (nheads = 4, nlayers = 2, hidden dimension 2048).

7loss = MSE+MAE
2
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• Transformer per channel (nheads = 4, nlayers = 1, hidden dimension 2048).
• Per-channel linear projection to a maximum horizon of 720.

It is important to note that in the non-linear head setup, the forecasting module is shared across
all datasets, channels, and horizons. The transformer and projection layers are not customized
or tuned for any specific dataset, horizon, or channel, ensuring a single common forecasting
head is used throughout. If the target horizon Tf is less than the max horizon (720), we simply
apply the loss to the first Tf predictions from the head.

Training protocol. All non-linear head models were trained on the full CHARM dataset collection
(Section H) without hyperparameter optimization due to resource constraints. The training setup
is summarized in Table 19. The linear heads were trained for each (dataset, horizon, channel)
combination separately, which is standard for a linear probing setup in time series forecasting, and in
line with other baseline implementations. To this end, we conducted hyperparameter optimization as
reported in table 21 and present the best results.

Hyperparameter Value
Lookback horizon 512
Datasets All CHARM datasets (Section H)
Batch size 256 (gradients accumulated across datasets)
Epoch definition 10 steps across 4 nodes
Max epochs 60 (early stopping, patience = 5)
Optimizer AdamW
Loss (MSE + MAE)/2
Schedule Cosine
Learning rate 1× 10−3

Weight decay 0.01

Table 19: Training protocol for non-linear forecasting (NLH) heads.

Dataset Lookback Horizon Th Target Horizon Tf

ETTh1 96/512 {24, 48, 168, 336, 720}
ETTh2 96/512 {24, 48, 168, 336, 720}
ETTm1 96/512 {24, 48, 96, 288, 672}†

ETTm2 96/512 {24, 48, 96, 288, 672}†

Weather 96/512 {96, 192, 336, 672}
Exchange Rate 96/512 {96, 192, 336, 672}

Illness 96/512 {24, 36, 48, 60}

Table 20: Forecasting task specifications. †Some papers adopt the same prediction horizons as ETTh1/2 for
ETTm1/2.

Hyperparameter Value
Optimizer AdamW

Weight Decay [1e-2, 1e-4]
Learning Rate [1e-2, 1e-4]

Epochs 1000
LR Schedule ReduceLROnPlateau

Reduction Factor 0.1
Early Stopping : Patience 50

Early Stopping : Tolerance 1e-6

Table 21: Hyper-parameters to train linear prediction heads for forecasting tasks

Baselines To ensure a fair assessment, we distinguish between three categories of methods: repre-
sentation learning methods, reconstruction-based methods, and hybrid approaches.
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• Representation learning methods focus on extracting meaningful embeddings of the data,
independent of the reconstruction objective.

• Reconstruction-based methods emphasize the model’s ability to directly predict or recon-
struct future values.

• Hybrid approaches combine both ideas: they primarily rely on reconstruction-based training
but additionally evaluate the representational power of the learned embeddings.

An important distinction is in the evaluation protocol. Both representation learning methods and
hybrid approaches employ linear probing to assess the forecasting power of the embeddings. In
contrast, reconstruction-based methods directly evaluate the pretrained model, since their pretraining
task is already aligned with forecasting.

To establish a strong baseline, we compare against SOTA foundational time series models from each
category. For pure representation learning methods, we include T-REP Fraikin et al. (2024) and
TS2Vec Yue et al. (2022). For hybrid methods, we consider MOMENT Goswami et al. (2024) and
PatchTST Nie et al. (2023b). Finally, for reconstruction-based methods, we evaluate Toto Cohen
et al. (2025), TIMEMIXER++ Wang et al. (2025), Moirai Woo et al. (2024a), and VisionTS
Chen et al. (2025). We exclude results from works such as TimesFM Das et al. (2024), UniTS Gao
et al. (2024b) and Chronos Ansari et al. (2024), as their experimental setups differ substantially
from ours, making direct comparison infeasible.

Reproducing Baselines We reproduce the baseline methods T-Rep and TS2Vec on the
Weather, ILI, and Exchange Rate datasets following the original papers’ pretraining setup.
Specifically, each model is first pretrained on the respective dataset, after which a linear forecasting
head is added and trained while keeping the base model frozen. The forecasting head is trained
using the same architecture and hyperparameters as specified in the original paper’s downstream
forecasting setup. For the ETT datasets, results for both models are taken directly from the original
T-Rep paper (Fraikin et al., 2024). For reconstruction-based and hybrid models, we report the scores
as presented in their respective papers for the corresponding datasets and horizons. The compiled
results are shown in Table 23.

Metrics We quantitatively assess the model’s performance using mean squared error (MSE) and
mean absolute error (MAE) metrics averaged over all forecasted time steps and across all target
variables, which is standard practice for multivariate forecasting benchmarks.

Results The results comparing CHARM with other state-of-the-art representation learning methods,
along with the reproduced baselines, are summarized in Table 22. These results underscore the
strong performance of CHARM embeddings relative to competing methods in this category. Further,
Table 23 demonstrates that CHARM remains competitive with hybrid and reconstruction-based
models—including substantially larger models trained on significantly larger datasets (e.g., TOTO,
Moirai).
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Dataset H T-Rep TS2Vec CHARM+LP
MSE MAE MSE MAE MSE MAE

ETTh1

24 0.511 0.496 0.575 0.529 0.310 0.350
48 0.546 0.524 0.608 0.553 0.358 0.376
168 0.759 0.649 0.782 0.659 0.451 0.430
336 0.936 0.742 0.956 0.753 0.517 0.466
720 1.061 0.813 1.092 0.831 0.546 0.498

ETTh2

24 0.560 0.565 0.448 0.506 0.186 0.267
48 0.847 0.711 0.685 0.642 0.242 0.303
168 2.327 1.206 2.227 1.164 0.391 0.396
336 2.665 1.324 2.803 1.360 0.430 0.427
720 2.690 1.365 2.849 1.436 0.470 0.466

ETTm1

24 0.417 0.420 0.438 0.435 0.218 0.283
48 0.526 0.484 0.582 0.553 0.282 0.324
96 0.573 0.516 0.602 0.537 0.316 0.347
288 0.648 0.577 0.709 0.610 0.395 0.391
672 0.758 0.649 0.826 0.687 0.482 0.441

ETTm2

24 0.172 0.293 0.189 0.310 0.099 0.192
48 0.263 0.377 0.256 0.369 0.131 0.223
96 0.397 0.470 0.402 0.471 0.172 0.253
288 0.897 0.733 0.879 0.724 0.284 0.326
672 2.185 1.144 2.193 1.159 0.403 0.400

Weather

96 0.195 0.280 1.672 0.904 0.158 0.199
192 0.235 0.316 1.569 0.894 0.207 0.246
336 0.288 0.359 2.075 1.064 0.265 0.287
672 0.362 0.402 2.828 1.305 0.347 0.340

Exchange Rate

96 1.180 0.806 0.462 0.544 0.084 0.203
192 3.947 1.344 0.968 0.765 0.182 0.302
336 6.683 1.699 1.759 1.037 0.353 0.429
720 3.900 1.504 2.266 1.184 0.929 0.727

ILI

24 3.631 1.227 3.463 1.173 2.799 1.080
36 3.979 1.313 3.889 1.282 1.754 0.797
48 4.290 1.363 4.219 1.339 1.699 0.820
60 4.361 1.375 4.198 1.329 1.740 0.838

Table 22: Representation learning only Long-horizon forecasting results across datasets. Input length = 96.
Lower is better. Bold = best, Underline = second best. We use a frozen encoder with a linear head for this
experiment.

Dataset H Rec. Hybrid Ours

Toto Moirai_S Moirai_B Moirai_L TimeMixer++ VisionTS MOMENT-LP PatchTST-LP CHARM+LP CHARM + NLH CHARM + NLH FT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.382 0.381 0.375 0.402 0.384 0.402 0.380 0.398 0.361 0.403 0.353 0.383 0.387 0.410 0.371 0.400 0.452 0.464 0.467 0.478 0.465 0.464
192 0.428 0.408 0.399 0.419 0.425 0.429 0.440 0.434 0.375 0.400 0.392 0.410 0.410 0.426 0.411 0.428 0.502 0.503 0.536 0.523 0.512 0.498
336 0.457 0.422 0.422 0.429 0.450 0.456 0.514 0.474 0.416 0.441 0.407 0.423 0.422 0.437 0.445 0.446 0.565 0.540 0.600 0.564 0.560 0.530
720 0.472 0.440 0.413 0.444 0.470 0.473 0.705 0.568 0.430 0.434 0.416 0.405 0.454 0.416 0.487 0.478 0.699 0.622 0.764 0.657 0.693 0.612

ETTh2

96 0.273 0.310 0.281 0.334 0.277 0.327 0.287 0.325 0.276 0.328 0.271 0.328 0.288 0.345 0.285 0.344 0.243 0.334 0.236 0.328 0.240 0.330
192 0.339 0.356 0.340 0.373 0.340 0.374 0.347 0.367 0.342 0.379 0.328 0.367 0.349 0.386 0.356 0.387 0.294 0.368 0.296 0.369 0.298 0.369
336 0.410 0.387 0.362 0.393 0.371 0.401 0.377 0.393 0.346 0.398 0.345 0.381 0.369 0.377 0.425 0.377 0.334 0.394 0.340 0.398 0.332 0.391
720 0.375 0.400 0.380 0.416 0.394 0.426 0.404 0.421 0.392 0.415 0.388 0.422 0.403 0.439 0.395 0.434 0.424 0.448 0.421 0.446 0.395 0.432

ETTm1

96 0.320 0.333 0.404 0.383 0.335 0.360 0.353 0.363 0.310 0.334 0.341 0.347 0.293 0.349 0.292 0.348 0.337 0.386 0.341 0.387 0.337 0.382
192 0.371 0.364 0.435 0.402 0.379 0.402 0.376 0.380 0.348 0.362 0.360 0.360 0.326 0.368 0.329 0.369 0.392 0.419 0.398 0.423 0.390 0.412
336 0.408 0.388 0.462 0.416 0.394 0.416 0.399 0.395 0.376 0.391 0.377 0.374 0.352 0.384 0.364 0.391 0.434 0.442 0.437 0.449 0.434 0.440
720 0.485 0.426 0.490 0.437 0.419 0.437 0.432 0.417 0.440 0.423 0.416 0.405 0.405 0.416 0.415 0.419 0.491 0.482 0.489 0.488 0.484 0.478

ETTm2

96 0.172 0.237 0.205 0.282 0.195 0.269 0.189 0.260 0.170 0.245 0.228 0.282 0.170 0.260 0.167 0.257 0.154 0.255 0.155 0.255 0.150 0.254
192 0.232 0.280 0.318 0.261 0.303 0.300 0.247 0.300 0.229 0.291 0.262 0.305 0.227 0.297 0.229 0.300 0.188 0.282 0.197 0.287 0.186 0.283
336 0.290 0.320 0.355 0.319 0.333 0.334 0.334 0.334 0.303 0.343 0.293 0.328 0.275 0.328 0.289 0.343 0.223 0.309 0.236 0.317 0.220 0.309
720 0.372 0.375 0.410 0.415 0.377 0.372 0.372 0.386 0.373 0.399 0.343 0.370 0.363 0.387 0.363 0.386 0.271 0.346 0.294 0.356 0.278 0.350

Weather

96 0.149 0.179 0.173 0.212 0.167 0.203 0.177 0.208 0.155 0.205 0.220 0.257 0.154 0.209 0.158 0.209 0.151 0.198 0.150 0.196 0.147 0.190
192 0.192 0.223 0.216 0.250 0.209 0.241 0.219 0.249 0.201 0.245 0.244 0.275 0.197 0.248 0.203 0.249 0.197 0.240 0.198 0.239 0.191 0.232
336 0.245 0.265 0.260 0.282 0.256 0.276 0.292 0.277 0.237 0.265 0.280 0.299 0.246 0.285 0.251 0.285 0.250 0.279 0.249 0.279 0.240 0.272
720 0.310 0.312 0.320 0.322 0.321 0.323 0.365 0.350 0.312 0.334 0.330 0.337 0.315 0.322 0.321 0.336 0.324 0.332 0.324 0.334 0.310 0.324

Table 23: Long-horizon forecasting results across datasets. Input length = 512. Lower is better. Bold = best,
Underline = second best. Last three columns are our CHARM variants; CHARM+LP is a Rep. approach, while
CHARM + NLH and CHARM + NLH FT are Rec. approaches.
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Visualizations We present a sample of forecasting results from CHARM+LP and using a lookback
window of 96.

Figure 16: Illness Forecasts

Figure 17: Illness Forecasts
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Figure 18: ETTh1 Forecasts

Figure 19: ETTh1 Forecasts
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Figure 20: ETTh2 Forecasts

Figure 21: ETTh2 Forecasts
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Figure 22: ETTm1 Forecasts

Figure 23: ETTm1 Forecasts

Linear Probing and Pooling Ablations Experiments related to pooling strategies, shown in
Table 24, were designed to contrast different pooling approaches commonly used to aggregate data
in other domains and to examine their applicability to time series. We also experimented with an
MLP to investigate whether the embeddings benefit more from a non-linear model, since the training
objective is not aimed at maximizing linear predictability. We only compare these methods using the
ETTh1/2 datasets with a lookback window of 96 and forecasting horizons of 24, 48, 168, 336, 720.

To further study the effect of different pooling strategies, we evaluated the following three approaches:
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1. Flattening: The embeddings are flattened into a single vector representation for each
channel.

Z : RT×H → Zflat ∈ RTH

2. Mean Pooling: The embeddings are averaged over the time dimension (but not across
channels), yielding an H-dimensional representation per channel.

Z : RT×H → Zmean ∈ RH

3. Last Time Step: The embedding from the last time step of each channel is taken as the
representative embedding.

Z : RT×H → Z−1 ∈ RH

In addition, we experimented with:

• Frozen Encoder + 2-Layer MLP: A per-dataset, per-channel, per-horizon MLP head (two
linear layers with ReLU activations) trained on top of frozen embeddings.

Dataset Pool Head 24 48 168 336 720
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

none1a linear1b 0.31 0.35 0.36 0.38 0.45 0.43 0.52 0.47 0.55 0.50
MLP2b 0.32 0.36 0.37 0.38 0.46 0.44 0.50 0.46 0.54 0.50

last time step2a linear1b 0.39 0.39 0.43 0.41 0.51 0.46 0.53 0.47 0.54 0.50
MLP2b 0.37 0.38 0.41 0.40 0.49 0.45 0.54 0.48 0.55 0.51

mean3a linear1b 0.66 0.49 0.68 0.50 0.72 0.53 0.69 0.54 0.69 0.57
MLP2b 0.61 0.50 0.74 0.51 0.77 0.54 0.74 0.55 0.73 0.58

ETTh2

none1a linear1b 0.19 0.27 0.24 0.30 0.39 0.40 0.43 0.43 0.47 0.47
MLP2b 0.20 0.27 0.25 0.31 0.40 0.40 0.46 0.44 0.51 0.48

last time step1a linear1b 0.19 0.28 0.25 0.31 0.40 0.40 0.44 0.43 0.49 0.48
MLP2b 0.20 0.28 0.26 0.32 0.40 0.40 0.45 0.44 0.49 0.48

mean1a linear1b 0.25 0.32 0.29 0.35 0.44 0.43 0.44 0.45 0.50 0.49
MLP2b 0.25 0.33 0.30 0.35 0.44 0.43 0.46 0.45 0.50 0.49

Table 24: Ablation results comparing pooling strategies and heads across ETTh1 and ETTh2. Bolded values
denote best within each dataset and horizon. The encoder is kept frozen for this experiment.

From Table 24, we observe that no pooling (1a) combined with either a linear or MLP probe yields the
best results on both ETTh1 and ETTh2. Interestingly, we observe that for ETTh1 using just the last
time step’s embedding (1b) yields competitive scores with an average increase of 8.7% (MSE) and
4.2% (MAE) when compared to no pooling (1a). Comparatively, mean pooling (1c) has an increase
of 60.5% (MSE) and 24.4% (MAE) Similarly, for ETTh2, we observe that using the last time step
embeddings (1b) has only a 0.85% (MSE) and 1.33% (MAE) increase in error, when compared to
mean pooling which has a 9.32% (MSE) and 8.49% (MAE) increase in error.

This observation is in line with (Bardes et al., 2024), which demonstrated that using attentive probing
to pool embeddings was empirically superior for downstream task performance compared to directly
mean pooling the embeddings, which can potentially result in lossy, diffuse representations which
fail to capture finer granularities in the data.

K ABLATIONS

To better understand the effects of different components in our model, we perform a series of ablations
involving the proposed architectural additions - (i) TCN featurization layer, (ii) text based attention
mechanisms, (iii) effect of description quality, (iv) effect of embedding model, and (v) alternative
approaches to multi modal text + time series. To quantify the effect of each of these changes, we
measure performance on forecasting and classification by measuring the following quantities:

1. Total number of correct classifications for UEA
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2. Average accuracy for UEA
3. Mean Squared Error for ETTh1 (Tf = 168)

4. Mean Absolute Error for ETTh1 (Tf = 168)

5. Mean Squared Error for ETTh2 (Tf = 168)

6. Mean Absolute Error for ETTh2 (Tf = 168)

For the ablation study, we train and probe the model with the following protocols:

Pretraining The base model is pretrained with a subset of datasets (UEA, ETTh, ETTm, Weather,
Illness), for 50 epochs, with a learning rate of 5e-4.

Classification Evaluations The hyperparameters used for measuring classification performance
are listed in Table 25. We use mean-pooled embeddings, i.e. Z̄ ∈ RB×H , instead of flattened
embeddings, Z ∈ RB×T×C×H .

Forecasting Evaluations The forecasting setup is identical to the frozen linear model setup used in
the downstream forecasting task. The hyperparameters are listed in Table 21. The embeddings are
flattened for all timesteps and passed to a linear layer.

Hyperparameter Value
C {0.0001, 0.1, 1000}

kernel {‘rbf’}
degree {3}
gamma {‘scale’}
coef0 {0}

shrinking {True}
probability {False}

tol {0.001}
cache_size {200}

class_weight {None}
verbose {False}
max_iter {10000000}

decision_function_shape {‘ovr’}
random_state {None}

Table 25: SVM Hyperparameter Grid for Ablations

The ablation results for (i) and (ii) can be found in the main text in Table 5.

We cover the setup for the remaining ablations (iii), (iv), and (v) here, along with their results.

• (iii) Effect of description quality
As channel descriptions are a first class citizen in training CHARM, we perform an ablation to
investigate the effect of description quality on the model’s performance. To this end we consider
three cases:

1) Annotated descriptions: manually curated sensor descriptions obtained from the official
dataset metadata. These are obtained through either manual human annotation obtained by
parsing the accompanying dataset metadata files, or are natively provided by the dataset
provider.

2) Noisy descriptions: high quality annotated descriptions, but with words dropped at random
(with p = 0.2) during both training and evaluation.

3) Ordinal descriptions: replace the annotated descriptions with structured, placeholder descrip-
tions: [Sensor1, Sensor2, Sensor3...] for all datasets.

• (iv) Effect of text embedding model
We investigate the usage of different embedding models to assess the effect on downstream
performance. We use 1) nomic (Nussbaum et al., 2025), 2) minilm (Wang et al., 2020), and 3)
mpnet (Song et al., 2020) as representative models to assess the downstream impact on scores.
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• (v) Alternative multi-modal approaches
To investigate how naive multimodal approaches compare to our setup, we remove the text based
layers altogether, and simply add in the channel description embeddings (from an LLM embedding
model) in a pointwise sense to the time series embeddings. This is analogous to adding in position
embeddings in the first layer of a vanilla transformer (Vaswani et al., 2017). We investigate
adding these solely in the first layer, as well as in all layers. For numerical stability, we apply a
LayerNorm on these embeddings to ensure they are of an appropriate scale.

Configuration # Correct Accuracy ETTh1168 MSE ETTh1168 MAE ETTh2168 MSE ETTh2168 MAE

Ordinal descriptions 4792 70.3% 0.52 0.55 0.59 0.83
Noisy descriptions 4813 71.2% 0.44 0.48 0.59 0.85
w/ annotated descriptions 4897 71.4% 0.42 0.49 0.57 0.80

Table 26: Effect of Sensor Descriptions (TCNconv)

Embedding Model # Correct Accuracy ETTh1168 MSE ETTh1168 MAE ETTh2168 MSE ETTh2168 MAE

mpnet 4893 71.3% 0.41 0.45 0.63 0.85
minilm 4902 72% 0.43 0.47 0.65 0.95
nomic 4897 71.4% 0.42 0.49 0.57 0.80

Table 27: Effect of Text Embedding Models

Configuration # Correct Accuracy
w/ additive embeddings (all layers) 4095 60.5%
w/ additive embeddings (layer 0) 4375 63.3%
∆+G 4897 71.4%

Table 28: Alternative Multimodal Approaches: additive vs. custom attention

As shown in Table 26, perturbing or replacing channel descriptions leads to a moderate performance
drop; however, the model remains reasonably robust to noisy descriptions. Table 27 reveals varied and
inconclusive trends across different textual embedding models, with each performing well on distinct
metrics. Finally, Table 28 suggests that the naive integration of text embeddings into the architecture
is overly heavy-handed and results in performance degradation, particularly when embeddings are
injected directly into all layers of the encoder stack. These findings indicate that incorporating
channel descriptions into a time series transformer requires greater nuance and more principled
design choices.

L EMBEDDING VISUALIZATIONS

L.1 EMERGENCE OF INTRA-CLASS LABEL SEPARATION

To analyze how our model’s embeddings evolve over training, we plot similarity heatmaps of our
embeddings on labelled datasets.

We first obtain embeddings for a dataset by sampling a subset (approximately 50 samples) of the full
dataset, while ensuring we have full label coverage. Given this embedding matrix Z ∈ RNt×T×C×H ,
we obtain our mean-pooled embeddings Z̄ ∈ RNt×H by averaging over the channel and time
dimension.

Finally, the Nt ×Nt similarity matrix, S is obtained as follows:

Si,j = ||Zi,: − Zj,:||1 (11)

We visualize the similarity matrix as a heatmap, as shown in Figures 24 to 26, and observe the
emergence of structured clusters aligned with class labels. As training progresses, a block-diagonal
structure8becomes increasingly prominent, wherein samples sharing the same label exhibit reduced
Euclidean separation compared to those from different classes. This pattern reflects a progressive
tightening of intra-class representations, indicative of improved semantic organization in the learned
embedding space.

8The heatmaps have a block structure because the labels are grouped together on each axis before plotting.
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(a) Epoch 0 (b) Epoch 3 (c) Epoch 6 (d) Epoch 9

Figure 24: Evolution of BasicMotions similarity heatmaps over training epochs

(a) Epoch 0 (b) Epoch 3 (c) Epoch 6 (d) Epoch 9

Figure 25: Evolution of Skoltech Anomaly Benchmark similarity heatmaps over training epochs

(a) Epoch 0 (b) Epoch 3 (c) Epoch 6 (d) Epoch 9

Figure 26: Evolution of Epilepsy similarity heatmaps over training epochs

L.2 EVOLUTION OF CHANNEL GATES

In this section we aim to visualize how channel gates, as defined in Paragraph Section 2.1.1, evolve
over the course of training our model. We plot the gating matrix, Gd, for each dataset for different
checkpoints.

As illustrated in Figure 28, the inter-channel gating mechanism enables the model to dynamically
modulate attention across channels, selectively emphasizing or suppressing information based on
configurations that minimize the self-supervised learning (SSL) loss. We also empirically observe
that the regularization loss begins to increase after an initial decline which suggests that after a certain
point the model’s embeddings require richer contextual information to continue improving.

Figure 27: Evolution of Channel Gates for the ETT Dataset

The ETT dataset introduced by (Zhou et al., 2021a) comprises seven variables: High Useful
Load, Middle Useful Load, Low Useful Load, High Useless Load, Middle
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Useless Load, Low Useless Load, and Oil Temperature. Among these, Oil
Temperature serves as the target variable, with the remaining six acting as input features. During
training, we observe a notable evolution in the learned channel gating patterns. Initially, the Oil
Temperature channel does not attend to any other inputs, as indicated by its high gating values
across all dimensions in Figure 27. However, as training progresses, this channel begins to incorporate
information from all other variables. Interestingly, this behavior is asymmetric: while the target
channel attends to all input features, the reverse does not occur—the other channels do not attend to
Oil Temperature. This asymmetry manifests as a distinctive row-column pattern in the gating
matrix and aligns with the underlying data semantics, where the target variable is causally influenced
by the independent variables but not vice versa. These observations suggest that introducing learnable
gating mechanisms can reveal interpretable, directional dependencies between variables which also
increases model interpretability.
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Figure 28: Evolution of inter channel gates during training. Checkpoints extracted at epoch=0;step=49,
epoch=0;step=499, epoch=0;step=999, epoch=2;step=49, epoch=6;step=49,
epoch=8;step=49.
Each row represents a particular dataset. Each column represents a sampled checkpoint as training progresses.
Each heatmap represents Gd for a particular dataset, which is a C × C matrix with values in [0, 1]. Brighter
colors on the heatmap represent higher gating values, i.e. decreased cross-channel interactions.
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