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Abstract

Training Vision Transformers (ViTs) presents significant challenges, one of which is the
emergence of artifacts in attention maps, hindering their interpretability. [Darcet et al.
(2024) investigated this phenomenon and attributed it to the need for ViTs to store global
information beyond the [CLS] token. They proposed a novel solution involving the addition
of empty input tokens, named registers, which successfully eliminate artifacts and improve
the clarity of attention maps. In this work, we reproduce the findings of |Darcet et al.| (2024
and evaluate the generalizability of their claims across multiple models, including DINO,
DINOv2, OpenCLIP, and DeiT3. While we confirm the validity of several of their key claims,
our results reveal that some claims do not extend universally to other models. Additionally,
we explore the impact of model size, extending their findings to smaller models. Finally, we
untie terminology inconsistencies found in the original paper and explain their impact when
generalizing to a wider range of models.

1 Introduction

The pursuit of universal feature embeddings has driven advances in computer vision, with transformer-based
architectures surpassing traditional methods. Pretrained transformers using large labeled datasets (e.g.,
DeiT3 on ImageNet-22K (Touvron et al.l 2022)), text supervision (e.g., CLIP (Radford et al., 2021))), or self-
supervised learning (e.g., MAE (He et al., 2021))) outperform older hand-crafted techniques like SIFT (Lowe,
2004). Fully learnable pipelines have popularized multiple transformer backbones, with the DINO framework
(Caron et al., 2021) standing out. DINO produces high-quality, semantically meaningful features, with clear
attention and feature maps that enable applications such as LOST (Siméoni et al., 2021), which improves
object discovery accuracy by 15%. Similarly, TokenCut (Wang et al.l 2022)) leverages ViT attention maps
for unsupervised object segmentation. Building on DINO’s success, DINOv2 (Oquab et al., |2023) refined
data processing to curate a 142-million-image dataset, excelling in dense prediction tasks.

Darcet et al.|(2024) investigated DINO and DINOv2, integrating LOST’s feature extraction with additional
input tokens. They found that, unlike DINO, DINOv2’s attention and feature maps contain artifacts / high-
norm tokens disrupting interpretability. These artifacts, prevalent in large models like DINOv2-G, DeiT3-L,
and OpenCLIP-L, suggest that vision transformers repurpose redundant patches for internal computation and
global information aggregation. While DINOv2 excels in benchmarks, these attention artifacts significantly
reduce object discovery accuracy, aligning it with conventionally supervised models. In contrast, DINO
remains artifact-free, making it an exception among modern transformers.

To mitigate this, Darcet et al.| (2024) propose adding empty tokens named "registers" to the input, providing
dedicated tokens for internal computation and eliminating artifacts. This solution not only resolves the
issue but also marginally enhances model performance. Their findings highlight a common artifact issue in
modern vision transformers and offer a practical method to improve interpretability in downstream tasks.

This paper validates their claims by reproducing their results. We replicate all experiments involving DI-
NOv2, while for DINO, DeiT3, and OpenCLIP, we focus on runs without registers. Additionally, we assess
the generalizability of their results, as detailed in
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Figure 1: Feature maps generated by DeiT3, OpenCLIP, DINO, and DINOv2 models for three sample
images, calculated in high resolution for better visualization. High-norm outliers are evident in most models
except DINO-S and DINOv2-B, indicating that even smaller models struggle with outliers in their feature
representations. Additionally, the absence of artifacts in DINQO’s feature maps supports the findings of

et ] @021).

2 Scope of Reproducibility

This work verifies and extends the findings of Darcet et al.|(2024), who investigate artifacts in vision models,
their correlation with high-norm tokens, and propose registers— empty tokens added to the input — to
address these issues. Below, we outline their claims.

Claim 1: Artifacts are high-norm outlier tokens. Tokens with exceptionally high L2 norm (top
2%) correspond to artifacts in attention and feature maps. The presence of such artifacts degrades the
interpretability of both representations.

Claim 2: Training large models (>300M parameters) leads to high-norm tokens. As model
size increases, high-norm tokens become more prominent, suggesting that scaling plays a key role in their
emergence.

Claim 3: High-norm tokens emerge in regions with redundant visual information. Large vision
transformers, seeking additional space for internal computations, repurpose tokens in image regions with
highly redundant information without compromising performance. Consequently, high-norm tokens tend to
appear in these regions.

Claim 4: High-norm tokens hold little local information but encode global context.
propose that high-norm tokens, repurposed for internal computation, lose local information
while encoding global context. To investigate whether local information is preserved, the authors design two
tasks: a position prediction task and a pixel reconstruction task. The position prediction task compares
the ability of normal versus high-norm tokens to predict their grid position in the original image. The pixel
reconstruction task evaluates how well normal and high-norm tokens reconstruct an image patch from their
corresponding output embeddings. To assess whether high-norm tokens better capture global context, the
authors employ an image classification task, using either a [CLS] token, a random normal token, or a random
high-norm token as the final image representation.

Claim 5: Adding registers eliminates artifacts in attention maps while maintaining or improv-
ing performance. Introducing empty input tokens, referred to as registers, provides dedicated elements
for internal computation. This prevents artifacts from appearing in feature maps and solves aforementioned
interpretability issues. Furthermore, the addition of registers does not degrade performance and occasionally
improves it.
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3 Methodology

In this section, we provide an overview of our experimental setup, encompassing models, datasets, training
procedures, hardware, and our carbon footprint. All experiments and analyses, from training and evaluation
to visualization, are documented in our GitHub repository El Relevant scripts are supplied to facilitate
reproducibility and transparency. Where the original authors do not provide direct code, we offer our
own implementations. Below, we describe our setup in detail, noting any deviations from prior work and
discussing the environmental impact of our computations.

3.1 Terminology

non

This section clarifies the definitions of "attention map," "feature map," "outlier," and "artifact," as these key
concepts are central to our reproducibility study. In |Darcet et al.| (2024)), their usage lacks clear distinctions,
which could potentially lead to confusion. Here, we disentangle these terms to ensure a precise interpretation.

Attention Maps visualize attention scores between the [CLS] token and input tokens in an image-like grid.
Following [Darcet et al|(2024), we compute attention maps by averaging scores across attention heads in the
final layer.

Feature Maps represent the L2 norm of output tokens in an image-like grid. As in [Darcet et al.| (2024]),
we calculate these using final-layer output tokens prior to the last Layer Normalization.

High-norm / Outlier tokens are output tokens with substantially higher norms than other tokens in the
same model. The authors posit these typically occur in redundant patch regions, where they facilitate global
information aggregation rather than local feature extraction. Both |Darcet et al.|(2024]) and the present work
analyze norms before the final block’s Layer Normalization.

Artifacts are anomalous patterns in attention or feature maps. Feature map artifacts always correspond to
high-norm tokens, while attention map artifacts manifest as disproportionately high [CLS] attention scores.
The presence of artifacts reduces visualization interpretability, as remaining patches have values too low to
visualize clearly.

3.2 Description of Methods

To address the emergence of high-norm tokens, |[Darcet et al.|(2024) introduce a novel approach that incor-
porates empty tokens—referred to as registers—into the vision transformer input stage. These additional
tokens serve as dedicated computational units, reducing the model’s reliance on redundant patches for in-
ternal computations and mitigating artifacts.

Registers act as placeholders in the token sequence, allowing vision transformers to compute internally
without modifying image tokens or distorting feature representations. By preserving the integrity of mean-
ingful tokens, they enhance feature map interpretability. Despite potential trade-offs, experiments show that
models with registers maintain or even improve classification accuracy and downstream performance.

3.3 Experimental Setup

All implementations utilize the TIMM Python library E| for model definitions and pretrained checkpoints.
Unless otherwise stated, experiments are conducted on the ImageNet-1K (Deng et al.,|2009) dataset, accessed
via HuggingFaceﬂ All experiments use a random seed of 42 to facilitate reproducibility.

Claims 1, 2. We extract and visualize the [CLS] token’s attention scores from the final ViT layer, averaging
across all attention heads. For feature maps, we use the L2 norms of the model’s output tokens before the
final Layer Normalization. Both maps are reshaped into a grid and generated at two resolutions: high
(800 x 800) and native (the model-specific input resolution). We also randomly sample 5,000 images from

1Official GitHub repository
2Timm Python Library
3HuggingFace Library
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the validation set, forward each image through the model, and plot the distribution of the L2 norms (before
the final LayerNorm) of the output tokens ﬂ

Claim 3. Following the approach of Darcet et al.| (2024) and using our 5,000-image subset, we compute the
cosine similarity between each patch embedding and its four immediate neighbors after the patch embedding
layer. From the distribution of L2 norms, we select a cutoff corresponding to the 98th percentile (top 2%),
designating high-norm (outlier) tokens. We then plot two similarity distributions: one for these high-norm
outlier tokens and one for the remaining tokens.

Claims 4 Each model undergoes a two-stage process: (1) extracting output tokens, unnormalized norms
(before the final LayerNorm), and [CLS] tokens for all training and validation images; (2) training task-
specific classifiers on extracted tokens, evaluating performance by input category. For position prediction
and patch reconstruction, tokens are classified as normal or outlier, while image classification uses [CLS],
normal, and outlier tokens. Outliers are defined as tokens exceeding the 98th percentile of the L2-norm
distribution - calculated on a per model basis.

o Position Prediction. This task is formulated as classification, where each token predicts its original
patch position. For a square image of size (Y x Y') with patch size P, the total patch positions are

(%)2 - assuming Y is evenly divisible by P. A linear layer maps the token embedding (D) to an

integer in [0, (%)2 — 1], which is then converted to a grid coordinate. Training uses cross-entropy
(CE) and mean squared error (MSE) loss, reporting top-1 accuracy and L2 distance to the ground-
truth position. The total loss is CE + 0.5x MSE, where MSE helps refine spatial predictions.
Optimization is done via Adam with a cosine learning rate schedule, running for up to 30 epochs
with early stopping (patience = 3) based on validation top-1 accuracy.

o Patch Reconstruction. A linear layer reconstructs the image patch from token embeddings (D),
outputting P? x 3 values (flattened RGB patch). Training minimizes MSE loss with AdamW, using
a cosine learning rate schedule for up to 30 epochs, with early stopping (patience = 3) based on
validation MSE.

o Image Classification. A linear classifier is trained on ImageNet-1K using 200,000 images con-
taining at least one outlier token. Per image, a [CLS], random normal, or random outlier token is
selected. Training uses cross-entropy loss, Adam, a cosine learning rate schedule, and early stopping
(patience = 3) based on validation accuracy.

Claim 5. We evaluate pretrained DINOv2 models - trained with and without registers - alongside the
pretrained 1-layer classifier heads from the official DINOv2 repository ﬂ These models are assessed on the
ImageNet-1K validation set, with performance reported as top-1 accuracy. Additionally, we investigate the
use of registers for classification, by training three linear models on pretrained DINOv2 architectures (small,
base, and large), each incorporating four registers. The models leverage distinct image representations:

e CLS + Patch Mean: Concatenation of the [CLS] token and the mean of the output patch tokens.

e« CLS + Patch Mean + Registers: Concatenation of the [CLS] token, the mean of the output
patch tokens, and all registers.

o Patch Mean + Registers: Concatenation of the mean of the output patch tokens and all registers.

These linear models are trained for 20 epochs using SGD with a cosine learning rate scheduler, and we report
top-1 accuracy on the validation set.

4The sampled subset is available in our |GitHub repository
5DINOv2 Repository
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3.4 Models

The training schemes of DINO, DINOv2, DeiT3, and OpenCLIP reflect distinct approaches tailored to their
objectives. These models were selected to align with those used in the work of [Darcet et al.| (2024), ensuring
consistency and comparability with prior work. DINO (Caron et al., [2021) and DINOv2 (Oquab et al.,
2023) leverage a self-supervised teacher-student framework, where the teacher generates pseudo-labels from
augmented image views using a momentum encoder, and the student aligns to these via cross-entropy loss. It
employs multi-crop augmentation and contrastive learning without negative samples, preventing collapse via
centering and sharpening, while DINOv2 enhances this with improved scalability and robustness for richer,
generalizable features. Notably, DINOv2 is the only model among these that incorporates the iBOT loss,
which incentivizes the tokens to hold local information by predicting the content of masked image patches,
thereby enhancing its ability to capture fine-grained details. In contrast, DeiT3 (Touvron et al., [2022)
adopts a supervised paradigm, optimizing performance with extended training, cosine annealing with warm
restarts, and advanced augmentations like RandAugment (Cubuk et al., |2020)), Mixup (Zhang et al., 2018),
and CutMix (Yun et all 2019)), ensuring robust convergence for labeled tasks. OpenCLIP (Gadre et al.
2023)), however, uses a multimodal contrastive approach, jointly training transformer-based image (e.g., ViT
(Dosovitskiy et al.,|2021)) and text (e.g., BERT (Devlin et al.||2019)) encoders on large-scale image-text pairs
(e.g., LATON-142M) to align embeddings, enabling zero-shot transfer but requiring significant computational
resources due to its dual-encoder and dataset scale.

3.5 Datasets

This section introduces the datasets used in our experiments: LVD-142M, LAION-2B, and ImageNet-1K.
To begin with, LVD-142M (Oquab et al.l [2023), a large-scale dataset with 142 million images, is used to
train DINO and DINOv2, providing extensive visual data for robust feature learning. Moreover, LAION-
2B (Schuhmann et al., |2022), utilized to train OpenCLIP, is distinguished by its vast scale and diversity,
enabling strong image-text alignment and supporting tasks such as zero-shot classification and retrieval.
Furthermore, ImageNet-1K (Deng et al) [2009), a widely used benchmark with over 1.2 million labeled
images across 1,000 classes, is employed for training DeiT3. Notably, [Darcet et al.| (2024) re-trained DINOv2
and DeiT3 on ImageNet-22K instead of using the mentioned datasets. Whether they re-trained OpenCLIP
on ImageNet-22K or LAION-2B or used DataComp (Gadre et al. 2023)) remains unspecified.

3.6 Hardware & CO,

All experiments were conducted on the Snellius supercomputing cluster. Each node features 64 CPU cores
and 4 NVIDIA H100 GPUs; we utilized 1/4 of a node (16 CPU cores + 1 GPU). In total, 30,000 Service
Units (SBUs) were consumed, where 192 SBUs correspond to 1 hour of compute time on 1 H100 GPU and
16 CPU cores.

CO; Emissions. We estimated COs emissions using:

COy=CI-PUE-P-t (1)
where CT is the Carbon Intensity (0.37 kg/kWh for Amsterdam Data Tower)ﬂ PUE is the Power Usage
Effectiveness (1.19)|Z|7 P is the power consumption (0.805 kW: 0.105 kW for CPU + 0.7 kW for GPU), and ¢

is the compute time (156.26 hours for 30,000 SBUs). The estimated emissions are 29.94 kg, highlighting the
environmental impact of computational research and the need for energy-efficient practices.

4 Results & Analysis

In this section, we outline the experiments conducted for each claim and explore their respective results,
providing an analysis of the findings.

6www.nowtricity.com

"https://wuw.clouvider.com/amsterdam-data-tower-datacentre/
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Claim 1 We begin by clarifying a key distinction: Darcet et al.| (2024) use "outlier," "artifact," and "high-
norm token" interchangeably, assuming artifacts are high-norm outlier tokens. However, as detailed in the
[Experimental Setup| these terms are not always equivalent. Artifacts can appear in both attention maps
and feature maps, but only in the latter can they be definitively linked to high norms.

The conflation in Darcet et al.| (2024) arises from their exclusive use of DINOv2-G, where attention and
feature maps are nearly identical. However, this does not generalize. We observe cases where artifacts
appear in attention maps without corresponding to high-norm tokens in feature maps, indicating they are
not true outliers. An example of this effect can be observed in Figure 2] A token is a high-norm outlier
only if it appears in the feature map. For example, in DINOv2-L, a dominant artifact in the attention map
does not translate to a high-norm feature representation. Instead, it should be classified as a high-attention
token, not a high-norm token.

Hence, while Claim 1 holds for DINOv2-G—the only model analyzed by Darcet et al.| (2024)—it does not
generalize. Our findings emphasize the need to differentiate artifacts, outliers, and high-norm tokens, as
their equivalence depends on the model architecture and is not universal.

Input DINOv2-L DINOv2-G

Figure 2: Attention maps (first two rows) and feature maps (last two rows) generated by DINOv2-L, DINOv2-
G model variants, respectively, for two sample images. This example illustrates the difference of attention
maps and feature maps. We observe that an image can have artifacts in the attention map and simultaneously
have a clean feature map.

Claim 2 Claim 2 states that training large models (>300M parameters) leads to high-norm token emer-
gence. Figure[I]confirms this, showing artifacts in the feature maps of DINOv2-G, DeiT3-H, and OpenCLIP-
H/G. Notably, these artifacts appear consistent across large models.

However, high-norm tokens are not exclusive to large models. Figure [1] also shows that smaller models,
including DeiT3-S, OpenCLIP-B, and DINOv2-B, also exhibit outliers. The only exceptions are DINO,
aligning with the observations of [Darcet et al. (2024), and DINOv2-B. While outliers are prevalent in large
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models, our results reveal their frequent occurrence in smaller models as well. Figure[d]shows that OpenCLIP-
B, a smaller model, has a comparable or even greater number of high-norm tokens than OpenCLIP-H, a
larger counterpart. This suggests that model size alone does not determine outlier formation.

In summary, we confirm the findings of Darcet et al.| (2024)) on outliers in large models and extend them to
smaller models (<300M parameters). Our results indicate that high-norm token emergence is not solely a
function of model size, refining the original claim.

Claim 3 In Figure 3] we reproduce the results of Darcet et al.[(2024), confirming that high-norm tokens in
DINOvV2-G predominantly appear in areas with redundant local information. We plot the cosine similarity of
each patch with its four nearest neighbors, generating distributions for artifact and normal patches. Artifact
patches are approximately 2.5 times more likely than normal patches to reside in low-information areas,
aligning with the authors’ conclusions.

Besides DINOv2-G we also extend the analysis to three additional models. The cosine similarity plots
for these models closely resemble those of DINOv2-G - with the exception of DINOv2-S - validating the
generalizability of the authors’ claim. Notably, DINOv2-S, which lacks artifacts in its feature maps, exhibits
an inverted pattern, i.e. high-norm tokens do not appear in regions of redundant visual information.

In conclusion, our experiments confirm the reproducibility of the findings of Darcet et al.|(2024) and generalize
them across a broader set of models, reinforcing the relationship between high-norm tokens and redundant
local information.

Claim 4 The experimental results, summarized in [Table 1| and [Table 2| below (detailed explanation in
methodology in Section , demonstrate two key findings. First, our replication experiments with DINOv2-
G align with the original findings reported by the authors: normal tokens exhibit superior performance to
outlier tokens in both pixel reconstruction and position prediction tasks. This supports the hypothesis that
high-norm "outlier" tokens retain significantly less local information compared to normal tokens. Secondly,
this pattern persists in smaller architectures (DeiT3-M, OpenCLIP-B, and DINOv2-S, which have less than
300M parameters), where outlier tokens similarly underperform normal tokens across tasks. Despite their
reduced parameter counts, these models mirror DINOv2-G’s token behavior, further corroborating the pro-
posed relationship between token norm and local information content.

In addition, an important observation is that DINOv2-G, as well as DINOv2-S, demonstrate a significantly
better performance in comparison to the other models. This is due to the iBOT loss (Zhou et all [2022) that
models of the DINOv2 family implement. iBOT trains models to reconstruct masked patches and enhances
their ability to capture and retain local structures and spatial relationships. This is highly effective for tasks
that require understanding local image content and explains the superior performance of DINOv2 models in
pixel reconstruction and position prediction tasks.

Moreover, for the second part, regarding the outlier tokens holding global information, we reproduce the
experiments of |Darcet et al.| (2024]), who trained a linear classifier using randomly sampled normal and
outlier patches from DINOv2-G. Tokens are sampled from images, identified as outliers or normal patches,
and used in place of the [CLS] token. A balanced dataset is created, and if high-norm outliers encode global
information, their classification accuracy should surpass that of normal patches.

We extend this experiment to DINOv2-S, DeiT3-M, and OpenCLIP-B. DeiT3-M and OpenCLIP-B are
included due to their similarity to DINOv2-G in cosine similarity patterns (see Figure [3]), while DINOv2-S,
which lacks high-norm tokens, serves as a contrasting case. We expect DINOv2-S to show minimal differences
between patch types, further validating our hypothesis.

Results in confirm the findings of |Darcet et al.| (2024) for DINOv2-G, with high-norm tokens outper-
forming normal patches. OpenCLIP-B and DeiT3-M exhibit similar patterns, with artifact-based accuracy
exceeding normal patches by over 10%. In contrast, DINOv2-S shows negligible differences, as expected,
given its lack of outlier tokens.

In conclusion, we confirm that high-norm tokens hold little local information and show that they also encode
global information in OpenCLIP-B and DeiT3-M.
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Model Top-1 Acc (%) 1  Avg. Distance |
Normal Outlier Normal Outlier
DINOv2-S 28.05 19.18 1.07 1.27
DeiT3-M 7.53 7.05 4.29 3.88
OpenCLIP-B 6.76 8.19 3.87 6.38
DINOv2-G 45.48 7.60 0.67 7.41

Table 1: Results for the position prediction task.
Bold numbers indicate the most dominant methods.
Notably, for DINOv2-S, DeiT3-M, and DINOv2-G,

Model L2 error |
Normal Outlier
DINOv2-S 383.13 521.56
DeiT3-M 801.07  1505.68
OpenCLIP-B  572.54 983.69
DINOv2-G 337.20 926.34

Table 2: Results for the pixel reconstruction task
for the four models analyzed in greater depth. Bold
numbers denote superior performance. The results
consistently indicate that normal tokens exhibit a
significantly lower L2 error compared to outlier to-

kens. In models such as DINOv2-S, where attention
maps show minimal artifact presence, the difference
is smaller. Specifically, for DINOv2-S, the L2 norm
of outlier tokens is less than twice that of normal to-
kens. Conversely, in models like DINOv2-G, which
exhibit numerous artifacts, the L2 norm for outlier
tokens is nearly three times higher than that of nor-
mal tokens.

normal tokens perform exceptionally well in both
tasks. Furthermore, the results of DINOv2-G exceed
the performance of|Darcet et al.[(2024) by more than
4%. Lastly, OpenCLIP-B exhibits an opposite trend
compared to the other models.

Model Category Accuracy
[CcLs] 74.81%
DINOv2-S Normal 55.61%
Outlier 57.00%
[CLS] 81.08%
DeiT-3-M Normal 69.18%
Outlier 78.96%
[cLs] 75.77%
OpenCLIP-B Normal 59.22%
Outlier 69.48%
[cLs] 81.56%
DINOv2-G Normal 50.04%
Outlier 68.33%

Table 3: Image classification results for the four models analyzed. Bold numbers indicate superior per-
formance. For each model, we report the accuracy of the [CLS] token for reference. In DINOv2-S, which
exhibits a limited number of artifacts, the performance of normal and outlier tokens is similar, as expected.
Conversely, in the other three models, outlier tokens consistently outperform normal tokens. This supports
the intuition that outlier tokens encode global information, validates the findings of |Darcet et al.[ (2024]), and
extends them to different models and token categories.

Claim 5 Darcet et al.| (2024)) address artifacts in attention maps by introducing registers. Rather than
constraining the model, registers provide an alternative pathway for global information, reducing the reliance
on redundant image tokens.

To validate this claim, we focus on DINOv2, as it is the only model with a pretrained version that includes
registers. The results, depicted in Figure [f] clearly demonstrate that registers effectively eliminate artifacts
from the attention maps. Our findings confirm the authors’ claim and support the use of registers as a robust
solution for mitigating outliers in attention maps.

Subsequently, the authors also claim that incorporating registers does not degrade classification performance
and may occasionally improve it. To verify this, we evaluate pretrained DINOv2 models, with and without
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Figure 3: Cosine similarity plot of DINOv2-G with additional models. We include DeiT3-M and OpenCLIP-
B, which exhibit similar behavior to DINOv2-G, and DINOv2-S, which lacks artifacts, further validating the
observed patterns. The figures demonstrate that cosine similarity is highest for normal patches in DINOv2-
S, whereas in the other three models, outlier patches exhibit greater similarity. These results align with
expectations, support the claims of [Darcet et al.| (2024, and extend them to additional models.

registers, on ImageNet-1K. As shown in models with registers consistently perform marginally
better, confirming the authors’ claim. Notably, our DINOv2 model was trained on LVD-142M rather than
ImageNet-22K, demonstrating the generalizability of their findings. Retraining the classification head for
both versions, further supports the claim and yields improved results over those reported in [Table 4

Model No Registers With Registers
Small 81.15 81.65
Base 84.33 84.71
Large 86.12 86.80
Giant 86.90 87.29

Table 4: Reproduced ImageNet-1K classification results for the DINOv2 family. Bold numbers indicate
superior performance. The results demonstrate that incorporating register tokens into the input layer does
not degrade performance; instead, it consistently leads to a marginal improvement, confirming the results of
Darcet et al.| (2024)).

OpenCLIP-H

vit_huge_patch14_clip_224

Input DINOv2-G DINOv2-G-Reg4

Kl
[ e

Figure 5: Attention maps generated by DINOv2-
G without registers (left) and with registers (right).
We observe that registers are instrumental in clean-
ing the attention map representations.

OpenCLIP-B

vit_base_patch16_clip_224

L2 Norm

Figure 4: L2-norm distributions of OpenCLIP-H
and OpenCLIP-B. Despite its smaller size, the base
model exhibits significantly higher L2-norm values
compared to the larger variant, indicating a greater
susceptibility to artifacts. This further supports the
observation that smaller models are affected by high-
norm tokens. In some cases like this one, they can
be more affected.

Furthermore, while the mechanism behind artifact generation remains unclear, the addition of registers
effectively eliminates artifacts from attention maps, as shown in Figure [5| In addition [Darcet et al| (2024)
hypothesize that register tokens - acting as replacements for outlier tokens - aggregate global information.
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To explore this, we retrain the classification head of a subset of models, leveraging register information for
classification. We test three approaches: (1) concatenating registers with the [CLS] token and patch mean,
(2) excluding the [CLS] token and using only registers and patch mean, and (3) concatenating the [CLS]
token, patch mean, and registers. We also report the results of the pretrained head for reference. Results

are presented in

The table shows that adding registers does not improve performance. This outcome suggests that registers,
while accumulating global information, may not provide novel insights beyond the [CLS] token. Their
contribution remains uncertain, as they are not explicitly trained to encode specific information, potentially
limiting their utility for classification.

Representation SMALL BASE LARGE
Pretrained Head 81.65 84.71 86.80
CLS + PATCH MEAN 82.28 85.07 86.62
CLS + PATCH MEAN + REGISTERS 82.12 84.92 86.74
PATCH MEAN + REGISTERS 81.60 83.44 86.58

Table 5: Top-1 accuracy on the validation set for different image representations and DINOv2 model sizes.
Bold numbers indicate superior performance. The addition of register tokens does not appear to enhance
classification performance, as the standard approach (CLS + Patch Mean) outperforms the alternatives
that employ registers. The large model constitutes an exception, however the improvement is marginal and
potentially due to stochasticity. Results using the pretrained head are also included for reference.

5 Discussion

5.1 Reproducibility Work

In this work, we reproduce the findings of Darcet et al.| (2024]), confirming that large models (>300M
parameters) are prone to outlier tokens in feature maps. Similarly to [Darcet et al. (2024) we focus on
DINOv2-G and demonstrate that high-norm tokens emerge in regions with redundant visual information.
These tokens hold little local information, as evidenced by their poor performance in position prediction
and pixel reconstruction tasks, but encode global information, as shown by their superior performance in
classification tasks using normal and outlier tokens. Overall, our results align closely with those of |[Darcet
et al.| (2024]), successfully reproducing their key findings.

Finally, regarding the performance of registers, we conduct experiments for DINOv2-G and prove that adding
register tokens in the input stage eliminates outlier tokens and leads to cleaner feature map representations.
Registers significantly clean feature maps without degrading model performance, confirming their utility.

5.2 Generalization & Further Analysis

Beyond reproducibility, we generalize the findings of [Darcet et al.| (2024) by experimenting with additional
models. As part of this generalization effort, we first address a key ambiguity in terminology that is high-
lighted when including more models in the experiments. We clarify the distinction between "artifacts" and
"outliers," as well as "attention maps" and "feature maps," which are used interchangeably by [Darcet et al.
(2024) but are not equivalent in the general case. We note that the appearance of high-norm tokens in
feature maps does not always align with the emergence of artifacts in attention maps.

Additionally, we explore the relationship between artifacts and model size, showing that smaller architectures
with fewer than 300 million parameters (e.g., OpenCLIP-B and DeiT3-M) are also prone to outliers. However,
this behavior is not universal, as models like DINOv2-S exhibit clear feature maps without artifacts.

Furthermore, we conduct a deeper investigation into the emergence of high-norm tokens in regions with
redundant visual information. To this end, we select a subset of models—OpenCLIP-B and DeiT3-M —that
uniformly exhibit a significant presence of artifacts in their feature maps. By comparing outlier patches
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to normal patches using cosine similarity, we confirm that outlier patches in DeiT3-M and OpenCLIP-B
are strongly associated with redundant regions, mirroring the behavior observed in DINOv2-G. In contrast,
DINOv2-S, which lacks artifacts in its feature maps, shows no such association, as its outlier patches do not
exhibit the same patterns.

To further assess the information content of outlier tokens, we perform position prediction, pixel reconstruc-
tion, and classification tasks for the same subset of models previously used. Outlier tokens perform poorly
in position prediction and pixel reconstruction, confirming their lack of local information and aligning with
the performance of DINOv2-G. On the other hand, they consistently outperform normal tokens in classifi-
cation, indicating that they encode global information instead, which also aligns with the performance of
DINOv2-G.

Finally, acknowledging that registers hold global information, we attempt to utilize them in order to perform
classification. However, their inclusion in classification tasks by concatenating with them with the [CLS]
token yields no improvements, suggesting that their global information may overlap with that of the [CLS]
token. Their strong performance though, is also further proof that they do in fact hold global information.

To sum up, while registers effectively address artifacts, the origin of artifact generation remains unclear. Our
findings suggest that outlier tokens arise from the replacement of local information with global information in
redundant regions, but the underlying cause of this behavior—and the source of increased L2-norms—remains
an open question. This work highlights the need for further research into the mechanisms driving artifact
generation in vision transformers.
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A Feature Map Analysis

In this section, we conduct further analyses of high-norm tokens within the feature maps of ViTs. We
extract and visualize the feature maps for the query, key, value, and the final feature map (prior to the
final LayerNorm) to investigate their properties. The results are presented in Section Additionally, we
perform a block-wise analysis of these feature maps, with findings detailed in Section Through these
experiments, we aim to elucidate the emergence of artifacts and potentially pinpoint the origin of high-norm
tokens.

A.1 QKV Feature Maps

Our findings are illustrated in Figure [l For the Dinov2-S model, the key feature maps exhibit high-norm
tokens, while the same tokens manifest as low-norm outliers in the query and value feature maps. In the
final feature map (prior to the last LayerNorm), most of these tokens no longer appear as high-norm outliers.
Similarly, in Dinov2-L, specific tokens display distinct behavior depending on their location: they appear as
high-norm outliers in the key feature maps but as low-norm outliers in the query and value feature maps. In
the final feature map, only a very small subset of high-norm outliers persist, corresponding to those observed
in the key feature maps. However, they are enough to completely harm the representation of the feature
maps.

For DeiT-3-M, the query, key, and value feature maps contain a notable number of low-norm outliers.
However, these do not translate into either high- or low-norm outliers in the final feature map. All feature
maps in this model exhibit a noisy appearance. In contrast, OpenCLIP-B shows clusters of low-norm outliers
across its query, key, and value feature maps. Intriguingly, in the final feature map, all tokens previously
identified as low-norm outliers emerge as high-norm outliers.

From these observations, no consistent pattern of behavior emerges across the evaluated models. Further
experimentation and analysis are required to better understand these phenomena and their implications. We
leave further investigation of these findings to future work.

A.2 Per-Block Feature Maps

To precisely determine the stage at which artifacts emerge in feature maps, we visualize the feature maps
after each block during inference. Figure [7] reveals intriguing results. While artifacts appear in the early
stages, the feature maps briefly improve before deteriorating again. Notably, in blocks 19-20, a single outlier
in the K matrix at the top left corner has increased L2-norm magnitude in block 19, whereas this is not
the case in the Q and V matrices. In the subsequent block, the norm of this outlier increases in the K
matrix, while still having low L2-norm in the Q and V matrices. However, rather than further degrading
the visual representation of the feature map, the representation improves. This suggests that the underlying
cause of poor feature map representations is either more complex than initially assumed or occurs within
intermediate processing steps, possibly between layer normalization layers.
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DINOv2-S DINOv2-L

Input Query Key Value Output

DEIT3-M OpenCLIP-B

Input Query Key Value Output Output

Input Query Key Value

Figure 6: Feature maps generated by five sample images, for DINOv2-S, DINOv2-L, DeiT3-M, and
OpenCLIP-B. We extract the tokens from the queries, keys, and value matrices of the last block, as well
as the output tokens before the last LayerNorm of the last block. Computed in high resolution for better
visualization.
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Figure 7: Feature maps generated per block layer for DINOv2-L. We observe that the resulting feature map
representation starts to worsen after the mid-blocks. However, we notice that it starts to improve for a few
blocks before being dominated again by artifacts.
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