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Abstract

Due to the intractability of characterizing everything that looks unlike the normal data,
anomaly detection (AD) is traditionally treated as an unsupervised problem utilizing only
normal samples. However, it has recently been found that unsupervised image AD can be
drastically improved through the utilization of huge corpora of random images to represent
anomalousness; a technique which is known as QOutlier Fxposure. In this paper we show
that specialized AD learning methods are unnecessary for state-of-the-art performance, and
furthermore one can achieve strong performance with just a small collection of Outlier
Exposure data, contradicting common assumptions in the field of AD. We find that standard
classifiers and semi-supervised one-class methods trained to discern between normal samples
and relatively few random natural images are able to outperform the current state of the
art on an established AD benchmark with ImageNet. Further experiments reveal that even
one well-chosen outlier sample is sufficient to achieve decent performance on this benchmark
(79.3% AUC). We investigate this phenomenon and find that one-class methods are more
robust to the choice of training outliers, indicating that there are scenarios where these
are still more useful than standard classifiers. Additionally, we include experiments to
delineate the scenarios where our results hold. Lastly, no training samples are necessary when
one uses the representations learned by CLIP, a recent foundation model, which achieves
state-of-the-art AD results on CIFAR-10 and ImageNet in a zero-shot setting.

1 Introduction

Anomaly detection (AD) (Chandola et al.l [2009)) is the task of determining whether a sample is anomalous
compared to a corpus of data. Recently there has been a great interest in developing novel deep methods for
AD (Ruff et all 2021} [Pang et al., 2021). Most prior work performs AD in an unsupervised way utilizing only
an unlabeled corpus of mostly normal data (Golan & El-Yaniv, 2018; [Hendrycks et al.l |2019b; |Bergman et al.|
2020; [Tack et al., [2020). While AD can be interpreted as a classification problem of “normal vs. anomalous,”
it is classically treated as an unsupervised problem due to the rather tricky issue of finding or constructing a
dataset that captures everything different from the normal dataset.

One often has, in addition to normal data, access to some data which is known to be anomalous. [Hendrycks
et al.| (2019al) noted that, for an image AD problem, one has access to a virtually limitless amount of random
natural images from the internet that are presumably not normal. They term the utilization of such auxiliary
data Qutlier Exposure (OE). Many top-performing AD methods on standard image AD benchmarks utilize
tens of thousands of OE samples combined with self-supervised learning (Hendrycks et al.l |2019b) or transfer
learning (Reiss et al., [2021}; [Deecke et al., |2021) to achieve state-of-the-art detection performance.

For clarity, we here delineate three basic approaches to anomaly detection:

o Unsupervised: These are methods trained on unlabeled data that is assumed to be mostly normal. This is
the classic and most common approach to AD.

o Unsupervised OE: These are adaptations of unsupervised methods that incorporate auxiliary OE data that
is not normal. Elsewhere this is also called “semi-supervised” AD (Gornitz et al., [2013; [Ruff et al., 2020]).

The complete code to reproduce our results is included in the supplementary material.
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e Supervised OF: This simply indicates standard classification methods trained to discern between normal
data and an auxiliary OE dataset that is not normal.

Using unsupervised OE rather than supervised OE to discern between the normal data and OE samples
seems intuitive since the presented anomalies likely do not completely characterize “anomalousness.” Figure[l]
illustrates this classic intuition and highlights the differences between these approaches on a 2D toy dataset.
The benefits of unsupervised OE when incorporating (a few specific) known anomalies has also been observed
(Tax, 2001}; |Gornitz et al., 2013; Ruff et al., 2020)).
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(a) Train data: ideal (c) Unsupervised OE on ideal

(d) Train data: skewed (e) Supervised OE on skewed (f) Unsupervised OE on skewed

Figure 1: This figure visualizes a deceptively reasonable intuition that one might have for deep AD. It shows
the decision boundaries of a supervised OE method and an unsupervised OE method on two toy datasets:
ideal (a—c) and skewed (d—f). The skewed scenario occurs naturally when there are not enough OE samples to
cover the ambient space, the data dimensionality is high, or the OE data is clustered. Unsupervised OE (¢ 4+
f) learns a compact decision region for the normal class that generalizes well in both scenarios. A supervised
OE approach (b + e), on the other hand, learns a decision region that generalizes well in the ideal case
where the outlier data is fully representative, but not in the skewed case. While this intuition is true for
shallow AD settings, like in this 2D toy example (a—f), our results suggest that a deep approach removes the
aforementioned phenomena so supervised OE performs remarkably well.

In this paper we present surprising experimental results that challenge the assumption that deep AD on images
needs an unsupervised approach (with or without OE). Using the same OE setup as Hendrycks et al. (2019b),
which is common in the literature, we find that a standard classifier outperforms current state-of-the-art AD
methods on the one vs. rest AD benchmark with CIFAR-10 and ImageNet. The one vs. rest benchmark
has been recommended as a standard evaluation protocol to validate AD methods (Emmott et al.|, 2013
and is used as a litmus test in virtually all deep AD papers published at top-tier venues; see e.g. (Ruff]
let al, 2018} [Deecke et all, 2018} [Golan & El-Yaniv, 2018} [Akcay et all, 2018} [Hendrycks et all, [2019b} [Abati
et all 2019} [Perera et all 2019; Wang et all [2019a} [Ruff et al, [2020; Bergman & Hoshen| 2020; Kim et al.]
2020} [Liznerski et al. 2021} Deecke et all [2021). Further challenging common assumptions, we find that OE
does not seem to require huge amounts of data to represent “anomalousness.” A classifier requires only 256
random OE samples to outperform the state of the art on ImageNet and only one well-chosen OE sample to
score reasonably compared to unsupervised methods and classical AD approaches. This approach, however,
does not solve all types of AD problems, in particular when the normal dataset is highly diverse or when
anomalies are very subtle. For instance, we demonstrate that the methods need more OE samples to achieve
top performance on the less common leave-one-class-out AD benchmark Bergman & Hoshen| (2020); Deecke|
where many classes are combined to form a multi-modal normal class. Further, on MVTec-AD, a
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recent manufacturing dataset, we show that random natural images are not very informative as OE. We also
investigate transfer learning approaches to AD that have recently improved AD on images (Reiss et al., [2021}
[Deecke et all [2021). Using CLIP (Radford et al., |2021)), a recent foundation model, we find that it is possible
to set a state of the art on CIFAR-10 and ImageNet without any additional training data. While transfer
learning and standard classification work well, we still show advantages of unsupervised OE over supervised
OE. When there are very few OE samples or the OE samples are not very informative, unsupervised OE
approaches outperform classifiers, indicating a certain robustness with respect to the training outliers.

In conclusion, the primary message of this paper is neither that we propose yet another state-of-the-art
method nor that one of our investigated methodologies is of general superiority, but that there is a surprisingly
strong performance of off-the-shelf classifiers, transfer learning, and just a few OE samples—contradicting
widespread common assumptions for deep AD on well-established AD benchmarks. Through this work, we
want to encourage rethinking how previous AD results extend to deep learning.

2 Related work

Here we briefly review recent developments in deep AD, including self-supervision, transfer learning, and
outlier exposure. We further clarify the differences between out-of-distribution detection and AD and discuss
non-natural image AD benchmarks.

Deep anomaly detection While there exist many shallow methods for AD, it has been observed that
these methods perform poorly on high-dimensional data (Huang & LeCunl 2006; Kriegel et al., |2008; |[Erfani|
let al., |2015; |2016). To address this, deep approaches to AD that scale well with higher dimensions have
been proposed (Ruff et al., |2021; [Pang et al., |2021). The most common approaches to deep AD employ
autoencoders trained on normal data, where samples not reconstructed well at test time are deemed anomalous
(Hawkins et al., 2002} |[Sakurada & Yairi, [2014} |Chen et al, 2017} [Zhou & Paffenroth, 2017} Nguyen et al.
2019; Kim et al., |2020). Deep generative models detect anomalies via a variety of methods (Schlegl et al.
2017; Deecke et al., 2018 [Zenati et al.l 2018} [Schlegl et al) [2019)), yet their effectiveness has been called into
question (Nalisnick et al [2019).

A recent avenue of research uses self-supervision for deep AD on images (Gidaris et al., 2018; Golan &
[El-Yaniv] [2018} [Wang et al., [2019b} [Hendrycks et all 2019} [Tack et all 2020} |Sohn et al., 2021)). One of
the best-performing AD methods is the self-supervised approach from Tack et al.| (2020]), which combines
Hendrycks et al| (2019b)’s AD method with contrastive representation learning (Chen et all |2020). Tack]
et al|(2020) train their network on transformed normal data so that it maps similar transformations of a
sample close together, while sufficiently distorting transformations and other samples are mapped away from
it. The network then has to classify each sample’s type of transformation as in (Hendrycks et al.| 2019b)). For
a test sample, both the trained network’s certainty on predicting correct transformations and the similarity
of the sample with its nearest neighbor in feature space determine its anomaly score: the larger the certainty
and similarity, the smaller the anomaly score.

More recently, transfer learning-based approaches to AD (Bergman et al., 2020; Reiss et al., 2021; |[Deecke)
that fine-tune supervised classifiers trained on ImageNet have shown to outperform self-supervised
methods such as|Tack et al. (2020) on common benchmarks. To the best of our knowledge, [Reiss et al.| (2021))
is the best performing AD method on CIFAR-10 that does not use OE (Hendrycks et al. 2019a). Their
method fine-tunes a ResNet pre-trained on ImageNet on a deep one-class loss (Ruff et al., [2018)) and applies
continual learning to avoid a feature collapse. Since they use ImageNet pre-trained models, they do not
validate their method on the ImageNet one vs. rest benchmark.

The state of the art on the CIFAR-10 benchmark, however, takes advantage of OE (Hendrycks et al.| [2019a),
which follows the idea of using a large unstructured corpus of images as “auxiliary anomalies” during training.
For example, [Hendrycks et al| (2019b)) use OE to improve their self-supervised method by training the
network to predict the uniform distribution for all transforms on OE samples, while leaving training on
normal samples unchanged. Reiss et al.| (2021)) and Deecke et al.| (2021) combined transfer learning and OE,
which yields the currently best performing methods.
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Out-of-distribution detection and anomaly detection A field of research related to AD is out-of-
distribution (OOD) detection, where the aim is to detect anomalous samples that do not belong to any of the
given classes of a multi-class classification task (Lee et al., [2018)). One can always apply an AD method to
OOD by using it separately from the classifier, treating all training samples of all classes as normal, ignoring
the available class labels. However, AD methods typically (and expectedly) perform worse than specialized
OOD methods that take advantage of the in-distribution labels and confidence scores of a trained classifier
(Liang et al. 2018} Tack et al., [2020; [Hendrycks et al., [2022)). Such methods define the anomaly score to be
large when the maximum of the softmax outputs (Liang et al., |2018)) or logits (Hendrycks et al., [2022) is
small, i.e. when the classifier is uncertain about the classification of a sample. Conversely to AD methods,
which are applicable to OOD problems, OOD methods cannot be applied to AD setups due to the absence of
in-distribution class labels. Note that the type of auxiliary supervision via OE we utilize in this paper hence
differs from the kind of supervision applied in OOD, as we do not discriminate between different classes of
normality but only between normal samples and auxiliary outliers.

Non-natural image AD Recently there has been increasing attention on image AD on “non-natural”
images (e.g. medical images or technical images from manufacturing), where anomalies tend to be more
subtle. For example, the MVTec-AD dataset consists of photos from manufacturing with, for instance, screws
being normal and defective screws being anomalous (Bergmann et al., [2019)). In this paper we instead focus
on the common and well-established one vs. rest benchmarks with natural images, aiming to detect images of
natural classes that are semantically different from the normal class. For other types of image data, random
natural images from the web are likely not informative as OE. We show this in Section and Appendix
[[ for the example of MVTec-AD. However, one can see that both transfer learning and OE can work well
in other settings as many state-of-the-art methods on MVTec-AD rely on one of these. For instance, see
Liznerski et al.| (2021)); |[Schliiter et al. (2021)); |Li et al.| (2021)) that employ OE in the form of synthetically
generated anomalies and Defard et al.|(2021); |Gudovskiy et al.| (2022); Roth et al.|(2022) that use transfer
learning-based methods.

3 Methods

In this section, we introduce the methods that we will use for our experimental evaluation. We first motivate
why AD typically follows an unsupervised approach and is not viewed as a binary classification problem.
Afterwards, we introduce deep one-class classification as well as CLIP (Radford et al.| [2021)) for zero-shot AD.

3.1 AD as a classification problem

Traditionally AD is understood as the problem of estimating the support (or level sets of the support) of the
normal data-generating distribution. This is known as density level set estimation (Polonik, 1995 Tsybakovi
1997). This follows the assumption that normal data is concentrated whereas anomalies are not concentrated
(Scholkopt & Smolal [2002). [Steinwart et al.| (2005) remark that density level set estimation can also be
interpreted as a binary classification problem between the normal and an anomalous distribution. Many
classic AD methods (e.g., kernel density estimation or one-class SVMs) implicitly assume the anomalies to
follow a uniform distribution, i.e. they make an uninformative prior assumption on the anomalous distribution
(Steinwart et al., [2005). These methods, as well as a binary classifier trained to discriminate between normal
samples and uniform noise, are in fact asymptotically consistent density level set estimators (Steinwart et al.,
2005} [Vert & Vertl |2006)). Practically, however, it is preferable to estimate the level set directly rather than
classifying against uniform noise. Such a classification approach is particularly ineffective and inefficient in
high dimensions since it would require massive amounts of noise samples to properly fill the sample space. As
we show in our experiments, however, we find that this intuition does not seem to extend to deep anomaly
detection on images.

3.2 Deep one-class classification

Deep one-class classification (Ruff et al., |2018]) was introduced as a deep learning extension of the one-class
classification approach to anomaly detection (Scholkopf et al., [2001; Tax, [2001)). Deep SVDD (Ruff et al.,
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2018)) is trained to map normal samples close to a center ¢ in feature space, thereby following the concentration
assumption (Scholkopf & Smolal, 2002)) mentioned above. For a neural network ¢y with parameters 6, the
Deep SVDD objective is given by ming £ 37 [|¢g(x;) — ¢/ . Ruff et al|(2020) proposed an extension of
Deep SVDD that incorporates known anomalies, called Deep Semi-supervised Anomaly Detection (Deep
SAD). Deep SAD trains a network to concentrate normal data near the center ¢, while mapping anomalous
samples away from that center. Hence, this follows an unsupervised OE approach to AD. Here, we present a
principled modification of Deep SAD based on the cross-entropy loss, which we call hypersphere classification
(HSC). We find that this modification improves performance over Deep SAD and use it in our experiments as
a prototypical representative of the unsupervised OE approach to AD. Potentially, one could further improve
the unsupervised OE approach by developing an OE variant of CSI (Tack et al. 2020), which we leave to

future work and is out of scope of this paper.

Let D = {(x1,91),---,(®n,Yn)} be a dataset with z; € R? and y € {0,1} where y = 1 denotes normal and
y = 0 anomalous instances. Let ¢y : R? — R"™ be a neural network and [ : R” — [0, 1] a function that maps
the output to a probabilistic score. Then, the cross-entropy loss is given by

> wiloglldale) + (1) log (1-1(do(z:)). (1
i=1

For a standard binary classifier, [ is a linear layer followed by a sigmoid, and the decision region of the mapped
samples ¢g(x1),...,Pg(xy) is a half-space S. In this case, the preimage of S, qﬁgl(S), is not guaranteed to
be compact. To encourage the preimage of our normal decision region to be compact, we choose [ to be a
radial basis function: I(z) = exp (— || z||°). In this case, becomes

>y oo = (=) log (1 ex (— () ).

If there are no anomalies, the HSC loss simplifies to 2 37", |¢p (z;)||>. For ¢ = 0, we thus recover Deep
SVDD as a special case. Similar to Deep SVDD/SAD, we define our anomaly score as s(z) := ||¢q(x)]|>.
Motivated by robust statistics (Hampel et al., [2005; Huber & Ronchetti, |2009)), we also considered replacing
I with radial functions that replace the squared-norm with more robust alternatives. Here, we found the
pseudo-Huber loss (Charbonnier et al., [1997)) to consistently yield the best results. We refer to Appendix

for a detailed analysis.

3.3 Contrastive language-image pre-training

To challenge the assumption that transfer learning approaches require OE for state-of-the-art detection
performance, we consider a zero-shot approach to AD using the features of the contrastive language-image
pre-training (CLIP) model (Radford et al.,|2021). CLIP is trained on a massive dataset of 400 million (image,
text) pairs with an objective to align corresponding pairs in feature space while keeping other pairs apart.
Let (x4, x,) denote an (image, text) pair, u = f,(x,) and v = f,(x,) the corresponding representations
obtained by networks f, and f,, and consequently u; and v; the representations of the i-th data pair. CLIP

u) v)

uses the following losses: the text-to-image loss lgv_y and the image-to-text loss lgu_)

lfv%u) eXp(<'Uia uz> € ) l(u%v) eXp(<Uz‘7 Ui> € ) (2)

= —log , i = —log ,
Sy exp((vg, ug) e7) S exp({ug, vg) e7)

where (-, -) denotes the cosine similarity and 7 is a temperature parameter. CLIP’s final objective is

N
. 1 (v—u) (u—v)
min — l; +1; ) 2. 3
iy 2 / ®

Radford et al.|(2021)) report that, without any fine-tuning on the downstream task, CLIP is able to outperform
a fully supervised linear classifier with ResNet-50 features on several classification benchmarks, including
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ImageNet. For this, they use the names of the dataset classes as potential text candidates and predict the
class whose text has the largest alignment with a given image. For out-of-distribution detection, [Fort et al.
(2021)) explored using CLIP by taking the in-distribution and out-of-distribution text labels as candidates.
We use CLIP in a similar way to perform zero-shot AD, where we use the text pair (vi,v2) = (“a photo of a
{NORMAL_ CLASS}”, “a photo of something”). For a test image x, we compute its anomaly score as

S(.’E) _ CXp(<fu(.’1}), fU(UQ» ) 100)
St xp({fu(®), fo(vr) - 100)
Fine-tuning CLIP for AD with OE also is straightforward. We simply minimize the score for normal

samples and maximize it for OE samples. Since this corresponds to a binary cross-entropy loss, this is an
instance of supervised OE, which we term “BCE with CLIP” (or just BCE-CL).

(4)

On the legitimacy of transfer learning for AD The use of transfer learning improved the performance
of deep AD approaches significantly. Yet, it seems at least questionable whether the use of pre-trained
models is experimentally sound since there may be a semantic overlap between the pre-training data and
the anomalies seen at test time. While it is technically true that the AD model is still unsupervised and
does not exploit knowledge of test samples, the reported performance on typical image AD benchmarks
might be spurious as the model may not generalize well to other data. Radford et al.| (2021)), however, have
investigated the overlap of data used for pre-training CLIP, where they remove all the data that overlaps
with the downstream tasks and observe only an insignificant drop in performance on average. This suggests
that our experiments and results based on CLIP reasonably explore generalization performance. We still
want to raise awareness for this somewhat problematic trend in deep AD, however, for which we propose
future research below.

4 Experimental setups

Before we present our results, we explain the experimental setup. In particular, we introduce the common one
vs. rest benchmark, the CIFAR-10 and ImageNet datasets, and the state-of-the-art AD methods we consider
in our experiments.

One vs. rest benchmark The one vs. rest evaluation protocol is a ubiquitous benchmark in the deep AD
literature (Ruft et al., [2018; |Golan & El-Yaniv} 2018; [Hendrycks et al.l |2019a3bj; Ruff et al., [2020; |Sohn et al.|
2021; [Deecke et al., 2021 |Liznerski et al.| 2021} [Reiss et al. 2021)). This benchmark constructs AD settings
from classification datasets (e.g., CIFAR-10) by considering the “one” class (e.g., “airplane”) as being normal
and the “rest” classes (e.g., “automobile”; “bird”, ...) as being anomalous at test time. In each experiment,
we train a model using only the training set of the normal class and samples from an OE set that are not
contained in the anomaly classes of the benchmark. We use the same OE auxiliary datasets as suggested in
previous works (Hendrycks et al.) 2019azb)). To evaluate detection performance, we use the common Area
Under the ROC curve (AUC) on the one vs. rest test sets. This is repeated over classes and multiple random
seeds. For CIFAR-10, we consider all ten classes as our one vs. rest classes. For OE we use 80 Million Tiny
Images (80MTTI) (Torralba et al., [2008]) with CIFAR-10 and CIFAR-100 images removed. This follows the
experimental setup in [Hendrycks et al.| (2019b)). For ImageNet (Deng et al., [2009]), we use a subset of 30
classes as the one vs. rest classes. These are the same classes used in [Hendrycks et al.[ (2019b). For OE we
use ImageNet-22K with ImageNet-1K removed, again following |Hendrycks et al.| (2019b]).

End-to-end methods We present results from end-to-end methods (without transfer learning) including

all methods that achieve state-of-the-art performance on the one vs. rest benchmarks.

o Unsupervised: Shorthands for unsupervised methods are DSVDD (Ruff et al. [2018), GT (Golan &
El-Yanivy, 2018), GT+ (Hendrycks et all 2019b)), and CSI (Tack et al., 2020).

e Unsupervised OE: We implement HSC from Section and DSAD (Ruff et al.; [2020) as unsupervised OE
methods and also report the results from the unsupervised OE variant of GT+ (Hendrycks et al., [2019b)).

o Supervised OE: BCE denotes a standard binary cross-entropy classifier. We also implement the Focal loss
classifier with v = 2 (Lin et al.| 2017, a BCE variant for imbalanced classes that was also presented in
Hendrycks et al|(2019b). Results from Hendrycks et al.|(2019b) are marked with an asterisk as Focal*.
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Transfer learning-based methods We consider the following transfer learning-based methods.

e Unsupervised: We implement a zero-shot anomaly detector using CLIP’s feature space as described in
Section [3.3|and use DN2 (Bergman et al., 2020) and PANDA (Reiss et al., |2021]) as shorthands respectively
for these unsupervised methods from the literature.

o Supervised OE: We consider a fine-tuned version of CLIP with a binary cross-entropy classifier, denoted
as BCE-CL. ADIP (Deecke et al., 2021) and the supervised OE variant of PANDA (Reiss et al., [2021) are
also included.

We provide network architecture and optimization details in Appendix [G] and investigate the impact of + for
the Focal loss in Appendix [F] We report the mean AUC performance over all classes and seeds in the main
paper. Individual results per class and method are in Appendix [} Each experiment is averaged over 10 seeds.

5 On the usefulness of samples in deep AD

Traditionally, AD methods utilize an unsupervised approach due to the assumption that it is impossible to
characterize everything that is not normal. As mentioned above, later works introduced the idea of including
a large collection of random images (OE) during training that serve as auxiliary examples of anomalousness to
improve unsupervised AD methods (Hendrycks et al.l 2019a)). Models are trained with these OE samples using
a loss that is essentially inverting a given unsupervised AD loss. We here look into whether an unsupervised
OE approach, instead of a straightforward supervised OE approach using standard binary cross-entropy, is
really necessary.

5.1 Supervised OE achieves state-of-the-art results

The first work on OE (Hendrycks et al.l 2019a)) applied an unsupervised OE method to two experimental
setups: CIFAR-10 with 8OMTI as OE and ImageNet-30 with ImageNet-22K as OE. Here we consider the
same experimental setups with the basic HSC and BCE classifiers. The results are shown in Table[I} In this
section we only consider end-to-end methods (i.e., no transfer learning).

Table 1: Mean AUC detection performance in % for end-to-end methods on the CIFAR-10 and ImageNet-30
one vs. rest benchmarks, using either 80MTI or ImageNet-22K (with 1K classes removed) as OE (* indicates
results from the literature).

Unsupervised Unsupervised OE Supervised OE
DSVDD* GT+* CSI* | GT+* DSAD HSC | Focal* Focal BCE
CIFAR-10 64.8 90.1 94.3 95.6 94.5 95.9 87.3 95.8  96.1
ImageNet X 84.8 91.6 85.7 96.7 97.3 56.1 97.5 97.7

Discussion Surprisingly, we find that the choice of AD method has little impact on performance. On
CIFAR-10, all unsupervised OE methods yield a comparable detection performance, while the supervised
methods Focal and BCE show state-of-the-art performance, with BCE attaining the overall best mean AUC.
On ImageNet, Deep SAD, HSC, Focal, and BCE all outperform the current state of the art (CSI*) by a
significant margin. We are unsure as to why the Focal* performs so poorly in [Hendrycks et al.| (2019b)) since
their experimental code is not publicly available. Overall, our results show that a vanilla classifier (BCE)
using OE outperforms all previous deep AD approaches on these ubiquitous benchmarks.

Our experiments seem to suggest that the inclusion of OE does not just improve AD performance, it also
changes the problem into a typical supervised classification problem that does not require a compact decision
boundary (cf. Figure . This stands in contrast to previous observations in shallow AD (Tax| [2001} |Gornitz
et al.l |2013)). While there is an abundance of OE data for the sorts of AD problems we investigate here, we
want highlight that this data is likely not very helpful for AD problems where anomalies are more subtle. For
example, in the realm of eaneer-deteetion manufacturing, pictures of cats and trucks are not as useful for OE
as medieal-images industrial images, which are not so widely available. Nonetheless, one may still have a few
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anomalous examples to incorporate during training. As one removes OE data, we would expect the behavior
of an unsupervised OE approach to transition to the behavior of an unsupervised method that outperforms
supervised OE. Our next experiment investigates this transition.

5.2 Few OE samples are sufficient

To investigate the effect of the size of the OE corpus, we perform experiments varying the OE training set size
from just one sample (2° = 1) to using the maximal amount of OE data. Our results are in Figure 2} With
sufficiently few samples, HSC outperforms BCE, which seems to indicate a regime where the unsupervised
OE approach is advantageous. Interestingly, this regime seems to be quite small, with supervised OE needing
only 8 samples to outperform unsupervised OE on CIFAR-10 and only ~ 32 samples for such a transition on
ImageNet. Remarkably, BCE classification outperforms previous state-of-the-art methods on ImageNet with
only using ~ 256 OE samples. A training set with so few outliers and high-dimensional data represents an
instance of skewed data (see Figure [1|and caption), where the common intuition suggests that supervised OE
should not generalize well. As before, we see that the choice of the specific method seems negligible as soon
as sufficient OE data is available.
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(a) CIFAR-10 (over 10 classes x 10 seeds) (b) ImageNet-30 (over 30 classes x 5 seeds)

Figure 2: Mean AUC detection performance in % on the CIFAR-10 and ImageNet-30 one vs. rest benchmarks
when varying the number of 80MTT and ImageNet-22K OE samples respectively.

There are settings that require more OE data The one vs. rest image-AD benchmark represents a
certain type of typical AD problem where the normal distribution is roughly uni-modal since the normal
samples are drawn from just one class. However, one can also create a more challenging and perhaps less
typical AD benchmark by considering the “rest” classes (e.g., “automobile”, “bird”, etc.) as being normal
and the “one” class (e.g., “airplane”) as being anomalous at test time. The distribution of normal samples in
this leave-one-class-out approach becomes multi-modal. Figure [3| shows the AD performance of HSC and
BCE on the CIFAR-10 and ImageNet-30 leave-one-class-out image-AD benchmark, when one varies the size
of the OE training set.

[®] [®]

207 207
0.6 0.6

05 ® BCE 05 I[ I l]_ . ® BCE

W HSC ’ |1' II 11' T W HSC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X 2
(a) CIFAR-10 (over 10 classes X 2 seeds) (b) ImageNet-30 (over 30 classes X 2 seeds)

Figure 3: Mean AUC detection performance in % on the CIFAR-10 and ImageNet-30 leave-one-class-out
benchmarks when varying the number of 80MTI and ImageNet-22K OE samples respectively.



Under review as submission to TMLR

Compared to previous experiments it seems that more OE data is required to achieve strong performance.
This indicates that more OE samples are necessary when the normal class is not concentrated. We also report
results when one uses the full OE dataset in Appendix where we see that the various methods perform
similarly with respect to one another as in the one vs. rest tasks, albeit overall slightly worse due to the more
difficult problem setting. Notably BCE is the best performing method, further supporting its effectiveness at
AD with OE.

There are settings where random images are not informative as OE As mentioned in Section [2
this paper focuses on natural images because random natural images are not likely to be informative when
used as OE in other settings. To demonstrate this, we apply our methods to the MVTec-AD dataset. This
dataset contains image-AD scenarios for detecting manufacturing defects for a variety of object types (e.g.,
screws, bottles, wires, or sections of carpet). For example, one scenario consists of a training set containing
images of normal screws and a test set containing images of normal screws along with images of screws with
defects, which serve as anomalies. Figure [4 shows results when varying the number of ImageNet-22k samples
used as OFE for training on MVTec-AD. We find that the OE training set size has little impact on the AD
performance.

1.0
0.9

0.8

AUC
o
g

0.6

BC

0> W HSC

Figure 4: Mean AUC detection performance in % on the MVTec-AD benchmark when varying the number of
ImageNet-22K OE samples respectively.

We also show results using the full ImageNet-22k dataset as OE for various methods in Table [15|in Appendix
[[4 As expected, OE performs more poorly on MVTec-AD than state-of-the-art methods: HSC scores around
70% while [Roth et al] (2022)) score around 99% AUC. Contrary to the experiments with CIFAR-10 and
ImageNet-30, we observe that HSC is a bit stronger than BCE (66%). There seems to be some evidence
that HSC performs better when the OE data is not very informative, either when there is a dearth of OE
data like in Section [5.2] or when the OE data simply isn’t relevant to the AD scenario. We explore this a bit
further in Section 5.4

Diversity of OE data is important To measure the impact of data diversity we also experiment
with varying the number of OE classes. We defer these results to Appendix [A] In summary, we find that
performance overall increases with OE data diversity, but already using just one OE class still performs
relatively well.

While our results show that surprisingly few samples are needed to achieve competitive performance for
end-to-end models on the standard one vs. rest AD benchmark, more recent methods in deep AD tend
to use transfer learning. Interestingly, we find that one can achieve state-of-the-art AD performance using
pre-trained models with no training samples (i.e., in a zero-shot setting).

5.3 Transfer learning enables zero-shot AD with state-of-the-art performance

More recent progress in deep AD has been achieved through transfer learning, which has further improved
the state of the art on standard deep AD benchmarks. These methods use a network pre-trained on large
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datasets to provide rich representations as a starting basis for deep AD. Again, we look into how useful
auxiliary data is for these algorithms. Here we investigate the effect of using OE data (vs. no OE data at
all) and the implicit use of an extraneous dataset via pre-training. We also consider the situation where
no normal data is used. Table [2] shows the results for transfer learning-based methods on CIFAR-10 and
ImageNet. Note that, since DN2, PANDA, and ADIP employ ImageNet pre-trained networks, they cannot
be compared on the ImageNet AD benchmark in a fair way.

Discussion These results highlight the Table 2: Mean AUC detection performance in % for methods with
remarkable efficacy of pre-training. Dis- transfer learning on the CIFAR-10 and ImageNet-30 one vs. rest
regarding the CLIP results for now, we benchmark, using either OMTI or ImageNet-22K (with the 1K
see that pre-training improves over pre- classes removed) as OE (* indicates results from the literature).
vious unsupervised deep results. The re- - .
sults of PANDA indicates that OE is stil'l DNg2* UrﬁZpNeg‘Xied CLIP ‘ PAND AiupeAr‘Siii O]?S CE.CL
useful for deep AD: OE provides addi-

tional information that is not learned in ~ CHFAR-10 925 96.2 98.5 98.9 9.1 99.6
the pre-training task. Undoubtedly, the TmageNet ~ o 9988 i “ 99-90
most interesting result here is the obser-

vation that one can outperform all previous state-of-the-art methods using no additional training from the
benchmarks. In a zero-shot setting, CLIP (unsupervised) outperforms all previous end-to-end (see Table
and unsupervised methods. Fine-tuning CLIP with OE along with normal samples (BCE-CL), further
marginally improves CLIP’s results setting a new state of the art on the CIFAR-10 and ImageNet benchmarks.

Similar to results in other areas of deep learning (Bommasani et al 2021, the use of large pre-trained
networks offers an effective and convenient way to improve performance. Though transfer learning seems to
be a natural endpoint for a certain class of deep AD problems, it still leaves a more general question about the
difference between supervised and unsupervised approaches to deep AD in settings where transfer learning is
not appropriate. This may happen when there are very subtle semantic novelties (Vaze et al., |2022)), when
one simply cannot use a pre-trained network; for example, when one must train a network from scratch due
to architectural considerations (e.g., when one requires a smaller architecture due to hardware constraints), or
when there are security concerns regarding the white-box nature of pre-trained networks (Samek et al. |2021]).
Additionally, some AD techniques offer no obvious way to utilize a pre-trained network, like the recently
introduced explainable one-class variant (Liznerski et al.;2021) or methods based on probabilistic models.

5.4 On the robustness of HSC vs. BCE

Our previous experiments (Section have shown that, though end-to-end BCE overall outperforms HSC, an
unsupervised OE approach is more effective when only very few (< 32) OE samples are available. This indicates
a certain degree of robustness to the anomalous training samples for HSC. This robustness with regards to OFE is
likely inherited from the learning objectives of unsupervised and semi-supervised AD, which encourage the nor-
mal representations to be concentrated thereby avoiding the issue with skewed OE data (see Figure. So there
seems to be a regime, albeit an extremely small one, where the intuition with skewed data in Figure[I] does hold.

To demonstrate the robustness of HSC when one has few Table 3: Mean AUC detection performance in %
OE samples we investigate the extreme case where an OE for the best and worst single OE samples on the
dataset consists of only one sample in more detail. How CIFAR-10 AD benchmark with SOMTI as OE
much can a single sample help or hinder the different ap- and on the ImageNet-30 AD benchmark with
proaches to deep AD? This is analogous to the experiments ImageNet-22K (without the 1K classes) as OE.
in Section [5.2] with the number of OE samples fixed to one.

To investigate robustness, we search for the OE sample CIFAR-10 ImageNet

that gives the worst test AUC for each class and report HSC BCE | HSC  BCE
the average AUC over all classes. While it is desirable for Best OE  77.7 699 | 793 1755
a method to be unaffected by detrimental OE examples, Worst OE  43.3 316 | 39.2 26.3

one would still want an AD method to exploit beneficial

10
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OE examples. To measure this trade-off, we perform an analogous experiment where we search for the best
performing OE sample and again report the average test AUC over all classes.

As it is computationally prohibitive to test every possible OE sample, we utilize an evolutionary algorithm
to attempt to minimize or maximize the class AUC. A detailed description of the algorithm can be found
in Appendix [H] To ensure that this optimization scheme does not find poor local minima, we also evaluate
the AUC of many randomly chosen OE samples (see Appendix @[) We find that the evolutionary algorithm
almost always finds better optima. We report our results in Table[3] Figure [5| shows optimal OE examples on
CIFAR-10 for the normal classes “ship” and “cat,” and on ImageNet for “airplane” and “dragonfly.”

best

worst

(a) “ship” is normal (b) “cat” is normal (c) “airplane” is normal (d) “dragonfly” is normal

Figure 5: OE samples for CIFAR-10 with 80MTI as OE (a-b) and for ImageNet-30 with ImageNet-22k as OE
(c-d). The first row shows normal samples, the next two rows show the best samples for HSC (top) and BCE
(bottom), and the last two rows show the worst samples for HSC (top) and BCE (bottom).

Discussion On both datasets, we observe that HSC performs better than BCE when using both the best
and the worst OE samples. Looking at the samples chosen for the optima, there also appears to be more
consistency within a setting (class, dataset, best or worst) for HSC. For example on “best” with “ship,” HSC’s
images are all brownish outdoor photos, whereas the BCE samples vary from greenery to stylized text to an
image containing mostly sky. This is likely due to the fact that HSC has, in some sense, an initial notion
of anomalousness due to its unsupervised term. For instance, the most useful OE samples are those not
already contained in this notion of anomalousness, resulting in HSC having a stable region for selecting OE
samples that yield the greatest improvement. BCE lacks this notion so it can benefit from a large variety
of OE samples. With HSC, choosing one optimal sample achieves roughly the same performance as using
32 random ones. Interestingly, it seems that near-distribution outliers are less useful as OE samples since
samples with similar color patterns as the normal ones occur more often as the “worst” samples. Previous
works have found that near-distribution OE samples are useful for OE (Lee et al., 2018} |Goyal et al., 2020]),
however, our results suggest that this may not hold when little OE data is available.

HSC focuses on low frequency features To gain further insight into the difference between BCE and
HSC, we extend the previous experiments to include frequency-domain corruptions. This sort of analysis has
been insightful in other works on deep learning . We find that HSC is again more robust
than BCE since it’s generally less affected by the frequency corruptions and tends to focus on low frequency
signals in the input. We defer the results and discussion to Appendix [B]and also show some more examples
for the best and worst single OE samples in Appendix [T

6 Broader impact

Anomaly detection methods on images may be deployed on tasks which have societal implications such as
screening images or automated surveillance, and it is thus imperative that these tasks are done in a fair and
transparent way. The use of OE is potentially harmful as there may be OE images biasing the model towards
detecting certain entities as anomalous. Our paper aids in this since it demonstrates that no huge corpora

11
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are necessary, which enables a controlled selection of OE samples. Further, we have shown that HSC is more
robust, and the fact that it chooses optimal OE samples that coincide with human intuition suggests that it
is more interpretable than BCE, where the rationale for optimal OE samples is opaque. This makes HSC
more suitable for critical applications. We trained some of our models with the 80MTI dataset, which is
known to contain problematic data such as offensive labels, but were required to do so to be comparable with
the previous line of research.

7 Conclusion

We presented surprising results that challenge common assumptions in AD. Neither does deep AD on
natural images seem to require specialized AD methodologies nor huge amounts of Outlier Exposure (OE). A
standard classifier outperforms all end-to-end methods on eemmeon-AD-benehmarks the common one vs. rest
benchmark, for which it only needs 256 random OE samples on ImageNet and only one well-chosen OE
sample for competitive performance. We showed some limitations of the few-OE approaches when applied
to settings where the normal dataset is multi-modal. Using transfer learning, standard classifiers set a
new state of the art on CIFAR-10 and, in a zero-shot setting without using any additional training data,
on ImageNet. Despite the overall strong performance of standard classifiers, we find that semi-supervised
one-class methods are more robust to the choice of OE when only few OE examples are available. Our results
provide insights about deep AD that are useful for future research.

12
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A Diversity of the Outlier Exposure data

Here we evaluate how data diversity influences detection performance for unsupervised and supervised OE,
again comparing HSC to BCE. For this purpose, instead of 80MTI, we now use CIFAR-100 as OE varying
the number of anomaly classes available for the CIFAR-10 benchmark. The OE data is varied by choosing k
classes at random for each random seed and using the union of these classes as the OF dataset.
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Figure 6: Mean AUC detection performance in % (over 10 classes with 10 seeds per class) on the CIFAR-10
with CIFAR-100 OE one vs. rest benchmark when varying the number of %k classes that comprise the OE
dataset.

The results are presented in Figure[6] As expected, the performance increases with the diversity of the OE
dataset. Interestingly, drawing OE samples from just & = 1 class, i.e. binary classification between the normal
class and a single OE class (which is not present as an anomaly class at test time!) already yields good
detection performance on the CIFAR-10 benchmark. For example, training a standard classification network
to discern between automobiles and beavers performs competitively as an automobile anomaly detector, even
when no beavers are present as anomalies during test time.

Compared to Section in the main paper, where we see a transition to BCE outperforming HSC at 23 = 8
OE samples, we here see that with even one OE class we have passed this transition: there are already
enough samples in a single class that BCE outperforms HSC. The takeaway is that OE sample diversity is
not as important as one may expect, simply having many OE smaples suffices to enter the regime where
BCE outperforms HSC. Again, with many samples, BCE and HSC’s performances are comparable.

B HSC focuses on low frequency features

To gain further insight into the difference between BCE and HSC and why the best (and worst) found OE
samples are quite different for these methods, we repeat the experiment from Section in the main paper
with frequency-domain corruptions. That is, we low-pass-filter (LPF) or high-pass-filter (HPF) the entire
dataset (training, testing, and OE) and then proceed exactly as we did in Section An LPF removes all
higher frequencies and preserves only global information such as a scenery’s color. This roughly corresponds
to blurring images. An HPF removes all lower frequencies and roughly corresponds to edge detection. The
AUC scores are in Table @ Figure [7] contains examples of the best and worst OE samples and also shows
filtered examples. We provide details on the filter implementation in Appendix [C] where we evaluate the
general performance of BCE and HSC with varying filter magnitudes.

HSC seems to be more robust than BCE since it’s generally less affected by the frequency corruptions.
Focusing on CIFAR-10, we see that for HSC frequency corruption makes little change to performance except
for the Best OE HPF experiment, where HSC’s performance is significantly lower than in the LPF variant,
causing HSC to behave similarly to BCE. This may have some implication that when useful signal is contained
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in the OE sample, corresponding to the “Best OE” experiments, it is concentrated in the low frequency
spectrum. It seems as though BCE is not capable of exploiting this data. Interestingly it was also found
in [Yin et al.| (2019) that low frequency features tend do be more robust (“low frequency bias results in
improved robustness to corruptions”). On ImageNet we observe that HSC again performs better on the LPF
experiments.

Table 4: Mean AUC detection performance in % for the best and worst single OE samples on CIFAR-10
using 80MTI as OE and on ImageNet-30 using ImageNet-22K (with the 1K classes removed) as OE. All
images have been either high-pass-filtered (HPF) or low-pass-filtered (LPF) both during training and testing.
Arrows indicate the change compared to Table

CIFAR-10 ImageNet
HSC BCE HSC BCE

Best OE LPF  77.5— 68.5— | 7T7.2\, 73.8—
Worst OE LPF  44.1—  31.1— | 44.6 7 26.1—
Best OE HPF  68.8 | 66.4\, | 75.0N\, 77.3—
Worst OE HPF  43.6— 38.0 1+ | 44.1 1+ 27.9—

best

(e) “ship” is normal (f) “cat” is normal (g) “airplane” is normal (h) “dragonfly” is normal

Figure 7: OE samples for low-pass-filtered (a-d) and high-pass-filtered (e-h) versions of CIFAR-10 with 80MTI
as OE (a,b,e,f) and ImageNet-30 with ImageNet-22k as OE (c,d,g,h). In each figure, the first row shows
normal samples, the next two rows the best samples for HSC (top) and BCE (bottom), and the last two
rows the worst samples for HSC (top) and BCE (bottom). The last column shows the filtered version of the
images, which is what the network sees during training and testing.

C Frequency sensitivity analysis

To understand why so few OE samples are that effective, we investigate the gemeral detection performance of
HSC and end-to-end BCE for images with limited frequency spectrums. Analog to Appendix [B] we either
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low-pass (LPF) or high-pass-filter (HPF) all images, both during training and testing, both normal and
anomalous samples. We train and evaluate either HSC or BCE for varying OE dataset sizes and different
magnitudes of filters. Note that, due to computational constraints, we decrease the number of epochs
and restrict the augmentations for the frequency experiments. Figures 8] [0} [I0] and [IT] show the results
on LPF CIFAR-10, HPF CIFAR-10, LPF ImageNet, and HPF Imagenet, respectively. Each point in the
plots corresponds to the mean AUC detection performance over all classes and 2 seeds per class. Different
colors/markers correspond to different amounts of random OE samples used. The magnitudes shown on
the horizontal axes correspond to the number of rows and columns removed in the frequency domain. For
example, an LPF with a magnitude of m sets the first and last m rows and the first and last m columns of
the Fourier-transformed image to zero, before applying the inverse Fourier transformation. A magnitude of
0 corresponds to unfiltered images, a magnitude of 15 on CIFFAR-10 images (which have a resolution of
32 x 32) corresponds to filtered images where just 4 “pixels” in the center remain in the frequency domain.
Similarly, an HPF with a magnitude of m sets the center of size m x m to zero. The extended OE robustness
experiments in Appendix [B]and Appendix [D] use a magnitude of 14 for CIFAR-10 and a magnitude of 110 for
ImageNet.

0.9 Riig B —

1 2 4 8 12 14 15
magnitude magnitude

(a) HSC (b) BCE

e e e e R e e o e e

Figure 8: LPF CIFAR-10 with 80MTI OE AD benchmark.

1.0 1.0

magnitude magnitude

(a) HSC (b) BCE

Figure 9: HPF CIFAR-10 with 8OMTI OE AD benchmark.
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Figure 11:
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HPF ImageNet-30 with ImageNet-22k (with ImageNet-1k removed) OE AD benchmark.

D OE robustness results with random search

In Section we use an evolutionary algorithm to find the best and worst single OE samples for AD. The
main difference between an evolutionary algorithm and a pure random search is that the former “fine-tunes’
samples by picking the next ones depending on the best-performing previous ones. However, the algorithm
also explores completely new samples. To show that this is the case and the algorithm doesn’t quickly
converge to a local optimum, we here present results using a pure random search for the best single OE
samples and compare those to the ones in the main paper.

Table shows the mean AUC over ten classes (analogue to Table in the main paper and Table@ in Appendix
. We see that pure random search consistently yields slightly worse samples on CIFAR-10 and mostly very
similar performing samples on ImageNet. There is a minor exception for unfiltered images with BCE, where
random search found on average 2% better performing single OE samples, resulting in the same conclusion,
though. Figure [12] shows examples for the best samples found via a random search for unfiltered and filtered
images. We see that the results are quite similar to those found via the evolutionary algorithm.
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Table 5: Mean AUC detection performance in % for the best single OE samples on the CIFAR-10 AD
benchmark using 80MTT as OE and on the ImageNet-30 AD benchmark using ImageNet-22K (with the 1K
classes removed) as OE. All images have been either unfiltered, high-pass-filtered (HPF), or low-pass-filtered
(LPF). Here we use pure random search instead of an evolutionary algorithm.

CIFAR-10 ImageNet
HSC BCE | HSC BCE

Best OE 76.5 687 | 795 77.8

Best OELPF 77.0 66.6 | 76.7 73.3
Best OE HPF 68.1 659 | 75.0 77.2

(i) “ship” is normal (j) “cat” is normal (k) “airplane” is normal (1) “dragonfly” is normal

Figure 12: Best OE samples for CIFAR-10 with 80MTI as OE (a-b, e-f, i-j) and ImageNet-30 with ImageNet-
22k as OFE (c-d, g-h, k-1). In each figure, the first row shows normal samples, the next two rows the best
samples found via HSC (top) and BCE (bottom). In Figures (e-h), all samples (train, test, anomalous, and
normal) are low-pass-filtered, in Figures (i-1) high-pass-filtered. These figures also contain a separate last
column showing the filtered version of the images, which is what the network sees during training or testing.
Here we use pure random search instead of an evolutionary algorithm.

E Hypersphere Classifier sensitivity analysis

In this section, we show results for the Hypersphere Classifier (HSC) (Section when varying the radial
function [(z) = exp (—h(z)). For this, we run the CIFAR-10 one vs. rest benchmark with 80MTT as OE,
as presented in Table [I]in the main paper, for different functions h : R” — [0, 00), 2 — h(z). We also alter
training to be with or without data augmentation in these experiments. The results are presented in Table [6]
We see that data augmentation leads to an improvement in performance even in the case where we have the
full 8OMTTI dataset as OE. HSC shows the overall best performance with data augmentation and using the

robust Pseudo-Huber loss h(z) = \/||z||> +1 — 1.
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Table 6: Mean AUC detection performance in % (over 10 seeds) on the CIFAR-10 one vs. rest benchmark
using 80MTI as OE for different choices of h(z) in the radial function ! of HSC.

Data augment. ||z[l, lzll, llzll;  Vl=l®+1-1

w/o 90.6 923 89.1 91.8
w/ 925 941 945 96.1

F Focal Loss with varying

Here we include results showing how mean AUC detection performance changes with v on the Focal loss.
Since we balance every batch to contain 128 normal and 128 OE samples during training, we set the weighting
factor @ to be @ = 0.5 . Again, note that v = 0 corresponds to standard binary cross
entropy. Figure [L3| shows that mean AUC performance is insensitive to the choice of v on the CIFAR-10 and
ImageNet-30 one vs. rest benchmarks.

1.00 1.00 = T T -
0.98 T
0.98
e o— —0
S 0.96 P = 7' >— ® O
:<DC E: 0.96
0.94 ' 4
0.92 0.94
@® Focal @® Focal
0.0 0.5 2.0 4.0 0.0 0.5 2.0 4.0
Y Y
(a) CIFAR-10 (b) ImageNet-30

Figure 13: Focal loss detection performance in mean AUC in % when varying v on the CIFAR-10 with 80MTI
OE (a) and ImageNet-30 with ImageNet-22K OE (b) one vs. rest benchmarks.

G Network architectures and optimization

We provide details on the network architectures and optimization below, where we distinguish between
end-to-end methods and the ones that use transfer learning (CLIP-based).

G.1 End-to-end methods

We always use the same underlying network ¢y in each experimental setting for our HSC, Deep SAD, Focal,
and BCE implementations to control architectural effects. For Focal and BCE, the output of the network ¢y is
followed by a linear layer with sigmoid activation. For the experiments on CIFAR-10 we use standard LeNet-
style networks (LeCun et al., [1990) having three convolutional layers followed by two fully connected layers.
We use batch normalization (loffe & Szegedyl, [2015)) and (leaky) ReLU activations in these networks. For our
experiments on ImageNet and MVTec-AD we use the same WideResNet (Zagoruyko & Komodakis, 2016) as
Hendrycks et al.| (2019b)), which has ResNet-18 as its architectural backbone. We use Adam (Kingma & Ba,
[2015) for optimization and balance every batch to contain 128 normal and 128 OE samples during training.
For data augmentation, we use standard color jitter, random cropping, horizontal flipping, and Gaussian pixel
noise. Due to computational constraints, there is an exception for the OE robustness experiments (Section
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5.4)), the frequency analysis (Appendices |B| and 7 and the leave-one-class-out experiment with varying OE
sizes (Figure [3]), where we use no augmentations for CIFAR-10 and only random cropping for ImageNet. We
provide further dataset-specific details below.

CIFAR-10 On CIFAR-10, we use LeNet-style networks having three convolutional layers and two fully
connected layers. Each convolutional layer is followed by batch normalization, a leaky ReLU activation, and
max-pooling. The first fully connected layer is followed by batch normalization, and a leaky ReLU activation,
while the last layer is just a linear transformation. The number of kernels in the convolutional layers are, from
first to last: 32-64-128. The fully connected layers have 512-256 units respectively. We use Adam (Kingma,
& Bal [2015) for optimization and balance every batch to contain 128 normal and 128 OE samples during
training. We train for 200 epochs starting with a learning rate of n = 0.001 and have learning rate milestones
at 100 and 150 epochs. The learning rate is reduced by a factor of 10 at every milestone. For the OE
robustness experiments (Section 7 the frequency analysis (Appendices , and the leave-one-class-out
experiment with varying OE sizes (Figure [3)) we trained for 30 epochs with a milestone at 25 instead.

ImageNet On ImageNet, we use exactly the same WideResNet (Zagoruyko & Komodakis| [2016]) as was
used in [Hendrycks et al.| (2019b)), which has a ResNet-18 as architectural backbone. We use Adam (Kingma,
& Bay, [2015) for optimization and balance every batch to contain 128 normal and 128 OE samples during
training. We train for 150 epochs starting with a learning rate of 7 = 0.001 and milestones at epochs 100 and
125. The learning rate is reduced by a factor of 10 at every milestone. For the OE robustness experiments
(Section , the frequency analysis (Appendices [B| and , and the leave-one-class-out experiment with
varying OF sizes (Figure |3) we trained for 30 epochs with a milestone at 25 instead.

MVTec-AD On MVTec-AD, we use the almost the same setup as we used on ImageNet. However, we
train for 300 epochs starting with a learning rate of 7 = 0.001 and milestones at epochs 200 and 250.

G.2 CLIP

Apart from the following changes, we use the same setup for our CLIP-based implementations as for the
end-to-end methods. One of the changes is that we use the pre-trained CLIP network architecture (Radford
et al., 2021)). For fine-tuning CLIP with a BEC classifier, we use SGD with Nesterov momentum instead of
ADAM, train for 80 epochs starting with a learning rate of 7 = 0.0001, and have learning rate milestones at
50, 60, 70, and 75 epochs. The learning rate is reduced by a factor of 10 at every milestone. This applies
completely to ImageNet. For CIFAR-10, we do the same but start with a learning rate of n = 0.00002 instead.

H The evolutionary algorithm for finding OE samples

In Section [5.4] we search for a sample in the OE dataset that is either particularly harmful or useful for the AD
model. A common approach to perform a discrete search in a large set is to use evolutionary algorithms (Yu
& Genl, |2010; Fortin et al.l [2012). We here stick to a simple version that uses tournament selection (Blickle
& Thiele, |1995)) with three competitors. In our scenario, the individuals are images of the OE dataset and
randomly initialized. Mutating an individual works by first sampling random images from the OE set and
then randomly picking one among those 50 in that subset that have the least L? distance to the individual.
Mating works similarly, it picks one with the least L? distance to both parents. The fitness of an individual
is the test AUC of an AD model trained with the full normal dataset and just the individual as the only
training outlier. The algorithm’s objective is to either maximize (“best” OE samples) or minimize (“worst”
OE samples) the average fitness of its final generation.

This experimental setup is exceptionally computationally expensive, with the evaluation of a single individual’s
fitness requiring a full training of a neural network. One search for one class takes 9 days on a DGX A100
GPU. Because of this we decrease the number of training epochs, restrict the augmentations, and average
over just two different random seeds to evaluate an individual’s fitness (see Appendix . On ImageNet, we
only consider the first 10 classes (see Appendix [I) out of the 30 that are used in |[Hendrycks et al.| (2019a)), but
evaluate these with the full 30-classes one vs. rest benchmark.
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Algorithm [I] provides a detailed explanation of the evolutionary algorithm. For the sake of readability, we fix
the evolutionary hyperparameters to the values used in our experiments. We set the generation size to 64,
the number of generations to 50, the tournament size to 3, the mating chance to 0.05, the mutation chance to
0.55, the initial candidate pool size to 10000, and the final candidate pool size to 50. We apply this algorithm
to each class separately, thereby changing the normal set X and test set X;es;. For finding the worst single
OE samples instead of the best ones, we change the selection procedure to simply replace diem, with the
worst in RND(D’, 3) instead of the best.

Algorithm 1 Evolve OE samples

Input: AD model ¢, OE dataset D, normal train set X, full test set X¢est.
Output: A collection of optimal single training outliers (individuals) D’.
Define:
COIN(p): returns TRUE with chance p, else FALSE.
RND(D, k): selects k samples in set D randomly.
TRAIN(¢, d): randomly initializes ¢’s weights, then trains ¢ with normal dataset X and the single training outlier d as OE.
EVAL(¢): computes and returns the test AUC of ¢ using the one vs. rest approach on X¢est.

Algorithm:

# Initialize:

D’ + RND(D, 64)

for all d’ € D’ do
TRAIN(¢, d')
a « EVAL(¢)
Set fitness of d’ to a

end for

for 50 iterations do

# Select:
Dtemp «— D'
for all diemp € Dtemp do
Replace diemp in Diemp with the best in RND(D’,3).  [best according to fitness]
end for
D/ — Dtemp

# Mate:
for all i € [0,2,4,...,|D’|] do
if COIN(0.05) then
dy < D'[q]
dy < D'[i + 1]
for all j € [0,1] do
P <+ RND(D, 10000)
sort(P) according to (|lp — d ||2 + ||p — d}||?) for every p € P.
P + P[: 50], get the 50 samples with least average distance to d} and d.
Replace D'[i + j] with RND(P, 1).
end for
end if
end for

# Mutate:
for all d’ € D' do
if COIN(0.55) then
P + RND(D, 10000)
sort(P) according to ||p — d’||? for every p € P.
P + P[: 50], get the 50 samples with least distance to d’.
Replace d’ in D’ with RND(P, 1).
end if
end for

12

# Evaluate:
for all d’ € D’ do
TRAIN(¢, d’)
a + EVAL(¢)
Set fitness of d’ to a
end for

end for
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I Results on individual classes

Due to space constraints, we report results averaged over all classes in the main paper. Here, we provide
full class-wise results for all experiments, including also figures for each class of the varying amount of OE

(Section and OE robustness (Section Appendix [B) experiments.

.1 Image AD with end-to-end methods on the one vs. rest benchmark

For the CIFAR-10 one vs.-rest benchmark experiment from Section [5.1] we report the results for all individual
classes and end-to-end methods in Table[7] Additionally, for the CIFAR-10 and the ImageNet-30 one vs.-rest
benchmark experiments, we report the results with standard deviations for our implementations in Tables

and [J] respectively.

Table 7: Mean AUC detection performance in % (over 10 seeds) for all individual classes and end-to-end

methods on the CIFAR-10 one vs. rest benchmark with 80MTT OE from Section [5.11

Unsupervised Unsupervised OE Supervised OE
Class SVDD* DSVDD* GT* GT+* CSI* | GT+* DSAD HSC | Focal* Focal BCE
Airplane 65.6 61.7 4.7 77.5 89.9 90.4 94.2 96.3 87.6 95.9 96.4
Automobile 40.9 65.9 95.7 96.9 99.1 99.3 98.1 98.7 93.9 98.7  98.8
Bird 65.3 50.8 78.1 87.3 93.1 93.7 89.8 92.7 78.6 92.3  93.0
Cat 50.1 59.1 72.4 80.9 86.4 88.1 87.4 89.8 79.9 88.8  90.0
Deer 75.2 60.9 87.8 92.7 93.9 97.4 95.0 96.6 81.7 96.6  97.1
Dog 51.2 65.7 87.8 90.2 93.2 94.3 93.0 94.2 85.6 94.1 94.2
Frog 71.8 67.7 83.4 90.9 95.1 97.1 96.9 97.9 93.3 97.8  98.0
Horse 51.2 67.3 95.5 96.5 98.7 98.8 96.8 97.6 87.9 97.6  97.6
Ship 67.9 75.9 93.3 95.2 97.9 98.7 97.1 98.2 92.6 98.0 98.1
Truck 48.5 73.1 91.3 93.3 95.5 98.5 96.2 97.4 92.1 97.5  97.7
Mean AUC 58.8 64.8 86.0 90.1 94.3 ‘ 95.6 94.5 95.9 ‘ 87.3 95.8 96.1

Table 8: Mean AUC detection performance in % (over 10 seeds) with standard deviations for all individual
classes for our end-to-end implementations on the CIFAR-10 one vs. rest benchmark with 8OMTI OE from

Section [5.11

Unsupervised OE

Supervised OE

Class DSAD HSC Focal BCE

Airplane 94.2 £0.34 96.3 £0.13 959 +£0.11 96.4 £+ 0.17
Automobile 98.1 £0.19 98.7 £ 0.07 98.7 =0.09 98.8 &+ 0.06
Bird 89.8 £ 0.54 92.7+0.27 92.3+£0.32 93.0+0.14
Cat 87.4 +£0.38 89.8+0.27 88.8+0.33 90.0 £ 0.27
Deer 95.0 £ 0.22 96.6 £ 0.17 96.6 = 0.10 97.1 £ 0.10
Dog 93.0 £0.30 94.2 +0.13 94.1 £ 0.21 94.2 £+ 0.12
Frog 96.9 £ 0.22 97.9+£0.08 97.8+0.07 98.0=£ 0.09
Horse 96.8 £ 0.15 97.6 £0.10 97.6 £0.16 97.6 £ 0.09
Ship 97.1 £0.21 982 +£0.09 98.0+£0.11 98.1 £ 0.08
Truck 96.2 £0.22 974 4+ 0.13 975+ 0.12 97.7 £ 0.16
Mean AUC 94.5 +£3.30 959 £ 2.68 95.8 +2.97 96.1 &£ 2.71
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Table 9: Mean AUC detection performance in % (over 10 seeds) for all individual classes for our end-to-end
implementations on the ImageNet-30 one vs. rest benchmark with ImageNet-22K OE from Section Note
that for GT+*, Focal*, and CST* as reported in Table|[l]in the main paper, Hendrycks et al| (2019b]) and
Tack et al.| (2020)) do not provide results on a per class basis.

Unsupervised OE Supervised OE

Class DSAD HSC Focal BCE

Acorn 98.5 £ 0.28 98.8 £0.42 99.0 £ 0.15 99.0 + 0.19
Airliner 99.6 + 0.16 99.8 £ 0.10 99.9 +£0.02 99.8 £ 0.04
Ambulance 99.0 £0.13 998 +£0.13 99.2£0.14 99.9 £+ 0.07
American alligator 92.9 £ 1.06 98.0 £0.32 94.7 £ 0.67 98.2 + 0.27
Banjo 97.0 £ 0.51 98.2 £ 041 97.0+£ 0.33 98.7 £+ 0.22
Barn 98.5 +£0.29 99.8 +£0.05 98.7+0.24 99.8 £0.08
Bikini 96.5 + 0.84 98.6 £ 0.57 97.2 £0.89 99.1 + 0.30
Digital clock 99.4 +£0.33 96.8+0.79 99.8+0.03 972+ 0.29
Dragonfly 98.8 + 0.28 984 + 0.16 99.1 £ 0.21 98.3 £ 0.04
Dumbbell 93.0 £ 0.53 91.6 £0.88 94.0 £ 0.04 92.6 & 0.97
Forklift 90.6 +1.43 99.1 £0.33 94.2+0.90 99.5+ 0.09
Goblet 924 + 1.05 93.8+0.38 93.8+£0.27 94.7 £ 143
Grand piano 99.7 £ 0.06 974 £0.37 999 £ 0.04 97.6 £ 0.34
Hotdog 95.9 +£2.01 98.5+0.34 97.2+0.05 988 +0.34
Hourglass 96.3 £ 037 969 £0.26 97.5+£0.17 976+ 0.48
Manhole cover 98.5 £ 0.29 99.6 £0.34 99.2 £ 0.09 99.8 + 0.01
Mosque 98.6 £ 0.29 99.1 £0.26 98.9 £0.30 99.3 +0.15
Nail 92.8 £ 0.80 94.0+ 0.76 93.5+0.32 945+ 1.37
Parking meter 98.5 £ 0.29 93.3 £1.64 99.3 £ 0.04 94.7+ 0.76
Pillow 99.3 £ 0.14 94.0 £0.47 99.2 £0.14 94.2 + 0.42
Revolver 98.2 +0.30 97.6+£0.25 98.6+0.11 97.7 £ 0.68
Rotary dial telephone 90.4 +1.99 97.7 + 0.50 92.2 +0.33 98.3 + 0.75
Schooner 99.1 £ 0.18 99.2 £0.20 99.6 £ 0.02 99.1 + 0.26
Snowmobile 97.7 £ 0.86 99.0 £ 0.22 98.1 £ 0.15 99.1 £+ 0.25
Soccer ball 97.3 £ 1.70 92.9 +1.18 98.6 + 0.13 93.6 &+ 0.61
Stingray 99.3 £ 0.20 99.1 £0.33 99.7+£0.04 99.2 £ 0.10
Strawberry 97.7 £ 0.64 99.1 £ 0.20 99.1 £ 0.03 99.2 + 0.22
Tank 97.3 £ 0.51 98.6 £0.18 97.3 +£0.47 989 £+ 0.13
Toaster 97.7 £ 056 92.2 4+ 0.78 98.3 +£0.05 92.2 4 0.65
Volcano 89.6 £ 044 99.5+0.09 91.6+090 994 +0.19
Mean AUC 96.7 £ 298 97.3 £253 975+ 243 97.7 £ 234
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1.2 Image AD with transfer learning-based methods on the one vs. rest benchmark

For the CIFAR-10 one vs.-rest benchmark experiment from Section we report the results for all individual
classes and pre-trained methods in Table Additionally, for the CIFAR-10 and the ImageNet-30 one vs.-rest
benchmark experiments, we report the results with standard deviations for our implementations in Tables
and [I2] respectively.

Table 10: Mean AUC detection performance in % (over 10 seeds) for all individual classes and transfer
learning-based methods on the CIFAR-10 one vs. rest benchmark with 8OMTI OE from Section [5.3

Unsupervised Supervised OE
Class DN2* PANDA* CLIP | PANDA* ADIP* BCE-CL
Airplane 93.9 X 99.4 X 99.2 99.7
Automobile  97.7 X 99.4 X 99.8 99.8
Bird 85.5 X 97.4 X 98.6 99.2
Cat 85.5 X 97.0 X 97.0 98.8
Deer 93.6 X 98.1 X 99.3 99.6
Dog 91.3 X 97.4 X 98.2 99.2
Frog 94.3 X 98.1 X 99.6 99.9
Horse 93.6 X 99.0 X 99.8 99.8
Ship 95.1 X 99.7 X 99.6 99.8
Truck 95.3 X 99.3 X 99.5 99.9
Mean AUC 92.5 96.2 98.5 ‘ 98.9 99.1 99.6

Table 11: Mean AUC detection performance in % (over 10 seeds) with standard deviations for all individual
classes for our transfer learning-based implementations on the CIFAR-10 one vs. rest benchmark with 80MTI
OE from Section

Unsupervised | Supervised OE

Class CLIP BCE-CL

Airplane 99.40 £ 0.00 99.74 £+ 0.02
Automobile  99.37 + 0.00 99.82 £+ 0.01
Bird 97.37 + 0.00 99.29 + 0.04
Cat 96.99 4+ 0.00 98.86 + 0.04
Deer 98.05 4+ 0.00 99.62 + 0.02
Dog 97.36 £+ 0.00 99.26 + 0.04
Frog 98.05 4+ 0.00 99.89 + 0.01
Horse 98.99 £ 0.00 99.84 £+ 0.02
Ship 99.71 £+ 0.00 99.86 + 0.01
Truck 99.30 4+ 0.00 99.90 4+ 0.01
Mean AUC 98.46 + 0.96 99.61 £+ 0.34
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Table 12: Mean AUC detection performance in % (over 10 seeds) for all individual classes for our transfer
learning-based implementations on the ImageNet-30 one vs. rest benchmark with ImageNet-22K OE from

Section [5.31

Unsupervised | Supervised OE
Class CLIP BCE-CL
Acorn 99.78 4+ 0.00 99.96 + 0.01
Airliner 100.00 £ 0.00 | 100.00 4 0.00
Ambulance 100.00 £+ 0.00 | 100.00 + 0.00
American alligator 99.98 + 0.00 100.00 4+ 0.00
Banjo 100.00 £ 0.00 | 100.00 4 0.00
Barn 100.00 £ 0.00 | 100.00 = 0.00
Bikini 99.87 4+ 0.00 100.00 4+ 0.00
Digital clock 99.69 + 0.00 99.93 £+ 0.02
Dragonfly 100.00 4+ 0.00 | 100.00 + 0.00
Dumbbell 99.91 4+ 0.00 99.97 £+ 0.02
Forklift 100.00 £ 0.00 | 100.00 4 0.00
Goblet 99.29 £+ 0.00 99.81 £+ 0.04
Grand piano 100.00 4+ 0.00 98.36 + 4.87
Hotdog 99.99 £+ 0.00 100.00 £+ 0.00
Hourglass 99.69 £ 0.00 99.97 £+ 0.02
Manhole cover 100.00 4+ 0.00 | 100.00 + 0.00
Mosque 100.00 £ 0.00 | 100.00 £ 0.00
Nail 99.61 £+ 0.00 99.97 £+ 0.01
Parking meter 99.52 4+ 0.00 99.97 £+ 0.01
Pillow 99.95 £+ 0.00 100.00 £ 0.00
Revolver 100.00 4+ 0.00 | 100.00 + 0.00
Rotary dial telephone  99.84 + 0.00 99.21 + 1.75
Schooner 100.00 £ 0.00 100.00 £ 0.00
Snowmobile 99.99 + 0.00 100.00 4+ 0.00
Soccer ball 99.97 4+ 0.00 99.98 + 0.05
Stingray 100.00 £ 0.00 | 100.00 £ 0.00
Strawberry 99.81 4+ 0.00 99.97 £+ 0.07
Tank 100.00 4+ 0.00 | 100.00 + 0.00
Toaster 99.44 + 0.00 99.88 £+ 0.01
Volcano 100.00 4+ 0.00 99.99 + 0.04
Mean AUC 99.88 4+ 0.19 99.90 £+ 0.32
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1.3 Image AD on the leave-one-class-out benchmark

In the main paper, we evaluate our methods on the ubiquitous one vs. rest image-AD benchmark (see Section
. In Section we also present results on the more uncommon leave-one-class-out benchmark when varying
the OE training set size. Here we present results when using the full OE training set size, analogue to the
experiments in Sections [5.1] and Tables [14] and [I3] show results for leave-one-class-out CIFAR-10 and
leave-one-class-out ImageNet, respectively.

Note that, to apply CLIP to the leave-one-class-out setting with K normal classes, we use the text tuple
(v1,...,vK+1) = (“a photo of a {NORMAL_CLASS_1}”, ..., “a photo of a {NORMAL_ CLASS_K}”, “a
photo of something”). For a test image @, we compute its anomaly score as

s(@) = exp({fu(z), fo(vit1)) - 100)
ijll exp({fu(x), fu(vi)) - 100)

: ()

Table 13: Mean AUC detection performance in % (over 2 seeds) with standard deviations for all individual
classes for our implementations on the ImageNet-30 leave-one-class-out AD benchmark with ImageNet-22k
(with ImageNet-1k removed) OE.

Unsupervised Unsupervised OE | Supervised OE

Class DSVDD CLIP HSC BCE

Acorn 49.7 £1.02 98.8 £+ 0.00 92.1 £+ 0.17 91.2 £ 0.01
Airliner 47.6 £ 3.67  99.9 £ 0.00 90.8 + 0.63 91.0 £ 0.37
Ambulance 50.5 + 1.57  99.7 + 0.00 89.6 + 0.80 91.7 £ 0.91
American alligator 53.4 £4.66 98.6 £ 0.00 87.0 £ 0.74 89.7 £+ 0.51
Banjo 50.3 £ 1.30  99.4 + 0.00 77.7 £ 2.09 79.2 + 1.84
Barn 51.5 + 0.96 98.3 £+ 0.00 89.4 + 0.99 88.5 + 0.42
Bikini 50.6 + 1.03  97.9 + 0.00 86.7 £ 0.14 85.5 + 1.08
Digital clock 49.1 £ 1.33  94.9 + 0.00 83.6 + 1.18 83.7 + 0.58
Dragonfly 51.2 + 3.23  99.8 4+ 0.00 92.1 £ 0.24 90.6 £ 0.05
Dumbbell 46.1 £2.87 97.7 £ 0.00 76.6 £ 1.26 75.6 + 0.74
Forklift 50.6 + 1.20 96.8 £ 0.00 77.8 £ 0.09 79.8 + 2.10
Goblet 46.8 £ 0.13  96.3 £ 0.00 81.4 £+ 0.26 81.6 £ 0.66
Grand piano 46.2 £ 2.79  99.5 + 0.00 74.4 + 0.83 83.6 £ 1.15
Hotdog 50.4 £ 1.74  99.7 + 0.00 91.6 £ 0.60 93.3 £ 0.49
Hourglass 50.9 + 2.30 87.3 £ 0.00 84.4 + 0.50 83.9 + 1.54
Manhole cover 51.8 £5.59 93.0 £ 0.00 81.6 £ 0.22 84.2 + 0.30
Mosque 494 £ 6.93 99.7 £+ 0.00 83.4 + 2.16 85.3 £ 0.34
Nail 49.3 £0.87 97.1 £ 0.00 81.9 £ 0.24 80.1 £ 2.30
Parking meter 51.1 +£2.91 92.4 + 0.00 81.1 £+ 0.02 81.8 £ 1.28
Pillow 47.9 £ 0.37  99.5 + 0.00 88.3 £+ 1.03 88.6 + 1.39
Revolver 54.7 £ 0.47  99.6 + 0.00 89.7 £+ 0.69 90.6 £ 1.60
Rotary dial telephone  50.0 £ 0.68 97.3 + 0.00 74.3 + 0.82 79.2 + 1.33
Schooner 42.0 £ 0.25 99.9 £ 0.00 91.4 £+ 0.98 92.1 £ 1.83
Snowmobile 48.2 £2.40 99.5 £ 0.00 86.3 + 0.89 87.2 £ 0.34
Soccer ball 51.1 £ 0.20 99.4 + 0.00 90.7 £ 0.93 91.6 £ 0.06
Stingray 48.6 £ 6.35 97.1 £ 0.00 90.6 + 0.71 89.5 £ 0.21
Strawberry 52.0 £ 2.28 99.5 4+ 0.00 93.9 +£ 0.24 93.5 £ 0.78
Tank 51.8 £ 2.40 98.4 + 0.00 80.7 £ 0.25 78.6 + 3.37
Toaster 48.3 £ 1.40 97.2 + 0.00 78.0 + 1.40 82.9 + 1.64
Volcano 51.3 £ 2.07 99.6 + 0.00 84.3 £ 1.55 85.0 £ 0.77
Mean 49.7 £2.41 97.8 £ 2.73 ‘ 85.0 £+ 5.68 86.0 + 4.97
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Table 14: Mean AUC detection performance in % (over 2 seeds) with standard deviations for all individual

classes for our implementations on the CIFAR-10 leave-one-class-out AD benchmark with SOMTI OE.

Unsupervised Unsupervised OE Supervised OE

Class DSVDD CLIP DSAD HSC Focal BCE BCE-CL

Airplane 62.3 =890 96.2 £ 0.00 | 8.5 +0.52 87.0+ 0.52 | 88.4 +£0.28 87.9 £0.17 99.2 + 0.03
Automobile  52.7 £ 0.69 96.0 £ 0.00 | 85.6 £ 0.81 87.2 4+ 0.56 | 89.9 £ 0.71 90.3 £0.01 99.3 £ 0.02
Bird 54.2 £4.00 93.54+0.00 | 83.6 +£ 0.04 83.8+0.03 | 86.2 +0.49 86.0£ 045 97.9 + 0.15
Cat 39.6 £ 298 90.5+0.00 | 82.4 £ 0.10 824 +0.80 | 83.4 +£0.52 84.1 £0.36 97.9 + 0.01
Deer 56.6 = 049 79.5+0.00 | 75.6 £ 0.11 749+ 0.06 | 76.9 £ 0.42 77.0 £ 0.13 96.6 + 0.03
Dog 499 +£4.06 90.6 £ 0.00 | 82.7 £0.15 828 £0.09 | 84.1 £ 0.75 84.6 = 0.03 97.9 + 0.00
Frog 53.2 £ 11.75 94.0 £ 0.00 | 85.1 £ 0.10 85.5 +0.35 | 86.1 £ 0.28 86.4 £ 0.31 98.3 £ 0.12
Horse 477 +£0.69 93.4 4+ 0.00 | 8.2 £0.57 859+ 0.08 | 88.4 + 0.04 88.2+ 0.52 98.6 + 0.09
Ship 54.7 £ 587 978 £0.00 | 89.7 £ 0.12 90.7 £0.06 | 91.3 £ 0.17 92.0 £0.35 99.4 £+ 0.03
Truck 51.1 £ 1.86 90.0 £ 0.00 | 86.7 £ 0.23 88.0 £ 0.20 | 88.9 + 0.41 89.2 + 0.37 99.0 + 0.01
Mean 52.2 £5.66 922 4+4.89 | 84.2 + 351 848 +4.08 | 86.4 +3.94 86.6 £3.96 98.4 + 0.83
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1.4 Image AD on the MVTec-AD benchmark

As mentioned in Section [2, our paper focuses on natural images because random images from the web are
likely not informative as OE for other data. In Section [5.2] we demonstrate this on the manufacturing dataset

MVTec-AD, where anomalies are rather subtle, for varying OE set sizes. Here we show results using the full

ImageNet-22k dataset as OE in Table

Table 15: Mean AUC detection performance in % (over 2 seeds) with standard deviations for all individual

classes for our implementations on the MVTec-AD benchmark with ImageNet22k OE.

Unsupervised Unsupervised OE Supervised OE

Class DSVDD CLIP DSAD HSC Focal BCE BCE-CL

Bottle 83.0 £ 2.38 34.8 + 0.00 78.0 + 6.07 73.6 = 0.95 66.9 £ 6.47 71.9 + 5.28 76.0 = 4.92
Cable 60.7 £ 3.02 48.7 £ 0.00 71.3 £2.74 69.1 £ 0.42 61.5 £+ 3.47 54.8 £ 4.76 72.1 + 4.82
Capsule 614 +4.09  43.3 +£0.00 532+ 764 59.7+£588 | 56.0 +11.81 57.5+£3.97 59.2 £ 1.07
Carpet 54.0 £1.89  72.5 % 0.00 55.6 +£2.96  63.5 + 5.12 55.3 £0.22 571 4+0.52  88.1 4+ 0.63
Grid 47.0 £ 2.09 60.6 = 0.00 | 48.9 + 16.75 59.4 £ 1.46 46.0 £ 4.93 49.9 £ 3.63 72.7 + 0.92
Hazelnut 80.5 £ 0.11 48.1 £+ 0.00 70.2 £+ 6.56 79.2 £ 3.38 73.2 £5.14 78.8 £ 2.82 62.8 £ 1.12
Leather 69.3 + 3.21 99.9 + 0.00 80.1 +3.87  84.6 + 0.48 87.3 £ 4.52 873+ 1.61 87.4 4 12.50
Metal nut 55.7 £ 0.20  45.0 =+ 0.00 479 £ 533  62.7 £ 5.76 61.1 £ 714  54.5 + 4.42 75.3 £ 7.61
Pill 61.3 £ 2.17 69.4 + 0.00 | 58.8 &+ 10.27 55.8 £ 4.95 70.3 £ 2.96 53.8 £11.25 64.5 £ 1.20
Screw 49.5 £ 1.52 64.4 £ 0.00 39.0 £ 1.30 419 £ 1.84 59.5 £ 4.08 62.0 £ 7.20 76.6 £ 1.33
Tile 63.7 £ 0.05  78.0 =+ 0.00 954 +1.06 953 + 1.15 94.3 £2.09 955+ 1.82 982+ 0.20
Toothbrush  52.9 + 6.53  58.3 + 0.00 70.3 +£1.94  88.3 +£2.99 59.6 + 1.81 66.9 + 4.72  68.0 + 6.76
Transistor 61.9 £ 6.73 51.0 = 0.00 704 + 7.19 64.9 £+ 2.83 64.6 £ 3.87 66.9 + 0.08 72.5 + 6.65
Wood 87.7+0.70 355+£0.00 | 8.1 +£11.27 93.8 £ 1.67 73.6 £9.12  75.7 £20.57 94.3 £0.73
Zipper 70.8 £1.52  36.5 + 0.00 67.1 +£6.22 60.3 £ 10.50 | 51.8 +25.64 58.6 £ 0.54  74.5 £ 0.67
Mean 64.0 £ 11.81 56.4 £ 17.57 | 66.1 £ 14.89 70.1 &+ 14.78 ‘ 65.4 £ 12.44 66.1 £ 12.93 76.2 &+ 10.96
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1.6 Varying the OE size

For the experiments on varying the number of OE samples (Section [5.2)), we include plots for all individual
classes in Figure [16| for CIFAR-10 and in Figures [14] and [15] for ImageNet-30, respectively. Additionally, for
the experiments on varying the diversity of OE data on CIFAR-10 with CIFAR-100 OE, we added the plots
for all individual classes in Figure [I7]
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Figure 14: Mean AUC detection performance in % (over 5 seeds) for all classes of the ImageNet-30 one
vs. rest benchmark from Section [5.2] when varying the number of ImageNet-22K OE samples. These plots
correspond to Figure but here we report the results for all individual classes (from class 1 (acorn) to
class 15 (hourglass)).
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Figure 15: Mean AUC detection performance in % (over 5 seeds) for all classes of the ImageNet-30 one
vs. rest benchmark from Section [5.2] when varying the number of ImageNet-22K OE samples. These plots
correspond to Figure but here we report the results for all individual classes (from class 16 (manhole
cover) to class 30 (volcano)).
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Figure 16: Mean AUC detection performance in % (over 10 seeds) for all classes of the CIFAR-10 one vs. rest

benchmark from Section

when varying the number of 8SO0OMTI OE samples. These plots correspond to

Figure but here we report the results for all individual classes.
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Figure 17: Mean AUC detection performance in % (over 10 seeds) for all CIFAR-10 classes from the experiment
in Appendix [A] on varying the number of classes k of the CIFAR-100 OE data. These plots correspond to
Figure [6] but here we report the results for all individual classes.
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1.6 Robustness towards choice of OE samples

Here we provide class-wise results for the best and worst single OE samples found via an evolutionary
algorithm (Section . On ImageNet, we only consider the first 10 classes of the ones used by (Hendrycks
et al., [2019b): “Acorn”, “Airliner”, “Ambulance”, “American alligator”, “Banjo”, “Barn”, “Bikini”, “Digital
clock”, “Dragonfly”, “Dumbbell”. However, the full 30-class one vs. rest benchmark was used to evaluate
for each of these ten classes. Tables [I6 and [I7] show the performance of the best or worst single OE sample
(from 80MTI) for each class in CIFAR-10, while the former shows results for unfiltered images and the latter
for low-pass-filtered or high-pass-filtered images. Tables and show the same for ImageNet-30 with
ImageNet-22K as OE. Figures and 23] show the 4-5 best and worst samples for HSC and
BCE, on CIFAR-10 or ImageNet-30, for unfiltered or filtered images, respectively.

Table 16: Class-wise AUC detection performance in % for the best and worst single OE samples found via an
evolutionary algorithm (Section on the CIFAR-10 one vs. rest AD benchmark using 8OMTI as OE.

Best OE Worst OE
Class HSC BCE | HSC BCE
Airplane 85.2 76.1 | 37.4 29.9
Automobile  78.1 71.5 36.4 329
Bird 740 679 | 472 35.8
Cat 72.5 649 | 38.7 35.1
Deer 79.9 68.2 55.1 29.8
Dog 71.6 70.6 | 41.0 35.0
Frog 84.2 T1.7 47.7 24.8
Horse 66.2 66.2 41.9 38.7
Ship 86.5 72.8 46.2 27.1
Truck 78.8 69.1 41.2 26.9

Mean AUC  77.7  69.9 ‘ 43.3 316

Table 17: Class-wise AUC detection performance in % for the best and worst single OE samples found via an
evolutionary algorithm (Section on the CIFAR-10 one vs. rest AD benchmark using 80MTI as OE. All
images are either low-pass-filtered (LPF) or high-pass-filtered (HPF), both during training and testing.

Best OE Worst OE
Class HSC LPF BCE LPF HSC HPF BCE HPF | HSC LPF BCE LPF HSC HPF BCE HPF
Airplane 83.0 68.5 68.5 64.6 36.0 22.1 40.7 32.5
Automobile 75.0 69.5 60.1 69.0 47.5 32.6 40.2 40.3
Bird 71.1 63.5 67.9 61.6 40.3 39.1 46.4 39.2
Cat 73.6 63.2 65.5 63.3 44.0 34.2 48.6 39.4
Deer 76.9 69.2 68.5 63.8 38.0 31.7 47.2 38.9
Dog 74.2 64.3 69.4 67.1 43.0 34.1 53.3 37.3
Frog 83.5 73.1 78.2 70.3 40.1 28.2 38.0 37.0
Horse 72.5 66.5 66.7 63.0 50.9 35.5 49.0 40.3
Ship 85.7 75.8 74.8 72.2 47.8 23.0 35.5 35.8
Truck 79.9 71.0 67.9 69.2 53.0 30.1 37.3 39.7
Mean AUC 77.5 68.5 68.8 66.4 44.1 31.1 43.6 38.0
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Table 18: Class-wise AUC detection performance in % for the best and worst single OE samples found via an
evolutionary algorithm (Section on the ImageNet-30 one vs. rest AD benchmark using ImageNet-22k
(with the 1K classes removed) as OE.

Best OE Worst OE
Class HSC BCE | HSC BCE
Acorn 84.0 76.6 | 43.6 223
Airliner 91.1 80.8 41.3 15.7
Ambulance 84.0 86.4 | 24.0 22.9
American alligator 81.2  75.7 | 54.6 30.1
Banjo 81.3 75.8 | 37.2 26.8
Barn 78.4 68.0 40.0 29.0
Bikini 66.7 67.0 | 41.5 38.9
Digital clock 67.7 73.2 32.5 28.1
Dragonfly 86.6 84.8 | 36.1 13.6
Dumbbell 71.8 66.5 | 40.8 35.9
Mean AUC 79.3 755 | 39.2 26.3

Table 19: Class-wise AUC detection performance in % for the best and worst single OE samples found via an
evolutionary algorithm (Section on the ImageNet-30 one vs. rest AD benchmark using ImageNet-22k
(with the 1K classes removed) as OE. All images are either low-pass-filtered (LPF) or high-pass-filtered
(HPF), both during training and testing.

Best OE Worst OE
Class HSC LPF BCE LPF HSC HPF BCE HPF | HSC LPF BCE LPF HSC HPF BCE HPF
Acorn 82.8 83.8 80.4 75.9 41.2 20.0 45.8 31.0
Airliner 78.2 77.3 83.6 86.3 44.6 21.7 52.5 18.0
Ambulance 86.7 76.3 79.1 83.3 53.6 26.1 44.4 29.2
American alligator 69.3 67.4 78.3 80.1 43.4 32.3 42.2 29.0
Banjo 83.0 74.8 71.3 75.9 48.0 21.5 39.1 31.9
Barn 79.6 71.5 73.0 77.6 45.2 25.6 44.4 26.2
Bikini 70.4 68.0 68.6 65.9 47.4 35.6 45.9 34.9
Digital clock 63.3 65.7 68.4 76.2 41.2 35.9 34.9 26.0
Dragonfly 85.0 85.6 83.7 84.6 33.0 12.9 51.4 20.2
Dumbbell 73.2 68.1 63.8 67.2 48.1 29.1 40.0 32.8
Mean AUC 77.2 73.8 75.0 77.3 44.6 26.1 44.1 27.9
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Under review as submission to TMLR

(a) “airplane” is normal (b) “automobile” is normal (¢) “bird” is normal

(g) “frog” is normal (h) “horse” is normal (i) “ship” is normal

(j) “truck” is normal
Figure 18: Optimal OE samples for CIFAR-10 with 80MTT as OE. The first row shows normal samples, the

next two rows the best samples found via HSC (top) and BCE (bottom), and the last two rows the worst
samples found via HSC (top) and BCE (bottom).
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Under review as submission to TMLR

) s

L3 ORI A

(d) “cat” is normal (e) “deer” is normal

S lanls

(g) “frog” is normal (h) “horse” is normal (i) “ship” is normal

(j) “truck” is normal

Figure 19: Optimal OE samples for low-pass-filtered CIFAR-10 with low-pass-filtered 80MTI as OE. The
first row shows normal samples, the next two rows the best samples found via HSC (top) and BCE (bottom),
and the last two rows the worst samples found via HSC (top) and BCE (bottom). The last column shows the
low-pass-filtered version of the images, which is what the network sees during training and testing.
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Under review as submission to TMLR

@

(i) “ship” is normal

(j) “truck” is normal

Figure 20: Optimal OE samples for high-pass-filtered CIFAR-10 with high-pass-filtered 80MTI as OE. The
first row shows normal samples, the next two rows the best samples found via HSC (top) and BCE (bottom),
and the last two rows the worst samples found via HSC (top) and BCE (bottom). The last column shows the
high-pass-filtered version of the images, which is what the network sees during training and testing.
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Under review as submission to TMLR

(g) “bikini” is normal (h) “digital clock” is normal (i) “dragonfly” is normal

(j) “dumbbell” is normal

Figure 21: Optimal OE samples for ImageNet1k with ImageNet22k (with the 1K classes removed) as OE.
The first row shows normal samples, the next two rows the best samples found via HSC (top) and BCE
(bottom), and the last two rows the worst samples found via HSC (top) and BCE (bottom).
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Under review as submission to TMLR

(d) “american alligator” is nor- (e) “banjo” is normal (f) “barn” is normal
mal

(j) “dumbbell” is normal

Figure 22: Optimal OE samples for low-pass-filtered ImageNet1k with low-pass-filtered ImageNet22k (with
the 1K classes removed) as OE. The first row shows normal samples, the next two rows the best samples
found via HSC (top) and BCE (bottom), and the last two rows the worst samples found via HSC (top) and
BCE (bottom). The last column shows the low-pass-filtered version of the images, which is what the network
sees during training and testing.
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Under review as submission to TMLR

(d) “american alligator” (e) “banjo” is normal
mal

is normal

(j) “dumbbell” is normal

Figure 23: Optimal OE samples for high-pass-filtered ImageNet1k with high-pass-filtered ImageNet22k (with
the 1K classes removed) as OE. The first row shows normal samples, the next two rows the best samples
found via HSC (top) and BCE (bottom), and the last two rows the worst samples found via HSC (top) and
BCE (bottom). The last column shows the high-pass-filtered version of the images, which is what the network
sees during training and testing.
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