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Abstract

Intracortical Brain-Computer Interfaces (iBCI) decode behavior from neural popu-
lation activity to restore motor functions and communication abilities in individuals
with motor impairments. A central challenge for long-term iBCI deployment is
the nonstationarity of neural recordings, where the composition and tuning pro-
files of the recorded populations are unstable across recording sessions. Existing
approaches attempt to address this issue by explicit alignment techniques; how-
ever, they rely on fixed neural identities and require test-time labels or parameter
updates, limiting their generalization across sessions and imposing additional com-
putational burden during deployment. In this work, we address the problem of
cross-session nonstationarity in long-term iBCI systems and introduce SPINT -
a Spatial Permutation-Invariant Neural Transformer framework for behavioral
decoding that operates directly on unordered sets of neural units. Central to our ap-
proach is a novel context-dependent positional embedding scheme that dynamically
infers unit-specific identities, enabling flexible generalization across recording
sessions. SPINT supports inference on variable-size populations and allows few-
shot, gradient-free adaptation using a small amount of unlabeled data from the test
session. We evaluate SPINT on three multi-session datasets from the FALCON
Benchmark, covering continuous motor decoding tasks in human and non-human
primates. SPINT demonstrates robust cross-session generalization, outperforming
existing zero-shot and few-shot unsupervised baselines while eliminating the need
for test-time alignment and fine-tuning. Our work contributes an initial step toward
a robust and scalable neural decoding framework for long-term iBCI applications.

1 Introduction

Motor behavior arises from the complex interplay between interconnected neurons, each possessing
distinct functional properties [[1]. Deciphering the highly nonlinear mapping from the activity of these
neural populations to behavior has been a major focus of intracortical Brain-Computer Interfaces
(iBCI), whose applications have enabled individuals with motor impairments to control external
devices [2, 3], restore communication abilities through typing [4}, 5], handwriting [6! [7], and speech
(8195 110, [11} [12].

Despite the remarkable capabilities, iBCI systems suffer from performance degradation over extended
periods of time, largely attributed to the nonstationarities of the recorded populations [13]]. Sources of
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nonstationarities include shifts in electrode position, tissue impedance changes, and neural plasticity
[[L14} 15} [16]]. These nonstationarities lead to changes in the number and identity of neural units
picked up by recording electrodes over time. Such changes in population composition alter the
learned mapping from neural activity to behavior, preventing decoders trained on previous sessions
from maintaining robust performance in new sessions. To ensure robust behavior decoding over
future recording sessions, one approach has focused on training deep networks using many sessions,
attempting to achieve decoders that are robust to cross-session variability [[17, [18]]. This zero-shot
approach requires months of labeled training data, necessitating extensive data collection from
the user. While recent methods targeting cross-subject generalization may alleviate some of this
burden [19} 20, 21} 22], degradation over long-term use still remains, advocating for the adoption
of adaptive methods [14, 23| 24} 25, 26]]. These adaptive methods leverage the low-dimensional
manifold underlying population activity, which has been shown to preserve a consistent relationship
with behavior over long periods of time [14} 27]]. Depending on the use of labels at test time, they
can be categorized into supervised [21} 28] 22], semi-supervised [7]], or unsupervised [24, 25| 29]],
with varying levels of success and practical utility in real-world iBCI [26].

Despite the variety of technical approaches, these works share a common design philosophy: they
adopt a fixed view of the neural population, assigning fixed identities and order for neural units
during training. While this treatment achieves high decoding performance on held-in sessions (within-
session generalization), the decoders suffer from out-of-distribution performance degradation when
evaluated on held-out sessions with different sizes and unit membership (cross-session generalization).
To enable transfer of the pretrained model to novel sessions, explicit alignment procedures with
gradient updates to adapt model parameters are necessary, imposing disruptive and costly computation
overhead for iBCI users. With these limitations of existing approaches, we advocate for the view that
an ideal, universal iBCI decoder should be invariant to the permutation of the neural population by
design, and should be able to seamlessly handle inference of a variable-sized, unordered set of neural
units with minimal data collected from the new setting.

In this work, we address the problem of cross-session nonstationarity in long-term iBCI systems and
introduce SPINT - a permutation-invariant framework that can decode motor behavior from the activity
of unordered sets of neural units. We contribute toward an iBCI design that can predict behavior
covariates from continuous streams of neural observations and adapt gradient-free to novel sessions
with few-shot unlabeled calibration data. At the core of our methods is a permutation-invariant
transformer with a novel context-dependent positional embedding that allows flexible identification of
neural unit identities on-the-fly. We evaluate our approach on three movement decoding datasets from
the FALCON Benchmark [26], demonstrating robust cross-session generalization on motor tasks
in human and non-human primates. Our model outperforms zero-shot and few-shot unsupervised
baselines, while not requiring any retraining or fine-tuning overhead.

In summary, the contributions of this work include:

* We present a transformer-based permutation-invariant framework with a novel context-dependent
positional embedding for few-shot unsupervised behavioral decoding. Our flexible, lightweight
model enables ingestion of unordered sets of neural units during training and facilitates out-of-the-
box inference on unseen neural populations.

* We evaluate our model on three motor behavioral decoding datasets in the FALCON Benchmark,
showing robust gradient-free generalization to unseen sessions in the presence of cross-session
nonstationarities.

2 Related Work

Decoding motor behavior from intracortical population activity: A variety of computational
models have been proposed to model population spiking dynamics and decode motor behavior, starting
with linear models such as population vectors [[1], linear regression [30], Kalman filter [31} (32} 33]].
Nonlinear methods have also been developed; a non-exhaustive list includes generalized linear models
[34} 135136} 137]], latent variable models [38}, |39, 140, 41]], leveraging deep neural networks including
recurrent neural networks (RNN) [27, 42, 43| and transformers [44, 21, 28 45| 46,122,147, 48|, 149]].
Most of these works assume a fixed view of the population across time and have limited direct
transferability to unseen populations. We adopt the view of neural population as an unordered set of
neural units, offering more flexibility in transferring across population compositions.
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Figure 1: Nonstationarities in long-term iBCI. (A) Examples of iBCI systems in human and
non-human primates. Spiking activity is recorded from multichannel electrode arrays together with
behavior covariates, e.g., 7 degree-of-freedom robotic arm control or electromyography from the
upper limb. Neural activity exhibits nonstationarities over recording sessions. (B) Systematic changes
in neuron positions, including the introduction or loss of neurons in the vicinity of electrodes and
the shifts of the entire electrode array can contribute to instability of neural recordings over time.
[lustrations were created with BioRender.com.

Cross-session neural alignment methods: Neural nonstationarities pose challenges for maintaining
decoder performance over long periods of time. To tackle this issue, alignment techniques were
proposed to align the testing sessions to match the distribution of a training session, usually performed
in the latent space. These techniques vary from linear methods using Canonical Correlation Analysis
(CCA) 1201, linear stabilizer [23]], linear distribution alignment [24]], to nonlinear using generative
adversarial networks (GAN) [30, 29], RNN [25] [7, 51]], and diffusion models [52]. All these
approaches, however, still require explicit alignment procedures with model parameter updates and
test-time labels in some cases to adapt the pretrained decoder to unseen populations. On the other
hand, our proposed context-dependent positional embedding scheme allows flexible, gradient-free
adaptation in new sessions without any labels.

Foundation models for neuroscience: Recent advances in foundation models for neural decoding
demonstrate promising transferability across sessions, subjects and tasks through pretraining on large
and diverse corpora of neural recordings [21} 28] 22| [47, 48], 53, 149]. While these approaches aim to
build generic pretrained models that are then adapted to diverse downstream settings via parameter
finetuning, SPINT instead focuses on reducing calibration burden in real-world iBCI systems by
achieving gradient-free cross-session generalization under the limited data regime. SPINT, however,
also ingests data from multi-session recordings during training to achieve this goal. Architecturally,
SPINT employs the cross-attention mechanism to integrate information across a variable number of
tokens similar to POYO-style models 1471 148]), while also operates on binned spike counts similar
to NDT-style frameworks [21], 28], 53, [49] and POYO+ in spirit [47]. Unlike these models, SPINT
adopts a much shallower design—using only a single cross-attention layer—and tokenizes data by
treating each neural unit’s temporal context window as a token, analogous to the spatial tokenization
in [46, 54], and distinct from the temporal tokenization in [44} 53], patch-based tokenization in [21],
or spike-based tokenization in [22] 48]

Permutation-invariant neural networks for set-structured inputs: While conventional neural
networks are designed for fixed dimensional data instances, in many set-structured applications
such as point cloud object recognition or image tagging, the inputs have no intrinsic ordering,
advocating for a class of models that are permutation-invariant by design [56} [57]. One such work,
DeepSets, introduced a set average pooling approach serving as a universal approximator for any
set function [56]. Follow-up works [57, 58] extended this pooling method to include max-pooling
and attention mechanisms [59]. We take inspiration from these works to design our universal neural
unit identifier and permutation-invariant behavior decoding framework, leveraging the permutation-
invariant property of the cross-attention mechanism [60)].
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Figure 2: SPINT architecture. The model performs continuous behavioral decoding by predicting
behavior covariates at the last timestep given a past window of activity from an unordered set of
neural units. The universal Neural ID Encoder infers identities of the units using few-shot unlabeled
calibration trials, while the cross-attention mechanism selectively aggregates information from the
units to decode behavior.

3 Approach

3.1 A permutation-invariant framework for few-shot continuous behavioral decoding

We study the problem of real-time, cross-session iBCI decoding, where behavior needs to be decoded
in a causal manner from a continuous stream of neural observations. Concretely, within a single
session s, let X; ; denote the binned spiking activity of neural unit 7 at time ¢, X; . denote all the
activity of unit ¢, and X, ; denote the activities of all units at time ¢. Given a past observation window
of population activity X, ;w41 € RN*W where N, is the number of recorded neural units in
session s and W is the length of the observation window, we aim to estimate the corresponding last
time step of behavior output Y; € R, where B is the dimensionality of behavior covariates. Model
parameters are fitted with gradient descent using labeled data from & training (held-in) sessions and
evaluated on k' testing (held-out) sessions without gradient updates or labels. At our disposal on each

held-out session is a short calibration period X; ] € RT’ consisting of M -shot variable-length trials
lasting for 7" timesteps, to be used for cross-session adaptation.

Traditional approaches consider the population activity at each timestep as a "token" and decode
behavior by modeling temporal dynamics of population activity [39} 27, 44]. By treating temporal
snapshots of population activity X. ; € RY: as input vectors, these approaches assume a fixed number
and order of neural units, requiring explicit spatial re-alignment when applied to another session
with a different size and order [27,[25] 29} 20, 24]. Recent methods incorporating factorized spatial-
temporal modeling [46l |61} 145]] face similar challenges, while approaches with explicit spatiotemporal
tokens [21} 28, 22| 147, 48] still require fine-tuning unit identity in novel sessions. These design
choices hinder out-of-the-box generalizability of neural decoders across sessions, as a universal
decoder should ideally be invariant to the permutation and size of the input population.

To realize this goal, we treat windows of individual neural units X; ;—w 1.t € RW as an unordered
set of tokens and aggregate information from these units to decode behavior using the cross-attention
mechanism [59]. To compensate for the loss of consistent order that the decoder can leverage for
behavior decoding, we embed a notion of neural identity to each unit based on its spiking signature
during a few-shot, unlabeled calibration period X ¢ in the same session. X | is either provided
in limited amount in held-out sessions at test time, or is artificially sampled from held-in sessions



during training. This context-dependent neural identity is inferred by a universal neural identity
encoder that is shared across units and sessions, enabling gradient-free adaptation to novel population
compositions at test time.

3.2 Encoding identity of neural units

Let X& € RM*T be the trialized version of X; ;o] € RT". X is the collection of M calibration

trials of neural unit i interpolated to a fixed length T". We infer neural identity F; € R" of unit i by
a neural network IDEncoder:

E; = IDEncoder(XS) = ¢(pool(¢(X))) (1)

where 1 and ¢ are multi-layer fully connected networks and pool is the mean pooling operation
across M trials. Due to the permutation invariant nature of the mean operation and the fact that ¢/ and
¢ are applied trial-wise, IDEncoder is invariant to the order of M calibration trials by design [56].

3.3 Decoding behavior via selective aggregation of information from neural population units

After inferring the identity for each unit from its calibration period, we add E; to all X; windows to
form identity-aware representations Z;. Z; contains the time-varying activity of each unit while also
being informed of the unit’s stable identity within one session. In matrix form:

Z=X+E (2)
where Z;’s, X;’s, E;’s constitute rows of the Z, X, E matrices.

We leverage the cross-attention mechanism to selectively aggregate information from population
units and decode behavior outputs:

Y = C ()SSAtt]l((Q Z Z) - b()ft]llaX < — ) (3)
— r , , — Q ‘/

where K = ZWy,V = ZWy € RN+*W are projections of the identity-informed neural activity
Z,and @ € RP*W is a learnable matrix to query the behavior from Z. Q is initialized at random
and learned during training. In future work, SPINT can be extended to accommodate multi-task
setup by having multiple Q matrices, one for each behavior task, as in [47]. We use the standard
cross-attention module with pre-normalization and feedforward layers (see details in Appendix).

Proposition 1. Cross-attention with identity-informed neural activity (Equation[3)) is invariant to the
permutation of neural units, i.e.,

CrossAttn(Q, Z, Z) = CrossAttn(Q, PrZ, PrZ), 4

where Pg is the row permutation matrix. (See proof in Appendix).

E in Equations 2] and [3| can be understood as a special kind of positional embedding for attention
mechanism, where E is equivariant to the order of tokens (neural units), i.e., permuting the rows
in X also permutes the rows in E accordingly. Hence, unlike traditional positional embeddings in
the transformer literature where positional embeddings are fixed entities, our proposed E is context
dependent. This context-dependent positional embedding enables cross-session generalization by
design, as E' is stable for all samples within the same context (session), and can readily adapt in a
gradient-free manner to new populations with arbitrary size and order.

After cross-attention, we project down Y by a fully connected layer to a one-dimensional vector
representing the predicted behavior covariates at the last timestep, based on which we compute the
mean squared error (MSE) between the predicted and the ground truth behavior covariates. The
IDEncoder and cross-attention module are trained in an end-to-end manner using this MSE objective.



3.4 Encouraging model robustness to inconsistent population composition

Neural population distributes its computation among many neural units, allowing us to effectively
decode behavior even though we can only record neural activity with a limited number of electrodes.
Leveraging this insight and in order to encourage model robustness to different compositions of neural
membership across recording sessions, we employ dynamic channel dropout to avoid overfitting to
the population composition seen during training. Unlike classical population dropout methods where
only a fixed fraction of neurons/timesteps [62, (63} 44]] or a variable fraction of neurons/timesteps
sampled from a conservative range [64} 22] is removed during training, we uniformly sample a
dropout rate between 0 and 1 each training iteration and remove population units with the sampled
dropout rate. With dynamic channel dropout, we not only encourage the model to be robust to the
unit membership but also encourage it to be robust to the size of the population, leading to improved
cross-session generalization without additional tuning of dropout rates (see Section 4.8 and Figure ).

3.5 Gradient-free, few-shot cross-session adaptation in unseen neural populations with
variable size and order

The overall framework is depicted in Figure 2] We use labeled data from all training sessions to
train all model parameters following the above pipeline. The model naturally digests populations
of arbitrary size and order in all sessions without any need of session-specific alignment layer or
fixed positional embeddings for neural units, hence having the potential to scale up to a large amount
of data. When testing on a held-out session, we reuse the trained IDEncoder and only need a few
unlabeled calibration trials to infer identities of neural units in the test session, without the need of
gradient descent updates to fine-tune session-specific alignment layers or unit/session embeddings.
With these benefits, our proposed model removes the time and computation overhead usually required
for re-calibrating neural decoders before each session, and facilitates its applicability in real-world
iBCI settings where test-time labels are inherently unavailable.

4 Experiments

4.1 Datasets and evaluation metrics

We evaluate our approach on three continuous motor decoding tasks from the Few-shot Algorithms for
Consistent Neural Decoding (FALCON) Benchmark [26]. Specifically, we evaluate SPINT on the M1,
M2, and H1 datasets. In M1, a monkey reached to, grasped, and manipulated an object in a variety of
locations (4 possible objects, 8 locations), while neural activity was recorded from precentral gyrus
and intramuscular electromyography (EMG) was recorded from 16 muscles [65} 66, 167, 68]]. In M2,
a monkey made finger movements to control a virtual hand and acquired cued target positions while
neural activity from the precentral gyrus and 2-D actuator velocities were captured [69]. In HI1, a
human subject attempted to reach and grasp with their right hand according to a cued motion for a
7-degree-of-freedom robotic arm control [3} 70, [71]]. Each dataset comprises multiple labeled held-in
sessions used to train the decoder (spanning 4, 4, and 6 days for M1, M2, and H1, respectively),
and multiple held-out sessions for model evaluation (spanning 3, 4, and 7 days for M1, M2, and H1,
respectively). Each held-out session provides a few public calibration trials (with optional labels)
used for decoder calibration, after which the decoder is evaluated on a private test split. Cross-session
performance is quantified by the mean and standard deviation of R? between the predicted and
ground truth behavior covariates across all held-out sessions. All evaluation results were obtained on
the held-out private split by submitting models to the EvalAl platform [72]].

4.2 Baselines

We compare SPINT with zero-shot (ZS) and few-shot unsupervised (FSU) baselines, since SPINT
is the intersection of these two approaches. Similar to FSU approaches, SPINT makes use of
a few unlabeled calibration samples in the held-out sessions; however, unlike conventional FSU
approaches, SPINT does not require gradient updates for model parameters at test time, therefore
bearing resemblance to ZS methods in terms of practical utility. We call this new class of model
gradient-free few-shot unsupervised (GF-FSU).

ZS Wiener Filter and ZS RNN: Wiener Filter is a linear model that predicts the current behavior as
a weighted sum of previous timesteps [[73]. In addition to the Wiener Filter, we also compare with a



Class M1 M2 H1

Wiener Filter (WF) OR 0.53 £0.04 0.26 £0.03 0.21£0.04
RNN OR 0.75+0.05 0.56 £0.04 0.44+£0.13
NDT2 Multi [21] OR 0.78 £0.04 0.58+0.04 0.63£0.08
NDT2 Multi [21] FSS 0.59 £ 0.07 0.43+0.08 0.52+0.04
WF ZS 0.34 £ 0.06 0.06 +£0.04 0.16 £0.03
RNN ZS —-0.60+£045 —-0.07£0.23 0.09+0.18
CycleGAN + WF [29] FSU 0.43 +£0.04 0.22£0.06 0.12+£0.06
NoMAD + WF [25] FSU 0.49 £0.03 0.20+0.10 0.13£0.10
SPINT (Ours) GF-FSU  0.66 £+ 0.07 026 +0.13 0.29+£0.15

Table 1: Performance comparison against oracles (OR), few-shot supervised (FSS), few-shot unsuper-
vised (FSU), and zero-shot (ZS) methods. Our SPINT approach belongs to a special class which we
termed gradient-free few-shot unsupervised (GF-FSU), where models perform adaptation based on
few-shot unlabeled data but without any parameter updates at test time. Results are reported as mean
+ standard deviation R? across held-out sessions.

simple RNN baseline (implemented as an LSTM [74]). The WF and RNN models were fitted using a
single held-in session and evaluated zero-shot on the held-out sessions.

CycleGAN [29]: An FSU method where a Generative Adversarial Network (GAN) is trained using
calibration data from a held-out session (day K) to transform day K’s population activity to a form
resembling activity from a held-in session (day 0), allowing decoders pretrained on day 0 to be reused
on day K.

NoMAD [25]: Another FSU method where a dynamical model and a decoder are trained on day 0
to predict behavior from the inferred dynamics. Then on day K, an alignment network is trained to
match the distribution of neural latent states to that of day 0, allowing the fixed model and decoder to
transfer to day K.

Wiener Filter, RNN and Transformer Oracles (OR): We include the Wiener Filter, RNN, and
NDT?2 - a transformer for neural data [21]], trained on private held-out labeled data to serve as upper
bounds for model performance.

NDT2 Multi (FSS) [21]]: Similar to NDT2 Multi OR, but only trained on held-in and held-out
few-shot calibration data with supervision.

4.3 SPINT outperforms zero-shot and few-shot unsupervised baselines on continuous motor
decoding tasks

We show in Table[T|the performance of SPINT in comparison with ZS and FSU approaches. SPINT
outperforms all ZS and FSU baselines across all three datasets, while requiring no retraining or
fine-tuning of model parameters. Improvement is most prominent in M1, where the amount of training
data is the largest (~5x more data than H1 and ~6x more data than M2 in terms of recording time).
Notably, SPINT surpasses Wiener Filter oracles in all datasets, which were trained with access to the
private labeled data. SPINT even outperforms the FSS method NDT2 Multi on M1 dataset while
unlike NDT?2, it does not require access to test-time labels or model parameter updates. As we focus
on cross-session transferability, all our experimental results show the cross-session performance. We
include comparison on within-session performance in the Appendix.

4.4 SPINT requires only a minimal amount of unlabeled data for adaptation

To gauge the data efficiency of our model at test time, we trained and tested the model with varying
number of calibration trials used to infer the neural unit IDs. We show in Figure[3[A) that SPINT
could achieve reasonable cross-session generalization with a small number of few-shot trials. In M1
dataset, the model could even achieve similar performance as the best model (which uses all available
calibration trials) with only one single trial. This study demonstrates the practical utility of SPINT in
online iBCI, relieving the burden of data collection and label collection on users at test time.
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Figure 3: Scaling analyses. Cross-session performance of SPINT against number of calibration trials
(A), training days (B), and population sizes (C) across M1, M2, and H1 datasets. Bars represent mean
R? across held-out sessions, whiskers represent standard error of the mean of R? across held-out
sessions.

4.5 SPINT performance scales well with the amount of training data

Thanks to the flexible permutation-invariant transformer network and the context-dependent positional
embeddings, SPINT can ingest populations with arbitrary sizes and orders. These design choices
give SPINT the ability to scale naturally with large amounts of training data. We demonstrate this
scaling ability in Figure [3{B), where we observe a clear trend in cross-session performance when we
use data from more held-in days to train the model, with the best performance achieved when using
all available training data on each dataset. This ability suggests potentials of SPINT as a large-scale
pretrained model for iBCI when trained on larger datasets beyond the FALCON benchmark.

4.6 SPINT is robust to variable population composition

Our proposed dynamic channel dropout encourages robustness of SPINT to variable input population
size and membership. We test this robustness by training SPINT on the full held-in populations
with dynamic channel dropout and evaluating on variable-sized held-out populations (Figure 3[C).
At each evaluation batch, we randomly sample a subset of the original population and measure the
R? obtained when the model makes predictions based on this limited subset. We observe robust
performance in M1 with reasonable performance drop when the population gets increasingly smaller,
with the model still achieving a mean held-out R? of 0.52 when only 20% of the original population
remains, outperforming other ZS and FSU baselines with the full population.

4.7 SPINT maintains low-latency inference for iBCI systems

A critical consideration in iBCI system deployment is the ability of the system to perform behavior
decoding in real time. We designed SPINT with this consideration in mind, using only one layer of
cross-attention and two three-layer fully connected networks for IDEncoder. In Table 2} we report the
latency achieved by SPINT as compared to other methods. Latency is defined as the amount of time a
method requires to process the evaluation data divided by the duration of the evaluation data [[72]. The
ratio less than 1 signifies the approximation to real-time iBCI inference. SPINT achieves 0.13 latency
on M1 and M2, and 0.14 latency on H1, matching or outperforming transformer baselines, while
being significantly below 1. In practice, SPINT could be potentially faster in terms of deployment
time, as it eliminates the need for an explicit alignment step required by conventional iBCI systems.



Class M1 M2 HI1
Wiener Filter (WF) OR 0.06 0.08 0.14

RNN OR 0.04 0.04 0.08
NDT?2 Multi OR 0.15 0.10 2.29
NDT2 Multi FSS 0.13 0.10 0.30
WF ZS 0.06 0.08 0.15
RNN ZS 0.03 0.01 0.02
CycleGAN + WF FSU 0.07 0.09 0.16
NoMAD + WF FSU 0.99 091 1.03
SPINT (Ours) GF-FSU 0.13 0.13 0.14

Table 2: Inference latency of SPINT against oracles (OR), few-shot supervised (FSS), few-shot
unsupervised (FSU) and zero-shot (ZS) methods on held-out sessions (lower is better).
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Figure 4: Ablation Study. Analyses showing the critical roles of our proposed context-dependent ID
against fixed positional embeddings (PE) and no positional embeddings (A), our dynamic channel
dropout against no dropout (B). Results are shown across M1, M2, and H1 datasets. Bars represent
mean R? across held-out sessions, whiskers represent standard error of the mean of R? across
held-out sessions.

4.8 Ablation Study

We perform ablation studies to demonstrate the benefits of our context-dependent positional embed-
dings and dynamic channel dropout techniques. In Figure @A, we compare our context-dependent
positional embeddings with fixed (absolute) positional embeddings used in the vanilla transformer
[59], and with no positional embeddings. The conventional fixed positional embeddings break the
permutation-invariance property of the cross-attention mechanism, thus are not able to generalize
to populations with different compositions in held-out sessions. With no positional embeddings,
the model is permutation-invariant by design; however, the loss of information about neural unit
functional identities hinders the model’s ability to decode the behavior these units encode. We
achieve the best of both worlds by our proposed context-dependent positional embeddings, being
both permutation-invariant while retaining neural identities for behavior decoding.

To demonstrate the effectiveness of our proposed dynamic channel dropout technique, we compare
the cross-session performance of SPINT with dynamic channel dropout and without dropout. We
show in Figure @B that dynamic channel dropout serves as an effective regularization technique by
preventing the model from overfitting to the population composition in training sessions.

5 Discussion

In this work, we introduce SPINT, a permutation-invariant transformer designed for cross-session
intracortical motor decoding. SPINT features a context-dependent neural ID embeddings that
dynamically infers unit identities, allowing the model to handle unordered, variable-sized populations



across sessions. These components enable SPINT to adapt to new sessions using only a small
amount of unlabeled calibration data, with no need for test-time labels or gradient updates. We
demonstrate SPINT’s cross-session generalization ability on three continuous motor decoding tasks
from the FALCON Benchmark, where it consistently outperforms existing zero-shot and few-shot
unsupervised baselines, even surpassing few-shot supervised and oracle models in some instances.
SPINT’s light-weight design also enables low-latency inference, making it well-suited for real-world
iBCI applications.

Our study represents an initial attempt at a flexible, gradient-free framework for consistent behavioral
decoding and opens up several promising avenues for future research. Within the framework of the
FALCON Benchmark, we demonstrated that our approach scales effectively with increasing amount
of training data, albeit from a single subject and behavior task. Exploring the applicability of our
approach under more diverse settings (cross-task, cross-region, cross-subject) and on non-motor
behaviors is an important direction for future research [44] 22} 147,48 !49]]. On the technical side, our
end-to-end training for the unit identifier together with the rest of the network ties the identification of
the neural identities to task-specific behavioral decoding and thus requires access to labels to train the
unit identifier, which might be limited in real-world iBCI settings. Disentangling the training of the
unit identifier with behavioral decoding by means of self-supervised approaches such as contrastive
or predictive learning can potentially alleviate the reliance on behavior labels for this stage, albeit
at the cost of additional training overhead and potential loss of behavior-relevant neural features
essential for downstream decoding.

Lastly, although our study shows robust and low-latency behavioral decoding in silico, its performance
remains to be evaluated in vivo, where sensory feedback from closed-loop control may induce
modulation in the neural activity inputs and hardware-specific constraints could affect the online
inference latency [75]]. To this end, our preliminary assessment represents an initial step toward a
light-weight, plug-and-play decoding framework for long-term iBCI systems.
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A Appendix

A.1 Within-session performance comparison

We include the within-session performance comparison between SPINT and baselines in Table[AT]
This table is similar to Table 1 in the main paper, but with metrics obtained on EvalAI’s private splits
within the held-in sessions. As observed from the table, SPINT also consistently outperforms ZS and
FSU baselines on the held-in splits.

Class M1 M2 H1
Wiener Filter (WF) OR 0.54£0.01 0.27+£0.02 0.24+0.02
RNN OR 0.75+£0.03 0.59+£0.07 0.51£0.09
NDT2 Multi [21]] OR 0.77£0.03 0.62£0.03 0.68=£0.05
NDT2 Multi [21] FSS 0.77+£0.03 0.63£0.03 0.62+0.04
WF ZS 0.46 £0.06 0.15+£0.07 0.20=£0.04
RNN ZS 0.52£0.15 020+£0.29 0.31+0.13
CycleGAN + WF [29] FSU 0.61+0.02 0.32+£0.03 0.15£0.04
NoMAD + WF [25] FSU 0.64£0.01 0.35+£0.05 0.21+0.06
SPINT (Ours) GF-FSU 0.77+0.02 0.59+£0.01 0.47 £+0.06

Table Al: Within-session performance comparison against oracles (OR), few-shot supervised (FSS),
few-shot unsupervised (FSU), and zero-shot (ZS) methods. Our SPINT approach belongs to a special
class which we termed Gradient-Free Few-Shot Unsupervised (GF-FSU), where models perform
adaptation based on few-shot unlabeled data but without any parameter updates at test time. Results
are reported as mean = standard deviation R? across held-in sessions, achieved on EvalAl private
held-in splits.

A.2 Proof of SPINT’s permutation-invariance

Let Pr, Pc be the row and column permutation matrices of the same permutation 7 (Po = PI—{ =
Py Yand PoPr = I). Alsolet X’ = PpX and (X¢)" = PrXC be the row-permuted neural
windows and row-permuted calibration trials.

Since the ID embedding of each neural unit ¢ is computed individually from the set of calibration
trials for that unit:

E; = IDEncoder(XE) = 1(pool (¢(X7))), (AD

permuting the neural units in the original population (neural windows X or calibration trials X ¢)
will permute the embedding matrix E in the exact same order, i.e., B’ = PrFE.

It follows that:
Z'=X'"+ E = PrX + PRE = Pr(X + E) = PrZ (A2)
In other words, Z is equivariant to the permutation of neural units.

Cross-attention performed on Z’ then becomes:

CrossAttn(Q, Z', Z') = CrossAttn(Q, PrZ, PrZ)
ToTpT
= softmax (QVVKZPR> PrZWy,
Vi
QWgZ'Pc
vy,
WezT
= softmax (Q\/%) PoPrZWy
QWxZ’
Vi
= CrossAttn(Q, Z, Z)

= softmax ( > PrZWy,

(A3)
= softmax (

) 2w
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T 7T T 7T
where softmax (%) = softmax (%) Pc because an element is always normalized

with the same group of elements in the same row regardless of whether column permutation is
performed before or after softmax.

Equation [A3]concludes Proposition 1 in the main paper.

We note that multi-layer perceptron (MLP), layer normalization, and residual connection are ap-
plied row-wise and hence do not affect the overall permutation-invariance property of our SPINT
framework.

A.3 Correlation of attention scores and firing statistics

We ask whether the attention scores SPINT assigns for each neural unit are correlated with its firing
statistics. To answer this question, in each held-out calibration window, we measure the average
attention scores over B behavior covariates, and its firing statistics (mean/standard deviation) over
the held-out calibration trials, then calculate the Pearson’s correlation between these two quantities
using all held-out calibration windows. We show the results in Table[AZ]

We observe that the attention scores correlate moderately with the mean and the standard deviation
of the neural unit’s firing rates, with higher correlation for the standard deviation than the mean,
suggesting that SPINT might be extracting neural units that are active (having high mean firing rates)
and behaviorally relevant (having high variance throughout the calibration periods where behavior is
varied) to pay attention to in behavioral decoding.

M1 M2 H1

p(attention scores, mean firing rates) 0.33+£0.16 0.76 £0.03 0.51+£0.04
p(attention scores, standard deviation of firing rates) 0.45+0.16 0.87+£0.02 0.57+0.03

Table A2: Pearson’s correlation between attention scores for each neural unit and that unit
mean/standard deviation of firing rates during the held-out calibration periods. Results are re-
ported as the mean correlation £ standard deviation across held-out sessions. All p-values are less
than 0.05.

A.4 Implementation details
A.4.1 Data preprocessing

For neural activity, we use the binned spike count obtained by unit threshold crossing with the
standard bin size of 20ms as set forth by the FALCON Benchmark. We follow FALCON’s continuous
decoding setup for all three M1, M2, and H1 datasets, where rather than decoding trialized behavior
from the trialized neural activity (often performed in a non-causal manner), we decode behavior at
the last step of a neural activity window, mimicking the online, causal iBCI decoding. To construct
the length-W neural window at the beginning of each session, we pre-pad the session neural time
series with (W — 1) zeros. We discard the windows whose last time step belongs to a non-evaluated
period as defined by FALCON, e.g., inter-trial periods where there is no registered kinematics.

Our IDEncoder infers neural unit identity from trialized calibration trials. As calibration trials vary
in length, we interpolate all calibration trials to the same length 7", where 7' = 100 for M2 and
T = 1024 for M1 and H1. We use the Python library scipy.interpolate.interpld with a
cubic spline for interpolation. Note that we only perform interpolation for neural calibration trials to
synchronize their trial lengths. We still use the raw spike counts for the neural windows, conforming
with the continuous decoding setup.

A.4.2 Behavior output scaling

For M2 and H1, since values of behavior covariates are relatively small, during training we scale the
network behavior predictions by a factor of 0.2 and 0.05 for M2 and H1, respectively, effectively
asking the model to predict 5x and 20 the original behavior values. The MSE loss and R? metrics
are computed between the scaled predicted outputs and the original ground truth values.
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Dropout 0 0.2 04 0.6 0.8 DD [0,1]

R? 0.51+0.13 0.62+0.10 0.63+0.10 0.63+£0.10 0.60£0.09 0.64£0.10
Table A3: SPINT’s cross-session performance against dynamic dropout and different choices of fixed
dropout rates. Results are reported as mean + standard deviation across held-out calibration sessions.
DD [0,1] stands for dynamic dropout with variable dropout rates between 0 and 1.

DD range [0, 0.1] [0, 0.2] [0, 0.3] [0, 0.4] [0, 0.5] [0,1]
R? 0.59 £0.07 0.59+0.07 0.61+£0.10 0.62+£0.07 0.63+£0.07 0.64+£0.10

Table A4: SPINT’s cross-session performance across different ranges of dynamic dropout. Results
are reported as mean =+ standard deviation across held-out calibration sessions.

# heads 4 8 16 32 64
R2 0.62£0.08 0.63+0.09 0.64£0.10 0.65+0.11 0.64 £0.10

Table AS5: SPINT’s cross-session performance for different cross-attention head counts. Results are
reported as mean = standard deviation across held-out calibration sessions.

# self-attention layers 0 1 2 3 4
R? 0.64£0.10 0.63+0.13 0.57+0.13 0.61+0.10 0.60=+0.15

Table A6: SPINT’s cross-session performance for different number of self-attention layers. Results
are reported as mean =+ standard deviation across held-out calibration sessions.

# cross-attention layers 1 2 3 4 5
R? 0.64+0.10 0.65+0.10 0.65+0.10 0.64+0.11 0.624+0.13

Table A7: SPINT’s cross-session performance for different number of cross-attention layers. Results
are reported as mean =+ standard deviation across held-out calibration sessions.

Window size 50 100 200 400 600

R? 0.65+0.10 0.64+0.10 0.64+0.10 0.60£0.10 0.61£0.09

Table A8: SPINT’s cross-session performance for different context window sizes. Results are reported
as mean = standard deviation across held-out calibration sessions.

A.4.3 Inferring neural unit identity

We follow the permutation-invariant framework in [56] for inferring identity E; of neural unit i:

M
1 ,

E; = IDEncoder(X°) = MLPs (5 Z(MLPI(X,?J M) (A4)

Jj=1
where M is the number of calibration trials, X LC 7 is the neural activity of the j th calibration trial of
neural unit 7, MLP; and MLP5 are two 3-layer fully connected networks. ML.P; projects the length-
T trials to a hidden dimension H, and MLP5 projects the length-H hidden features to length-WW

neural unit identity output.

A.4.4 Behavioral decoding by cross-attention

After neural identity for all units F is inferred, we add it to the neural window input X to form the
identity-aware neural activity Z, i.e., Z = X + E. We then use the cross-attention mechanism in the
latent space to decode last step behavior covariates. Specifically:

Zin = MLPy,(Z) (AS)

Z = Q + CrossAttn(Q, LayerNorm(Z;, ), LayerNorm(Z;,,)) (A6)
Zout = 2 + MLPattn(LayerNorm(Z)) (A7)

Y = MLPou(Zout) (A8)
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A.4.5 Hyperparameters

We include the notable hyperparameters used to optimize SPINT in Table We train and evaluate
models for each M1, M2, and H1 dataset separately. We train the models using all available held-in
sessions and evaluate on all available held-out sessions. We use Adam optimizer [[/6]] for all training.

M1 M2 H1

Batch size 32 32 32
Window size 100 50 700
Max trial length 1024 100 1024
Number of IDEncoder layers 3,3 3,3 3,3
Number of cross attention layers 1 1 1
Hidden dimension 1024 512 1024
Behavior scaling factor 1 0.2 0.05
Learning rate le—5 be—5 le—5H

Table A9: Hyperparameters used to train SPINT on the M1, M2, and H1 datasets.

We include representative hyperparameter sweeps demonstrating SPINT’s robustness to hyperparam-
eter choices in Tables [A3] [A4] [A5] [A6] [A7] [A8] This robustness allows SPINT to effectively capture
long-range context while maintaining a minimalist architecture without compromising generalizabil-
ity. All sweep results were obtained on 20% of calibration trials held out from each session of the M1
dataset rather than on the EvalAl test split.

A.4.6 Computational resources

SPINT was trained using a single A40 GPU, consuming less than 2GB of GPU memory with batch
size of 32 and taking around 12 hours, 5 hours, and 8 hours to finish 50 training epochs for M1,
M2, and H1, respectively. We select checkpoints for evaluation at epoch 50 in all M1, M2, and H1
datasets.
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