FunBO: Discovering Acquisition Functions for
Bayesian Optimization with FunSearch

Virginia Aglietti! Ira Ktena' Jessica Schrouff”! Eleni Sgouritsa '
Francisco J. R. Ruiz' Alan Malek ! Alexis Bellot' Silvia Chiappa !

Abstract

The sample efficiency of Bayesian optimization
algorithms depends on carefully crafted acquisi-
tion functions (AFs) guiding the sequential collec-
tion of function evaluations. The best-performing
AFs can vary significantly across optimization
problems, often requiring ad-hoc and problem-
specific choices. This work tackles the chal-
lenge of designing novel AFs that perform well
across a variety of experimental settings. Based
on FunSearch, a recent work using Large Lan-
guage Models (LLMs) for discovery in mathemat-
ical sciences, we propose FunBO, an LLM-based
method that can be used to learn new AFs written
in computer code by leveraging access to a num-
ber of evaluations for a limited set of objective
functions. We provide the analytic expression of
all discovered AFs and evaluate them on various
global optimization benchmarks and hyperparam-
eter optimization tasks. We show how FunBO
identifies AFs that generalize well both in and out
of the training distribution of functions, thus out-
performing established general-purpose AFs and
achieving competitive performance against AFs
that are customized to specific function types and
are learned via transfer-learning algorithms.

1. Introduction

Bayesian optimization (BO) (Kushner, 1962; 1964; Mockus,
1974; Jones et al., 1998) is a methodology for optimizing
complex and expensive-to-evaluate black-box functions that
emerge in many scientific disciplines. BO has been used
across a wide variety of applications ranging from hyperpa-
rameter tuning in machine learning (Bergstra et al., 2011;
Snoek et al., 2012; Cho et al., 2020) to designing policies

“Now at GlaxoSmithKline. ' Google DeepMind, London, UK.
Correspondence to: Virginia Aglietti <aglietti@google.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

in robotics (Calandra et al., 2016) and recommending new
molecules in drug design (Korovina et al., 2020). Two main
components lie at the heart of any BO algorithm: a surro-
gate model and an acquisition function (AF). The surrogate
model expresses assumptions about the objective function,
e.g., its smoothness, and it is often given by a Gaussian
Process (GP) (Rasmussen & Williams, 2006). Based on the
surrogate model, the AF determines the sequential collec-
tion of function evaluations by assigning a score to potential
observation locations. BO’s success heavily depends on the
AF’s ability to efficiently balance exploitation (i.e. assigning
a high score to locations that are likely to yield optimal
function values) and exploration (i.e. assigning a high score
to regions with higher uncertainty about the objective func-
tion in order to inform future decisions), thus leading to the
identification of the optimum with the minimum number of
evaluations.

Existing AFs aim to provide either general-purpose opti-
mization strategies or approaches tailored to specific ob-
jective types. For example, Expected Improvement (EI)
(§altanis, 1971; Mockus, 1974), Upper Confidence Bound
(ucB) (Lai & Robbins, 1985) and Probability of Improve-
ment (Pofl) (Kushner, 1962; 1964) are all widely adopted
general-purpose AFs that can be used out-of-the-box across
BO algorithms and objective functions. The performance
of these AFs varies significantly across different types of
black-box functions, making the AF choice an ad-hoc, empir-
ically driven, decision. There exists an extensive literature
on alternative AFs outperforming EI, UCB and Pofl, for in-
stance entropy-based (Wang & Jegelka, 2017) or knowledge-
gradient (galtanis, 1971; Frazier et al., 2008) optimizers, see
Garnett (2023, Chapter 7) for a review. However, while
these functions are often interpretable, they are generally
hard to implement and expensive to evaluate, partly defeat-
ing the purpose of replacing the expensive original optimiza-
tion with the optimization of a much cheaper and faster to
evaluate AF. In order to avoid the limitations of current
AFs, several works have proposed self-adjusting the hyper-
parameters of known AFs in a data driven way throughout
the optimization process (Benjamins et al., 2023; Ding et al.,
2022), combining different AFs in a portfolio and selecting
them via an online multi-armed bandit strategy (Hoffman

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

et al., 2011) or computing a Pareto front over different AFs
(Lyu et al., 2018). Other prior works (Hsieh et al., 2021;
Volpp et al., 2020; Wistuba & Grabocka, 2021) have instead
proposed representing AFs via neural networks thus bypass-
ing the need for an analytical representation and learning
new AFs tailored to specific objectives by transferring infor-
mation from a set of related training functions via, e.g., rein-
forcement learning or transformers. While such learned AFs
can outperform general-purpose AFs, their generalization
performance to objectives outside of the training distribution
is often poor (see experimental section and discussion on
generalization behavior in Volpp et al. (2020)). More re-
cently, the concurrent work of Yao et al. (2024) investigated
representing AFs in code for specific optimization settings
where the experimentation budget is limited.

Defining methodologies that automatically identify new
AFs capable of outperforming general-purpose and function-
specific alternatives, both in and out of the training distri-
bution, remains a significant and unaddressed challenge. In
this work we tackle this challenge by considering AFs rep-
resented in computer code. Learning new AFs expressed
in code presents three main difficulties: (i) the vast space
of all possible programs makes exhaustive search infeasi-
ble, (ii) efficiently exploring a constrained space of possible
programs requires scalable methods and (iii) there is no
clear criterion for ensuring the validity and effectiveness of
generated AFs.

Contributions. We overcome these difficulties by formulat-
ing the problem of learning novel AFs written in computer
code as an algorithm discovery problem and address it by ex-
tending FunSearch (Romera-Paredes et al., 2023), a recently
proposed algorithm solving open problems in mathematical
sciences via LLMs. In particular, we introduce FunBO, a
novel method that explores the large space of AFs written
in computer code by taking an initial AF as input and, with
a limited number of evaluations for a set of objective func-
tions, iteratively modifying it to improve the performance of
the resulting BO algorithm. We focus on Python programs
but FunBO can be readily applied to languages supported by
FunSearch.

Unlike existing algorithms, FunBO outputs code snippets
corresponding to improved AFs. This approach offers sev-
eral advantages: (i) interpretability, as the code-based AFs
can be directly inspected, analyzed, and understood. This
allows for a clear comprehension of the logic behind the
optimization strategy employed by the discovered AF, which
contrasts with neural network-based AFs for which it is of-
ten difficult to understand why they perform well or how
they balance exploration and exploitation; (ii) deployability
and simplicity. The AFs discovered by FunBO are output
as concise code snippets (e.g., Python functions) that can
be readily integrated into existing BO libraries and work-

flows with minimal overhead; (iii) leveraging foundational
knowledge embedded in LLMs. Having been trained on
vast corpora of code and text, these models possess knowl-
edge about both programming constructs and existing BO
strategies, which FunBO utilizes to efficiently explore the
program space and construct effective heuristics.

We extensively test FunBO on a range of optimization prob-
lems including standard global optimization benchmarks
and hyperparameter optimization (HPO) tasks. For each
experiment, we report the explicit functional form of the
discovered AFs and show that they generalize well to the
optimization of functions both in and out of the training
distribution, outperforming general-purpose AFs while com-
paring favorably to function-specific ones.

2. Preliminaries

We consider an expensive-to-evaluate black-box function f :
X — R over the input space X C R? for which we aim to
identify the global minimum «* = argmin_ » f(x). We
assume access to a set of auxiliary black-box and expensive-
to-evaluate objective functions, G = {gj}jzl, with g; :
X; - R, X; CR% forj = 1,...,.J, from which we can
obtain a set of evaluations.

Bayesian optimization. BO seeks to identify «* with the
smallest number 7" of sequential evaluations of f given NV
initial observations D = {x;,y;} Y, with y; = f(x;).!
BO relies on a probabilistic surrogate model for f which
in this work is set to a GP with prior distribution over
any batch of input points X = {x;,...,xyN} given by
p(f|X) =N(m(X), Kg(X, X")) with prior mean m(X)
and kernel Ky(X, X’) with hyperparameters 6. The pos-
terior distribution p(f|D) is available in closed form via
standard GP updates. At every step ¢ in the optimization
process, BO selects the next evaluation location by optimiz-
ing an AF a(:|D;) : X — R, given the current posterior
distribution p(f|D;), with D; denoting the function evalu-
ations collected up to trial ¢ (including D). A commonly
used AF is the Expected Improvement (EI), which is de-
fined as ag, (x| D;) = (y* —m(x|Dy))P(2) +o(x|Dy)d(2),
where y* denotes the best function value observed in Dy,
also called incumbent, z = (y* — m(x|D;))/o(x|Dy), ¢
and ® are the standard Normal density and distribution
functions, and m(x|D;) and o(x|D;) are the GP posterior
mean and standard deviation computed at x € X'. Other
general-purpose AFs proposed in the literature are: UCB
(ayes (x| Dy) = m(x|Dy) — fo(x|D;) with hyperparame-
ter 3), POfl (apoi (2| D;) = ®((y* — m(x|D:))/o(x|Dy)))
and the posterior mean aygan(|D:) = m(x|D;) (denoted

"We focus on noiseless observations but the method can be
equivalently applied to noisy outcomes.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

by MEAN hereinafter).”

Unlike general-purpose AFs, several works have proposed
increasing the efficiency of BO for a specific optimization
problem, say the optimization of f, by either adaptively se-
lecting and/or adjusting known AFs in a data-driven manner
(Benjamins et al., 2023) or by learning problem-specific AFs
(Hsieh et al., 2021; Volpp et al., 2020; Wistuba & Grabocka,
2021). The learned AFs are trained on the set G, whose func-
tions are assumed to be drawn from the same distribution or
function class associated with f, reflecting a meta-learning
setup. “Function class” here refers to a set of functions with
a shared structure and obtained by, e.g., applying scaling and
translation transformations to their input and output values
or evaluating the loss function of the same machine learning
model, e.g., AdaBoost, on different data sets. For instance,
Wistuba et al. (2018) learns an AF that is a weighted super-
position of EIs by exploiting access to a sufficiently large
dataset for functions in G. Volpp et al. (2020) considered
settings where the observations for functions in G are lim-
ited and proposed MetaBO, a reinforcement learning based
algorithm that learns a specialized neural AF, i.e., a neural
network representing the AF. The neural AF takes as inputs
a set of potential locations (with a given d), the posterior
mean and variance at those points, the trial ¢ and the budget
T and is trained using a proximal policy optimization algo-
rithm (Schulman et al., 2017). Similarly, Hsieh et al. (2021)
proposed FSAF, an AF obtained via few-shot adaptation of a
learned AF using a small number of function instances in G.

Note that, while general-purpose AFs are used to opti-
mize objectives across function classes, learned AFs aim
to achieve high performance for the single function class
to which f and G belong. See Section A for an extensive
discussion of related work.

FunSearch. FunSearch (Romera-Paredes et al., 2023) is a
recently proposed evolutionary algorithm for searching in
the functional space by combining a pre-trained LLM used
for generating new computer programs with an efficient
evaluator, which guards against hallucinations and scores
fitness. An example problem that FunSearch tackles is the
online bin packing problem (Coffman et al., 1984), where
a set of items of various sizes arriving online needs to be
packed into the smallest possible number of fixed size bins.

A set of heuristics has been designed for deciding which
bin to assign an incoming item to, e.g., “first fit.” Funsearch
aims to discover new heuristics that improve on existing
ones by taking as inputs: (i) the computer code of an
evolve function h(-) representing the initial heuristic to be
improved by the LLM, e.g., “first fit” and (ii) an evaluate
function e(h, -), also written in computer code, specifying

2We focus on AFs that can be evaluated in closed form given
the posterior parameters of a GP surrogate model and exclude those
whose computation involves approximations.

the problem at hand (also called “problem specification™)
and scoring each h(+) according to a predefined performance
metric, e.g., the number of bins used in A(-). The inputs of
both h(-) (denoted by h hereinafter) and e(h, -) (denoted by
e hereinafter), are problem specific. A description of h’s
inputs is provided in the function’s docstring® together with
an explanation of how the function itself is used within e.

Given these initial components, Funsearch prompts an LLM
to propose an improved h, scores the proposals on a set of
inputs, e.g., on different bin-packing instances, and adds
them to a programs database. The programs database stores
correct h functions* together with their respective scores. In
order to encourage diversity of programs and enable explo-
ration of different solutions, a population-based approach
inspired by genetic algorithms (Tanese, 1989) is adopted for
the programs database (DB). At a subsequent step, functions
in the database are sampled to create a new prompt, the
LLM’s proposals are scored and stored again. The process
repeats for 7 = 1,...,7 until a time budget 7 is reached
and the heuristic with the highest score on a set of inputs is
returned.

3. FunBO

FunBO is a FunSearch-based method for discovering novel
AFs that increase BO efficiency by exploiting the set of aux-
iliary objectives G. In particular, FunBO (i) uses the same
prompt and DB structure as FunSearch, but (ii) proposes a
new problem specification by viewing the learning of AFs as
an algorithm discovery problem, and (iii) introduces a novel
initialization and evaluation pipeline that is used within the
Funsearch structure. FunBO does not make assumptions
about similarities between f and G, nor does it assume ac-
cess to a large dataset for each function in G. Therefore,
FunBO can be used to discover both general-purpose and
function-specific AFs as well as to adapt AFs via few-shots.
FunBO leverages the LLMs’ ability to generate executable
code to make the search for novel AFs automatic and scal-
able, potentially leveraging the extensive LLMs’ knowledge
of BO and AFs while delivering more interpretable AFs than
those represented by neural networks. Furthermore, while
FunSearch was only applied to problems that required evolv-
ing functions with simple inputs (integers, floats or short
tuples; with only one application taking as input a single ar-
ray), FunBO explores a significantly more complex function
space where programs take as inputs multiple arrays. This
demonstrates how the same formulation can be applied to
problems of increasing complexity as long as an appropriate
scoring mechanism is identified.

3wide variet on Python programs.
“The definition of a correct function is also problem specific.
For instance, a program can be considered correct if it compiles.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

e, h, g1, Gy
e

Inputs: Grv, Gv, Nos, B, T

Setup: Initialize h (Fig. 6), e (Fig. 7-8) and DB with Ny islands. Assign h to

each island.
while 7 < 7 do

1. Sample two programs from DB and create prompt (Fig. 2, right) 1

2. Get a batch of B samples from the LLM

3. For each correct A7 in the batch compute sp+ (Grr)
4. Add correct h” to DB and update it (see Appendix C)
5. Update step T =7+ 1

end L ")
Output: Return h in DB with score in the top 20th percentile for G, and highest J I s
score on gv . percentile

hi l
sh7(91)
hl
£ v*/I‘_:(G'I‘[)

__ Notcorrect o
® (S
SN

QFunBO
7

Figure 1. Left: The FunBO algorithm. Right: Graphical representation of FunBO. The different FunBO component w.r.t. FunSearch

(Romera-Paredes et al., 2023, Fig. 1) are highlighted in color.

Method overview. FunBO sequentially prompts an LLM to
improve an initial AF expressed in code so as to enhance
the performance of the corresponding BO algorithm when
optimizing objectives in G. At every step 7 of FunBO, an
LLM’s prompt is created by including the code for two AF
instances generated and stored in a programs database (DB)
at previous iterations. With this prompt, a number (B) of
alternative AFs are sampled from the LLM and are evaluated
based on their average performance on a subset G, C G,
which acts as training dataset. The evaluation process for an
AF, say h" at step 7, on G, gives a numeric score sp- (Gry)
that is used to store programs in DB and sample them for
subsequent prompts. The “process” of prompt creation,
LLM sampling, and AF scoring and storing repeats until a
time budget 7 is reached. Out of the top performing® AFs
on Gy, the algorithm returns the AF performing the best, on
average, in the optimization of Gy = G\Gry, which acts as
a validation dataset. When no validation functions are used
(G = Gy, the AF with the highest average performance on
Gr; is returned. Each FunBO component highlighted in bold
is described below in more detail, along with the complete
algorithm and graphical representation in Fig. 1. We denote
the AF returned by FUnBO as Qpyngo-

Initial AF. FunBO’s initial program % determines the input
variables that can be used to generate alternative AFs while
imposing a prior on the programs the LLM will generate at
successive steps. For these reasons it is important for guid-
ing the search process effectively. We consider an initial
acquisition function that takes the functional form of the E1
and has as inputs the union of the inputs given to EI, UCB
and Pofl (see code in Fig. 6). The AF returns an integer
representing the index of the point in a vector of potential
locations that should be selected for the next function evalu-
ation. All programs generated by the LLM share the same
inputs and output, but vary in their implementation, which

>In this work we consider the programs with a score in the top
20th percentile.

defines different optimization strategies, see for instance the
AF generated for one of our experiments in Fig. 3 (left).®

Prompt. At every algorithm iteration, a prompt is con-
structed by sampling two AFs, h; and h;, previously gen-
erated and stored in DB. h; and h; are sampled from DB
in a way that favors higher scoring and shorter programs
(see paragraph below for more details) and are sorted in the
prompt in ascending order based on their scores sy, (Grr)
and sy, (Gry), see the prompt skeleton’ in Fig. 2 (bottom).
The LLM is then asked to generate a new AF representing an
improved version of the last, higher scoring, program.

Evaluation. As expected, the evaluation protocol is critical
for the discovery of appropriate AFs. Indeed, a scoring mech-
anism that captures small improvements in the proposed AF
is needed to steer the LLM toward promising regions of the
function space. Our novel evaluation setup, unlike the one
used in FunSearch, entails performing a full BO loop to eval-
uate program fitness. In particular, each function generated
by the LLM is (i) checked to verify it is correct, i.e., it com-
piles and returns a numerical output; (ii) scored based on the
average performance of a BO algorithm using hA” as an AF
on Gr,. Evaluation is performed by running a full BO loop
with A7 for each function g; € Grr and computing a score
that contains two terms: a term that rewards AFs finding
values close to the true optimum, and a term that rewards
AFs finding the optimum in fewer evaluations (often called

SWe explored using a random selection of initial points as an
alternative to EI. However, this approach did not yield good results
as using a random selection was incentivizing the generation of
functions with a stochastic output, for which convergence results
are not reproducible.

"When 7 = 1, only the initial program will be available in
DB thus the prompt in Fig. 2 will be simplified by removing
acquisition_function_v1l and replacing v_2 with v_1.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Improve Bayesian Optimization by discovering a new

nn

acquisition function.

def acquisition_function_vO(predictive_mean, predictive_var,

incumbent, beta=1.0):

"""Returns the index of the point to collect ...
gy

Code for lowest—scoring sampled AF.

(Full docstring in Fig.

return ...

def acquisition_function_vl(predictive_mean, predictive_var,
incumbent, beta=1.0):

"""Improved version of ‘acquisition_function_v@®‘."""
Code for highest—scoring sampled AF.

return ...

def acquisition_function_v2(predictive_mean, predictive_var,
incumbent, beta=1.0):
'""Improved version of the previous

‘acquisition_function‘."""

1.0

El e Pofl —— FunBO
— M - - Rand — Ry=
0.8 77 U(e:;n andom Re=0
_0.6
'
0.4
0.2
0.0
0 10 20 30 40 50
Trials

def acquisition_function(predictive_mean,
predictive_var, incumbent, beta=1.0):
'"Returns the index of the point to collect
g8)."""

(incumbent — predictive_mean) /

(Full docstring in Fig.

z

np.sqrt(predictive_var)

predictive_std np.sqrt(predictive_var)

vals = (incumbent — predictive_mean)

* norm.cdf(z) + predictive_std * norm.pdf(z)

return np.argmax(vals)

Figure 2. Left: FunBO prompt includes two previously generated AFs which are sampled from DB and are sorted in ascending order based
on the score achieved on Gr;. The LLM generates a third AF, acquisition_function_v2, representing an improved version of the
highest scoring program. Right: 00D-Bench. Code for aunso (bottom) and average BO performance when using general purpose AFs and

Qrunso (top). Shaded area gives + std. dev./2. The red line gives R

trials). Specifically, we use the score s+ (Gr,) defined as :

J * *
1 95 (%5) — Y; h}
1— ’ 1- -2 1
G |\ gen =y)TV T)] O

*

where, for each g;, y; is the ground truth optimal value,

/=0 gives the optimum found at t = 0%, % , . is the found
optlmum for g; with h™ and Thr gives the number of trials
out of 7" that h” selected before reachmg yj (if the optimum
for function g; was not found, then Th]r = T to indicate
that all available trials have been used). The first term in
the square brackets of Eq. (1) quantifies the discrepancy
between the function values at the returned optimum and the
true optimum. This term becomes zero when x7 ;. equals
:cé-:O, indicating a failure to explore the search space. Con-
versely, if h™ successfully identifies the true optimum, such
that g;(z7 ;-) = yj, this term reaches its maximum value
of one. The second term in Eq. (1) captures how quickly
h” identifies y;. When Ty =T, indicating the algorithm
has not converged, this term becomes zero, and the score is
solely determined by the discrepancy between the discov-
ered and true optimum. If, instead, the algorithm reaches
the global optimum, this term represents the proportion of
trials, out of the total budget 7", needed to do so. Code for

8This is the input value corresponding to the optimal value
found among the set of initial observations D. We assume this to
be different from the ground truth optimum.

0, i.e. zero average regret.

the evaluation process is presented in Appendix B.

Programs database. Similar to FunSearch, scored AFs are
added to DB, which keeps a population of correct programs
following an island model (Tanese, 1989). DB is initialized
with a number Ny of islands that evolve independently.
Sampling of h; and h; from DB is done by first uniformly
sampling an island and, within that island, sampling pro-
grams by favouring those that are shorter and higher scoring.
A new program generated when using h; and h; in the
prompt is added to the same island and, within that, to a
cluster of programs performing similarly on Gr., see Ap-
pendix C for more details.

4. Experiments

Our experiments explore FunBO’s ability to generate novel
and efficient AFs across a wide variety of settings. In par-
ticular, we demonstrate its potential to generate AFs that
generalize well to the optimization of functions both in
distribution (ID, i.e. within function classes) and out of dis-
tribution (OOD, i.e. across function classes) by running three
different types of experiments:

1. ooD-Bench tests generalization across function classes
by running FunBO with G containing different standard
global optimization benchmarks and testing on a set F

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

—— Styblinskytang function - El = FunBO

— X" -+ UCB

100

Trials

X o

Trials

| — Weierstrass function

-0.4 -0.2 0.0 0.2 0.4

Figure 3. 00D-Bench. Different AFs trading-off exploration and
exploitation for two one-dimensional objective functions (green
lines). Blue and gray trajectories track the points queried by runsos,
EI and UCB over 150 trials (right y-axis).

that similarly comprises diverse functions in terms of
smoothness, input ranges and dimensionality and output
magnitudes. We do not scale the output values nor nor-
malize the input domains to facilitate learning, but rather
use the objective functions as available in standard BO
packages out-of-the-box. In this case G and F do not
share any particular structure, thus the generated AFs are
closer to general-purpose AFs.

2. 1ID-Bench, HPO-ID and GPs-ID test FunBO-generated AFs
within function classes for standard global optimization
benchmarks, HPO tasks, and general function classes, re-
spectively. As this setting is closer to the one considered
by meta-learning approaches introduced in Section 2, we
compare FunBO against MetaBO (Volpp et al., 2020),’
the state-of-the-art transfer AF.

3. FEW-SHOT demonstrates how FunBO can be used in the
context of few-shot fast adaptation of an AF. In this case,
the AF is learned using a general function class as G and
is then tuned, using a very small (5) number of examples,
to optimize a specific synthetic function. We compare
our approach to Hsieh et al. (2021),'° the most relevant
few-shot learning method.

We report all results in terms of normalized average simple
regret on a test set, R,, as a function of the trial ¢. For an
objective function f, this is defined as R; = f(x}) — y*
where y* is the ground truth optimal value and z is the
best selected point within the data collected up to . As F

We wused the author-provided
github.com/boschresearch/MetaBO.
"We used the author-provided
github.com/pinghsieh/FSAF.

implementation at

implementation at

might include functions with different scales, we normalize
the regret values to be in [0, 1] before averaging them. Note
that the mean and standard deviations shown in all regret
plots represent the performance variation across the set of
test functions, not across multiple independent runs of a
BO algorithm on a single function instance. For instance,
for 0OD-Bench, the mean and standard deviation in Fig. 2
(right, top) are over the 9 distinct test functions.

To isolate the effects of different AFs, we employ the same
experimental setting across all methods in terms of: (i) the
number of trials 77; (ii) the hyperparameters of the GP sur-
rogate models (tuned offline); (iii) the evaluation grid for
the AF, which is set to be a Sobol grid (Sobol’, 1967) on
the input space; and (iv) the initial design, which includes
the input point yielding the maximum function value on the
grid. Note that we use a GP model with zero mean function
and RBF kernel across experiments. Therefore, the discov-
ered AFs are conditioned on this choice of surrogate model.
We acknowledge that while this setup ensures a consistent
comparison across all AFs by removing confounding effects
(e.g., from the quality of hyperparameter optimization rou-
tines), it might deviate from a fully realistic deployment
scenario. For this reason, in Section D.6, we included a
comparison of the AFs found by FunBO for OOD-Bench
when evaluated using the standard BO pipeline available in
BoTorch, which employs default settings for aspects such
as AF optimization, GP hyperparameter optimization, and
the random selection of initial points.

All experiments are conducted using FunSearch with de-
fault hyperparameters'! unless otherwise stated. We employ
Codey, an LLM fine-tuned on a large code corpus and based
on the PaLM model family (Google-PaLM-2-Team, 2023),
to generate AFs.!?

00D-Bench. We test FunBO’s capabilities to generate AFS
that perform well across function classes by including the
one-dimensional functions Ackley, Levy, and Schwefel in
Gr1r and using the one-dimensional Rosenbrock function
for Gy. We test the resulting apyupo On nine very differ-
ent objective functions: Sphere (d = 1), Styblinski-Tang
(d = 1), Weierstrass (d = 1), Beale (d = 2), Branin (d = 2),
Michalewicz (d = 2), Goldstein-Price (d = 2) and Hart-
mann with both d = 3 and d = 6. We do not compare
against MetaBO as (i) it was developed for settings in which
the functions in G and F belong to the same class and, (ii)
the neural AF is trained with evaluation points of a given
dimension, thus it cannot be deployed for the optimization
of functions across different d. For completeness, we re-

ISee code at github.com/google-deepmind/funsearch.

2Codey is publicly accessible via its API (Vertex Al, 2023).
For AF sampling, we used 5 Codey instances running on tensor
processing units on a computing cluster. For scoring, we used 100
CPU evaluators per LLM instance.

https://github.com/boschresearch/MetaBO
https://github.com/pinghsieh/FSAF
https://github.com/google-deepmind/funsearch

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

0.8 1+e Branin 0.8 Goldstein-Price 0.8 r Hartmann
---- MetaBO —— UCB —— FunBO ‘---- MetaBO —— UCB —— FunBO ---- MetaBO —— UCB —— FunBO
0.71 . g Pofl — R=0 0.7 El Pofl — Ri=0 0.7 El Pofl — im0l
0.6 Mean - - Random 0.6 - Random 0.6 — Mean - - Random
0.5 0.5 0.5
o 0.4 o 0.4 o 0.4
0.3 0.3 0.3
0.2 0.2 = ~S— 0.2
0.1 0.1 N 0.1
i T e ———— — N
0.0 0.0 0.0
0 2 4 6 8 10 15 20 25 30 0 5 10 15 20 25 30
Trials Trials Trials

Figure 4. ID-Bench. Average BO performance when using general-purpose AFs (gray lines), the AF learned by MetaBO (black dashed line)
and aunso (blue line) on 100 function instances. Shaded area gives + std. dev./2. The red line represents R; = 0, i.e. zero average regret.

port a comparison with a dimensionality-agnostic version
of MetaBO in Appendix D.1 (Fig. 9) together with all exper-
imental details, e.g., input ranges and hyperparameters.

AF interpretation: In this experiment, cpynpo (Fig. 2, right
bottom plot) represents a combination of EI and UCB which,
due to the beta*predictive_std term, is more ex-
ploratory than ET but, considering the incumbent value, still
factors in the expected magnitude of the improvement and
reduces to EI when beta=0. This determines the way
Qpunpo trades-off exploration and exploitation which can
be visualized by looking at the "exploration path", i.e., the
sequence of x values selected over ¢, as shown in the right
plots of Fig. 3 (¢t measured on the secondary y-axis). For
objective functions that are smooth, for example Styblinski-
Tang, the exploration path of ayppe matches those of EI and
UCB (top plot, note that trajectories are overlapping). In this
scenario, all AFs exhibit similar behavior, converging to x*
(red vertical line) with fewer than 25 trials. When instead
the objective function has a lot of local optima (bottom plot)
as in Weierstrass, both EI and UCB get stuck after a few
trials while FunBO continues to explore the search space
eventually converging to *. Notice how in this plot the
convergence paths of all AFs differ and only the blue line
aligns with the red line, i.e., converges to x*, after a few
trials.

Using apynpo to optimize the nine functions in F leads to
a fast and accurate convergence to the global optima (Fig.
2, right top plot). This is confirmed when extending the
test set to include 50 scaled and translated instances of the
functions in F (Fig. 9, right). Finally, note how the top
right plot in Fig. 2 shows a surprisingly good performance
of random search. This is due to random search perform-
ing competitively on functions with numerous local optima,
which are generally harder to optimize. Aggregating per-
formance across all functions in F highlights that no single
known general-purpose AF consistently outperforms the oth-
ers. This aligns with the well-established understanding
that the effectiveness of AFs can vary significantly across
black-box functions and is consistent with findings reported

in the literature (Perrone et al., 2019; Li et al., 2018).

ID-Bench. Next we evaluate FunBO capabilities to gen-
erate AFs that perform well within function classes using
Branin, Goldstein-Price and Hartmann (d = 3). For each
of these three functions, we train both FunBO and MetaBO
with |G| = 25 instances of the original function obtained
by scaling and translating it with values in [0.9, 1.1] and
[—0.1,0.1)¢ respectively.!* For FunBO we randomly assign
5 functions in G to Gy and keep the rest in Gr,. We test the
performance of the learned AFs on another 100 instances
of the same function, with randomly sampled values of
scale and translation from the same ranges. We additionally
compare against a BO algorithm that uses EI, UCB, PofT,
MEAN or a random selection of points. All hyper-parameter
settings for this experiment are provided in Appendix D.2.
Across all objective functions, cpynpo leads to a convergence
performance that outperforms general-purpose AFs (Fig. 4).
More importantly, despite using the same inputs of EI or
UCB, FunBO is able to reach performances that are compa-
rable or superior to those of AFs that are parameterized by
neural networks and use additional inputs (Fig. 4). In terms
of interpretability, notice how the AF for Goldstein-Price
(Fig. 12) can be written as o2 (X|Dt)®(%) thus
giving a modified Pofl where the probability of observing
an improvement over the incumbent is multiplied by the
predictive variance.

The AFs found in this experiment (code in Figs. 11-13)
are “customized” to a given function class thus being closer,
in spirit, to the transfer AF. However, in order to further
validate the generalizability of aipynpo found in OOD-Bench,
we tested this AF across instances of Branin, Goldstein-Price
and Hartmann (Fig. 10, green line). We found it to perform
well against general-purpose AFs thus confirming the strong
results observed in OOD-Bench while being, as expected,
slower than AFs customized to a specific objective.

HPO-ID. We test FunBO on two HPO tasks where the goal

BThroughout the paper we adopt MetaBO’s translation and scal-
ing ranges.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

GPs,d=4

—— UCB

— FSAF —- UCB —— FunBO
] Pofl —— FunBO, GPs-ID
RandOM wmm R, =0

— FunBO 1.0

Pofl — Ry=0

0.8\ — Mean -

1.0 AdaBoost
' ---- MetaBO -~ UCB —— FunBO 0.4 - MetaBO
0.8" -- El Pofl — R;=0 -==- El
Lk — Mean 0.3
0.6}
' 4 '@ 0.2
041
02 N\ Re— 0.1
0.0 0.0
0 5 10 15 20 25 30 0
Trials

10 20 30 40 50 60 70
Trials

Trials

Figure 5. Average BO performance when using known general-purpose AFs (gray lines), the AF learned by MetaBO (black dashed line)
and arunso (blue line). Shaded area gives + std. dev./2. The red line represents R; = 0, i.e. zero average regret. Left: HPO-ID. Middle:

GPs-ID with d = 4. Right: FEW-SHOT.

is to minimize the loss (d = 2) of an RBF-based SVM and
an AdaBoost algorithm.'* As in ID-Bench, we test the abil-
ity to generate AFs that generalize well within function
classes. Therefore, we train FunBO and MetaBO with losses
computed on a random selection of 35 of the 50 available
datasets and test on losses computed on the remaining 15
datasets. For FunBO we randomly assign 5 datasets to Gy
and keep the rest in Gr,. FunBO identifies AFs (code in Fig.
15-16) that outperform all other AFs in AdaBoost (Fig. 5,
left) while performing similarly to general-purpose or meta-
learned AFs for SVM (Fig. 14). Across the two tasks, agynso
found in 0OD-Bench still outperforms general-purpose AFS
while yielding slightly worse performance compared to
MetaBO and FunBO-customized AFs (Fig. 14, green lines).

GPs-ID. Similar results are obtained for general func-
tion classes whose members do not exhibit any partic-
ular shared structure. We let Gr, include 25 functions
sampled from a GP prior with d = 3, RBF kernel and
length-scale drawn uniformly from [0.05,0.5]. We test
the found AF on 100 other GP samples defined both for
d = 3 and d = 4 and length-scale values sampled sim-
ilarly. As done by Volpp et al. (2020), we consider a
dimensionality-agnostic version of MetaBO that allows de-
ploying the function learned from d = 3 functions ond = 4
objectives. We found aynpo to outperform all other AFs
(code in Fig. 18) in d = 4 (Fig. 5, right) while match-
ing EI and outperforming MetaBO in d = 3 (Fig. 17, left).
In terms of interpretability, note how the AF found in this
case can be simplified to be written as (EI*xx2) / (1
+ (z/beta)**2 * sqgrt (var)) xx2. This function
calculates the standard EI, squares it, and then divides it
by a penalty term that increases with both the standard-
ized improvement z= (incumbent - mean) /std and
the uncertainty sqgrt (var). The squaring of the EI non-
linearly amplifies regions with high EI values relative to

4We use precomputed loss values across 50 datasets given as
part of the HyLAP project. For SVM, the two hyperparameters
are the RBF kernel parameter and the penalty parameter while for
AdaBoost they correspond to the number of product terms and the
number of iterations.

those with low or moderate EI values. This increases the
"peakiness” of the AF, leading to stronger exploitation of the
most promising point(s). The term (1 + (z/beta) xx2
x sqgrt (var)) »+2 penalizes points more heavily if they
have a very high EI (z is large and positive) and/or high
uncertainty (sqrt (var) is large). This might act as a
regularizer against over-optimism or excessive jumps into
highly uncertain areas, even if they look very promising
according to EI. It’s a novel way of balancing exploration
and exploitation discovered by FunBO.

FEW-SHOT. We conclude our experimental analysis by
demonstrating how FunBO can be used in the context of
few-shot adaptation. In this setting, we aim to learn an AF
for a specific function class by “adapting” an initial AF with
a small number of instances from the target class.

We consider Ackley (d = 2) as the objective function and
compare against FSAF (Hsieh et al., 2021), the closest few-
shot adaptation method for BO. FSAF trains the initial AF
with a set of GPs, adapts it using 5 instances of scaled and
translated Ackley functions, then tests the adapted AF on 100
additional Ackley instances, generated in the same manner.
Note that FSAF uses a wide variety of GP functions with
different kernels and various hyperparameters for training
the initial AF. On the contrary, FunBO few-shot adaptation is
performed by setting the initial h function to the one found
in GPs-1D (Fig. 5, right plot, green line) using 25 GPs with
RBF kernel, and including the 5 instances of Ackley used by
FSAF in Gt,. Despite the limited training set, FunBO adapts
very quickly to the new function instances, identifying an
AF (code in Fig. 19) that outperforms both general purpose
AFs and FSAF (Fig. 5, right).

5. Conclusions and Discussion

We tackled the problem of discovering novel, well-
performing AFs for BO through FunBO, a FunSearch-based
algorithm that explores the space of AFs by letting an LLM it-
eratively modify the AF expression in native computer code
to improve the efficiency of the corresponding BO algorithm.

http://www.hylap.org/

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

We have shown across a variety of settings that FunBO learns
AFs that generalize well within and across function classes
while being easily adaptable to specific objective functions
of interest with only a few training examples.

Limitations. FunBO inherits the strengths of FunSearch
along with some of its inherent constraints. ~While
FunsSearch allows finding programs that are concise and
interpretable, it works best for programs that can be quickly
evaluated and for which the score provides an accurate quan-
tification of the improvement achieved. Therefore, a po-
tential limitation of FunBO is the computational overhead
associated with running a full BO loop for each candidate
AF on every function in the set G. This limits the scalability
of FunBO for larger sets G and hinders its application to
more complex optimization problems, such as those with
multiple objectives. However, several practical scenarios
exist where the functions in G are relatively inexpensive to
evaluate, thus lowering the evaluation cost incurred during
FunBO’s discovery phase. For instance, G could consist of:
(1) faster, lower-fidelity simulators or simplified analytical
models related to the expensive target problem f; (ii) cheap-
to-evaluate surrogate models learned from previous related
tasks; or (iii) hyperparameter optimization losses on smaller
datasets where training and evaluation are faster than on
the final, large target dataset. It is important to note that
the computational cost incurred during this one-time search
phase for a novel AF can be offset by its subsequent per-
formance during online deployment, where the discovered
AF may significantly reduce the number of costly function
evaluations needed on the actual target problems.

Furthermore, the simple metric considered in this work in
Eq. (1), only captures the distance from the true optimum
and the number of trials needed to identify it. More research
needs to be done to understand if a metric that better char-
acterizes the convergence path for a given AF can improve
FunBO’s performance. In addition, each FunBO experiment
shown in this work required obtaining a large number of
LLM samples. This means that the overall cost of experi-
ments, which depends on the LLM used as well as the algo-
rithm’s implementation (e.g. single-threaded or distributed,
as originally proposed by FunSearch), can be high. Finally,
as reported by Romera-Paredes et al. (2023), the variance
in the quality of the AF found by FunBO is high. This is
due to the randomness in both the LLM sampling and the
evolutionary procedure. While we were able to reproduce
the results shown for ID-Bench, HPO-ID and GPs-ID with
different FunBO experiments, finding AFs that perform well
across function classes required multiple FunBO runs.

Future work. This work opens up several promising av-
enues for future research. While our focus here was on the
simplest single-output BO algorithm with a GP surrogate
model, FunBO can be extended to learn AFs for various

adaptations of this problem, e.g., constrained optimization,
noisy evaluations, multi-fidelity settings or alternative sur-
rogate models. In addition, FunBO can be used to search in
the space of functions with different inputs thus potentially
discovering, e.g., non-myopic AFs. Our method is inher-
ently flexible and can accommodate such extensions, which
we view as natural follow-up work. Additionally, FunBO
demonstrates the potential to harness the power of LLMs
while maintaining the interpretability of AFs expressed in
code. This opens an exciting avenue for exploring how and
what assumptions can be encoded within AFs, based on the
desired program characteristics and prior knowledge about
the objective function. Finally, the discovered AFs might
have intrinsic value, independently of how they were discov-
ered. Future work could focus on more extensively testing
their properties and identify those that can be added to the
standard suite of AFs available in BO packages.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., and Lin-
dauer, M. Self-adjusting weighted expected improvement
for Bayesian optimization. In International Conference
on Automated Machine Learning, 2023.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In Advances in
Neural Information Processing Systems, 2011.

Calandra, R., Seyfarth, A., Peters, J., and Deisenroth, M. P.
Bayesian optimization for learning gaits under uncer-
tainty: An experimental comparison on a dynamic bipedal
walker. Annals of Mathematics and Artificial Intelligence,
76:5-23, 2016.

Chen, A., Dohan, D., and So, D. Evoprompting: Language
models for code-level neural architecture search. In Ad-
vances in Neural Information Processing Systems, 2024a.

Chen, L., Chen, J., Goldstein, T., Huang, H., and Zhou, T.
InstructZero: Efficient instruction optimization for black-
box large language models. In International Conference
on Machine Learning, pp. 6503-6518, 2024b.

Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M.,
Lillicrap, T. P., Botvinick, M., and Freitas, N. Learning
to learn without gradient descent by gradient descent.

In International Conference on Machine Learning, pp.
748-756, 2017.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, R., Dohan,
D., Kawakami, K., Kochanski, G., Doucet, A., Ranzato,
M., Perel, S., and de Freitas, N. Towards learning uni-
versal hyperparameter optimizers with transformers. In
Advances in Neural Information Processing Systems, pp.
32053-32068, 2022.

Cheng, J., Liu, X., Zheng, K., Ke, P., Wang, H., Dong, Y.,
Tang, J., and Huang, M. Black-box prompt optimization:
Aligning large language models without model training.
In Annual Meeting of the Association for Computational
Linguistics, 2024.

Cho, H., Kim, Y., Lee, E., Choi, D., Lee, Y., and Rhee,
W. Basic enhancement strategies when using Bayesian
optimization for hyperparameter tuning of deep neural
networks. IEEE Access, 8:52588-52608, 2020.

Coffman, E. G., Garey, M. R., and Johnson, D. S. Approxi-
mation algorithms for bin-packing — an updated survey.
In Ausiello, G., Lucertini, M., and Serafini, P. (eds.), Al-
gorithm Design for Computer System Design, pp. 49—106.
Springer, 1984.

Ding, Q., Kang, Y., Liu, Y.-W., Lee, T. C. M., Hsieh, C.-J.,
and Sharpnack, J. Syndicated bandits: A framework for
auto tuning hyper-parameters in contextual bandit algo-

rithms. In Advances in Neural Information Processing
Systems, pp. 1170-1181, 2022.

Fernando, C., Banarse, D. S., Michalewski, H., Osindero, S.,
and Rocktischel, T. Promptbreeder: Self-referential self-
improvement via prompt evolution. In International Con-
ference on Machine Learning, pp. 13481-13544, 2024.

Feurer, M., Letham, B., and Bakshy, E. Scalable
meta-learning for Bayesian optimization using ranking-
weighted Gaussian process ensembles. In AutoML Work-

shop at International Conference on Machine Learning,
2018.

Frazier, P. 1., Powell, W. B., and Dayanik, S. A knowledge-
gradient policy for sequential information collection.
SIAM Journal on Control and Optimization, 47(5):2410-
2439, 2008.

Garnett, R. Bayesian Optimization. Cambridge University
Press, 2023.

Google-PalLM-2-Team. PalLM 2 Technical Report. arXiv
preprint arXiv:2305.10403, 2023.

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. EvoPrompt: Connecting LLMs
with evolutionary algorithms yields powerful prompt op-
timizers. In International Conference on Learning Repre-
sentations, 2024.

10

Hoffman, M., Brochu, E., De Freitas, N., et al. Portfolio
allocation for Bayesian optimization. In Conference on
Uncertainty in Artificial Intelligence, pp. 327-336, 2011.

Hsieh, B.-J., Hsieh, P.-C., and Liu, X. Reinforced few-shot
acquisition function learning for Bayesian optimization.
In Advances in Neural Information Processing Systems,
pp. 7718-7731, 2021.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K.,
Odrzyg6zdz, T., Milos, P., Wu, Y., and Jamnik, M. Thor:
Wielding hammers to integrate language models and au-
tomated theorem provers. In Advances in Neural Infor-
mation Processing Systems, pp. 8360-8373, 2022.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization, 13:455-492, 1998.

Korovina, K., Xu, S., Kandasamy, K., Neiswanger, W., Poc-
zos, B., Schneider, J., and Xing, E. Chembo: Bayesian op-
timization of small organic molecules with synthesizable
recommendations. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 3393-3403, 2020.

Koza, J. R. Genetic programming as a means for program-
ming computers by natural selection. Statistics and com-
puting, 4:87-112, 1994.

Kristiadi, A., Strieth-Kalthoff, F., Skreta, M., Poupart,
P, Aspuru-Guzik, A., and Pleiss, G. A sober look at
LLMs for material discovery: Are they actually good
for Bayesian optimization over molecules? In Inter-
national Conference on Machine Learning, pp. 25603—
25622, 2024.

Kushner, H. J. A versatile stochastic model of a function of
unknown and time varying form. Journal of Mathemati-
cal Analysis and Applications, 5(1):150-167, 1962.

Kushner, H. J. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence of
noise. Journal Basic Engineering, 86(1):97-106, 1964.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6(1):
4-22,1985.

Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C.,
and Stanley, K. O. Evolution through large models. In
Banzhaf, W., Machado, P., and Zhang, M. (eds.), Hand-
book of evolutionary machine learning, pp. 331-366.
Springer, 2023.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1-52, 2018.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Liu, F, Xialiang, T., Yuan, M., Lin, X., Luo, F., Wang, Z.,
Lu, Z., and Zhang, Q. Evolution of heuristics: Towards
efficient automatic algorithm design using large language

model. In International Conference on Machine Learning,
pp- 32201-32223, 2024a.

Liu, T., Astorga, N., Seedat, N., and van der Schaar, M.
Large language models to enhance Bayesian optimization.

In International Conference on Learning Representations,
2024b.

Lyu, W., Yang, F., Yan, C., Zhou, D., and Zeng, X. Batch
Bayesian optimization via multi-objective acquisition en-
semble for automated analog circuit design. In Interna-

tional Conference on Machine Learning, pp. 3306-3314,
2018.

Maraval, A., Zimmer, M., Grosnit, A., and Bou Ammar, H.
End-to-end meta-Bayesian optimisation with transformer
neural processes. In Advances in Neural Information
Processing Systems, 2024.

Meyerson, E., Nelson, M. J., Bradley, H., Gaier, A., Moradi,
A., Hoover, A. K., and Lehman, J. Language model
crossover: Variation through few-shot prompting. ACM

Transactions on Evolutionary Learning and Optimization,
4(4), 2024.

Mockus, J. On Bayesian methods for seeking the extremum.
Proceedings of the IFIP Technical Conference, pp. 400—
404, 1974.

Miiller, S., Feurer, M., Hollmann, N., and Hutter, F. Pfns4bo:
In-context learning for bayesian optimization. In Inter-

national Conference on Machine Learning, pp. 25444—
25470, 2023.

Nasir, M. U., Earle, S., Togelius, J., James, S., and Cleghorn,
C. Llmatic: Neural architecture search via large language
models and quality diversity optimization. In Genetic and
Evolutionary Computation Conference, pp. 1110-1118,
2024.

Perrone, V., Shen, H., Seeger, M. W., Archambeau, C.,
and Jenatton, R. Learning search spaces for Bayesian
optimization: Another view of hyperparameter transfer
learning. In Advances in neural information processing
systems, 2019.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Ramos, M. C., Michtavy, S. S., Porosoff, M. D., and White,
A. D. Bayesian optimization of catalysts with in-context
learning. arXiv preprint arXiv:2304.05341, 2023.

11

Rankovi¢, B. and Schwaller, P. Bochemian: Large language
model embeddings for Bayesian optimization of chemical
reactions. In Adaptive Experimental Design and Active
Learning in the Real World Workshop at Advances in
Neural Information Processing Systems, 2023.

Rasmussen, C. E. and Williams, C. K. Gaussian Processes
for Machine Learning. MIT Press Cambridge, MA, 2006.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, pp.
1-3, 2023.

Saltanis, R. P. One method of multiextremum optimiza-
tion. Avtomatika i Vychislitel’'naya Tekhnika (Automatic
Control and Computer Sciences), 5(3):33-38, 1971.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian optimization of machine learning algorithms.

In Advances in Neural Information Processing Systems,
2012.

Sobol’, I. M. On the distribution of points in a cube and
the approximate evaluation of integrals. Zhurnal Vychis-
litel’noi Matematiki i Matematicheskoi Fiziki, 7, 1967.

Song, L., Gao, C., Xue, K., Wu, C., Li, D., Hao, J., Zhang,
Z., and Qian, C. Reinforced in-context black-box opti-
mization. arXiv preprint arXiv:2402.17423, 2024a.

Song, X., Tian, Y., Lange, R. T., Lee, C., Tang, Y., and Chen,
Y. Position: leverage foundational models for black-box
optimization. In International Conference on Machine
Learning, 2024b.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Infer-

national Conference on Machine Learning, pp. 20841—
20855, 2022.

Swersky, K., Snoek, J., and Adams, R. P. Multi-task
Bayesian optimization. In Advances in Neural Infor-
mation Processing Systems, 2013.

Tanese, R. Distributed Genetic Algorithms for Function
Optimization. PhD thesis, University of Michigan, 1989.

Tribes, C., Benarroch-Lelong, S., Lu, P., and Kobyzev, 1.
Hyperparameter optimization for large language model
instruction-tuning. In AAAI Conference on Artificial In-
telligence, 2024.

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Vertex Al, G. C. Code models overview.
2023. URL https://cloud.google.com/
vertex—ai/docs/generative—ai/code/
code-models-overview.

Volpp, M., Frohlich, L. P, Fischer, K., Doerr, A., Falkner,
S., Hutter, F., and Daniel, C. Meta-learning acquisition
functions for transfer learning in Bayesian optimization.

In International Conference on Learning Representations,
2020.

Wang, C., Liu, X., and Awadallah, A. H. Cost-effective
hyperparameter optimization for large language model
generation inference. In International Conference on
Automated Machine Learning, pp. 21-1, 2023.

Wang, Z. and Jegelka, S. Max-value entropy search for effi-
cient Bayesian optimization. In International Conference
on Machine Learning, pp. 3627-3635, 2017.

Wistuba, M. and Grabocka, J. Few-shot Bayesian opti-
mization with deep kernel surrogates. In International
Conference on Learning Representations, 2021.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Scal-
able Gaussian process-based transfer surrogates for hy-
perparameter optimization. Machine Learning, 107(1):
43-78, 2018.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D.,
and Chen, X. Large language models as optimizers. In

International Conference on Learning Representations,
2024.

Yao, Y., Liu, F.,, Cheng, J., and Zhang, Q. Evolve cost-
aware acquisition functions using large language models.
In Affenzeller, M., Winkler, S. M., Kononova, A. V.,
Trautmann, H., Tusar, T., Machado, P., and Bick, T. (eds.),
Parallel Problem Solving from Nature — PPSN XVIII, pp.
374-390. Springer Nature Switzerland, 2024.

Yogatama, D. and Mann, G. Efficient transfer learning
method for automatic hyperparameter tuning. In Interna-

tional Conference on Artificial Intelligence and Statistics,
pp.- 1077-1085, 2014.

Zhang, M. R., Desai, N., Bae, J., Lorraine, J., and Ba, J.
Using large language models for hyperparameter opti-
mization. In Foundation Models for Decision Making

Workshop at Advances in Neural Information Processing
Systems, 2023.

Zheng, M., Su, X., You, S., Wang, F,, Qian, C., Xu, C,,
and Albanie, S. Can GPT-4 perform neural architecture
search? arXiv preprint arXiv:2304.10970, 2023.

12

https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

A. Related work

LLMs as mutation operators. FunBO expands FunSearch (Romera-Paredes et al., 2023), an evolutionary algorithm pairing
an LLM with an evaluator to solve open problems in mathematics and algorithm design. The idea of using LLMs as mutation
operators paired with a scoring mechanism has been explored to create a self-improvement loop (Lehman et al., 2023), to
optimize code for robotic simulations, to optimize prompts (Guo et al., 2024), or to evolve stable diffusion images with
simple genetic algorithms (Meyerson et al., 2024). Other works explore the use of LLMs to search over neural network
architectures described with Python code (Nasir et al., 2024; Zheng et al., 2023; Chen et al., 2024a), to find formal proofs
for automatic theorem proving (Polu & Sutskever, 2020; Jiang et al., 2022) or to automatically design heuristics (Liu et al.,
2024a). Symbolic regression, similarly to FunBO, also searches for mathematical expressions, which are often represented as
trees. However, while FunBO employs an LLM for both generation and mutation, symbolic regression typically evolves these
expressions using genetic operators (Koza, 1994). In addition, FunBO operates directly on code representations and uses full
BO performance as its fitness metric. Therefore, while both methodologies aim to find functional forms, their search space
representations and primary evolutionary operators are different.

Meta-learning for BO. Our work is also related to the literature on meta-learning for BO. In this realm, several studies have
focused on meta-learning an accurate surrogate model for the objective function by exploiting observations from related
functions, for instance by using standard multi-task GPs (Swersky et al., 2013; Yogatama & Mann, 2014), ensembles of
GP models (Feurer et al., 2018; Wistuba et al., 2018; Wistuba & Grabocka, 2021) or neural processes that are trained to
approximate the posterior predictive distribution through in-context learning on any prior distribution that can be efficiently
sampled from (Miiller et al., 2023). Others have focused on meta-learning general-purpose optimizers by using recurrent
neural networks with access to gradient information (Chen et al., 2017) or transformers (Chen et al., 2022; Song et al., 2024a).
Note that, while meta-learned surrogate models explicitly learn structure from past functions by observing data-points for
each of them, methods that meta-learn AFs via G implicitly learn similarities between these objectives by observing the
optimization pattern achieved by previously sampled AFs for each objective function in G. Interestingly, the most significant
performance gains observed for the approach proposed by Chen et al. (2022) stem from using a standard AF (EI) on top of
the transformer architecture for output predictions. This confirms the continued importance of AFs as crucial components in
BO, even when combined with transformer-based approaches, and highlights the importance of a method such as FunBO that
can be seamlessly integrated with these newer architectures, potentially leading to further improvements in performance.
More relevant to our work are studies focusing on transferring information from related tasks by learning novel AFs that
more efficiently solve the classic exploration-exploitation trade-off in BO algorithms (Volpp et al., 2020; Hsieh et al., 2021;
Maraval et al., 2024). In contrast to prior works in this literature, FunBO produces AFs that are more interpretable, simpler
and cheaper to deploy than neural network-based AFs and generalize not only within specific function classes but also across
different classes.

LLMs and black-box optimization. Several works have investigated the use of LLMs to solve black-box optimization
problems. Song et al. (2024b) discussed different ways in which foundational language models can revolutionize optimization,
from harnessing the vast wealth of information encapsulated in free-form text to enriching task comprehension. Both
Liu et al. (2024b) and Yang et al. (2024) framed optimization problems in natural language and asked LLMs to iteratively
propose promising solutions and/or evaluate them. Similarly, Ramos et al. (2023) replaced surrogate modeling with LLMs
within a BO algorithm targeted at catalyst or molecule optimization. Kristiadi et al. (2024) also investigated whether LLMs
can accelerate BO in the molecular space while Rankovi¢ & Schwaller (2023) explored the integration of LLMs with BO
in the domain of chemical reaction optimization. Other works have focused on exploiting black-box methods for prompt
optimization (Sun et al., 2022; Chen et al., 2024b; Cheng et al., 2024; Fernando et al., 2024), solving HPO tasks with LLMs
(Zhang et al., 2023) or identifying optimal LLM hyperparameter settings via black-box optimization approaches (Wang et al.,
2023; Tribes et al., 2024). Concurrent to our work, Yao et al. (2024) propose using an LLM coupled with an evolutionary
procedure to find cost-aware AFs.

AFs representations Works proposing new meta-learned or general-purpose AFs can also be classified based on the
representation used for the AFs. Unlike general-purpose AFs, for which an analytical representation is available, recent works
have explored representing AFs via neural networks or code. Among the works using neural networks, Volpp et al. (2020)
proposed a neural AF that is a MLP with ReLU activations while Chen et al. (2022) and Maraval et al. (2024) jointly trained
surrogate models and AFs via transformers or neural processes. Instead, the recent work by Yao et al. (2024) represents AFs
for settings with limited experimentation budgets in code.

13

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta=1.0):

"""Returns the index of the point to collect in a vector of eval points.

Given the posterior mean and posterior variance of a GP model for the objective function, this function computes
an heuristic and finds its optimum. The next function evaluation will be placed at the point corresponding to the

selected index in a vector of possible eval points.

Args:
predictive_mean: an array of shape [num_points, dim] containing the predicted mean values for the GP model on
the objective function for ‘num_points‘ points of dimensionality ‘dim°‘.
predictive_var: an array of shape [num_points, dim] containing the predicted variance values for the GP model on
the objective function for ‘num_points‘ points of dimensionality ‘dim°‘.
incumbent: current optimum value of objective function observed.

beta: a possible hyperparameter to construct the heuristic.

Returns:
An integer representing the index of the point in the array of shape [num_points, dim]
that needs to be selected for function evaluation.

z = (incumbent — predictive_mean) / np.sqrt(predictive_var)

predictive_std = np.sqrt(predictive_var)

vals = (incumbent — predictive_mean) * norm.cdf(z) + predictive_std * norm.pdf(z)

return np.argmax(vals)

Figure 6. Python code for FunBO’s initial & function with full docstring.

B. Code for FunBO components

Fig. 6 gives the Python code for the initial acquisition function used by FunBO, including the full docstring. The docstring
describes the inputs of the function and the way in which the function itself is used within the evaluate function e. Evaluation
of the functions generated by FunBO is done by first running a full BO loop (see Fig. 7 for Python code) and then, based on
its output (the initial optimal input value, the true optimum, the found optimum and the percentage of steps taken before
finding the latter), computing the score as in the Python code of Fig. 8. Note how the latter captures how accurately and
quickly a BO algorithm using the proposed AF finds the true optimum.

C. Programs Database

The DB structure matches the one proposed by FunSearch (Romera-Paredes et al., 2023). We discuss it here for completeness.
A multiple-deme model (Tanese, 1989) is employed to preserve and encourage diversity in the generated programs.
Specifically, the program population in DB is divided into Npg islands, each initialized with the given initial & and evolved
independently. Within each island, programs are clustered based on their scores on the functions in Gr;, with AFs having the
same scores grouped together. Sampling from DB involves first uniformly selecting an island and then sampling two AFs
from it. Within the chosen island, a cluster is sampled, favoring those with higher scores, followed by sampling a program
within that cluster, favoring shorter ones. The newly generated AF is added to the same island associated with the instances
in the prompt, but to a cluster reflecting its scores on Gr,. Every 4 hours, all programs from the Ny /2 islands with the
lowest-scoring best AF are discarded. These islands are then reseeded with a single program from the surviving islands.
This procedure eliminates underperforming AFs, creating space for more promising programs. See the Methods section in
Romera-Paredes et al. (2023) for further details.

14

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Evaluate an AF with a full BO loop for the objective f."""
import GPy
import numpy as np

import utils

def run_bo(f, # objective function to minimize
acquisition_function, # h given by LLM

num_eval_points = 1000, num_trials = 30):

won o

Run a BO loop and return the minimum value found and the percentage of trials required to reach it.

Get evaluation points for AF. get_eval_points() returns a given number of points on a
Sobol grid on the f’s input space

eval_points = utils.get_eval_points(f, num_eval_points)

Get the initial point with get_initial_design(). This is set to be the point giving the
maximum (worst) function evaluation among eval_points

initial_x, initial_y = utils.get_initial_design(f)

Initialize GP hyper—parameters. We pre—compute the RBF kernel hyper—parameters
for each given f. These are returned by get_hyperparameters().

hp = utils.get_hyperparameters(f)

Initialize kernel and model.
kernel = GPy.kern.RBF(input_dim=initial_x.shape[l], variance=hp[’variance’],
lengthscale=hp[’lengthscale’], ARD=hp[’ard’])

model = GPy.models.GPRegression(initial_x, initial_y, kernel)

Get initial predictive mean and var.

predictive_mean, predictive_var = model.predict(eval_points)

Get initial optimum value.

found_min = initial_min_y = float(np.min(model.Y))

Get true optimum value.

true_min = np.min(f(eval_points))

Optimization loop.
for _ in range(num_trials):
selected_idx = acquisition_function(predictive_mean, predictive_var, found_min) # Get index for new point using AF.
new_input = eval_points[selected_idx, :] # Get new point.
new_output = f(new_input) # Evaluate new point.
Append to dataset.
model.set_XY(np.concatenate ((model.X, new_input), axis=0), np.concatenate((model.Y, new_output), axis=0))
Get updated mean and var
predictive_mean, predictive_var = model.predict(eval_points)

found_min = float(np.min(model.Y)) # Get current optimum value.

Get percentage of trials (note that we remove the number of given points in the initial design) needed
to identify the optimum.
percentage_steps_before_converging = (np.argmin(model.Y) — initial_x.shape[0]) / (

num_trials) if found_min == true_min else 1.0

return (found_min, true_min, initial_min_y, percentage_steps_before_converging)

Figure 7. Python code for the first part of e used in FunBO. This function runs a full BO loop with a given number of trials and points on a
Sobol grid to assess how efficiently a given AF allows optimizing f.

15

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

"""Score an AF given the output of run_bo()."""

import numpy as np

def score(found_min, true_min, initial_min_y, percentage_steps_before_converging):

"""Compute a score based on the output of run_bo()."""

Get score based on how close the found optimum is to the true one (first term
in Eq. (1)).

score_min_reached = 1.0 — np.abs(found_min — true_min) / (initial_min_y — true_min)
Get score based on how the percentage of trials needed to identify the true
optimum (second term in Eq. (1)).

score_steps_needed = 1.0 — percentage_steps_before_converging

return score_min_reached + score_steps_needed

Figure 8. Python code for the second part of e used in FunBO. Based on the output of run_bo(), this function computes a score capturing
how accurately and quickly an AF allows identifying the true optimum.

D. Experimental details

In this section, we provide the experimental details for all our experiments. We run FunBO with 7 = 48hrs, B = 12 and
Npg = 10. To isolate the effect of using different AFs and eliminate confounding factors related to AF maximization or
surrogate models, we maximized all AFs on a fixed Sobol grid (of size Ngs) over each function’s input space. We also
ensured the same initial design across all methods (including the point with the highest/worst function value on the Sobol
grid) and used consistent GP hyperparameters which were tuned offline and fixed. In particular, we use a GP model with zero
mean function and RBF kernel defined as Ko(X, X') = ojexp(—||X — X'|[?/2¢?) with § = (¢,07) where £ and o7 are
the length-scale and kernel variance respectively. The Gaussian likelihood noise o2 is set to 1e — 5 unless otherwise stated.
We set T = 30 for all experiments apart from HPO-ID and GPs-1D for which we use 7' = 20 to ensure faster evaluations
of generated AFs. We used the MetaBO implementation provided by the authors at github.com/boschresearch/MetaBO,
retaining default parameters except for removing the local maximization of AFs and ensuring consistency in the initial
design. We followed the same procedure for FSAF, using code available at github.com/pinghsieh/FSAF. We ran UCB with
B = 1. Experiment-specific settings are detailed below.

D.1. 00D-Bench

The parameter configurations adopted for each objective function used in this experiment, either in G or in F, are given in
Table 1. Notice that for Hartmann with d = 3 we use an ARD kernel. Scaled and translated functions are obtained with
translations sampled uniformly in [—0.1, 0.1]¢ and scalings sampled uniformly in [0.9, 1.1]. Fig. 9 gives the results achieved
by @rungo (blue line) and a dimensionality-agnostic version of MetaBO that does not take the possible evaluation points
as input to the neural AF. This allows the neural AF to be trained on one-dimensional functions and be used to optimize
functions across input dimensions.

D.2. 1D-Bench

The parameter configurations for Branin, Goldstein-Price and Hartmann are given in Table 2. For this experiment, we adopt
the parameters used by Volpp et al. (2020) thus optimize the functions in the unit-hypercube and use ARD RBF kernels. Fig.
10 gives the results achieved by agynso (blue line) and the AF found by FunBO for 0OD-Bench (green). The Python code for
the found AFs is given in Figs. 11-13.

16

https://github.com/boschresearch/MetaBO
https://github.com/pinghsieh/FSAF

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

1.0{ ---- MetaBO-DA —-— UCB —— FunBO 1.0{4 ---- MetaBO-DA —— UCB —— FunBO
--- Bl e Pofl — Ry=0 --- Bl e Pofl — Ry=0
—— Mean - - Random

0.8

Trials

Figure 9. 00D-Bench. Average BO performance when using known general-purpose AFs (gray lines with different patterns), the AF
learned by a dimensionality-agnostic version of MetaBO (MetaBO-DA, black dashed line) and crunso (blue line). Shaded area gives + std

dev./2. The red line represents R; = 0, i.e., zero average regret. Left: F includes nine different synthetic functions. Right: Extended test
set including, for each function in F, 50 randomly scaled and translated instances.

Branin Goldstein-Price Hartmann
0:8 “‘ --- MetaBO - Random . --- MetaBO — Random 0:8 --- MetaBO - Random
\ === E —— FunBO . === E —— FunBO . === El —— FunBO
0.7 \ —— Mean = FunBO, OOD-Bench 0.7 —— Mean —— FunBO, OOD-Bench 0.7 —— Mean —— FunBO, OOD-Bench |
0.6 } —- ucB — Ri=0 0.6 —- uc — Re=0 0.6 ——NUGE) — Re=0
1 Pofl Pofl
0.5{ \ 0.5 0.5
& 0.4{ | 0.4 0.4
03{ & 0.3 . ‘ 0.3
02 0.2 S —— 0.2 .
0.1 0.1 0.1 = ——
0.0 0.0 0.0
0 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Trials

Trials Trials

Figure 10. 1D-Bench. Average BO performance when using known general-purpose AFs (gray lines with different patterns), runso found in

00D-Bench (green line), the AF learned by MetaBO (black dashed line) anq Qrunso (blue line) on 100 instances of Branin, Goldstein-Price
and Hartmann. Shaded area gives %+ std. dev./2. The red line represents R; = 0, i.e., zero average regret.

17

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta=1.0):

Returns the index of the point to collect
y_pred = predictive_mean + 2 * predictive_var
diff_current_best_y_pred = incumbent — y_pred
bound_standard_deviation = np.maximum(np.sqrt(predictive_var), le—15)
z = diff_current_best_y_pred / bound_standard_deviation
vals = (diff_current_best_y_pred * norm.cdf(z)
+ np.sqrt(predictive_var) * norm.cdf(z + 0.5)
+ (norm.cdf(z) — norm.cdf(z + 0.5)) * predictive_var / 2)
a = np.maximum(diff_current_best_y_pred, incumbent)
alpha = diff_current_best_y_pred if incumbent > 0.0 else —np.inf
alpha = np.maximum(alpha, 0.) % (—alpha + 0.5 % a) — y_pred
y_vals = np.absolute(alpha + a + np.abs(y_pred)) * (a >= 0.)
for y_val in y_vals:
idx = np.argmax(vals — (y_val — y_pred) / bound_standard_deviation)
vals[idx] = 0

return np.argmax(vals)

Figure 11. 1D-Bench. Python code for acrunso for Branin. The BO performance corresponding to this AF is given in Fig. 4 (left).

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta=1.0):
"""Returns the index of the point to collect L

shape, dim = predictive_mean.shape

best_score = 0.0

g_i=20.0

predictive_var[(shape—10)//2] *= dim

predictive_var[~ np.isfinite(predictive_var)] = 1.0

for i in range(predictive_mean.shape[0]):
curr_z = (incumbent — predictive_mean[i]) / np.sqrt(predictive_var[i])
new_score = predictive_var[i] * norm.cdf(curr_z, 0.5)
if new_score > best_score:
best_score = new_score
g_i=1

return g_i

Figure 12. 1D-Bench. Python code for aunso for Goldstein-Price. The BO performance corresponding to this AF is given in Fig. 4
(middle).

18

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Table 1. Parameters used for OOD-Bench.

d X Nsg 12 JJ% o?
Ackley 1 [—4, 4] 1000 0.21 28.19 le—5
Levy 1 [—10, 10] 1000 1.05 83.32 le—5
Schwefel 1 [—500, 500] 1000 18.46 76868.65 le—5
Rosenbrock 1 [—5, 10] 1000 1.20 87328.20 le—5
Sphere 1 [—5, 5] 1000 18.46 924202.43 le—5
Styblinski-Tang 1 [—5, 5] 1000 7.34 119522207.86 le—5
Weierstrass 1 [—0.5,0.5] 1000 0.01 0.39 le—5
Beale 2 [—4,5]? 10000 0.46 546837.32 le—5
Branin 2 [=5,10] x [0,15] 10000 4.65 155233.52 le—5
Michalewicz 2 [0, 7] 10000 0.22 0.10 le—5
Goldstein-Price 2 [—2,2]? 10000 0.27 117903.96 le—5
Hartmann-3 3 [0,1]3 1728 [0.716,0.298, 0.186] 0.83 1.688¢ — 11
Hartmann-6 6 [0,1]¢ 729 1.0 1.0 le—5
Table 2. Parameters used for ID-Bench.
d X Nyg 4 UJ% o?

Branin 2 0,12 961 [0.235,0.578] 2.0 8.9¢ — 16

Goldstein-Price 2 [0,1]> 961 [0.130, 0.07] 0.616 le—6

Hartmann-3 3 [0,1]> 1728 [0.716,0.298,0.186] 0.83 1.688e — 11

D.3. HPO-ID

For this experiment, we adopt the GP hyperparameters used by Volpp et al. (2020). From the training datasets used in
MetaBO, we assign “bands”, “wine”, “coil2000”, “winequality-red” and “titanic” for Adaboost, and “bands”, “breast-cancer”,

“banana”, “yeast” and “vehicle” for SVM to Gy. We keep the rest in Gr,. Fig. 14 gives the results achieved by apyngo (blue
lines) and the AF found by FunBO for 0OD-Bench (green lines). The Python code for the found AFs is given in Figs. 15-16.

D.4. GPs-ID

The functions included in G and F are sampled from a GP prior with RBF kernel and length-scale values drawn uniformly from
[0.05,0.5]. The functions are optimized in the input space [0, 1] with Ngg = 1728 points. In terms of GP hyperparameters,
we set crj% = 1.0, 02 = le — 20 and use the length-scale value used to sample each function as /. Fig. 17 gives the results
achieved by apynso and the AF found by FunBO for 0OD-Bench. The Python code for apypngo is given in Fig. 18.

D.5. FEW-SHOT

For this experiment, the 5 Ackley functions used to “adapt” the initial AF are obtained by scaling and translating the output
and inputs values with translations and scalings uniformly sampled in [—0.1,0.1]¢ and [0.9, 1.1] respectively. The test
set includes 100 instances of Ackley similarly obtained with scale and translation values in [0.7,1.3] and [—0.3,0.3]%
respectively. Furthermore, we consider [0, 1]? as input space and use Ng; = 1000. The GP hyperparameters are set to
¢ =10.07,0.018] (ARD kernel), aft = 1.0 and 02 = 8.9e — 16. Python code for apunso is given in Fig. 19.

D.6. o0oD-Bench with BoTorch eval pipeline

To ensure a consistent comparison across all AFs, in the manuscript, we have presented results obtained by testing AFs using
a fixed Sobol grid, fixed hyperparameters (tuned offline), and a fixed initial design that includes the input point yielding the
maximum function value on the grid. As this setup might deviate from a fully realistic deployment scenario, in this section,

19

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

import numpy as np
from scipy.stats import norm

from scipy import stats

def acquisition_function(predictive_mean,

Returns the index of the point to collect
diff_current_best_mean = incumbent — predictive_mean
standard_deviation = np.sqrt(predictive_var)
z = diff_current_best_mean / standard_deviation
vals = diff_current_best_mean * norm.cdf(z)*%3 + (

norm.cdf(z)*%2 + norm.cdf(z) + 1) * norm.pdf(z)
index =

np.argmax(stats.truncnorm.cdf(vals, a=—0.1,

return index

predictive_var,

incumbent, beta=1.0):

b=0.1))

Figure 13. ID-Bench. Python code for atrunso for Hartmann. The BO performance corresponding to this AF is given in Fig. 4 (right).

AdaBoost
1.0
--- MetaBO - Pofl
--= El —— FunBO
—— Mean = FunBO, OOD-Bench
0.8 —-— UCB — Ry=0

1.0 SVM
--- MetaBO - Pofl
-== El — FunBO

08 —— Mean = FunBO, OOD-Bench
—-= UCB — Ry=0

30 0 5

10 15

Trials

20 25 15

Trials

20 25

Figure 14. HPO-ID. Average BO performance when using known general-purpose AFs (gray lines with different patterns), a meta-learned
AF by MetaBO (blaclf dashed line), crunso found in OOD-Bench (green lines) and crunso (blue lines). Shaded area gives =+ std. dev./2. The
red line represents R; = 0, i.e., zero average regret.

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta=1.0):

Returns the index of the point to collect
cl = np.exp(—beta)
c2 = 2.0 * beta * np.exp(—beta)
alpha = np.sqrt(2.0) * beta * np.sqrt(predictive_var)
z = (incumbent — predictive_mean) / alpha
vals = —abs(cl * np.exp(— np.power(z, 2)) — 1.0 + cl + incumbent
) + 2.0 * beta * np.power(z+c2, 2)
vals —= np.log(np.power (alpha, 2))
vals[np.argmin(vals)] = 1.0

return np.argmin(vals)

Figure 15. HPO-ID. Python code for airungo for AdaBoost. The BO performance corresponding to this AF is given in Fig. 5 (left).

20

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta=1.0):
"""Returns the index of the point to collect L
z = (incumbent — predictive_mean) / np.sqrt(predictive_var)
vals = (incumbent — predictive_mean) * norm.cdf(z
) + np.sqrt(predictive_var) * norm.pdf(z)
t0_val = norm(loc=incumbent, scale=np.sqrt(predictive_var)).pdf(incumbent)
tl_val = z % norm.pdf(z)
vals = ((vals *% tl_val — tO_val) / (1 — 2 * tl_val)
+ tl_val*(vals/(1—2%tl_val))
— vals/(1 — 2*%tl_val)**2 + tl_val*(tl_val — z)/beta)

return np.argmax(vals)

Figure 16. HPO-ID. Python code for arunso for SVM. The BO performance corresponding to this AF is given in Fig. 14 (right).

GPs,d=3 GPs,d=4

0 4 --- MetaBO = Random | 0 40— --- MetaBO - Pofl 4
= FunBO el E| = FunBO
—— Mean —— FunBO, OOD-Bench —— FunBO, OOD-Bench

03(¢\ 0 0
<02 '« 0.2

0.1 B S — :

. N .

‘ , , ‘ ‘ 0.0
0O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70
Trials Trials

Figure 17. Average BO performance when using known general-purpose AFs (gray lines with different patterns), the AF learned by MetaBO
(black dashf:d line), arunso found in OOD-Bench (green lines) and arunso (blue lines). Shaded area gives =+ std. dev./2. The red line
represents R; = 0, i.e. zero average regret. Left: GPs-ID. F includes functions with d = 3. Right: F includes functions with d = 4.

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta = 1.0):

Returns the index of the point to collect
z = (incumbent — predictive_mean) / np.sqrt(predictive_var)
vals = ((incumbent — predictive_mean) * norm.cdf(z

) + np.sqrt(predictive_var) * norm.pdf(z))*%*2
vals = vals / (1 + (z / beta)**2 * np.sqrt(predictive_var))*:*2

return np.argmax(vals)

Figure 18. GPs-ID. Python code for cirunso. The BO performance corresponding to this AF is given in Fig. 5 (right).

21

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

import numpy as np

from scipy.stats import norm

def acquisition_function(predictive_mean, predictive_var, incumbent, beta=1.0):

"""Returns the index of the point to collect

num_points, _ = predictive_mean.shape
a =10
z = (predictive_mean + 0.000001 — incumbent) / np.sqrt(predictive_var)

vals = 1 / ((1 + (z / beta)**2 * np.sqrt(a * predictive_var + 0.00001)) 3*%*2)
beta_sqrt_p_z = np.sqrt(beta) * z
vals *= (1 + (z / beta)*#*2)*predictive_var/(
(1+ (beta_sqrt_p_z / np.sqrt(predictive_var))#**2 % predictive_var) * (
1+(beta_sqrt_p_z / np.sqrt(predictive_var))*#*2))
vals += (1 — beta_sqrt_p_z / np.sqrt(predictive_var))**2 % predictive_var/ (
1 + (beta_sqrt_p_z / np.sqrt(predictive_var))**2 % predictive_var)*:*2
vals = (1 + (z / beta)**2) * vals— (1 — (z / beta)**2) * np.exp(— 1) *k 2
vals = np.sqrt(a * predictive_var) * vals / np.sqrt(
a * predictive_var + 0.00001)
vals *= np.sqrt(np.sqrt(a * predictive_var) * predictive_var)
vals *= predictive_vark#*2
vals[:num_points // 2] = 0

return np.argmax(vals)

Figure 19. FEW-SHOT. Python code for ccrunso. The BO performance corresponding to this AF is given in Fig. 5 (right).

we repeat the evaluation of the AF found for 00D-Bench using the standard BoTorch evaluation pipeline, as demonstrated in
the Colab notebooks closed-loop tutorial and custom acquisition tutorial.

We adhere to the settings specified in these Colab notebooks, thus we optimize the AFs numerically at each trial, we fit the
hyperparameters of the GP model at every trial using L-BFGS-B, and randomly select initial points. For each test function,
we ran the algorithm with 10 different random initial designs and plot the results by averaging over the runs for each function
in ooD-Bench. Note that we use the exact plot formatting from BoTorch shown in the linked Colabs (which differs from the
other plots in the manuscript). Fig. 20 shows how, across all functions, FunBO performs either comparably or better than EI
and UCB.

22

https://colab.sandbox.google.com/github/pytorch/botorch/blob/v0.13.0/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb
https://colab.sandbox.google.com/github/pytorch/botorch/blob/v0.13.0/tutorials/custom_acquisition/custom_acquisition.ipynb

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

04 o
00
-5
03 -10
-0s
3 3]
2 3 -15 2
s s H
v H
H H THT B
g £ £
802 s 20 g 10
H H H
b § s §
o1 -30 -15
—— true best feasible objective — true best feasible objective — true best feasible objective
- —— Random . h —— Random E;‘ — Random
- - —+ @ —+ &
S
N e s - oo sttt S
00 —+ uce a0 —+ ues -20 —+ ucs
00 25 50 75 100 15 150 175 200 o 10 20 Ed 40 50 60 o 10 20 0 40 60
number of observations (beyond initial points) number of observations (beyond initial points) number of observations (beyond initial points)

(a) Sphere (b) Styblinski-Tang (c) Weierstrass

0.00
o
10 ‘
‘ -
s
30 -0.50
g g
2 2 3
K H 2
: Ii : ! am
g H H ‘ H
g Ll g g
8 g2 ‘“ 5 100
s H . §
125
N — true best feasible objective o \‘ —— true best feasible objective Ciso true best feasible objective
—— Random N —+ Random : —+ Random
kil Ny e 8
—— FUNBO S —+ FUNBO -175 —+ FUNBO
0 +—ucs ° —+ ucs —+ ucs
3 10 0 % W 50 & 70 80 o 10 20 By o 0) o 10 20 E) W 50)
number of observations (beyond initial points) number of observations (beyond initial points) nnumber of observations (beyond initial points)
(d) Beale (e) Branin (f) Michalewicz
8000
- 1]
1o ((_.l_ | | -05
6000 (i
-15 \ 1o
s S 20 H 7T
¢ 4000 i < € s HrLL
3 I g -25 () € 0
g i §-
2 2000 2 H H
-3.0 TH-H 4
||||||||||| | |||| TN 1, -25
1 1 = true best feasible objective TN Ll —— true best feasible objective
R 1L, —— Random 35 I ~ Random
0 = —+ 8 -3.0
— FunBo — FUNBO
—+ s -40 —+ us
0 10 20 30 P 50) 13 10 20 By W 50) 0 10 20 By P 50)
number of observations (beyond initial points) number of observations (beyond initial points) number of observations (beyond initial points)

(g) Goldstein-Price (h) Hartmann d = 3 (i) Hartmann d = 6

Figure 20. Performance comparison of FunBO (green) against EI (orange) and UCB (red) on the test functions for 0OOD-Bench when using
the BoTorch evaluation pipeline where AFs are optimized numerically at each trial, GP hyperparameters are refitted at each trial using
L-BFGS-B, and initial points are selected randomly. Results are averaged over 10 runs with different random initial designs for each
function. Highlighted areas give + standard deviation over the random initial designs.

23

