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ABSTRACT

Masked diffusion models (MDMs) offer a compelling alternative to autoregres-
sive models (ARMs) for discrete text generation because they enable parallel
token sampling, rather than sequential, left-to-right generation. This means po-
tentially much faster inference. However, effective parallel sampling faces two
competing requirements: (i) simultaneously updated tokens must be conditionally
independent, and (ii) updates should prioritise high-confidence predictions. These
goals conflict because high-confidence predictions often cluster and depend on
each other, opportunities for parallel updates.

We present PUNT, a model-agnostic sampler that reconciles this trade-off. Our
method identifies token dependencies and removes lower-confidence tokens from
conflicting groups. This produces sets of indices for unmasking that satisfy both
independence and confidence criteria. Our approach ensures improved parallel
unmasking through approximate conditional independence testing.

Our experiments show that PUNT delivers a superior trade-off between accuracy
and compute when compared to other strong training-free baselines, especially for
generation of longer sequences. On the IFEval benchmark, it achieves up to 16%
higher accuracy over baseline methods, including sequential generation (one-by-
one). These gains hold across different values of hyperparameters, mitigating the
need for brittle hyperparameter tuning. Moreover, we observe that PUNT induces
an emergent hierarchical generation strategy, where the model first establishes
high-level paragraph structure before local refinement, suggesting a planning-like
generation process that contributes to strong alignment performance.

1 INTRODUCTION

The widespread deployment of Large Language Models (LLMs) has created massive computational
workloads, consuming significant datacenter resources and electricity, thereby incurring substantial
operational costs. A primary driver of this inefficiency is inference speed, which is bottlenecked
by the sequential, left-to-right generation process inherent in standard autoregressive models. To
overcome this, alternative methods have been developed to enable multiple tokens to be generated
simultaneously.

Among approaches with the potential for parallel decoding, Masked Diffusion Models (MDMs) have
emerged as a particularly promising framework (Austin et al.| 2023} [Lou et al.l 2024} Nie et al.,
2025b). Unlike autoregressive models, MDMs iteratively refine masked sequences by predicting
subsets of positions simultaneously, enabling parallel decoding. However, determining which tokens
to unmask in parallel without degradation in quality remains challenging.

Various inference strategies have been proposed to accelerate MDMs, including confidence-based
token selection (Sahoo et al.|,[2024; [Patel et al.l 2025)), structured unmasking patterns (Luxembourg
et al.| [2025; |Arriola et al., 2025)), remasking (Wang et al.| [2025), and distillation (Zhu et al., 2025b).
However, these approaches share a critical limitation: they do not explicitly test for inter-token
interference during parallel decoding. Structured patterns impose rigid, data-agnostic schedules that
ignore sequence-specific dependencies, while remasking and distillation either add computational
overhead or require expensive retraining.
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Our Contribution. We propose a different approach to parallel decoding based on contextual
independence —testing whether tokens can be decoded in parallel by checking for independence at
the sampled point, rather than for all possible outcomes. Unlike standard conditional independence,
which requires integrating over all possible outcomes (which is computationally prohibitive for large
token spaces), contextual independence provides the part that matters at the current decoding step.

To find the contextually independent subsets, we propose PUNT (Parallel Unmasking with Non-
influence Tests), a training-free procedure that employs a divide-and-conquer strategy. Our algo-
rithm selects “anchor” subsets and tests entire “candidate” groups for dependence in batch. By
carefully designing splits, PUNT certifies a large block of tokens for parallel generation using only
O(log m) model calls per step (compared with m for fully sequential unmasking) where m is the
number of masked tokens.

PUNT enjoys the following advantages: first, PUNT is training-free and requires no model fine-
tuning or distillation. Second, unlike rigid structured patterns or confidence-based approaches,
PUNT dynamically adapts to sequence-specific dependencies. For instance, we see that it ex-
hibits an emergent hierarchical generation strategy, where the model first establishes high-level
paragraph structure before refining the details. Third, for long-form text generation on alignment
benchmarks as well as de novo protein generation tasks, PUNT outperforms other standard base-
lines and quickly reaches its maximum quality with very few forward passes when compared to
other algorithms, resulting in a stable Pareto frontier over the number of forward evaluations of
the MDM.

Organization. Section [2|introduces masked diffusion models and formalizes the parallel decoding
problem. Section |3| presents our main algorithmic contribution, Section {4 presents empirical eval-
uation, and Section [5] discusses related work. Finally, Section [6] discusses implications and future
directions.

2 BACKGROUND ON MASKED DIFFUSION MODELS

In this section, we review the fundamentals of masked diffusion models and establish the notation
used throughout this paper.

Notation. We denote vectors with bold lowercase (e.g., x) and scalars with regular lowercase (e.g.,
y); random variables use uppercase (e.g., X, Y) with corresponding lowercase for their realizations
(e.g., x,y). We will also use uppercase letters to denote sets and tensors, when it is clear from
context. Let L = [¢] := {1,...,¢} denote integers up to £. For I C L, -1 := L\ [ isits
complement, and x! = {x? | i € I} represents the indexed subset of sequence x = (z!,...,z").
With vocabulary V, we consider discrete state space V' ©. For random sequence X = (X!,... X¥),
we write p(x) := P(X = x) for outcome x € V%, and p?(-) for the marginal at position j.
Extending to Virask = V U {MASK}, a token z* is masked if z° = MASK. For any sequence,
M = M(x) := {i | 2* = MASK} denotes masked indices, with unmasked indices denoted — M.
Conditional distribution at position j given observed tokens x’ is written as p? (- | x!), shorthand for
P(X7 = .| X! = x!). For a sequence with masked indices M, x~™ denotes unmasked tokens.
In the iterative generation process, x; represents the sequence at step ¢. and M, := M (x;) denotes
masked indices at step t.

Masked Language Modeling. Masked language modeling trains neural networks to predict miss-
ing tokens from context. Given a sequence x € Vijaqx With masked positions M, the model
parameterized by 6 learns conditional distributions:
‘ -M ' -M .
po(- | x~7) = p'(-[x™7), Vie M.

During training, a clean sample (i.e. without any masked coordinates) Xcjean ~ p(-) is drawn from
the true data distribution. A random subset of its tokens M C L is then selected to be masked,
creating the corrupted sequence x where x ™ = x_M and x™ consists of MASK tokens.

clean

The model parameters 6 are optimized to maximize the conditional log-likelihood of the original
tokens at masked positions:

‘C(a) = Excleum]” Z logpé(xf:lean | XiM)
€M
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Generation proceeds iteratively using the trained model. Starting from a fully masked sequence
xp = (MASK,...,MASK), each iteration performs two operations at timestep ¢: (1) sample can-
didate tokens y; ~ pi(- | x; M’f) for all masked positions i € My, and (2) update a subset R C M,
of these positions with their sampled values, so that z ; < y; fori € Rand 2}, « a fori ¢ R.
This process repeats until all positions are unmasked, producing the final sequence x7.

The iterative sampling process introduces two key sources of error at each step that can compromise
sample quality. For clarity, we analyze the error within a single step and drop the time index ¢ in the
following discussion.

Approximation Error. The learned model p4(- | x~™) only approximates the true conditional
distribution p?(- | x ). This potentially leads to suboptimal token predictions. To mitigate this,
we employ a confidence score ¢; per position 7, to guide mask selection at each step, updating only
those positions where the model exhibits high confidence. This strategy improves generation quality
by prioritizing high-confidence predictions. Common confidence scores ¢; for position 7 include:
negative entropy >\ pj(x | x ) log pj(x | x =), confidence pj)(y* | x ') of the sampled
token, and top margin between the two most likely tokens.

Joint Dependencies. A more fundamental limitation arises from the sampling strategy itself. When
sampling masked tokens y° independently from their conditional distributions pj(- | x~), we
implicitly assume conditional independence among all masked tokens given the unmasked context.
Natural sequences, however, exhibit complex dependencies that violate this assumption. True con-
ditional independence for candidate tokens R C M requires the joint probability to factorize as:

pRCIx M)y =T o' 1) ()

iI€ER

In general, the joint distribution does not factorize in this way. Finding a subset of tokens where this
factorization holds presents significant computational challenges, as verifying this condition requires
checking that equation |1/ holds for all outcomes y* € V—a space that grows exponentially with
|R|. The following section presents an efficient method to identify token subsets that approximately
satisfy this independence condition, thereby mitigating this source of error.

3 METHOD

In this section, we introduce our method for one step of parallel unmasking. We first establish con-
textual independence as the criterion for safe parallel unmasking (§3.1)), then present our efficient
subset discovery algorithm that identifies independent token sets using only O(log|M|) model

evaluations (§3.2).

3.1 CONTEXTUAL INDEPENDENCE

To address joint dependencies, we adopt the notion of contextual independence as our criterion
for parallel unmasking. This property precisely characterizes when parallel sampling yields the
same distribution as sequential sampling. Unlike full statistical independence (overly restrictive) or
confidence-based heuristics (which ignore dependencies), contextual independence identifies tokens
that can be unmasked simultaneously given the current context.

Definition 3.1 (Contextually Independent Random Variables). A random variable X is contextually
independent of a random variable Y at a point y if the conditional distribution of X given Y = y is
identical to the marginal distribution of X, i.e., px|y (- | Y =y) = px (-).

Definition 3.2 (Contextually Independent Sequences). A sequence of random variables
(X1,..., X% is contextually independent at an outcome (z',...,z*), if for each i € L, the
conditional distribution of X% given the preceding outcomes x.; = (x!,...,2°7!) is identi-
cal to its marginal distribution. Formally, for all i € L: pyix_,(- | X<i) = pxi(-), where

Xo; = (X1,..., X0,

In other words, under the contextual independence assumption, sampling the vector (z!,..., x¢)
sequentially is equivalent to sampling its components in parallel.
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Figure 1: Illustration of one iteration of PUNT on 4 masked tokens, which consists of log, 4 = 2
tests. Left: A binary tree representing the recursive partitioning. Each level corresponds to a sin-
gle parallel test in the iterative algorithm. Right: In each round, confidence-ordered tokens (circled
numbers) are partitioned into “anchor” (green) and “test” sets. Test tokens that are dependent on
the anchor set are rejected (red), while independent ones (blue) are kept. Each token must pass
all independence tests to be accepted. Here, “mince” passes (independent of {“requires”, “the”})
while “egg” fails (dependent on {“requires”, “mince”}). The final set {“requires”, “the”, “mince”
satisfies contextual independence: p(“requires”, “the”, “mince” | Xynmasked) = p(“requires” |
Xunmasked) ~p(“the” | Xunmasked) -p(“mince” | Xunmasked)~

Our goal is, given a candidate vector y, to find an ordered | I set of masked indices R =

{r1,...,mr|} € M that are contextually independent relative to the unmasked context x~ M For-
mally, for any i € {1,...,|R|}, the distribution at position r; must be independent of the outcomes
at preceding positions R; := {r; | j < i}, given the unmasked context:

pr G xT My e = pri (- [ x 7M. (2)

A naive, greedy approach to construct such a set would be to iterate through all masked indices
m € M and sequentially add an index to R if it satisfies Equation [2] given the previously added
indices. However, this requires O(|M|) sequential model evaluations, which defeats the purpose of
parallel sampling.

We propose an efficient recursive algorithm based on a recursive divide-and-conquer strategy, which
we will later provide an an efficient iterative implementation for. The validity of this approach relies
on the following stability assumption regarding the conditional independence structure of the model.

Assumption 3.3. (Independence Stability) Leti € M be a masked index, and let UC M\ {i} be
a subset of masked indices. If for some sequence of tokens yY we have pi(- | y¥,x=M) = p(- |
M) "then for any W C U it holds that p’(- | yV,x=M) = pi(- | x~

This assumption represents a balanced compromise between complete independence and simple
contextual independence. It states that if a set of positions U does not influence the prediction at
position 4, then any subset W C U will also not influence that prediction. This property ensures
that independence tests conducted at any stage of our recursive algorithm remain valid throughout
all subsequent stages. Section [B|provides a justification for why this assumption is reasonable for
transformer-based architectures and empirical evidence that it approximately holds in practice.

3.2 EFFICIENT SUBSET DISCOVERY

Under Assumption we can construct the set R in O(log | M) parallel steps. If there is at least
one masked position (i.e. |[M| > 1), the recursive algorithm starts with S = M and proceeds as
follows (see Figure|l|for an illustration of one iteration):

At each recursive call, its input is a (confidence) F_-] ordered subset of masked candidates S =
(51,82,...,55]) € M. The base case for the recursion is when |S| < 1, in which case the proce-
dure returns S. For larger sets, the algorithm proceeds as follows:

"Eventually we will be ordering these via confidence metrics ¢;, see Section

2See for details
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1. Divide: The ordered input set S is split into two balanced halves: the “anchor” set
So = (s1,...,5p) and the “test” set S1 = (Spy1,...,5)5]), Where p is a split point of
the designer’s choice.

2. Prune (Filter): The “test” set S is pruned based on its dependency on the candidates y*°.
For each index i € S, we compute its new conditional distribution and measure the change
from the baseline using the KL divergence:

g := Dy, (Pz( | x~ M y®) sz( \ XﬁM))

A filtered set S is then formed by retaining only those indices for which the change is
below a threshold e > 0: S| ={i € 51 | &; < €}.

3. Recurse: The algorithm then makes two independent (parallel) recursive calls: one on the
“anchor” set Sy and another on the filtered “test” set S7 and obtains Ry and Ry respectively.

4. Combine: The final result R for the input set S is the union (ordered sum) of the outputs
R := Ry U R, from the two recursive calls above. Note that by construction any token in
Ry is contextually independent of Sy and by Assumption[3.3] it is contextually independent
of subset Ry C Sp.

Choosing p = ||S|/2] for each recursive iteration, we ensure that the recursion depth is O(log |M]).
In the next section, we discuss how to execute all calls at the same recursion level using a single
network evaluation, thereby achieving O(log |M|) cost per round.

3.3 CONFIDENCE ALIGNMENT AND IMPLEMENTATION DETAILS

This section addresses two key implementation aspects: (i) incorporating confidence-based prioriti-
zation into our recursive algorithm to maintain generation quality, and (ii) transforming the recursive
procedure into an efficient iterative implementation.

Confidence-Ordered Splits. At each recursive step, the candidate set .S is split into .Sy and S1, and
positions in 57 are pruned if they exhibit strong dependence on Sy. By sorting the initial candidate
set S in descending order of confidence (see Section for options), ¢, > ¢g, > -+ > qﬁs‘ s> We
ensure that Sy always contains tokens with at least median-level confidence. Consequently, tokens
pruned from S; necessarily have lower confidence than those retained in Sy. In fact, this also ensures
that during each unmasking step, the highest-confidence token in M is always included in the final
set R, since it will never be pruned.

Binary Encoding of Recursive Calls. To enable parallel computation, we transform our recursive
algorithm into an efficient iterative procedure. At each level of the recursion tree, we combine all
independence tests into a single, parallel model evaluation.

To see how this might be done, suppose at some recursion level we test pairs
(S3,81),(83,52),...(Sk, S¥), by construction, these sets form a partition of a subset of M. We
propose, instead of performing these tests independently, to test all “test” tokens against the union of
all “anchor” sets | |, S§. Then, Assumption ﬁensures that passing this combined test implies pass-

ing the individual tests. Formally, for any ¢ and any i € SY if pj(- | yU So, x M)y =pi(. | x=M),
then it also satisfies pj (- | ¥, x M)y =pi(|xM).
Binary Representation of Recursive Splits.

We now describe how this idea can be employed to convert our recursive algorithm to an iterative
one. The recursive splits are determined by each token’s position in the confidence-ordered list
M. This allows us to pre-determine all splits by assigning a binary code to each position. More
precisely, we assign each position ¢ € {1,...,|M]|} a binary representation bin(¢) with [log, |M|]
bits, padded with zeros if necessary. Tracking this binary encoding allows us to identify the path of
each node in the recursion tree.

At recursion level b, we have 2° nodes, with each node indexed by a unique binary prefix u € {0,1}*
corresponding to the subset S,, = {i < |M| : prefix,[bin(i)] = u}, which is then partitioned into
“anchor” (Syp) and “test” (Sy1) subsets (see Figure[I| (Left) for an example).
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Figure 2: Left: Unmasking efficiency for various prompt types vs number of unmasked tokens.
Right: Visualization of the denoising process at steps 9 and 18 for a sample prompt (“What should
I do at the end of the internship.”). Tokens are color-coded: green tokens are accepted by PUNT for
parallel unmasking in the current step, red tokens are rejected, and uncolored tokens were unmasked

in previous steps. See|[Appendix D|for more examples of intermediate denoising steps.

We would like to combine all 2 tests at recursion level b into a single test. To do so, we define
a global partition for level b based on the b-th bit of the binary encoding. B, = {i € [|M]] :
the b-th bit of bin(¢) = 0}.

Starting with R = M, each round b can now partition the current set using the predefined binary
split By: the “anchor” tokens (Sy = R N By) and “test” tokens (S; = R\ By). All tokens in S; are
tested for dependence on y° in a single forward pass, dependent tokens are removed from R. After
all log | M| rounds complete, the remaining set R contains only contextually independent tokens.

The resulting procedure, summarized below (and in Algorithm [I), requires only O(log [M]|) for-
ward evaluations of the model per denoising step and guarantees that the returned set R consists of
contextually independent, high-confidence tokens that can be unmasked in parallel.

Iterative Algorithm. Given confidence-ordered masked tokens M = {mj,ma, ... , My M|} where
Gy = Gmy = 0+ > Gy, » We initialize R < M and execute [log, |M]] iterations.

For each iteration b € {1, ..., [log, | M|]}:

1. Test: Partition R into anchor tokens S = R N By, and test tokens S; = R\ By,

2. Prune: For each j € S, compute the KL divergence d; = Dgp (p’(- | x M) ||p?(- |
x~M y50)) in a single forward pass.

3. Update: Remove dependent tokens from R: R «— R\ {j € S; : d; > €}.

The final set R contains tokens that can be unmasked in parallel without interfering with each other.
Remark 3.4 (Conservative but Parallel Testing). The iterative implementation uses batched indepen-
dence tests: tokens at each tree level are tested against the union of all anchor tokens at that level, not
just their specific recursive subset. This stricter condition enables full parallelization. Empirically,
this conservative approach maintains strong performance on long-context tasks while significantly
reducing runtime.

3.4 ALGORITHMIC PROPERTIES AND INDEPENDENCE STABILITY

This section discusses PUNT’s properties for text generation and justifies Assumption [3.3]

Adaptive Unmasking. Our sampler exhibits emergent hierarchical generation, first establishing
high-level structure (e.g., paragraphs, headings) before filling in details, as shown in (right).
As can be seen, at step 9, the model has already generated the main headings and subheadings of
the article, while the rest of the text remains masked. By step 18, the model has begun filling in the
details under each heading.

We hypothesize this behavior stems from the conditional independence between high-level struc-
tural tokens and fine-grained details. Because the latter exert minimal influence on the former, the
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Figure 3: Parallel sampling error (equation . Left: Average error for different samplers com-
pared to number of forward evaluations (NFEs). Right: Median together with confidence intervals
(Qs, Qos) of the error for PUNT samplers with different ¢ as a function of the number of previously
revealed tokens. Note that Q5 remains below 10~ across all positions.

structural tokens pass the independence tests in PUNT’s filtration stage and are unmasked early. A
formal investigation of this phenomenon is left for future work.

This hierarchical generation has a cascading effect. Once revealed, high-level tokens act as contex-
tual anchors, partitioning the text into conditionally independent sections. This allows the sampler
to unmask tokens in different sections in parallel, adapting its denoising speed to the task’s inherent
structure. As shown in (left), this results in different performance profiles for various prompts.

Independence Stability of Transformers. Assumption (Independence Stability) is a direct
consequence of the Transformer architecture’s attention mechanism. In Transformers, the influence
of one token on another is governed by attention weights; if the attention from position ¢ to position
7 is zero, then position j has no direct influence on the representation at position i.

This relationship between attention and influence allows us to connect conditional independence to
attention scores. Specifically, we argue that a token y; is conditionally independent of a set of tokens
y" given the remaining tokens x~* if and only if the total attention from position 7 to all positions
in R is negligible across all layers and heads, i.e.,

The conditional distribution pj)(- | y',x~M) equals p}y(- | x M) if and only iﬂthe cumulative
attention weight from position i to all positions in R is negligible.

This property directly implies Independence Stability. Since attention weights are non-negative, if
the attention from position ¢ to a set R is negligible, the attention to any subset U C R must also be
negligible. A detailed justification is provided in Appendix

4 EXPERIMENTS

We evaluate our proposed sampler, PUNT, on a number of natural language tasks. Our empirical
results validate the effectiveness of our approach and support the attention hypothesis introduced
in We evaluate: (i) PUNT’s performance on long-form text generation tasks such as
MTBench; (ii) PUNT’s effectiveness on short-answer benchmarks for mathematics and code gener-
ation; (iii) The error introduced by parallel token sampling and its relationship to the exploration rate
e; (iv) Deviation in empirical attention patterns (supporting theoretical independence assumptions).

Experimental Setup. We evaluate PUNT on two powerful, open-source large language models:
Dream 7B (Ye et al., 2025a) and LLaDA 1.5 (Zhu et al., 2025a)).

Baselines. We compare PUNT against three strong, training-free baseline samplers. These base-
lines include: (i) standard top-k sampling; (ii) the EB-sampler (Patel et al., [2025); and (iii) the
Dilated-sampler (Luxembourg et al.| 2025)). Note that all the samplers are implemented for a given
context length | M|, in a non-semi-autoregressive manner and the exact parameter configurations

are provided in[Appendix C.3]

3Except for padding end-of-sequence(EOS) tokens, see details in Appendix
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Figure 5: IFEval and MTBench performance of PUNT compared to baselines on Dream 7B. Bench-
mark specific scores (higher is better) vs mean number of forward passes.

We also evaluate the performance of PUNT on generation in a structured biological domain. Specif-
ically, we look at unconditional generation of de novo membrane proteins using MemDLM (Goel
et al} [2024)), a state-of-the-art protein language model. Full details are provided in

We provide additional analysis in the appendices, including performance-vs-¢ plots (Appendix E)),
experiments with varying € schedules across generation trajectories (Appendix b)), and comparisons

and discussion with APD (Appendix C.4), proposed by Israel et al.[(2025).

4.1 ALIGNMENT BENCHMARKS

We evaluate PUNT on the instruction-following benchmarks MTBench (Bai et al., [2024) and IFE-
val (Zhou et al.l |2023). MTBench comprises 80 tasks across diverse domains—including creative
writing, logical reasoning, and code generation—providing a robust evaluation framework for model
performance. Each task consists of two turns, with the second turn depending on the output of the
first. IFEval complements this by specifically measuring instruction-following accuracy through a
collection of carefully designed test cases that evaluate precise adherence to complex instructions.
Full benchmark details are provided in As shown in Figure [5] PUNT consistently
outperforms all baseline samplers on both benchmarks, achieving higher scores across both metrics
(inst_level_loose_acc and mean score; higher is better). Importantly, it delivers these gains
while requiring substantially fewer forward evaluations (NFEs).

Note on NFE regimes: We see that PUNT’s primary ad-
vantage lies in the low-to-mid NFE regime on long-form
generation tasks. Since each PUNT iteration requires 0.35

[log, | M|] forward passes for independence testing (e.g., H 050 /\/_\«
10 passes for 1024 tokens), the method excels when the E

NFE budget allows for meaningful independence check-
ing while still providing efficiency gains. At very high @
NFE budgets (e.g., NFE > 400 on MT-Bench), curves g
may converge or cross as fixed-geometry schedulers like 0.15
Dilated can afford many denoising steps, while PUNT’s 100 200 300
overhead from independence testing becomes proportion- NFE (mean)

ally larger.

Figure 4: MBPP performance of PUNT

compared to baselines on Llada. MBPP

4.2 SHORT-ANSWER BENCHMARKS pass@1 (higher is better) vs mean num-
ber of forward passes.

We evaluate PUNT across diverse benchmarks spanning

mathematical reasoning (GSMS8K (Cobbe et al., [2021))

and code generation (HumanEval (Chen et al.,|2021), MBPP (Austin et al., 2021)).

As expected, PUNT underperforms on short-answer tasks with limited context since it requires
multiple forward passes for complete generation. For instance, in the MBPP benchmark on LLaDA
with temperature 0.7 (see [Fig. 4), PUNT’s performance aligns closely with EB when evaluated
by the number of forward evaluations (NFE). However, when measured by the number of denoising
steps—that is, the number of algorithmic steps, where each step may involve multiple forward passes
in parallel—PUNT outperforms other samplers. A simple fix could be to use PUNT only for the
latter part of the generation, but we leave this for future work. Similar trends are observed across



Under review as a conference paper at ICLR 2026

other benchmarks in this group. Results comparing all samplers, models, and hyperparameters

appear in|Appendix C.3

4.3 PUNT SAMPLER ERROR ANALYSIS

We empirically quantify the parallel sampling error on the LLaDA model. For this, we generate
1024-token responses for MTBench (Bai et al., 2024) with exploration rates ¢ € {0.01,...,0.32}.
Within each parallel generation step, tokens are ordered by confidence before sampling. For the
i-th token at position r; unmasked in parallel, we compute the error between the true conditional
distribution and our independence approximation:

0, = D (py' (- [ x~ My <) [ oy (- [ x7)). 3)
This KL divergence quantifies the information lost by assuming token r; is conditionally indepen-
dent of other tokens unmasked in the same step, y*<¢. As shown in PUNT achieves a low
parallel sampling error while maintaining a small NFE compared to other samplers. Furthermore,
the parallel decoding error, dk1,, remains robustly below the € threshold, irrespective of the number
of tokens previously revealed in the step.

5 RELATED WORK

Our work builds on recent advances in discrete diffusion models and inference-time planners.

Masked Diffusion Models (MDMSs). Discrete diffusion models (Austin et al.l 2023) offer a non-
autoregressive alternative for text generation. Training objectives based on score matching (Lou
et al., |2024) and masked language modeling (Sahoo et al., [2024) have enabled large-scale models
like LLaDA (Nie et al.,2025b) and others (Nie et al.| 2025a). Commercial implementations include
Gemini Diffusion (Google DeepMind, 2025)) and Mercury (Inception Labs| 2025). MDMs face two
key limitations: compounding errors from parallel unmasking and inefficient KV caching. We ad-
dress the former by identifying token sets for safe parallel unmasking, which minimizes interference
and improves both efficiency and quality.

Inference-Time Planners for Acceleration. Efficient inference scheduling remains MDMs’ cen-
tral challenge. Various training-free planners aim to minimize function evaluations (NFEs) while
maintaining generation quality.

Confidence and Entropy Gating. Confidence-based scheduling iteratively unmasks tokens with high-
est model confidence (or lowest entropy) (Sahoo et al., [2024). The EB-Sampler extends this by
dynamically unmasking variable-sized token sets whose aggregate entropy stays below threshold ~
(Patel et al., 2025). While adaptive, these methods remain conservative, ignore token independence,
and typically unmask only small subsets.

Remasking and Refinement. Several methods correct parallel decoding errors through remasking.
ReMDM (Wang et al.| [2025) iteratively remasks and updates generated tokens. Path-Planning (P2)
(Peng et al., 2025) and DDPD (Liu et al.| |[2025)) separate inference into planning (selecting tokens
to update/remask) and denoising stages. While improving quality, these approaches increase NFE
through corrective passes.

Spacing Schedulers. These fixed-geometry (non-adaptive) methods enforce spatial separation be-
tween parallel unmaskings. Dilated scheduling unmasks non-adjacent token groups for improved
stability (Luxembourg et al., [2025). Halton-based schedulers use low-discrepancy sequences for
uniform spacing (Besnier et al.l 2025). Block Diffusion balances AR and parallel generation by
processing contiguous spans (Arriola et al., [2025).

Analysis of Ordering and Scheduling. Recent theoretical and empirical work has deepened the com-
munity’s understanding of these schedulers. Kim et al.| (2025) study the impact of token ordering,
showing that adaptive inference can sidestep computationally hard subproblems. |Park et al.| (2024)
focus on optimizing the temporal schedule (the number and placement of diffusion steps) to reduce
NFEs. Others have explored MDLMs for complex reasoning, where planning is critical (Ye et al.,
2025b), and for specialized domains like code generation (Gong et al.| [2025).

Comparison to Autoregressive Accelerators. While autoregressive models like LLaMA-3
(Grattafiori et al., |2024) are accelerated by speculative decoding (Leviathan et al., 2023} Xia et al.,
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2022), this approach remains fundamentally sequential. In contrast, our method reduces NFEs by
leveraging the non-sequential, any-order generation capabilities of MDMs. Orthogonal optimiza-
tions like KV caching are applicable to both paradigms (Ma et al., 2025} |Hu et al.| [2025).

6 CONCLUSION AND FUTURE WORK

We introduced PUNT, a training-free sampler that looks to resolve the conflict between speed and
quality in MDMs by efficiently identifying sets of approximately conditionally independent tokens
for parallel unmasking. This enables a significant reduction in the number of model evaluations
needed for generation while preserving output quality. We provided a conceptual justification for its
applicability to transformer architectures and validated its effectiveness on mathematics, code, and
long-form text benchmarks. We also observe that PUNT induces an emergent hierarchical genera-
tion strategy: coarse paragraph structure is established early, followed by localized refinement.

Future work can extend this approach in several directions: (i) developing adaptive or curriculum-
style schedules for the independence threshold e to balance early exploration with late precision; (ii)
distilling PUNT into a student model that predicts contextually independent reveal sets in a single
forward pass; and (iii) combining PUNT with orthogonal efficiency techniques such as KV-caching,
to further shift the accuracy—compute Pareto frontier.
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Appendix

A ORGANISATION OF APPENDIX

The rest of the appendix is organized as follows. In we justify Assumption [3.3] by
demonstrating that it holds for Transformer-based masked language models, which is a direct con-

sequence of the Transformer’s attention mechanism. In[Appendix C| we provide additional experi-
mental details and results. In we provide some preliminary experiments on a protein
masked diffusion model. In we provide two examples of text that is generated by
PUNT.

Remark on Notation: In addition to standard notation as defined in the paper, in the appendix, we
will also use upper-case bold letters (such as A) to denote tensors. We will use lowercase and
unbolded letters to denote scalars (such as A;;). In addition, we may have uppercase letters (such as
@, K, V) annotations to help annotate different matrices. This is to accommodate standard notation
used in the literature.

B INDEPENDENCE STABILITY

In this section, we demonstrate that Assumption [3.3|holds for Transformer-based masked language
models, which is a direct consequence of the Transformer’s attention mechanism. Let us start with
recalling the assumption.

Assumption B.1. (Independence Stability) Let: € M be a masked index,'and letU C M\ {z} be
a subset of masked indices. If for some sequence of tokens yU we have p'(- | y¥,x™M) = p'(- |
x~M) then for any W C U it holds that p'(- | yW,x=M) = pi(- | x M

Next, we recall the design of attention mechanism and discuss prior works

Attention-Based Independence. In transformers Vaswani et al.[(2023)), the attention weights con-
trol information flow between positions. For an input sequence X = (X!, ..., X%) € REX4in each
attention head computes query, key, and value vectors for every position:

where W WK ¢ Rdrxdin and WY € R%*din are learned weight matrices.

The attention mechanism then computes pairwise attention scores between all positions through

scaled dot products:
-

A = softmax < QK

Vdy,

where Q, K € RE*? stack the query and key vectors across all positions. The attention weights A%

quantify how much position j influences position ¢, computed via normalized dot-product similarity.

The output of one head combines value vectors weighted by these attention scores: head;, = AV €

RE*dv Finally, outputs of different heads are stacked to get, Z; = concat(headi, N headlﬁ).

The output of the layer Y = (Y?,..., Y¥) € REXdout js calculated as Y? = F(Z?) by application
to each of the coordinates of MLP together with normalization layers and skip connections.

> c RLXL

Crucially, the attention weights A;; directly control information flow: when A4;; = 0, position
4’s value vector V/ contributes nothing to position i’s output. The model’s final predictions are
obtained by applying softmax to the last layer’s output: pj)(- | x ™) := softmax(Y?). Therefore,
(- | x M) = pi(- | y', x~M) holds if and only if Y remains unchanged when tokens at positions
R are revealed.

Stability of Unmasked Tokens. Recent works Hu et al.| (2025); Ma et al.| (2025)) have demon-
strated that during iterative inference, the query, key, and value vectors (Q =, K=M, V—M) for
already unmasked tokens, remain stable and can be cached for computational efficiency.
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Attention Weights vs KL Error by Pruning Level
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Figure 6: Joint distribution of dkp, — the sampling error and § 4 — the total attention to the previous
tokens revealed in parallel.
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Figure 7: Difference between attention statistics for p™ (- | x =M y#<i) relative to the same statistics
computed while evaluating p™ (- | x~M).

Why Independence Stability Holds. Let us return to Assumption [3.3] First, we discuss padding
end-of-sequence (EOS) tokens, which are used to fill the unused suffix reserved for an answer. By
design, if there is an EOS token in 2= to the left of position i then p’(EOS|z~™) = 1 and the
assumption automatically holds.

For regular tokens, we note that the stability property implies that in both cases, when we condition
on (yY,x=M) or (x~M), the representations (Q ', K=™, V—M) stay the same, while the main
change happens for tokens in U.

The stability property allows us to concentrate on the information flow between position ¢ and
tentatively unmasked subset yU, which we recall governed by attention weights vector Ay :=
(Awl, s Ay, ) Specifically, we argue that a token y; is conditionally independent of a set of

tokens yU given the remaining tokens x ~* if and only if the total attention from position i to all po-
sitions in U is negligible across all layers and heads, or more formally, if | Ap ||, = >, cpp Aiu <0
for some small § > 0.

Now consider any subset W C U. The non-negativity of attention weights (a direct consequence of
the softmax operation) yields the inequality:

[Aiwlly = D A <D A = l[Aiv]ly <6

wew uelU

This demonstrates that if position ¢ pays negligible attention to the entire set U, it necessar-
ily pays negligible attention to any subset W C U. Consequently, the conditional distribution
at position ¢ remains approximately invariant when conditioning on tokens at positions in W:
po(- |y, x=M) ~ pi(- | x~M). This relationship directly corresponds to Assumption(Inde-
pendence Stability).

Empirical Validation We use the same setup as was used in [Section 4.3] as a source of prompts,

we use the first round requests from MTBench, and sample the responses using the PUNT algorithm
with different thresholds € = {0.01,0.04, 0.16, 0.64}.
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For a step of the PUNT sampler with threshold €, let R denote the set of tokens unmasked at this
step, sorted according to the confidence, y* denotes the set of sampled candidates, and 2~ denotes
the set of already revealed tokens.

As we demonstrated at[Fig. 3|sampled tokens satisfy
kL = Do (p" (- | x~ M, y"<i)

For each token 7;, we compute the total attention from token 7r; to previously revealed tokens R.;
for all heads of the last layer, i.e.
17 Z A”TJ

j<i
and plot the distribution of pairs (dkr,, 1) for different thresholds.

We also compute the change of the layer output Y™ and how it changes when we condition
on yf*<:. We use the normalized difference metric to compute the change, which is defined as
normalized_difference(a, b) := |la — b|,/||al|,, and plot the distribution of the change.
Finally, similar to unmasked tokens, we observed that representations Q"¢, K", V" of masked to-
ken r; in the attention layer also stays stable when we additionally condition on previously revealed
tokens y*<:.

|p7-i(. ‘ X—JW)) < e.

da = HAT-LR<1'

Algorithm 1 PUNT (Parallel Unmasking with Non-influence Tests)

1: Input: masked sequence x, vector of candidates y, threshold ¢
2: Qutput: certified set R C M to unmask in parallel

3: Sort masked indices w.r.t. confidence heuristic ¢ in decreasing order
4: Construct M, the set of all masked indices.

5 R« M
6
7
8

: Let By := {i € [|[M]] : the b-th bit of bin(z) = 0}.
: for bin [log|M]|] do

: So < RN By; (positions to tentatively unmask)
9: S1 < R\ By; (positions to check for dependence)
10: for each j € S do ‘
I D (M) ([ x My ®)
12: if d; > € then
13: R+ R\ {j}
14: end if
15: end for
16: end for

17: return R

C IMPLEMENTATION AND EXPERIMENTS

This section evaluates the proposed planner PUNT (Algorithm|[I)) across diverse sequence generation
tasks. All experiments are conducted on A100 GPUs with 40GB memory.

PUNT offers a clear win in step efficiency without compromising on quality. However, this is not
indicative of the underlying compute used, which is better captured by the number of forward passes
(NFE). In terms of NFE, it performs competitively, and particularly on long-sequence tasks, it often
surpasses the baselines. We leave further per-step optimisation for future work.

C.1 EXPERIMENTAL SETUP

We evaluate two state-of-the-art discrete diffusion models for natural language: LLaDA-1.5 (Zhu
et al.l 2025a) and Dream-v0-Instruct-7B (Ye et al.l 2025a) (referred to as Llada and Dream, re-
spectively). In this section, we detail the experimental setup, including tasks, datasets, evaluation
metrics, and baseline methods.
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Experiment NumFewshot  max length

GSM8K 4 512
HumanEval 0 512
MBPP 3 512
IFEval 0 1024
MT-BENCH - 1024

Table 1: Experimental configuration for each benchmark task.

TASKS AND DATASETS

We assess PUNT’s performance on a variety of sequence generation tasks. The evaluation relies on
the following standard public datasets and their corresponding protocols:

* Math word problems and formal math: GSM8K (Cobbe et al.,|2021), MATH (Hendrycks
et al.,[2021)

* Code generation: HumanEval (Chen et al.| 2021)) and MBPP (Austin et al.,[2021).
* Instruction-following evaluation: IFEval (Zhou et al.,|2023))
* Open-ended question benchmarks: MT-Bench (Zheng et al., 2023).

EVALUATION METRICS AND CONFIGURATION

We use task-specific evaluation metrics and measure efficiency in terms of the number of forward
evaluations and the number of iterations PUNT takes.

Quality Metrics:

* Math problems: Match accuracy (GSM8K)

* Code generation: Pass@1 success rate (HumanEval, MBPP)

* Instruction following: Strict/Loose prompt/instruction adherence (IFEval)
* Open-ended generation: GPT-40 scoring 1-10 (MT-Bench)

Efficiency Metrics:

* Number of network function evaluations (NFE) per sequence
* Number of generation steps (PUNT-specific)

BASELINE METHODS
We compare against representative training-free schedulers with the following parameters:

* Top-k Sampler with &k = 1,2, 3,4,5,6;
» EB-Sampler (entropy-bounded unmasking) with € = 0.01,0.05,0.1,0.5,1.0, 2.0,4.0 (Pa-
tel et al., [ 2025));

» Geometry-aware spacing: dilated with log window size in {3,4,5,6,7} (Luxembourg
et al.,[2025)),

Each of these baselines utilizes a confidence score to rank positions by certainty. Different options
for the confidence score are described below.

CONFIDENCE SCORING STRATEGIES

All confidence scoring strategies operate on the model’s output probability distribution. For each
position ¢ in a sequence, the model produces logits I, ; ,, for every token v in the vocabulary. These
are converted into a probability distribution using the softmax function:

elb,t,v
Dbt = %

ML
vi=
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From this distribution, we compute a scalar confidence score sy, ; that quantifies the model’s certainty
at that position. A higher score indicates greater confidence, prioritizing that position for earlier
unmasking. To define the scoring strategies, we use the following notation:

* Put,k): The k-th largest probability at position ¢, such that py ¢ (1) > ppi2) = -0 =
Do, (v)-
* yp.+: The token actually sampled at position ¢.

Negative Entropy
v v
Sbt = Zplm,v log pp.t,0 = —H (po,t) H(pot) = — Zpb7t,v log py,t,0-
v=1 v=1

This is the negative Shannon entropy. Values lie in [ —logV, 0]. Scores closer to 0 correspond to
more peaked (certain) distributions.

Top Probability

St = mvapr,t,v = Pb,t,(1)-
A simple peak-confidence heuristic. Ignores how close competitors are.
Top Probability Margin

Sb,t = Po,t,(1) — Pb,t,(2)-
Measures local ambiguity between the two most likely tokens. Larger margin = clearer preference.
Positional Schedule
Spt = t.
A deterministic curriculum ignoring model uncertainty (e.g. left-to-right). Negate or reverse indices

if the opposite order is desired.

C.2 IMPLEMENTATION DETAILS

Our implementation of PUNT follows the procedure outlined in Algorithm [} To ensure a fair
comparison, both PUNT and the baseline methods use the same confidence scoring strategy for
each model. Specifically, we use the top probability margin for LLaDA and negative entropy for
Dream.

SAMPLING AND TEMPERATURE SETTINGS

All methods employ nucleus sampling with nucleus mass set to 0.9. We present results for two
temperature settings: 0.1 (low temperature, focused sampling) and 0.7 (higher temperature, more
diverse sampling) to evaluate robustness across different generation regimes.

END-OF-SEQUENCE HANDLING

To prevent premature termination, we down-weight positions corresponding to end-of-sequence to-
kens when early termination is undesirable: If y; ; equals a special end-of-sequence token EOS and
early termination is undesirable, enforce

Sp,t Cneg7 Cneg <0,
to deprioritize revealing that position.
C.3 RESULTS AND ANALYSIS

We present our results grouped by sequence length, as this factor significantly impacts the relative
performance of the scheduling methods.
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Figure 8: GSMS8K performance comparison across different temperature settings showing
NFE/steps vs match accuracy (flexible-extract filter)

SHORT-SEQUENCE BENCHMARKS

We evaluate PUNT on GSMS8K, HumanEval, and MBPP —all tasks with sequences shorter than
1024 tokens (see Table [I). These benchmarks test mathematical reasoning and code generation
capabilities under constrained generation lengths.

Results: When measured by the number of generation steps, PUNT consistently outperforms all
baseline methods across both temperature settings (0.1 and 0.7). However, when evaluated by NFEs
per sequence, PUNT shows competitive but not dominant performance. PUNT’s strength lies in
reducing the number of sequential generation steps through aggressive parallelization, but each step
may require more network evaluations due to its comprehensive independence testing.

LONG-SEQUENCE BENCHMARKS

For longer sequences (> 1024 tokens), we evaluate on MT-Bench and IFEval. These tasks require
sustained coherence and complex instruction following over extended generation windows.

MT-Bench Results: MT-Bench consists of open-ended questions spanning creative writing, rea-
soning, and coding. Each question includes two rounds, where the second builds upon the first
response. Answers are evaluated by GPT-40 using a 1-10 scale. All experiments are carried out with
temperature 0.7.

show that PUNT excels particularly when NFE budgets are severely constrained. In low-
NFE regimes, PUNT significantly outperforms all baseline methods. As the NFE budget increases,
dilated sampling begins to show competitive performance, but PUNT maintains its characteristic
stability advantage.

IFEval Results:

The instruction-following evaluation tests adherence to specific formatting and content constraints.
PUNT demonstrates consistent accuracy across both NFE and step-based metrics, again showing its
reliability advantage.

PUNT’s results on IFEval demonstrate its stability across different computational budgets. As shown
in and|[I3] it consistently leads in generation steps at both temperatures, without compro-
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Figure 9: HumanEval performance comparison across different temperature settings showing

NFE/steps vs Pass@1 success rate for both LLaDA and Dream models
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Figure 10: MBPP performance comparison across different temperature settings showing NFE/steps

vs Pass@1 success rate for both LLaDA and Dream models
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Figure 11: Performance comparison for MT-Bench across different models showing NFE vs mean
performance

mising accuracy. Additionally, PUNT is more NFE-efficient at lower budgets and remains competi-
tive as the budget increases, pulling ahead at a temperature of 0.7.

C.4 APD EXPERIMENTS

We evaluate the performance of PUNT against Adaptive Parallel Decoding (APD) proposed in (Is-
rael et al.| (2025)). APD runs have been added to all benchmarks running on Dream (Ye et al.,
2025a). There are no comparisons on benchmarks running on Llada (Zhu et al., 2025a). APD re-
quires a trained autoregressive model using the same tokenizer as the diffusion model, but no such
compatible autoregressive model exists, as noted in (Israel et al., 2025).

APD requires two NFEs per sampling step: one to draw logits from the diffusion model; a second
full decoding pass from the autoregressive model, to build the target distribution. Both distributions
are sampled using Gumbel-Softmax trick, and tokens are accepted when the samples coincide in
both processes, using a left-to-right decoding scheme. When plotting APD’s accuracy vs NFEs, we
multiplied by 2 the denoising steps used by APD to obtain NFEs: one for the diffusion model and
another to construct the target distribution from the autoregressive model.

All experiments discussed below refer to the Dream architecture. As illustrated in [Figs. 12]and [T3]
PUNT demonstrates superior performance on IFEval, achieving the highest scores among all meth-
ods. This indicates a strong capability in adhering to complex constraints and instructions. APD
shows the strongest performance in HumanEval [Fig. 9al and [Fig. 9] EB and PUNT surpass APD
on MBPP at temperature 0.1, and APD surpasses them at temperature 0.7. EB surpasses
APD and PUNT on GSMS8K at temperature 0.1, see and APD surpasses all other samplers

at temperature 0.7, see [Fig. 8b]

Dream is a diffusion model whose weights have been initialized from a trained autoregressive model
(Qwen et al., 2025). We hypothesize that Dream retains good left-to-right sampling performance
because of its weight initialization, and APD’s performance benefits because of its strict left-to-right
sampling order when used with Dream. In contrast, all other samplers operate independently of the
diffusion model’s training procedure, allowing them to be applied more broadly.
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22

[ e

200 400 600 800 1000
Denoising steps (mean)

Sampler
—e— APD
—o— DILATED
—o— EB
—e— PUNT
—e— TOPK

Model
=== Dream
— LUada



Under review as a conference paper at ICLR 2026

C.5 MASKED DIFFUSION MODELS FOR PROTEINS

Masked diffusion models (MDMs) have demonstrated effectiveness beyond natural language pro-
cessing, particularly in generating biological sequences such as proteins and DNA. To evaluate
PUNT’s performance in a structured biological domain, we conduct experiments on de novo mem-
brane protein design using MemDLM (Goel et al., 2024)), a masked diffusion model that finetunes
the state-of-the-art ESM-2 150M protein language model (Lin et al., [2023)) with an MDM objective
to generate realistic membrane proteins.

C.5.1 EXPERIMENTAL SETUP

We evaluate PUNT on unconditional protein generation with sequences of up to 1024 amino acids,
comparing against three established training-free schedulers: Top-k sampling, Entropy-Bound (EB)
unmasking, and geometry-aware (Dilated) spacing. All methods employ a temperature of 0.8, to
encourage sequence novelty, and suppress end-of-sequence tokens to promote longer, more realistic
protein sequences. For each sampling strategy, we generate 50 amino acid sequences using the
following hyperparameters:

« PUNT: ¢ = {0.001,0.004, 0.01, 0.02, 0.04, 0.08, 0.16}
« Top-k: k= {1,2,3,4,6,8,12}

* EB Sampler: e = {0.1,0.5,1, 5,10}

* Geometry-aware spacing: logw = {3,4,5,6,7,10}

C.5.2 EVALUATION METRICS

We assess PUNT’s performance across two key dimensions critical for practical protein design ap-
plications (Wenran et al., [2025):

Computational Efficiency: As with the natural language benchmarks, we measure the number
of forward evaluations (NFE) and denoising steps required for generation. NFE represents the to-
tal number of model forward passes needed to complete sequence generation, providing a direct
measure of computational cost. Denoising steps (PUNT-specific) track the number of iterative re-
finement steps in the masked diffusion process.

Structural Validity: Generated protein sequences are evaluated for their likelihood to fold into
stable, well-defined three-dimensional structures. We feed each generated amino acid sequence to
ESMFold (Lin et al., 2023) to predict the corresponding 3D protein structure. We then calculate
the mean pLDDT (a per-residue measure of local confidence in the structural predictions) across all
residues in each predicted structure.

C.5.3 RESULTS AND ANALYSIS

[Figure T4]plots the mean pLDDT against NFE and number of denoising steps. We find that while the
pLDDT of generated structures is low across denoising methods—which may be attributed in part to
our use of a non-semi-autoregressive generation strategy, or because of the very long sequence length
and absence of multiple sequence alignment in ESMfold making this a challenging domain for 3D
structure prediction—PUNT consistently generates proteins with comparable or marginally higher
pLDDT than the baseline samplers given the same computational budget, with stable performance
across a broad range of NFE. These results suggest that PUNT is able to improve efficiency without
sacrificing structural plausibility, making it well-suited for rapid proposal of candidate proteins for
downstream analysis.

D DENOISING PROCESS

In this section, we show examples of our denoising process starting from a completely masked
response for three prompts from different domains.
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TEXT PROMPT

The first prompt is a story generation prompt: “Compose an engaging story about a recent trip to
Hawaii, highlighting cultural experiences and must-see attractions.”

MATH PROMPT
The second prompt is a math word problem: “Natalia sold clips to 48 of her friends in April, and

then she sold half as many clips in May. How many clips did Natalia sell in altogether in April and
May?”

PROGRAMMING PROMPT

The third prompt is a programming prompt: “Write a function to find the minimum cost path to
reach (m,n) from (0,0) for the given cost matrix cost|[] and a position (m,n) in cost[|[].”

E PLOTTING PERFORMANCE VS ¢

In this [Figures 13]to[I8] we plot the performance of different models as a function of the closeness
parameter € for two different temperature settings: 0.1 and 0.7.

F PERFORMANCE FOR VARYING EPSILON SCHEDULES

In this section, we present the performance of PUNT with varying epsilon schedules compared to
the pruning baseline on the MBPP and IFEval benchmarks. The results are shown in Figures |19} 20]
and 211
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Denoising Progress
Navigate Steps: 14

Instruct Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.

Response:

of Hawaii®*

**An Island Paradise: Discovering thel

The[ past] few weeks| been on @ whirlwind of excitement, as, as, we@ of coral Landscapes, navigating the turquoise Pacific of, and into the[

Stunning beauty of Hawaii ai stand out as the must captivating,ve of culture,[history], and

adventure, Here we to['d my journey of this island paradise.

our enchanting islands, Oahu, Maui, an

+*0ahu: The Heart of Honolulu Big Islands**

On our bustling day of inahu, we took a guided tour of the iconicol Beach|Palace
along the beach, we watched a tragitional hula performance, dancing to the rhythm of the music and ance mesmer of movements..[] From spent days. we
iconic Diamondime Head] Park| and the breathtaking Waimea Canyon.

a stunning reminder of the island’s cultural heritage. As we walked

of our where we explored the island’s natural wonders, including
**Maui: A Istand of Paradise**
From the heart of fany, we made our way to the vibrant city of Moui. which, a paradise dance old| was, into a kaleidoscope of colors and the sunset.

We spent a a to,, the withsuit, and even| th] @ to sum in the sun. As the day set, we visited the historic town of Hanaua Bay, where we explored the

iconic of of Mawaiian.ah,iked,['s| on the War ofani park, and the the's fascinating Landscape.

**Hawauai:: The Island Royal Luxury and Tradition®=

In contrast, we embarkedai a, influences to the royal royal of ofol Homolulu, where we explored the opulent gardens of the Royal monarchy. We through
the majestic Nalaua Palace, Learning to of island's rich culturall heritagel. In[the evenings, we st a to the coastal town of ' Lu Beach, where we
enjoyed a traditional show and enjoyed the flavors of the[ island's cuisine cuisine.

**Conclusion: A Cultural[ Paradisel*

Throughout our| tripl, we've explored the beauty of,, of, but discovered the cultural of of O adventure, history, and nature., natural popularity.
We've gained a deeper| appreciation of Hawaii rich natural and caltural heritage, and
ever planning to visit Hawaii, I[ highly recommend recommend exploring these must and and an yourself to all that this paradise has to offer.
<|eot_id|><EOT>

t wait to return to this enchanting destination. If you're

visible Original | [MASK] | Masked lustRevealed previous Previously Revealed

Step 14 - Viewing saved state

Denoising Progress
Navigate Steps: 21

Instruction: Compose an engaging travel blog post about & recent trip to Hewaii, highlignting cultural experiences and must-see attractions.
Response:

**An Island Paradise: Discovering the Magic of Hawaii®+

The past few weeks have been an| exnilarating whirlwing of experiences, as I've been soaking| ugl the warn sunl,[ exploring tne turquoise coral reefs,
and discovering the stunning landscapes of Hawaii. Among the eight islands, Oshu, Maui, and Lanai'i stand out as the most enchanting,| offering rich
culture, history, and natural beauty[ unlike

anything I'd come across on this island paradise.

#=0ahu: The Heart of the Hawaiian Islands®=*

starting in the capital city, Honolulu, we took a guided tour of the iconic Iol Pslace, a majestic symbol of the island’s cultural heritage. As we
relaxed on the beach, we watched a traditional hula performance, dancing to the rhythm of the music and the movements of the skilled performers. The
island was filled dull experience,[as| we explored the island's natural wonders, including the stunning Diamond Head State Park and the breathtaking

Waimea Canyon.

**Mgui: A Tropical Island Parzdise®=

a blend of old and new, a kaleidoscope of colors and| tropical

the[ sun and watching the colorful turtles dip in the waves. As the sun set, we visited the historic

, and us with delicious[Hawaiian|

From the excitement of Oahu, we made our way to the vibrant island of Maui. Mau

scents. We spent a day at th enjoyin

town of Kaneohe Bay, where we discovered th shops of Hawaiian mythology, sampled the island's famous h,hel

cuisine.
*=Lanai’'i: A Island of Luxury and Culfures=

In contrast, we embarked on a scenic ferry to the luxurious island of Lanai'i, where we explored the opulent worid of the ancient royalty.[Wg visited

the iconic Niiaua Palace about the island's rich cultural heritage. In the evenings, we relaxed at the beautiful resort ofmont Lanai'i, where

we enjoyed a gourmet dinner and savor & taste of the island's finest cuisine,

“=Conclusion: A Hawaiian Paradisess

Throughout our trip, we've explored the beauty Hawaiion Hawaiil] eager to learn from the island's rich through history, dance, and history. As a
traveler, I've gained a deeper appreciation for Hawaii's cultural and historical heritage, and can't wait to return to this enchanting land. If you're
ever planning to visit Hawaii, I highly recommend checking out these stunning islands and treating yourself to all that this paradise has to offer.
<|eot_id|><EOT>
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Denoising Progress
Navigate Steps: 28

Instruction: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.
Response:

An Island Paradise: Discovering the Magic of Hawaii

The past few weeks have been an exnilarating whirlwing of experiences, as I've besen soaking up the tropical sun, exploring the turguoise coral reefs,
and discovering the stunning landscapes of Hawaii. Among the eight islands, Oahu, Msui, and Lanai'i stand out as the most enchanting, offering rich
culture, history, and natural besuty unlike anything I'd come across on this island paradise.

Oahu: The Heart of the Hawaiian Islands

Starting in the capital city, Honolulu, we took a guided tour of the iconic Iol Palace, a majestic symbol of the island's cultural heritage. As we
relaxed on the beach, we watched a traditional hula performance, dancing to the rhythm of the music and the movements of the skilled performers. The
day was filled with adventure, as we explored the island's natural wonders, including the stunning Diamond Head State Park and the breathtaking Waimes
Canyon.

Maui: A Tropical Island Paradise

From the excitement of Oahu, we made our way to the vibrant island of Maui. Maui is a blend of old and new, a kaleidoscope of colors and tropical
scents. We spent 2 day at the beach, enjoying the sun and watching the dolphins gracefully dip in the waves. As the sun set, we visited the historic
town of Kaneohe Bay, where we discovered the rich culture of the island, including the island's famous Luau 'lai, a feast with delicious Hawaiian

cuisine.

Lanai‘i: A Island of Luxury and Beauty

In Maui, we embarked on a scenic ferry to the luxurious island of Lanai

where we explored the opulent homes of the royal family. We visited the

iconic Niiaua Palace, which showcases the island's rich cultural heritage. In the evenings, we relaxed at the beautiful resort of Royal Lanai'i, where

we enjoyed a gourmet dinner and savor a taste of the island's finest cuisine.

Conclusion: A Hawaiian Paradise

Throughout our trip, we've explored the beauty of Hawaii, eager to learn from the island's rich cultural heritage, music, and traditions. As a
traveler, I've gained a deeper appreciation for Hawaii's cultural and histerical heritage, and can't wait to return to this enchanting land. If you're
ever planning to visit Hawaii, I highly recommend checking out these stunning islands and treating yourself to all that this paradise has to offer.
<Jeot_id|>
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Instruction: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether
in April and May?
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Instruction: Hatalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether
in April and May?

Response:

To[ determing the total number of clips Matalia sold in April and May, we need to follow these steps:<\n><\n>1. Calculate the the number clips Natalia
sold in April22.2 the the of of clipsia in May...: the number number the to sold in and April May to May the find May{ Find number** number<\n>
the<\n>1** through:.:: Calculate number sold step<\n> in<\n><\n><\n> in clips cLips clips8 cLips84.<\n><\n>[226]<\n>2[228] CaLculate: number cLips
clips clips clips sold sold May.**<\n>Natal she sold half as many clLips in she did in April. April, clLips, number ofCl4 sold in May}\[ \frac{48}{24 =
24 \]<\n><\n>**[220][220]: : the total number of sold in sold April April sold and May<\n> find find the number of cLips sold i
clips clips sold<\n>2 number +\[Total72 +[220]4[220]4, \7, of2 theTherefore \, of2 total Natal is number sold2 in{ cLips4 altogether<EOT><EOT><EOT>
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Navigate Steps: 13
1517

1518

Instruction: Matalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Nataliz sell altogether
1519 in April and May?

Respanse:
1520 To determine the total number of clips Natalia sold in April and May, we need to follow these steps:

1521 1. Identify the number of clips Natalia sold in April.

1522 2. Calculate the number of clips Natalia sold in May| based] on| the| given| information]]
B[] Addthe| sates[From April and May to find the total.

1523

Step 1: Identify the number of clips Natalia sold in April.

1524 Natalia sold 48 clips in April.
1525 Step 2: Calculate the number of clips Natalia sold in May.

Natalia sold half as many clips in May as she did in April. Therefore, we need[220] of clips cLips[ of|[228]<\n>: May}H[220]}{8 \div 24 \2<\n>],
1526 <\n>Step 2: clips =[22@8] from April \ May May<\n> the total3: Add the number of clips sold in April to the number of clips sold in May:<\n> the[228]\

[\ +[220] +4[220]4 = =[220]2<\n>]|

1527

Thus| the total number of clips Natalia sold in in and May is \(\boxed{[f]7}1).<EOT><EOT><EOT><EQT><EOT><EOT><EOT><EQT><EQT><EOT><EOT><EOT><EQT><EOT>
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1541

1542 Instruction: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether
in April and May?

1543 Response:

1544 To determine the total number of clips Natalia sold in April and May, we need to follow these steps:

1545

1546 3. Add the numbers from April and May to find the total.

1. Identify the number of clips Natalia sold in April.
2. Calculate the number of clips Natalia sold in May based on the given informatien.

1547 Step 1: Identify the number of clips Matalia sold in April.

Step 2: Calculate the number of clips Natalia sold in May.
1549 Natalia sold half as many clips in May as she did in April.[226], we sold: find soldNumber of clips = \ ={{8}{48 = 2[\) in[May.

Natalia sold 48 clips in April.

1550 Step 3: Add the numbers from April and May to find the total.
Add the number of clips sold in April to the number of clips sold in May:<\n>\[ total[228] +[220]3[d 7217

Therefore, the total number of clips Natalia sold in April and May is \(\boxed{72}\).<|eot_id|><EOT><EOT><EOT><EOT><EOT><EOT><EOT><EOT><EOT3<EOT><EOT>
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Navigate Steps: 25

Instruction: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell sltogether
in April and May?

Response:

To determine the total number of clips Natalia sold in April and May, we need to follow these steps:

1. Identify the number of clips Natalia sold in April.

2. Calculate the number of clips Natalia seld in May based on the given information.

3. Add the numbers from April and May to find the total.

Step 1: Identify the number of clips Natalia sold in April.

Natalia sold 48 clips in April.

Step 2: Calculate the number of clips Matalia sold in May.

Natalia sold half as many clips in May as she did in April. Therefore, we calculate:

« Half of 48 = 48 / 2 = 24 clips in May.

Step 3: Add the numbers from April and May to find the total.
Add the number of clips sold in April to the number of clips sold in May:

« Total = 48 + 24 = 72 clips.

Therefore, the total number of clips Matalia sold in April and May is (\boxed{72}).<|eot_id|>
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Navigate Steps: 0
1628
1629
1630 Instruction: Write a function to find the minimum cost path to reach (m, n) frem (@, @) for the given cost matrix cest[][] and a pesition (m, n) in
cost[1[].
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1648 Denoising Progress
Navigate Steps: &
1649
1650
1651 Instruction: Write a function to find the minimum cost path to reach (m, n) from (8, @) for the given cost matrixz cost[][] and a position (m, n) in
cost[1[1.
Response:
1652 To find the minimum cost path to reach {m, n) from (8, @) for the given cost matrix, we can use dynamic programming. We idea is to is to the2 where
1653 matrix the the where[i] n position keep represents represents the minimum minimum reach reach starting position (m, j. Here's a Python function to
achieve this:<\n><\n>""python|
1654 def| min| cost{(cfost], m, n):
rows = len(cost)
1655 [ TerltosITBIT)
[263]<\n>[365] the [[@, n with) for float dpé costcols@<\ns> [[cols for<\n> cost for][cols in(rows[ cost[220]6 directions * possible)]
1656 directions| 3 [[(-1[J[226]0), (1,[220]0), (i[]i22011)]
[263]<\n>[365] # Fill the from)] the] for minimum)<\n>[365] range i in((rows):
1657 for j in range(cols):<\n>[542] dp[roc] = float('inf')
for ai, dc in girections):<ins|
1658 for dr, dc in dr = dr<\ns ¢ +, ¢ dc del<\n><\n> if[220]6 <= r < rows and and ¢ c c cols:<\n>[921]_cost[r1[c[]] = min(dp[r][rc], [r{r{r[r],] dpcil, +
[rIrI[1)II11)<\n3><\n><\n>[305] return dp[m][c1<\n><\n>#[ usagel][# = =:m[365] cost,,[220] usage,<\n> = [<\n>[305] [1,[220]1,[220][305],1,<\n>5,[220],,
1659 [220][365][226][220]] [23,[220],2[220][220],[226],<\n><\n>]2[220] #, nc\n>printc\n> n the,<\n>)[220]<\n3[226]))<\n><\n> Output<in> n<\n>: cost,)) cost
m defines<\n>This min ° n[220] input the initializes™., where[220] where<\n>][<\n>D]’ to represents the minimum cost to reach each cell] (if}] n). from
1660 ( iter, the cost), iter the position It,<\n> pesition it “( the cell the the meighboring] Filling and n which with the minimum cost to reach (m, it)
1661 from<EOT><EOT> stored<EOT><EOT>][<EOT> (<EOT><EOT><EOT><EOT><EOT><EOT><EOT><EOT><EOT>KEOT<EOT><EOT><EOT><EOT><EOT><EOT>EOT><EOT><EOT><EOT><EOT>
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1674

1675
Denoising Progress
1676 Navigate steps: 16

1677

1678 Instruction: Write a function te find the minimum cost path to reach (m, n} frem (@, @) for the given cost matrix cest[][] and a position (m, n) in

1679 cost[1L].

Response:

1680 To find the minimum cost path to reach (m, n) from (@, @) for the given cost matrix, we can use dynamic programming. The idea is to create a[220]2 a
array cell costdp positionj,,) represents@ reach,[220]) reach reach position (i,ﬂ). Here is a Python function to achieve this:

1681 —

1682 def min_cost(cost, m, n):
rows = len(cost)

1683 cols = len(cost[8])
[385] min = [[min@, cols@ =[220]6] *[228] incols range<\n>]
1684 [263] min[305] # Directions: (up, up,,,,

directions = [(-1, @), (1, @), (2, 1]
1685

[ Fite the cost array with with minimum up[263]
1686 for 4 in range(rous):

for j in range(cols):
1687 dp[i][§] = float({'inf')
1688 for dr, ddc in[ directions|
r, © = i(i] +dr, §* § + dr<\n2[921] if[220][f] <= r < rows[andf226]e <<d and cost[i[r][c] = min(dp[iji<\n> min min][][4j min
1689 dprr]lc] dp min[[ric]|
[263]

1690 [Treturd aotaios
1691 # Example usage:

cost_matrix = [

1692 2 B a1,

. 5. 11,
1693 4, 2, 11
1
1694 mm, end n = (2,[220]2)<\n>print(min_cost(cjost] matrix, m_pos, n_col))[220] # output:[]7

1695

This function initializes initializes thedp matrix with the cost matrix and the the the directions. moving it iterfates in the cost matrix. It, it

1696 calcutate the minimum cost to reach each cell (i, ) by considering all over the the (,, right, down, right) and updating the “dp” matrix
69 accordingly.[ Finally|,[it] returns the minimum cost to reach (m, n) from (8, 8).<|ect_id|><EOT><EOT><EQT><EQT><EQT><EOT><EOT><EOT><EOT>CEOT><EOT><EOT>
1697 <EOT><EQT><EDT><E0T >4 EOT><EQT>4EQT ><EOT ><EOT><EQT><EOT><EQT><EOT ><EOT>< EOT><EOT ><EOT><EOT ><EOT>4EQT >¢EOT><EOT><EOT><EOT>< EOT><EOT><EQT><EOT><EQT>4EOT>

1698 <EOT><EOT><EOT>
1699
1700

1701 Step 16 - Viewing saved state

visible Original | [MASK] | Masked ust Revesled  previous Previously Revealed

1702
1703

1704 :
Denoising Progress
1705 o

1706

1707 Instruction: Write s function to find the minimum cost path to reach (m, n) from (8, @) for the given cost matrix cost[][] and a position (m, n) in
cost[1[].

1708 Response:

1709 To find the minimum cost path to reach (m, n) from (8, B) for the given cost matrix, we can use dynamic progremming. The idea is to build 3|

where each cell

[i1[3] represents the minimum cost to reach tha #rom the current position (i, j). Here is a Python function to achieve this:

1710 -
1711 def min_cost(cost, m, n):
rows = len(cost)
1712 cols = len{cost[8])
min = [[ [(8,[J0) in@] for _ in range(cols)]
1713 min = 3 possibled move (upl] down,[rignt]
airections = [(-1, @), (1, @), (8, 1)]
1714
# Calculate the minimum cost path to reach each position
1715 For i in range(rows):

for 3 in range(cols):

1716 min[i1[§] = float('inf')
for dr, dc [dn] directions:
1717 r, c = row[i] + dr, min[§] + dc
if (B <= r < rows and @ <= ¢ < cols) and min[r][c] < mi
1718 min[11(3] = min[rllc] +[] costdr][3]

1719
1720 # Example usage:
1721 cost_matrix = [
1, 3, 41,
1722 16, 5, 11,
14, 2, 11

1723 ]

end_row, end_col = 2, 2
1724
1725
1726 This function initializes by ° matrix matrix matrix with to costs and the th directions. Tt then iterates through the cost matrix and min
matrix the minimum cost to reach each cell (i, j) by considering the cost| the adjacent cells (up, down, and right) and updating|
1727 minimum cost if they Finally, it returns the minimum cost to reach (m, n) from (8, 8).<|eot_id|><EOT><EOT><EOTS<EQTH<EOTH<EOTH<EQTH<EOTH<EOTS

<EOT><EOT><EQT><EQT><EOT><EQT><EQT><EOT><EOT ><EQT><EQT><EOT><EOT><EQT><EOT><EOT><EQT><EQT><EOT><EOT><EQT><EOT><EOT><EOT><EDT><EQT><EOT><EOT><EQT><EQT>
<EOT><EDT><EQT><EQT><EOT><EOT>

return min[m][n]

print(min_cost(cost_matrix, end_row, end_col)) # Output: 6

ustRevealed  previous Prew’nm\ywevaa\nsz

Step 24 - Viewing saved state
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Denoising Progress
Navigate Steps: 32

Instruction: Write a function to find the minimum cost path te reach (m, n} from (@, @) for the given cost matrix cost[][] and a position (m, n) in
cost[10].
Response:
To find the minimum cost path to reach (m, n) from (8, @) for the given cost matrix, we can use dynamic programming. The idea is to build a matrix

where each cell min[i][j] represents the minimum cost to reach that cell from the current position (i, j). Here is a Python function to achieve this:

def min_cost(cost, m, n):
rows = len{cost)
cols = len(cost[8])
dir_cost = [[8, 8, 8] for _ in range(cols)]
min = B # Initialize (up, down, right)
directions = [(-1, @), (1, 8), (&, 1)1

# Calculate the minimum cost path te reach each position
for i in range(rows):
for j in range(cols):
min[i][3] = float('inf'}
for dr, dc in directions:
r, € = rows[i] + dr, cols[j] * dc
if (B <= r < rows and @ <= ¢ < cols) and min[r][c] < min[i][j]:
min[i1[§] = min[r][c] + cost[i][i]

return min[m][n]

# Example usage:
cost_matrix = [
1, 3, 41,
6, 5, 11,
4, 2, 1]
1
end_row, end_col = 2, 2

int(min_cost(cost_matrix, end_row, end_col)) # Output:

EY

This function initializes the min matrix with infinity values and the three possible directions. It then iterates through the cost matrix and each
direction, calculating the minimum cost to reach each cell (i, j) by considering paths from the adjacent cells (up, down, and right) and adding the

cost, if they exist. Finally, it returns the minimum cost to reach (m, n) from (e, e).<|eot_ial>

visible Original
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Step 32 - Viewing saved state
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Figure 15: Performance vs € for LLADA at temperature 0.1

33



Under review as a conference paper at ICLR 2026

©
&

o o
Epsilon (¢)

Llada PUNT Accuracies vs Ef (g) across ks
IFEVAL MBPP
—@— pass_at_1
08
10
06
08
8 os g o
£ £ ‘—’\.——a\._\.
g 3
2 <
04 0z
02 =@~ inst_level_loose_acc 00
©- inst_level strict acc
~@- prompt_level_loose_acc
0.0 ~@ prompt_level strict_acc
02
hs‘ hsb ee" §°e Q"h 04;» ﬂ°~ hé} (:Qb (:bb Q\Q (:'4
Epsilon (g) Epsilon (g)
HUMANEVAL GSM8K
-@— pass@l —@- exact_match
o6 10
08
04
> >
g I
£ R —
3 3
g
< <
04
00
0z
02
© ©
e& e& ecw 0& [N 0”’L e& eé‘/ Qeu e'éb RN 0/9
Epsilon (g) Epsilon (g)
Figure 16: Performance vs e for LLADA at temperature 0.7
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Figure 17: Performance vs € for DREAM at temperature 0.1
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schedule (blue) vs pruning baseline (orange).
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Figure 20: IFEval Loose Accuracy vs NFE at temperature 0.1 for varying epsilon schedules.
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Figure 21: DREAM IFEval Accuracy vs NFE at temperature 0.7 for varying epsilon schedules.
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