
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARALLEL SAMPLING FROM MASKED DIFFUSION
MODELS VIA CONDITIONAL INDEPENDENCE TESTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Masked diffusion models (MDMs) offer a compelling alternative to autoregres-
sive models (ARMs) for discrete text generation because they enable parallel
token sampling, rather than sequential, left-to-right generation. This means po-
tentially much faster inference. However, effective parallel sampling faces two
competing requirements: (i) simultaneously updated tokens must be conditionally
independent, and (ii) updates should prioritise high-confidence predictions. These
goals conflict because high-confidence predictions often cluster and depend on
each other, opportunities for parallel updates.

We present PUNT, a model-agnostic sampler that reconciles this trade-off. Our
method identifies token dependencies and removes lower-confidence tokens from
conflicting groups. This produces sets of indices for unmasking that satisfy both
independence and confidence criteria. Our approach ensures improved parallel
unmasking through approximate conditional independence testing.

Our experiments show that PUNT delivers a superior trade-off between accuracy
and compute when compared to other strong training-free baselines, especially for
generation of longer sequences. On the IFEval benchmark, it achieves up to 16%
higher accuracy over baseline methods, including sequential generation (one-by-
one). These gains hold across different values of hyperparameters, mitigating the
need for brittle hyperparameter tuning. Moreover, we observe that PUNT induces
an emergent hierarchical generation strategy, where the model first establishes
high-level paragraph structure before local refinement, suggesting a planning-like
generation process that contributes to strong alignment performance.

1 INTRODUCTION

The widespread deployment of Large Language Models (LLMs) has created massive computational
workloads, consuming significant datacenter resources and electricity, thereby incurring substantial
operational costs. A primary driver of this inefficiency is inference speed, which is bottlenecked
by the sequential, left-to-right generation process inherent in standard autoregressive models. To
overcome this, alternative methods have been developed to enable multiple tokens to be generated
simultaneously.

Among approaches with the potential for parallel decoding, Masked Diffusion Models (MDMs) have
emerged as a particularly promising framework (Austin et al., 2023; Lou et al., 2024; Nie et al.,
2025b). Unlike autoregressive models, MDMs iteratively refine masked sequences by predicting
subsets of positions simultaneously, enabling parallel decoding. However, determining which tokens
to unmask in parallel without degradation in quality remains challenging.

Various inference strategies have been proposed to accelerate MDMs, including confidence-based
token selection (Sahoo et al., 2024; Patel et al., 2025), structured unmasking patterns (Luxembourg
et al., 2025; Arriola et al., 2025), remasking (Wang et al., 2025), and distillation (Zhu et al., 2025b).
However, these approaches share a critical limitation: they do not explicitly test for inter-token
interference during parallel decoding. Structured patterns impose rigid, data-agnostic schedules that
ignore sequence-specific dependencies, while remasking and distillation either add computational
overhead or require expensive retraining.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our Contribution. We propose a different approach to parallel decoding based on contextual
independence —testing whether tokens can be decoded in parallel by checking for independence at
the sampled point, rather than for all possible outcomes. Unlike standard conditional independence,
which requires integrating over all possible outcomes (which is computationally prohibitive for large
token spaces), contextual independence provides the part that matters at the current decoding step.

To find the contextually independent subsets, we propose PUNT (Parallel Unmasking with Non-
influence Tests), a training-free procedure that employs a divide-and-conquer strategy. Our algo-
rithm selects “anchor” subsets and tests entire “candidate” groups for dependence in batch. By
carefully designing splits, PUNT certifies a large block of tokens for parallel generation using only
O(logm) model calls per step (compared with m for fully sequential unmasking) where m is the
number of masked tokens.

PUNT enjoys the following advantages: first, PUNT is training-free and requires no model fine-
tuning or distillation. Second, unlike rigid structured patterns or confidence-based approaches,
PUNT dynamically adapts to sequence-specific dependencies. For instance, we see that it ex-
hibits an emergent hierarchical generation strategy, where the model first establishes high-level
paragraph structure before refining the details. Third, for long-form text generation on alignment
benchmarks as well as de novo protein generation tasks, PUNT outperforms other standard base-
lines and quickly reaches its maximum quality with very few forward passes when compared to
other algorithms, resulting in a stable Pareto frontier over the number of forward evaluations of
the MDM.

Organization. Section 2 introduces masked diffusion models and formalizes the parallel decoding
problem. Section 3 presents our main algorithmic contribution, Section 4 presents empirical eval-
uation, and Section 5 discusses related work. Finally, Section 6 discusses implications and future
directions.

2 BACKGROUND ON MASKED DIFFUSION MODELS

In this section, we review the fundamentals of masked diffusion models and establish the notation
used throughout this paper.

Notation. We denote vectors with bold lowercase (e.g., x) and scalars with regular lowercase (e.g.,
y); random variables use uppercase (e.g., X,Y) with corresponding lowercase for their realizations
(e.g., x,y). We will also use uppercase letters to denote sets and tensors, when it is clear from
context. Let L = [ℓ] := {1, . . . , ℓ} denote integers up to ℓ. For I ⊆ L, −I := L \ I is its
complement, and xI = {xi | i ∈ I} represents the indexed subset of sequence x = (x1, . . . , xℓ).
With vocabulary V , we consider discrete state space V L. For random sequence X = (X1, . . . , Xℓ),
we write p(x) := P (X = x) for outcome x ∈ V L, and pj(·) for the marginal at position j.
Extending to VMASK = V ∪ {MASK}, a token xi is masked if xi = MASK. For any sequence,
M = M(x) := {i | xi = MASK} denotes masked indices, with unmasked indices denoted −M .
Conditional distribution at position j given observed tokens xI is written as pj(· | xI), shorthand for
P (Xj = · | XI = xI). For a sequence with masked indices M , x−M denotes unmasked tokens.
In the iterative generation process, xt represents the sequence at step t. and Mt := M(xt) denotes
masked indices at step t.

Masked Language Modeling. Masked language modeling trains neural networks to predict miss-
ing tokens from context. Given a sequence x ∈ V ℓ

MASK with masked positions M , the model
parameterized by θ learns conditional distributions:

piθ(· | x−M) ≈ pi(· | x−M), ∀i ∈M.

During training, a clean sample (i.e. without any masked coordinates) xclean ∼ p(·) is drawn from
the true data distribution. A random subset of its tokens M ⊆ L is then selected to be masked,
creating the corrupted sequence x where x−M = x−M

clean and xM consists of MASK tokens.

The model parameters θ are optimized to maximize the conditional log-likelihood of the original
tokens at masked positions:

L(θ) = Exclean,M

[∑
i∈M

log piθ(x
i
clean | x−M)

]
.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Generation proceeds iteratively using the trained model. Starting from a fully masked sequence
x0 = (MASK, . . . ,MASK), each iteration performs two operations at timestep t: (1) sample can-
didate tokens yit ∼ piθ(· | x

−Mt
t) for all masked positions i ∈ Mt, and (2) update a subset R ⊆ Mt

of these positions with their sampled values, so that xi
t+1 ← yit for i ∈ R and xi

t+1 ← xi
t for i /∈ R.

This process repeats until all positions are unmasked, producing the final sequence xT .

The iterative sampling process introduces two key sources of error at each step that can compromise
sample quality. For clarity, we analyze the error within a single step and drop the time index t in the
following discussion.

Approximation Error. The learned model piθ(· | x−M) only approximates the true conditional
distribution pi(· | x−M). This potentially leads to suboptimal token predictions. To mitigate this,
we employ a confidence score ϕi per position i, to guide mask selection at each step, updating only
those positions where the model exhibits high confidence. This strategy improves generation quality
by prioritizing high-confidence predictions. Common confidence scores ϕi for position i include:
negative entropy

∑
x∈V piθ(x | x−M) log piθ(x | x−M), confidence piθ(y

i | x−M) of the sampled
token, and top margin between the two most likely tokens.

Joint Dependencies. A more fundamental limitation arises from the sampling strategy itself. When
sampling masked tokens yi independently from their conditional distributions piθ(· | x−M), we
implicitly assume conditional independence among all masked tokens given the unmasked context.
Natural sequences, however, exhibit complex dependencies that violate this assumption. True con-
ditional independence for candidate tokens R ⊆M requires the joint probability to factorize as:

pR(· | x−M) =
∏
i∈R

pi(· | x−M) (1)

In general, the joint distribution does not factorize in this way. Finding a subset of tokens where this
factorization holds presents significant computational challenges, as verifying this condition requires
checking that equation 1 holds for all outcomes yR ∈ V R—a space that grows exponentially with
|R|. The following section presents an efficient method to identify token subsets that approximately
satisfy this independence condition, thereby mitigating this source of error.

3 METHOD

In this section, we introduce our method for one step of parallel unmasking. We first establish con-
textual independence as the criterion for safe parallel unmasking (§3.1), then present our efficient
subset discovery algorithm that identifies independent token sets using only O(log |M |) model
evaluations (§3.2).

3.1 CONTEXTUAL INDEPENDENCE

To address joint dependencies, we adopt the notion of contextual independence as our criterion
for parallel unmasking. This property precisely characterizes when parallel sampling yields the
same distribution as sequential sampling. Unlike full statistical independence (overly restrictive) or
confidence-based heuristics (which ignore dependencies), contextual independence identifies tokens
that can be unmasked simultaneously given the current context.

Definition 3.1 (Contextually Independent Random Variables). A random variable X is contextually
independent of a random variable Y at a point y if the conditional distribution of X given Y = y is
identical to the marginal distribution of X , i.e., pX|Y (· | Y = y) = pX(·).
Definition 3.2 (Contextually Independent Sequences). A sequence of random variables
(X1, . . . , Xℓ) is contextually independent at an outcome (x1, . . . , xℓ), if for each i ∈ L, the
conditional distribution of Xi given the preceding outcomes x<i = (x1, . . . , xi−1) is identi-
cal to its marginal distribution. Formally, for all i ∈ L: pXi|X<i

(· | x<i) = pXi(·), where
X<i = (X1, . . . , Xi−1).

In other words, under the contextual independence assumption, sampling the vector (x1, . . . , xℓ)
sequentially is equivalent to sampling its components in parallel.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

[MASK]

egg

[MASK]

the

[MASK]

mince

to

to

you

you

recipe

recipe

[MASK]

requires

The

The
1 3 2 4

mincetoyourecipe requiresThe
1 3

egg
4

the
2

mincetoyourecipe requiresThe
1 3

the
2

egg
4

mincetoyourecipe requiresThe
1 3

the
2

egg
4

✓ ✓

mincetoyourecipe requiresThe
1 3

the
2

[MASK]
4

x✓

mincetoyourecipe requiresThe
1 3

the
2

[MASK]
4

gar
lic

bee
f

onio
n

egg

gar
lic

bee
f

onio
n

egg

gar
lic

bee
f

onio
n

egg

Figure 1: Illustration of one iteration of PUNT on 4 masked tokens, which consists of log2 4 = 2
tests. Left: A binary tree representing the recursive partitioning. Each level corresponds to a sin-
gle parallel test in the iterative algorithm. Right: In each round, confidence-ordered tokens (circled
numbers) are partitioned into “anchor” (green) and “test” sets. Test tokens that are dependent on
the anchor set are rejected (red), while independent ones (blue) are kept. Each token must pass
all independence tests to be accepted. Here, “mince” passes (independent of {“requires”, “the”})
while “egg” fails (dependent on {“requires”, “mince”}). The final set {“requires”, “the”, “mince”}
satisfies contextual independence: p(“requires”, “the”, “mince” | xunmasked) = p(“requires” |
xunmasked) · p(“the” | xunmasked) · p(“mince” | xunmasked).

Our goal is, given a candidate vector yM , to find an ordered 1 set of masked indices R =
{r1, . . . , r|R|} ⊆ M that are contextually independent relative to the unmasked context x−M . For-
mally, for any i ∈ {1, . . . , |R|}, the distribution at position ri must be independent of the outcomes
at preceding positions R<i := {rj | j < i}, given the unmasked context:

pri(· | x−M ,yR<i) = pri(· | x−M). (2)

A naive, greedy approach to construct such a set would be to iterate through all masked indices
m ∈ M and sequentially add an index to R if it satisfies Equation 2 given the previously added
indices. However, this requires O(|M |) sequential model evaluations, which defeats the purpose of
parallel sampling.

We propose an efficient recursive algorithm based on a recursive divide-and-conquer strategy, which
we will later provide an an efficient iterative implementation for. The validity of this approach relies
on the following stability assumption regarding the conditional independence structure of the model.
Assumption 3.3. (Independence Stability) Let i ∈M be a masked index, and let U ⊆M \ {i} be
a subset of masked indices. If for some sequence of tokens yU we have pi(· | yU ,x−M) = pi(· |
x−M), then for any W ⊂ U it holds that pi(· | yW ,x−M) = pi(· | x−M).

This assumption represents a balanced compromise between complete independence and simple
contextual independence. It states that if a set of positions U does not influence the prediction at
position i, then any subset W ⊂ U will also not influence that prediction. This property ensures
that independence tests conducted at any stage of our recursive algorithm remain valid throughout
all subsequent stages. Section B provides a justification for why this assumption is reasonable for
transformer-based architectures and empirical evidence that it approximately holds in practice.

3.2 EFFICIENT SUBSET DISCOVERY

Under Assumption 3.3, we can construct the set R in O(log |M |) parallel steps. If there is at least
one masked position (i.e. |M | ≥ 1), the recursive algorithm starts with S = M and proceeds as
follows (see Figure 1 for an illustration of one iteration):

At each recursive call, its input is a (confidence) 2 ordered subset of masked candidates S =
(s1, s2, . . . , s|S|) ⊆ M . The base case for the recursion is when |S| ≤ 1, in which case the proce-
dure returns S. For larger sets, the algorithm proceeds as follows:

1Eventually we will be ordering these via confidence metrics ϕi, see Section 3.3.
2See Section 3.3 for details

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1. Divide: The ordered input set S is split into two balanced halves: the “anchor” set
S0 = (s1, . . . , sp) and the “test” set S1 = (sp+1, . . . , s|S|), where p is a split point of
the designer’s choice.

2. Prune (Filter): The “test” set S1 is pruned based on its dependency on the candidates yS0 .
For each index i ∈ S1, we compute its new conditional distribution and measure the change
from the baseline using the KL divergence:

εi := DKL

(
pi(· | x−M ,yS0)

∥∥ pi(· | x−M)
)

A filtered set S′
1 is then formed by retaining only those indices for which the change is

below a threshold ε > 0: S′
1 = {i ∈ S1 | εi < ε}.

3. Recurse: The algorithm then makes two independent (parallel) recursive calls: one on the
“anchor” set S0 and another on the filtered “test” set S′

1 and obtains R0 and R1 respectively.

4. Combine: The final result R for the input set S is the union (ordered sum) of the outputs
R := R0 ⊔ R1 from the two recursive calls above. Note that by construction any token in
R1 is contextually independent of S0 and by Assumption 3.3, it is contextually independent
of subset R0 ⊂ S0.

Choosing p = ⌊|S|/2⌋ for each recursive iteration, we ensure that the recursion depth is O(log |M |).
In the next section, we discuss how to execute all calls at the same recursion level using a single
network evaluation, thereby achieving O(log |M |) cost per round.

3.3 CONFIDENCE ALIGNMENT AND IMPLEMENTATION DETAILS

This section addresses two key implementation aspects: (i) incorporating confidence-based prioriti-
zation into our recursive algorithm to maintain generation quality, and (ii) transforming the recursive
procedure into an efficient iterative implementation.

Confidence-Ordered Splits. At each recursive step, the candidate set S is split into S0 and S1, and
positions in S1 are pruned if they exhibit strong dependence on S0. By sorting the initial candidate
set S in descending order of confidence (see Section 2 for options), ϕs1 > ϕs2 > · · · > ϕs|S| , we
ensure that S0 always contains tokens with at least median-level confidence. Consequently, tokens
pruned from S1 necessarily have lower confidence than those retained in S0. In fact, this also ensures
that during each unmasking step, the highest-confidence token in M is always included in the final
set R, since it will never be pruned.

Binary Encoding of Recursive Calls. To enable parallel computation, we transform our recursive
algorithm into an efficient iterative procedure. At each level of the recursion tree, we combine all
independence tests into a single, parallel model evaluation.

To see how this might be done, suppose at some recursion level we test pairs
(S1

0 , S
1
1), (S

2
0 , S

2
1), . . . (S

k
0 , S

k
1), by construction, these sets form a partition of a subset of M . We

propose, instead of performing these tests independently, to test all “test” tokens against the union of
all “anchor” sets

⊔
ℓ S

ℓ
0. Then, Assumption 3.3 ensures that passing this combined test implies pass-

ing the individual tests. Formally, for any ℓ and any i ∈ Sℓ
1 if piθ(· | y

⊔
Sℓ
0 ,x−M) = piθ(· | x−M),

then it also satisfies piθ(· | ySℓ
0 ,x−M) = piθ(· | x−M).

Binary Representation of Recursive Splits.

We now describe how this idea can be employed to convert our recursive algorithm to an iterative
one. The recursive splits are determined by each token’s position in the confidence-ordered list
M . This allows us to pre-determine all splits by assigning a binary code to each position. More
precisely, we assign each position i ∈ {1, . . . , |M |} a binary representation bin(i) with ⌈log2 |M |⌉
bits, padded with zeros if necessary. Tracking this binary encoding allows us to identify the path of
each node in the recursion tree.

At recursion level b, we have 2b nodes, with each node indexed by a unique binary prefix u ∈ {0, 1}b
corresponding to the subset Su = {i ≤ |M | : prefixb[bin(i)] = u}, which is then partitioned into
“anchor” (Su0) and “test” (Su1) subsets (see Figure 1 (Left) for an example).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 9

Step 18

Figure 2: Left: Unmasking efficiency for various prompt types vs number of unmasked tokens.
Right: Visualization of the denoising process at steps 9 and 18 for a sample prompt (“What should
I do at the end of the internship.”). Tokens are color-coded: green tokens are accepted by PUNT for
parallel unmasking in the current step, red tokens are rejected, and uncolored tokens were unmasked
in previous steps. See Appendix D for more examples of intermediate denoising steps.

We would like to combine all 2b tests at recursion level b into a single test. To do so, we define
a global partition for level b based on the b-th bit of the binary encoding. Bb = {i ∈ [|M |] :
the b-th bit of bin(i) = 0}.
Starting with R = M , each round b can now partition the current set using the predefined binary
split Bb: the “anchor” tokens (S0 = R ∩Bb) and “test” tokens (S1 = R \Bb). All tokens in S1 are
tested for dependence on yS0 in a single forward pass, dependent tokens are removed from R. After
all log |M | rounds complete, the remaining set R contains only contextually independent tokens.

The resulting procedure, summarized below (and in Algorithm 1), requires only O(log |M |) for-
ward evaluations of the model per denoising step and guarantees that the returned set R consists of
contextually independent, high-confidence tokens that can be unmasked in parallel.

Iterative Algorithm. Given confidence-ordered masked tokens M = {m1,m2, . . . ,m|M |} where
ϕm1 ≥ ϕm2 ≥ · · · ≥ ϕm|M| , we initialize R←M and execute ⌈log2 |M |⌉ iterations.

For each iteration b ∈ {1, . . . , ⌈log2 |M |⌉}:

1. Test: Partition R into anchor tokens S0 = R ∩Bb and test tokens S1 = R \Bb.
2. Prune: For each j ∈ S1, compute the KL divergence dj = DKL(p

j(· | x−M) ∥ pj(· |
x−M ,yS0)) in a single forward pass.

3. Update: Remove dependent tokens from R: R← R \ {j ∈ S1 : dj > ε}.

The final set R contains tokens that can be unmasked in parallel without interfering with each other.
Remark 3.4 (Conservative but Parallel Testing). The iterative implementation uses batched indepen-
dence tests: tokens at each tree level are tested against the union of all anchor tokens at that level, not
just their specific recursive subset. This stricter condition enables full parallelization. Empirically,
this conservative approach maintains strong performance on long-context tasks while significantly
reducing runtime.

3.4 ALGORITHMIC PROPERTIES AND INDEPENDENCE STABILITY

This section discusses PUNT’s properties for text generation and justifies Assumption 3.3.

Adaptive Unmasking. Our sampler exhibits emergent hierarchical generation, first establishing
high-level structure (e.g., paragraphs, headings) before filling in details, as shown in Fig. 2 (right).
As can be seen, at step 9, the model has already generated the main headings and subheadings of
the article, while the rest of the text remains masked. By step 18, the model has begun filling in the
details under each heading.

We hypothesize this behavior stems from the conditional independence between high-level struc-
tural tokens and fine-grained details. Because the latter exert minimal influence on the former, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Parallel sampling error (equation 3). Left: Average error for different samplers com-
pared to number of forward evaluations (NFEs). Right: Median together with confidence intervals
(Q5, Q95) of the error for PUNT samplers with different ε as a function of the number of previously
revealed tokens. Note that Q5 remains below 10−3 across all positions.

structural tokens pass the independence tests in PUNT’s filtration stage and are unmasked early. A
formal investigation of this phenomenon is left for future work.

This hierarchical generation has a cascading effect. Once revealed, high-level tokens act as contex-
tual anchors, partitioning the text into conditionally independent sections. This allows the sampler
to unmask tokens in different sections in parallel, adapting its denoising speed to the task’s inherent
structure. As shown in Fig. 2 (left), this results in different performance profiles for various prompts.

Independence Stability of Transformers. Assumption 3.3 (Independence Stability) is a direct
consequence of the Transformer architecture’s attention mechanism. In Transformers, the influence
of one token on another is governed by attention weights; if the attention from position i to position
j is zero, then position j has no direct influence on the representation at position i.

This relationship between attention and influence allows us to connect conditional independence to
attention scores. Specifically, we argue that a token yi is conditionally independent of a set of tokens
yV given the remaining tokens x−M if and only if the total attention from position i to all positions
in R is negligible across all layers and heads, i.e.,

The conditional distribution piθ(· | yR,x−M) equals piθ(· | x−M) if and only if3 the cumulative
attention weight from position i to all positions in R is negligible.

This property directly implies Independence Stability. Since attention weights are non-negative, if
the attention from position i to a set R is negligible, the attention to any subset U ⊂ R must also be
negligible. A detailed justification is provided in Appendix B.

4 EXPERIMENTS

We evaluate our proposed sampler, PUNT, on a number of natural language tasks. Our empirical
results validate the effectiveness of our approach and support the attention hypothesis introduced
in Appendix B. We evaluate: (i) PUNT’s performance on long-form text generation tasks such as
MTBench; (ii) PUNT’s effectiveness on short-answer benchmarks for mathematics and code gener-
ation; (iii) The error introduced by parallel token sampling and its relationship to the exploration rate
ε; (iv) Deviation in empirical attention patterns (supporting theoretical independence assumptions).

Experimental Setup. We evaluate PUNT on two powerful, open-source large language models:
Dream 7B (Ye et al., 2025a) and LLaDA 1.5 (Zhu et al., 2025a).

Baselines. We compare PUNT against three strong, training-free baseline samplers. These base-
lines include: (i) standard top-k sampling; (ii) the EB-sampler (Patel et al., 2025); and (iii) the
Dilated-sampler (Luxembourg et al., 2025). Note that all the samplers are implemented for a given
context length |M |, in a non-semi-autoregressive manner and the exact parameter configurations
are provided in Appendix C.3.

3Except for padding end-of-sequence(EOS) tokens, see details in Appendix B

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

TextTextText

Figure 5: IFEval and MTBench performance of PUNT compared to baselines on Dream 7B. Bench-
mark specific scores (higher is better) vs mean number of forward passes.

We also evaluate the performance of PUNT on generation in a structured biological domain. Specif-
ically, we look at unconditional generation of de novo membrane proteins using MemDLM (Goel
et al., 2024), a state-of-the-art protein language model. Full details are provided in Appendix C.5.

We provide additional analysis in the appendices, including performance-vs-ϵ plots (Appendix E),
experiments with varying ϵ schedules across generation trajectories (Appendix F), and comparisons
and discussion with APD (Appendix C.4), proposed by Israel et al. (2025).

4.1 ALIGNMENT BENCHMARKS

We evaluate PUNT on the instruction-following benchmarks MTBench (Bai et al., 2024) and IFE-
val (Zhou et al., 2023). MTBench comprises 80 tasks across diverse domains—including creative
writing, logical reasoning, and code generation—providing a robust evaluation framework for model
performance. Each task consists of two turns, with the second turn depending on the output of the
first. IFEval complements this by specifically measuring instruction-following accuracy through a
collection of carefully designed test cases that evaluate precise adherence to complex instructions.
Full benchmark details are provided in Appendix C.1. As shown in Figure 5, PUNT consistently
outperforms all baseline samplers on both benchmarks, achieving higher scores across both metrics
(inst level loose acc and mean score; higher is better). Importantly, it delivers these gains
while requiring substantially fewer forward evaluations (NFEs).

Figure 4: MBPP performance of PUNT
compared to baselines on Llada. MBPP
pass@1 (higher is better) vs mean num-
ber of forward passes.

Note on NFE regimes: We see that PUNT’s primary ad-
vantage lies in the low-to-mid NFE regime on long-form
generation tasks. Since each PUNT iteration requires
⌈log2 |M |⌉ forward passes for independence testing (e.g.,
10 passes for 1024 tokens), the method excels when the
NFE budget allows for meaningful independence check-
ing while still providing efficiency gains. At very high
NFE budgets (e.g., NFE ≥ 400 on MT-Bench), curves
may converge or cross as fixed-geometry schedulers like
Dilated can afford many denoising steps, while PUNT’s
overhead from independence testing becomes proportion-
ally larger.

4.2 SHORT-ANSWER BENCHMARKS

We evaluate PUNT across diverse benchmarks spanning
mathematical reasoning (GSM8K (Cobbe et al., 2021))
and code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)).

As expected, PUNT underperforms on short-answer tasks with limited context since it requires
multiple forward passes for complete generation. For instance, in the MBPP benchmark on LLaDA
with temperature 0.7 (see Fig. 4), PUNT’s performance aligns closely with EB when evaluated
by the number of forward evaluations (NFE). However, when measured by the number of denoising
steps—that is, the number of algorithmic steps, where each step may involve multiple forward passes
in parallel—PUNT outperforms other samplers. A simple fix could be to use PUNT only for the
latter part of the generation, but we leave this for future work. Similar trends are observed across

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

other benchmarks in this group. Results comparing all samplers, models, and hyperparameters
appear in Appendix C.3.

4.3 PUNT SAMPLER ERROR ANALYSIS

We empirically quantify the parallel sampling error on the LLaDA model. For this, we generate
1024-token responses for MTBench (Bai et al., 2024) with exploration rates ε ∈ {0.01, . . . , 0.32}.
Within each parallel generation step, tokens are ordered by confidence before sampling. For the
i-th token at position ri unmasked in parallel, we compute the error between the true conditional
distribution and our independence approximation:

δriKL = DKL

(
priθ (· | x−M ,yR<i)

∥∥ priθ (· | x−M)
)
. (3)

This KL divergence quantifies the information lost by assuming token ri is conditionally indepen-
dent of other tokens unmasked in the same step, yR<i . As shown in Fig. 3, PUNT achieves a low
parallel sampling error while maintaining a small NFE compared to other samplers. Furthermore,
the parallel decoding error, δKL, remains robustly below the ε threshold, irrespective of the number
of tokens previously revealed in the step.

5 RELATED WORK

Our work builds on recent advances in discrete diffusion models and inference-time planners.

Masked Diffusion Models (MDMs). Discrete diffusion models (Austin et al., 2023) offer a non-
autoregressive alternative for text generation. Training objectives based on score matching (Lou
et al., 2024) and masked language modeling (Sahoo et al., 2024) have enabled large-scale models
like LLaDA (Nie et al., 2025b) and others (Nie et al., 2025a). Commercial implementations include
Gemini Diffusion (Google DeepMind, 2025) and Mercury (Inception Labs, 2025). MDMs face two
key limitations: compounding errors from parallel unmasking and inefficient KV caching. We ad-
dress the former by identifying token sets for safe parallel unmasking, which minimizes interference
and improves both efficiency and quality.

Inference-Time Planners for Acceleration. Efficient inference scheduling remains MDMs’ cen-
tral challenge. Various training-free planners aim to minimize function evaluations (NFEs) while
maintaining generation quality.

Confidence and Entropy Gating. Confidence-based scheduling iteratively unmasks tokens with high-
est model confidence (or lowest entropy) (Sahoo et al., 2024). The EB-Sampler extends this by
dynamically unmasking variable-sized token sets whose aggregate entropy stays below threshold γ
(Patel et al., 2025). While adaptive, these methods remain conservative, ignore token independence,
and typically unmask only small subsets.

Remasking and Refinement. Several methods correct parallel decoding errors through remasking.
ReMDM (Wang et al., 2025) iteratively remasks and updates generated tokens. Path-Planning (P2)
(Peng et al., 2025) and DDPD (Liu et al., 2025) separate inference into planning (selecting tokens
to update/remask) and denoising stages. While improving quality, these approaches increase NFE
through corrective passes.

Spacing Schedulers. These fixed-geometry (non-adaptive) methods enforce spatial separation be-
tween parallel unmaskings. Dilated scheduling unmasks non-adjacent token groups for improved
stability (Luxembourg et al., 2025). Halton-based schedulers use low-discrepancy sequences for
uniform spacing (Besnier et al., 2025). Block Diffusion balances AR and parallel generation by
processing contiguous spans (Arriola et al., 2025).

Analysis of Ordering and Scheduling. Recent theoretical and empirical work has deepened the com-
munity’s understanding of these schedulers. Kim et al. (2025) study the impact of token ordering,
showing that adaptive inference can sidestep computationally hard subproblems. Park et al. (2024)
focus on optimizing the temporal schedule (the number and placement of diffusion steps) to reduce
NFEs. Others have explored MDLMs for complex reasoning, where planning is critical (Ye et al.,
2025b), and for specialized domains like code generation (Gong et al., 2025).

Comparison to Autoregressive Accelerators. While autoregressive models like LLaMA-3
(Grattafiori et al., 2024) are accelerated by speculative decoding (Leviathan et al., 2023; Xia et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2022), this approach remains fundamentally sequential. In contrast, our method reduces NFEs by
leveraging the non-sequential, any-order generation capabilities of MDMs. Orthogonal optimiza-
tions like KV caching are applicable to both paradigms (Ma et al., 2025; Hu et al., 2025).

6 CONCLUSION AND FUTURE WORK

We introduced PUNT, a training-free sampler that looks to resolve the conflict between speed and
quality in MDMs by efficiently identifying sets of approximately conditionally independent tokens
for parallel unmasking. This enables a significant reduction in the number of model evaluations
needed for generation while preserving output quality. We provided a conceptual justification for its
applicability to transformer architectures and validated its effectiveness on mathematics, code, and
long-form text benchmarks. We also observe that PUNT induces an emergent hierarchical genera-
tion strategy: coarse paragraph structure is established early, followed by localized refinement.

Future work can extend this approach in several directions: (i) developing adaptive or curriculum-
style schedules for the independence threshold ϵ to balance early exploration with late precision; (ii)
distilling PUNT into a student model that predicts contextually independent reveal sets in a single
forward pass; and (iii) combining PUNT with orthogonal efficiency techniques such as KV-caching,
to further shift the accuracy–compute Pareto frontier.

REFERENCES

Miguel Arriola, Aaron Gokaslan, James T. Chiu, Zhilin Yang, Zichao Qi, Jialiang Han, Subhrajit S.
Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive and
diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Jonathan Terry, Quoc V Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. arXiv preprint arXiv:2107.03006, 2023.

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large
language models in multi-turn dialogues. arXiv preprint arXiv:2402.14762, 2024.

Victor Besnier, Mickael Chen, David Hurych, Eduardo Valle, and Matthieu Cord. Halton scheduler
for masked generative image transformer, 2025. URL https://arxiv.org/abs/2503.
17076.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Wojciech Zaremba, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Shrey Goel, Vishrut Thoutam, Edgar Mariano Marroquin, Aaron Gokaslan, Arash Firouzbakht,
Sophia Vincoff, Volodymyr Kuleshov, Huong T Kratochvil, and Pranam Chatterjee. Memdlm:
De novo membrane protein design with masked discrete diffusion protein language models. arXiv
preprint arXiv:2410.16735, 2024.

Shuyang Gong, Ruiqi Zhang, Linjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and Yizhe
Zhang. Diffucoder: Understanding and improving masked diffusion models for code generation.
arXiv preprint arXiv:2506.20639, 2025.

Google DeepMind. Gemini diffusion. https://deepmind.google/models/
gemini-diffusion/, 2025.

10

https://arxiv.org/abs/2503.17076
https://arxiv.org/abs/2503.17076
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew Grattafiori, Abhimanyu Dubey, Abhishek Jauhri, Abhishek Pandey, Abhishek Kadian, An-
thony Al-Dahle, Ariel Letman, Ayush Mathur, Armin Schelten, Austin Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Zihan Hu, Jiarui Meng, Yogesh Akhauri, Mohamed S. Abdelfattah, Jae-sun Seo, Zongyang Zhang,
and Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and
guided diffusion. arXiv preprint arXiv:2505.21467, 2025.

Inception Labs. Mercury. https://www.inceptionlabs.ai/introducing-mercury,
2025.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Jaehoon Kim, Kunal Shah, Vasileios Kontonis, Sham Kakade, and Sham Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Sulin Liu, Juno Nam, Andrew Campbell, Hannes St”ark, Yilun Xu, Tommi Jaakkola, and Rafael
Gómez-Bombarelli. Think while you generate: Discrete diffusion with planned denoising. arXiv
preprint arXiv:2410.06264, 2025.

Alex Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2024.

Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed: Dilated scheduling for
masked diffusion language models, 2025. URL https://arxiv.org/abs/2506.19037.

Xiaoyu Ma, Rui Yu, Guanchu Fang, and Xuan Wang. dkv-cache: The cache for diffusion language
models. arXiv preprint arXiv:2505.15781, 2025.

Shengqi Nie, Fenglin Zhu, Chengpeng Du, Tianyu Pang, Qi Liu, Gang Zeng, Min Lin, and Chen-
guang Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2025a.

Shengqi Nie, Fenglin Zhu, Zhen You, Xin Zhang, Jing Ou, Jing Hu, Jun Zhou, Yichang Lin, Ji-Rong
Wen, and Chenguang Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025b.

Yong-Hyeok Park, Chin-Hui Lai, Shota Hayakawa, Yuki Takida, and Yuki Mitsufuji. Jump
your steps: Optimizing sampling schedule of discrete diffusion models. arXiv preprint
arXiv:2410.07761, 2024.

Soham Patel, Zander Bezemek, Fei Z. Peng, J. Rector-Brooks, S. Yao, A. J. Bose, A. Tong, and
P. Chatterjee. Accelerated sampling from masked diffusion models via entropy bounded un-
masking. arXiv preprint arXiv:2505.24857, 2025. URL https://arxiv.org/abs/2505.
24857.

Fan Z. Peng, Zoran Bezemek, Sachin Patel, Jason Rector-Brooks, Shunyu Yao, Allen Tong,
and Pradeep Chatterjee. Path planning for masked diffusion model sampling. arXiv preprint
arXiv:2502.03540, 2025.

11

https://www.inceptionlabs.ai/introducing-mercury
https://arxiv.org/abs/2506.19037
https://arxiv.org/abs/2505.24857
https://arxiv.org/abs/2505.24857

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
January 2025. URL http://arxiv.org/abs/2412.15115. arXiv:2412.15115 [cs].

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models, 2024. URL https://arxiv.org/abs/2406.07524.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking dis-
crete diffusion models with inference-time scaling, 2025. URL https://arxiv.org/abs/
2503.00307.

LI Wenran, Xavier Cadet, Cédric Damour, LI Yu, Alexandre de BREVERN, Alain Miranville, and
Frédéric Cadet. Benchmark of diffusion and flow matching models for unconditional protein
structure design. In ICML 2025 Generative AI and Biology (GenBio) Workshop, 2025.

Han Xia, Tao Ge, Peng Wang, Shuming-Qiu Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation. arXiv preprint
arXiv:2203.16487, 2022.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025a.

Jiayi Ye, Jianfei Gao, Shiyang Gong, Liyiming Zheng, Xiang Jiang, Zhen Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint
arXiv:2410.14157, 2025b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025a.

Yifei Zhu, Xue Wang, Stéphane Lathuilière, and Vassileia Kalogeiton. Di[m]o: Distilling masked
diffusion models into one-step generator. arXiv preprint arXiv:2503.15457, 2025b. URL
https://arxiv.org/abs/2503.15457.

12

http://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2503.00307
https://arxiv.org/abs/2503.00307
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2503.15457

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A ORGANISATION OF APPENDIX

The rest of the appendix is organized as follows. In Appendix B, we justify Assumption 3.3 by
demonstrating that it holds for Transformer-based masked language models, which is a direct con-
sequence of the Transformer’s attention mechanism. In Appendix C, we provide additional experi-
mental details and results. In Appendix C.5, we provide some preliminary experiments on a protein
masked diffusion model. In Appendix D, we provide two examples of text that is generated by
PUNT.

Remark on Notation: In addition to standard notation as defined in the paper, in the appendix, we
will also use upper-case bold letters (such as A) to denote tensors. We will use lowercase and
unbolded letters to denote scalars (such as Aij). In addition, we may have uppercase letters (such as
Q,K, V) annotations to help annotate different matrices. This is to accommodate standard notation
used in the literature.

B INDEPENDENCE STABILITY

In this section, we demonstrate that Assumption 3.3 holds for Transformer-based masked language
models, which is a direct consequence of the Transformer’s attention mechanism. Let us start with
recalling the assumption.

Assumption B.1. (Independence Stability) Let i ∈M be a masked index, and let U ⊆M \ {i} be
a subset of masked indices. If for some sequence of tokens yU we have pi(· | yU ,x−M) = pi(· |
x−M), then for any W ⊂ U it holds that pi(· | yW ,x−M) = pi(· | x−M).

Next, we recall the design of attention mechanism and discuss prior works

Attention-Based Independence. In transformers Vaswani et al. (2023), the attention weights con-
trol information flow between positions. For an input sequence X = (X1, . . . ,XL) ∈ RL×din , each
attention head computes query, key, and value vectors for every position:

Qi = WQXi, Ki = WKXi, Vi = WV Xi,

where WQ,WK ∈ Rdk×din and WV ∈ Rdv×din are learned weight matrices.

The attention mechanism then computes pairwise attention scores between all positions through
scaled dot products:

A = softmax

(
QK⊤
√
dk

)
∈ RL×L,

where Q,K ∈ RL×dk stack the query and key vectors across all positions. The attention weights Aij

quantify how much position j influences position i, computed via normalized dot-product similarity.
The output of one head combines value vectors weighted by these attention scores: headh = AV ∈
RL×dv . Finally, outputs of different heads are stacked to get, Zi = concat

(
headi

1, . . . ,head
i
H

)
.

The output of the layer Y = (Y1, . . . ,YL) ∈ RL×dout is calculated as Yi = F (Zi) by application
to each of the coordinates of MLP together with normalization layers and skip connections.

Crucially, the attention weights Aij directly control information flow: when Aij = 0, position
j’s value vector Vj contributes nothing to position i’s output. The model’s final predictions are
obtained by applying softmax to the last layer’s output: piθ(· | x−M) := softmax(Yi). Therefore,
piθ(· | x−M) = piθ(· | yR,x−M) holds if and only if Yi remains unchanged when tokens at positions
R are revealed.

Stability of Unmasked Tokens. Recent works Hu et al. (2025); Ma et al. (2025) have demon-
strated that during iterative inference, the query, key, and value vectors (Q−M , K−M , V−M) for
already unmasked tokens, remain stable and can be cached for computational efficiency.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 6: Joint distribution of δKL – the sampling error and δA – the total attention to the previous
tokens revealed in parallel.

Figure 7: Difference between attention statistics for pri(· | x−M ,yR<i) relative to the same statistics
computed while evaluating pri(· | x−M).

Why Independence Stability Holds. Let us return to Assumption 3.3. First, we discuss padding
end-of-sequence (EOS) tokens, which are used to fill the unused suffix reserved for an answer. By
design, if there is an EOS token in x−M to the left of position i then pi(EOS|x−M) = 1 and the
assumption automatically holds.

For regular tokens, we note that the stability property implies that in both cases, when we condition
on (yU ,x−M) or (x−M), the representations (Q−M , K−M , V−M) stay the same, while the main
change happens for tokens in U .

The stability property allows us to concentrate on the information flow between position i and
tentatively unmasked subset yU , which we recall governed by attention weights vector AiU :=(
Ai,u1 , . . . , Ai,u|U|

)
. Specifically, we argue that a token yi is conditionally independent of a set of

tokens yU given the remaining tokens x−M if and only if the total attention from position i to all po-
sitions in U is negligible across all layers and heads, or more formally, if ∥AiU∥1 =

∑
u∈U Aiu < δ

for some small δ > 0.

Now consider any subset W ⊂ U . The non-negativity of attention weights (a direct consequence of
the softmax operation) yields the inequality:

∥AiW ∥1 =
∑
w∈W

Aiw ≤
∑
u∈U

Aiu = ∥AiU∥1 < δ

This demonstrates that if position i pays negligible attention to the entire set U , it necessar-
ily pays negligible attention to any subset W ⊂ U . Consequently, the conditional distribution
at position i remains approximately invariant when conditioning on tokens at positions in W :
piθ(· | yW ,x−M) ≈ piθ(· | x−M). This relationship directly corresponds to Assumption 3.3 (Inde-
pendence Stability).

Empirical Validation We use the same setup as was used in Section 4.3, as a source of prompts,
we use the first round requests from MTBench, and sample the responses using the PUNT algorithm
with different thresholds ε = {0.01, 0.04, 0.16, 0.64}.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For a step of the PUNT sampler with threshold ε, let R denote the set of tokens unmasked at this
step, sorted according to the confidence, yR denotes the set of sampled candidates, and x−M denotes
the set of already revealed tokens.

As we demonstrated at Fig. 3 sampled tokens satisfy

δKL = DKL

(
pri(· | x−M ,yR<i)

∥∥ pri(· | x−M)
)
< ε.

For each token ri, we compute the total attention from token ri to previously revealed tokens R<i

for all heads of the last layer, i.e.

δA = ∥AriR<i∥1 =
∑
j<i

Arirj

and plot (Fig. 6) the distribution of pairs (δKL, δA) for different thresholds.

We also compute the change of the layer output Yri and how it changes when we condition
on yR<i . We use the normalized difference metric to compute the change, which is defined as
normalized difference(a, b) := ∥a− b∥2/∥a∥2, and plot (Fig. 7) the distribution of the change.
Finally, similar to unmasked tokens, we observed that representations Qri , Kri , Vri of masked to-
ken ri in the attention layer also stays stable when we additionally condition on previously revealed
tokens yR<i .

Algorithm 1 PUNT (Parallel Unmasking with Non-influence Tests)

1: Input: masked sequence x, vector of candidates y, threshold ε
2: Output: certified set R ⊆M to unmask in parallel
3: Sort masked indices w.r.t. confidence heuristic ϕ in decreasing order
4: Construct M , the set of all masked indices.
5: R←M
6: Let Bb := {i ∈ [|M |] : the b-th bit of bin(i) = 0}.
7: for b in [log |M |] do
8: S0 ← R ∩Bb; (positions to tentatively unmask)
9: S1 ← R \Bb; (positions to check for dependence)

10: for each j ∈ S1 do
11: dj ← DKL

(
pj(· | x−M)

∥∥ pj(· | x−M ,yS1)
)

12: if dj > ε then
13: R← R \ {j}
14: end if
15: end for
16: end for
17: return R

C IMPLEMENTATION AND EXPERIMENTS

This section evaluates the proposed planner PUNT (Algorithm 1) across diverse sequence generation
tasks. All experiments are conducted on A100 GPUs with 40GB memory.

PUNT offers a clear win in step efficiency without compromising on quality. However, this is not
indicative of the underlying compute used, which is better captured by the number of forward passes
(NFE). In terms of NFE, it performs competitively, and particularly on long-sequence tasks, it often
surpasses the baselines. We leave further per-step optimisation for future work.

C.1 EXPERIMENTAL SETUP

We evaluate two state-of-the-art discrete diffusion models for natural language: LLaDA-1.5 (Zhu
et al., 2025a) and Dream-v0-Instruct-7B (Ye et al., 2025a) (referred to as Llada and Dream, re-
spectively). In this section, we detail the experimental setup, including tasks, datasets, evaluation
metrics, and baseline methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Experiment NumFewshot max length

GSM8K 4 512
HumanEval 0 512
MBPP 3 512
IFEval 0 1024
MT-BENCH - 1024

Table 1: Experimental configuration for each benchmark task.

TASKS AND DATASETS

We assess PUNT’s performance on a variety of sequence generation tasks. The evaluation relies on
the following standard public datasets and their corresponding protocols:

• Math word problems and formal math: GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021)

• Code generation: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021).
• Instruction-following evaluation: IFEval (Zhou et al., 2023)
• Open-ended question benchmarks: MT-Bench (Zheng et al., 2023).

EVALUATION METRICS AND CONFIGURATION

We use task-specific evaluation metrics and measure efficiency in terms of the number of forward
evaluations and the number of iterations PUNT takes.

Quality Metrics:

• Math problems: Match accuracy (GSM8K)
• Code generation: Pass@1 success rate (HumanEval, MBPP)
• Instruction following: Strict/Loose prompt/instruction adherence (IFEval)
• Open-ended generation: GPT-4o scoring 1-10 (MT-Bench)

Efficiency Metrics:

• Number of network function evaluations (NFE) per sequence
• Number of generation steps (PUNT-specific)

BASELINE METHODS

We compare against representative training-free schedulers with the following parameters:

• Top-k Sampler with k = 1, 2, 3, 4, 5, 6;

• EB-Sampler (entropy-bounded unmasking) with ϵ = 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 4.0 (Pa-
tel et al., 2025);

• Geometry-aware spacing: dilated with log window size in {3, 4, 5, 6, 7} (Luxembourg
et al., 2025),

Each of these baselines utilizes a confidence score to rank positions by certainty. Different options
for the confidence score are described below.

CONFIDENCE SCORING STRATEGIES

All confidence scoring strategies operate on the model’s output probability distribution. For each
position t in a sequence, the model produces logits lb,t,v for every token v in the vocabulary. These
are converted into a probability distribution using the softmax function:

pb,t,v =
elb,t,v∑V

v′=1 e
lb,t,v′

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

From this distribution, we compute a scalar confidence score sb,t that quantifies the model’s certainty
at that position. A higher score indicates greater confidence, prioritizing that position for earlier
unmasking. To define the scoring strategies, we use the following notation:

• pb,t,(k): The k-th largest probability at position t, such that pb,t,(1) ≥ pb,t,(2) ≥ · · · ≥
pb,t,(V).

• yb,t: The token actually sampled at position t.

Negative Entropy

sb,t =

V∑
v=1

pb,t,v log pb,t,v = −H(pb,t) , H(pb,t) = −
V∑

v=1

pb,t,v log pb,t,v.

This is the negative Shannon entropy. Values lie in
[
− log V, 0

]
. Scores closer to 0 correspond to

more peaked (certain) distributions.

Top Probability
sb,t = max

v
pb,t,v = pb,t,(1).

A simple peak-confidence heuristic. Ignores how close competitors are.

Top Probability Margin
sb,t = pb,t,(1) − pb,t,(2).

Measures local ambiguity between the two most likely tokens. Larger margin⇒ clearer preference.

Positional Schedule
sb,t = t.

A deterministic curriculum ignoring model uncertainty (e.g. left-to-right). Negate or reverse indices
if the opposite order is desired.

C.2 IMPLEMENTATION DETAILS

Our implementation of PUNT follows the procedure outlined in Algorithm 1. To ensure a fair
comparison, both PUNT and the baseline methods use the same confidence scoring strategy for
each model. Specifically, we use the top probability margin for LLaDA and negative entropy for
Dream.

SAMPLING AND TEMPERATURE SETTINGS

All methods employ nucleus sampling with nucleus mass set to 0.9. We present results for two
temperature settings: 0.1 (low temperature, focused sampling) and 0.7 (higher temperature, more
diverse sampling) to evaluate robustness across different generation regimes.

END-OF-SEQUENCE HANDLING

To prevent premature termination, we down-weight positions corresponding to end-of-sequence to-
kens when early termination is undesirable: If yb,t equals a special end-of-sequence token EOS and
early termination is undesirable, enforce

sb,t ← Cneg, Cneg ≪ 0,

to deprioritize revealing that position.

C.3 RESULTS AND ANALYSIS

We present our results grouped by sequence length, as this factor significantly impacts the relative
performance of the scheduling methods.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) GSM8K results at temperature 0.1

(b) GSM8K results at temperature 0.7

Figure 8: GSM8K performance comparison across different temperature settings showing
NFE/steps vs match accuracy (flexible-extract filter)

SHORT-SEQUENCE BENCHMARKS

We evaluate PUNT on GSM8K, HumanEval, and MBPP —all tasks with sequences shorter than
1024 tokens (see Table 1). These benchmarks test mathematical reasoning and code generation
capabilities under constrained generation lengths.

Results: When measured by the number of generation steps, PUNT consistently outperforms all
baseline methods across both temperature settings (0.1 and 0.7). However, when evaluated by NFEs
per sequence, PUNT shows competitive but not dominant performance. PUNT’s strength lies in
reducing the number of sequential generation steps through aggressive parallelization, but each step
may require more network evaluations due to its comprehensive independence testing.

LONG-SEQUENCE BENCHMARKS

For longer sequences (≥ 1024 tokens), we evaluate on MT-Bench and IFEval. These tasks require
sustained coherence and complex instruction following over extended generation windows.

MT-Bench Results: MT-Bench consists of open-ended questions spanning creative writing, rea-
soning, and coding. Each question includes two rounds, where the second builds upon the first
response. Answers are evaluated by GPT-4o using a 1-10 scale. All experiments are carried out with
temperature 0.7.

Figure 11 show that PUNT excels particularly when NFE budgets are severely constrained. In low-
NFE regimes, PUNT significantly outperforms all baseline methods. As the NFE budget increases,
dilated sampling begins to show competitive performance, but PUNT maintains its characteristic
stability advantage.

IFEval Results:

The instruction-following evaluation tests adherence to specific formatting and content constraints.
PUNT demonstrates consistent accuracy across both NFE and step-based metrics, again showing its
reliability advantage.

PUNT’s results on IFEval demonstrate its stability across different computational budgets. As shown
in Figures 12 and 13, it consistently leads in generation steps at both temperatures, without compro-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) HumanEval results at temperature 0.1

(b) HumanEval results at temperature 0.7

Figure 9: HumanEval performance comparison across different temperature settings showing
NFE/steps vs Pass@1 success rate for both LLaDA and Dream models

(a) MBPP results at temperature 0.1

(b) MBPP results at temperature 0.7

Figure 10: MBPP performance comparison across different temperature settings showing NFE/steps
vs Pass@1 success rate for both LLaDA and Dream models

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Dream model results

(b) LLaDA model results

Figure 11: Performance comparison for MT-Bench across different models showing NFE vs mean
performance

mising accuracy. Additionally, PUNT is more NFE-efficient at lower budgets and remains competi-
tive as the budget increases, pulling ahead at a temperature of 0.7.

C.4 APD EXPERIMENTS

We evaluate the performance of PUNT against Adaptive Parallel Decoding (APD) proposed in (Is-
rael et al. (2025)). APD runs have been added to all benchmarks running on Dream (Ye et al.,
2025a). There are no comparisons on benchmarks running on Llada (Zhu et al., 2025a). APD re-
quires a trained autoregressive model using the same tokenizer as the diffusion model, but no such
compatible autoregressive model exists, as noted in (Israel et al., 2025).

APD requires two NFEs per sampling step: one to draw logits from the diffusion model; a second
full decoding pass from the autoregressive model, to build the target distribution. Both distributions
are sampled using Gumbel-Softmax trick, and tokens are accepted when the samples coincide in
both processes, using a left-to-right decoding scheme. When plotting APD’s accuracy vs NFEs, we
multiplied by 2 the denoising steps used by APD to obtain NFEs: one for the diffusion model and
another to construct the target distribution from the autoregressive model.

All experiments discussed below refer to the Dream architecture. As illustrated in Figs. 12 and 13,
PUNT demonstrates superior performance on IFEval, achieving the highest scores among all meth-
ods. This indicates a strong capability in adhering to complex constraints and instructions. APD
shows the strongest performance in HumanEval Fig. 9a and Fig. 9b. EB and PUNT surpass APD
on MBPP Fig. 10a at temperature 0.1, and APD surpasses them at temperature 0.7. EB surpasses
APD and PUNT on GSM8K at temperature 0.1, see Fig. 8a, and APD surpasses all other samplers
at temperature 0.7, see Fig. 8b.

Dream is a diffusion model whose weights have been initialized from a trained autoregressive model
(Qwen et al., 2025). We hypothesize that Dream retains good left-to-right sampling performance
because of its weight initialization, and APD’s performance benefits because of its strict left-to-right
sampling order when used with Dream. In contrast, all other samplers operate independently of the
diffusion model’s training procedure, allowing them to be applied more broadly.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 12: IFEval results showing NFE/steps vs accuracy, temperature 0.1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 13: IFEval results showing NFE/steps vs accuracy, temperature 0.7.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.5 MASKED DIFFUSION MODELS FOR PROTEINS

Masked diffusion models (MDMs) have demonstrated effectiveness beyond natural language pro-
cessing, particularly in generating biological sequences such as proteins and DNA. To evaluate
PUNT’s performance in a structured biological domain, we conduct experiments on de novo mem-
brane protein design using MemDLM (Goel et al., 2024), a masked diffusion model that finetunes
the state-of-the-art ESM-2 150M protein language model (Lin et al., 2023) with an MDM objective
to generate realistic membrane proteins.

C.5.1 EXPERIMENTAL SETUP

We evaluate PUNT on unconditional protein generation with sequences of up to 1024 amino acids,
comparing against three established training-free schedulers: Top-k sampling, Entropy-Bound (EB)
unmasking, and geometry-aware (Dilated) spacing. All methods employ a temperature of 0.8, to
encourage sequence novelty, and suppress end-of-sequence tokens to promote longer, more realistic
protein sequences. For each sampling strategy, we generate 50 amino acid sequences using the
following hyperparameters:

• PUNT: ε = {0.001, 0.004, 0.01, 0.02, 0.04, 0.08, 0.16}
• Top-k: k = {1, 2, 3, 4, 6, 8, 12}
• EB Sampler: ε = {0.1, 0.5, 1, 5, 10}
• Geometry-aware spacing: logw = {3, 4, 5, 6, 7, 10}

C.5.2 EVALUATION METRICS

We assess PUNT’s performance across two key dimensions critical for practical protein design ap-
plications (Wenran et al., 2025):

Computational Efficiency: As with the natural language benchmarks, we measure the number
of forward evaluations (NFE) and denoising steps required for generation. NFE represents the to-
tal number of model forward passes needed to complete sequence generation, providing a direct
measure of computational cost. Denoising steps (PUNT-specific) track the number of iterative re-
finement steps in the masked diffusion process.

Structural Validity: Generated protein sequences are evaluated for their likelihood to fold into
stable, well-defined three-dimensional structures. We feed each generated amino acid sequence to
ESMFold (Lin et al., 2023) to predict the corresponding 3D protein structure. We then calculate
the mean pLDDT (a per-residue measure of local confidence in the structural predictions) across all
residues in each predicted structure.

C.5.3 RESULTS AND ANALYSIS

Figure 14 plots the mean pLDDT against NFE and number of denoising steps. We find that while the
pLDDT of generated structures is low across denoising methods—which may be attributed in part to
our use of a non-semi-autoregressive generation strategy, or because of the very long sequence length
and absence of multiple sequence alignment in ESMfold making this a challenging domain for 3D
structure prediction—PUNT consistently generates proteins with comparable or marginally higher
pLDDT than the baseline samplers given the same computational budget, with stable performance
across a broad range of NFE. These results suggest that PUNT is able to improve efficiency without
sacrificing structural plausibility, making it well-suited for rapid proposal of candidate proteins for
downstream analysis.

D DENOISING PROCESS

In this section, we show examples of our denoising process starting from a completely masked
response for three prompts from different domains.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 14: Protein generation with MeMDLM: mean pLDDT vs (a) NFE, and (b) denoising steps.

TEXT PROMPT

The first prompt is a story generation prompt: “Compose an engaging story about a recent trip to
Hawaii, highlighting cultural experiences and must-see attractions.”

MATH PROMPT

The second prompt is a math word problem: “Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many clips did Natalia sell in altogether in April and
May?”

PROGRAMMING PROMPT

The third prompt is a programming prompt: “Write a function to find the minimum cost path to
reach (m,n) from (0, 0) for the given cost matrix cost[][] and a position (m,n) in cost[][].”

E PLOTTING PERFORMANCE VS ϵ

In this Figures 15 to 18, we plot the performance of different models as a function of the closeness
parameter ϵ for two different temperature settings: 0.1 and 0.7.

F PERFORMANCE FOR VARYING EPSILON SCHEDULES

In this section, we present the performance of PUNT with varying epsilon schedules compared to
the pruning baseline on the MBPP and IFEval benchmarks. The results are shown in Figures 19, 20,
and 21.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 15: Performance vs ϵ for LLADA at temperature 0.1

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 16: Performance vs ϵ for LLADA at temperature 0.7

Figure 17: Performance vs ϵ for DREAM at temperature 0.1

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 18: Performance vs ϵ for DREAM at temperature 0.7

(a) LLADA, T = 0.1 (b) LLADA, T = 0.7

(c) DREAM, T = 0.1 (d) DREAM, T = 0.7

Figure 19: MBPP Pass@1 vs NFE for varying epsilon schedules. PUNT with a varying epsilon
schedule (blue) vs pruning baseline (orange).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

(a) LLADA Instance-level (b) LLADA Prompt-level

(c) DREAM Instance-level (d) DREAM Prompt-level

Figure 20: IFEval Loose Accuracy vs NFE at temperature 0.1 for varying epsilon schedules.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

(a) Instance-level Loose (b) Prompt-level Loose

(c) Instance-level Strict (d) Prompt-level Strict

Figure 21: DREAM IFEval Accuracy vs NFE at temperature 0.7 for varying epsilon schedules.

37

