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ABSTRACT

For downstream applications of vision-language pre-trained models, there has been
significant interest in constructing effective prompts. Existing works on prompt
engineering, which either require laborious manual designs or optimize the prompt
tuning as a point estimation problem, may fail to describe diverse characteristics
of categories and limit their applications. We introduce a Bayesian probabilistic
resolution to prompt tuning, where the label-specific stochastic prompts are gener-
ated hierarchically by first sampling a latent vector from an underlying distribution
and then employing a lightweight generative model. Importantly, we semantically
regularize the tuning process by minimizing the statistic distance between the visual
patches and linguistic prompts, which pushes the stochastic label representations
to faithfully capture diverse visual concepts, instead of overfitting the training
categories. We evaluate the effectiveness of our approach on four tasks: few-shot
image recognition, base-to-new generalization, dataset transfer learning, and do-
main shifts. Extensive results on over 15 datasets show promising transferability
and generalization performance of our proposed model, both quantitatively and
qualitatively.

1 INTRODUCTION

Large-scale vision-language pre-trained models (VLPs) have recently demonstrated impressive
achievements on various computer vision tasks (Wang et al., 2021; Jia et al., 2021; Cho et al., 2021;
Radford et al., 2021; Li et al., 2022). Pre-trained on web-scale image-text association pairs, such
VLPs have the ability to carry the semantic knowledge on which visual concepts correspond to which
textual sequence and vice versa, and this has been proven beneficial for visual understanding (Radford
et al., 2021; Mei et al., 2022; Du et al., 2022). This has motivated the rapid rise of prompt tuning that
hopes to fine-tune VLPs by formalizing the downstream tasks as language modeling problems and
optimizing only the text inputs (prompts) (Radford et al., 2021; Zhou et al., 2022a;b), such as “X X X
X {class}.”, where “X” and “{class}” denotes the prefix tokens and real class names, respectively. In
contrast to supervised learning with discrete labels from a closed set of categories, prompt tuning
receives knowledge from pre-trained language models and supports open-set visual concepts, often
producing better performance, especially on few/zero-shot tasks (Zhou et al., 2022a; Gu et al., 2022).

To specify the optimal prefix tokens “X” that provide rich context for pre-trained language models,
prompt tuning methods often optimize them as learnable embedding vectors with a task-specific loss.
For example, CoOp (Zhou et al., 2022b) employs the cross entropy loss to learn 16 prefix tokens
that are shared across all categories and finds that such data-driven paradigms achieve significant
improvement over hand-crafted prompts. However, recent studies report that the overfitting issue
occurs in the training process and often leads to poor generalizability and transferability (Zhu et al.,
2022; Ma et al., 2022; Lu et al., 2022). To this end, various techniques are introduced under different
assumptions, including conventional anti-overfitting tricks, instance-specific prompt generation, and
gradient flow (Gao et al., 2021; Zhou et al., 2022a; Ma et al., 2022; Zhu et al., 2022). Another concern
stems from deterministic prompt learning, where the prompts are learned as the point estimation, and
only a single sentence is searched to represent a given class. Intuitively, one class can be characterized
by multiple intrinsic attributes (See Fig. 1 for example). Thus, it is critical to learn multiple prompts
that focus on different concepts. Motivated by this, several previous works attempt to learn multiple
prompt (Chen et al., 2022) or introduce distributed prompt embeddings (Derakhshani et al., 2022; Lu
et al., 2022; Wang et al., 2023), showing a large improving gap over the baseline method. However,
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those models either require pre-defined prompts or focus on the sample-dependent prompt generation,
failing to discover label-specific prompts efficiently.

A picture of a 
dog.A dog that 

chews bones.

Puppies are good 
friends of people.

A pooch with 
black and white.
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t

Figure 1: The motivation of the proposed model. Mul-
tiple prompts are generated from the label-specific dis-
tributions.

To address the above shortcomings, we in this
paper propose Bayesian prompt tuning, where
label-specific stochastic prompts are generated
hierarchically under the Bayesian framework.
As illustrated at Fig 1, one of the core ideas is
to generate multiple prompts for the given cate-
gories, and each of the learned prompt captures
various visual attributes, resulting in diverse and
generalizable prompt discovery. Specifically,
we first introduce uncertainty in the latent em-
bedding space and model each category as a
variational distribution (Kingma & Welling). Compared to the previous point estimation methods,
this enables us to infer a posterior distribution that contains meta-information about the corresponding
category, offering advantages in modeling uncertainty and highly structured data (Fan et al., 2020). To
complete the prompt sentence, a sequence generation module is then employed to generate the prefix
sequence according to the meta-vector sampled from the underlying distribution. Note that various
language models can be chosen as the generator, e.g., the LSTM (Hochreiter & Schmidhuber, 1997)
and transformers (Al-Rfou et al., 2019). Although the generator itself is a deterministic mapping, the
output prompts can be seen as an implicit distribution in the embedding space due to its stochastic
inputs. This property allows our proposed model to naturally handle diverse visual concepts, resulting
in robust prompt tuning.

Furthermore, to tackle the issue of over-fitting in prompt tuning, we propose a novel semantic
regularization approach that leverages the conditional transport (CT) framework (Zheng & Zhou,
2021) to establish a relationship between visual patches and textual prompts. Specifically, we use the
modality-specific outputs of CLIP to construct a visual patch set as well as a textual prompt set for
each target image. The former is obtained by collecting the image patch embeddings and the latter is
constructed by all label embeddings. Due to the shared common embedding space of CLIP, those
two sets can be viewed as two discrete distributions over the same semantic space. They represent
similar meanings about the target image, while from different modalities. Therefore, prompt tuning
can be viewed as the process of learning the distribution of textual prompts to be as close to the
distribution of visual patches as possible. Fortunately, the recent developments in CT provide us
with an efficient tool to quantify the difference between two discrete distributions (Tanwisuth et al.,
2021; Wang et al., 2022; Tanwisuth et al., 2023). Importantly, the distance function in CT specifies
the similarities between the prompt embeddings and visual patches in the embedding space, which
makes it possible to regularize the learning of prompts with visual guidance. As a result, the aligned
prompts are encouraged to capture the true label-specific visual concepts, rather than over-fitting to
the training set.

The main contributions of this paper are summarized as follows:

• We propose Bayesian prompt tuning that generates label-specific stochastic prompts hier-
archically, models each label as a distribution over the embedding space and successfully
handles diverse visual concepts.

• To avoid over-fitting to the training set, we introduce the CT distance as a regularization that
guides the learning of prompts with visual knowledge by aligning the patches and prompt
embeddings semantically.

• We formulate the proposed model as a variational inference problem, and a combined loss
function is derived to optimize all parameters efficiently. Extensive experiments show that
our models outperform the baselines.

2 THE PROPOSED METHOD

An overview of our proposed Patch-prompt aligned Bayesian prompt tuning (PBPrompt) is shown in
Fig. 2. Below, we first briefly review CoOp, which is the basic concept used in this paper. Then, we
introduce the details of our model, which aims to improve the diversity and generalizability of CoOp.
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Figure 2: Overview of the proposed PBPrompt. PBPrompt generates the stochastic prompts by first sampling a
label-specific vector rc and then employing a single-layer self-attention generator. CT distance is performed
between the textual prompts and image patches to regularize the prompts with the visual knowledge.

2.1 REVIEWS OF COOP

Context Optimization (CoOp) (Zhou et al., 2022b) is built on CLIP-like VLPs and is a pioneering
method for continuous prompt tuning. A VLP often consists of an image encoder f and a text
encoder g, each taking modality-specific sequence as inputs and outputs d-dimensional vectors in the
shared embedding space. Prompt tuning methods usually design a template to construct the category
descriptions and then view the outputs of g as the class weight for the classification task. To overcome
the handcrafted templates and learn optimal prompts to adapt VPLs for downstream tasks, CoOp
models each prompt token as a continuous vector that can be learned from data. E.g., the prompt
for c-th class can be denoted as: tc = [v1,v2, ...,vb, ec], where ec is the label embedding of class
c, v = {vi ∈ Rd}bi=1 are b learnable context vectors. Given a set of category descriptions {tc}Cc=1

and an image x ∈ R(3×H×W ), CoOp models the image label p(y|x) as a categorical distribution
according to the similarity between the image and label features with:

p(y = c|x) = exp(sim(f(x), g(tc))/τ)∑C
c′ exp(sim(f(x), g(tc′)/τ)

, (1)

where sim(·, ·) means the similarity function, e.g., the cosine similarity, and τ is the temperature
parameter. Then one can optimize the prefix embeddings v by back-propagating the following loss
through the frozen VLPs with a few training samples Dtr = {(xi, yi)}Ntr

i=1:

L(p) = Exi,yi [−logp(yi |xi;v)].

After tuning, tc can be used to define the target classifier for open-set image classification.

2.2 PATCH-PROMPT ALIGNED BAYESIAN PROMPT TUNING

The core idea behind the proposed PBPrompt is to learn distributed label-specific prompts under
the Bayesian framework, as well as align the image patches and textual prompts by minimizing the
CT distance. Below, we introduce the details of PBPrompt, which consists of stochastic prompt
generation, patch-prompt alignment, and the training algorithm.

Stochastic Prompts Generation (SPG) Generally, it is less sound to represent one class with
a deterministic point, which may fail to cover diverse visual concepts, e.g., the object type, size,
color, and so on. This issue becomes acute in the distribution-shift cases. For instance, a model
may see an image of a dog playing on the green ground during training but fail to make a correct
prediction of another image of a dog on the beach. To this end, One of the goals of PBPrompt is to
introduce uncertainty in prompt generation. For a target label, we assume there are various prompts
that can achieve similar performance. These prompts originate from the same target class but depict
its representative attributes from different perspectives, resulting in robust representation. An intuitive
approach is to model the prompts as a distribution p(r). Unfortunately, directly learning such a
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distribution over a sequence of b vectors is not simple (Brown et al., 2020; Lu et al., 2022), especially
under the few-shot setting. To this end, we move the uncertainty forward to its inputs and develop a
hierarchical generative module to produce the stochastic prompts:

tc = [ϕ(vc | rc), ec], rc ∼ p(rc), (2)

where p(rc) denotes the label-specific distribution that handles the conceptual diversity of class c.
ϕ(vc | rc) denotes the deterministic generative model that takes the sampled rc as input and outputs
the prefix token sequence vc = {vc,l ∈ Rdl}bl=1. Like previous works (Zhou et al., 2022b;a),
the final prompt input tc is obtained by adding the label embedding ec at the end of prefix tokens.
Different from previous models that view tc as the learnable embedding vectors, we generate tc via a
hierarchical path, where a stochastic vector rc is first sampled from the label-specific distribution
and the prefix sequence vc is then generated according to rc. Although the generative model ϕ is
a deterministic network, tc can be viewed as an implicit distribution over rc. In this way, multiple
prompts can be generated by sampling various rc.

Note that ϕ(vc | rc) can be implemented with various language models Greff et al. (2017); Devlin
et al. (2019), and we find a single-layer self-attention network works well in most cases (Vaswani
et al., 2017), empirically:

sc = [rc + PE1,w1 + PE2, ...,wb + PEb],

[r̂c,vc,1, ...,vc,b] = ϕ(vc|rc) := Self-Attn(sc),
(3)

where w = [w1, ...,wb] is the initialized prefix embeddings, and PE is the learnable position
embedding matrix that captures the sequential relations of prefix tokens. The Self-Atten decoder
takes sc as inputs, where the sampled rc in Eq. 2 is viewed as a special label token prevented at
the beginning of the initialized prefix sequence. It then outputs the class-specific prefix sequence.
This process allows the output tokens to encompass both contextual information and class-specific
guidance, resulting in the generation of meaningful prompts.

Regularization Between Textual Prompts and Visual Patches Notably, the core motivation of
SPG is to learn diverse prompts that cover multiple visual concepts. However, directly optimizing
SPG with the classification loss may suffer from the mode-collapse problem, where the sampled rc
tends to be close to each other, leading to single-mode prompt tuning. E.g., the learned prompt pattern
overfits the training set while failing to provide the true context. To address this issue, we introduce
the regularization between the prompt outputs and image patches. This regularization encourages the
sampled prompts to be close to a variety of patch embeddings, preventing them from over-fitting to
the training mode.

Recall that a VLP describes target labels from both the image and text domains. The former divides
an image x into M patches u = {um|Mm=1} ∈ Rd×M , which provides the local visual features. We
view the output embeddings of the textual encoder as the class-specific features, which provide the
linguistic description for classes. Mathematically, given x and its prediction probability p = p(y|x),
we formulate those two sets as discrete distributions:

P =

M∑
m=1

1

M
δum

, Q =

C∑
c=1

pcδgc
(4)

where δ is the Dirac delta function, gc = g(tc) is the textual outputs of label c. Eq. 4 represents x as a
mixture of patch embeddings and a mixture of prompt embeddings, both sharing the same semantics
but originating from different domains. Naturally, we aim to regularize the learning of Q by aligning
it to P . A common choice is to minimize the optimal transport (OT) between P and Q (Cuturi, 2013;
Chen et al., 2022). However, the calculating of OT struggles in two-stage iterations: first solving
for the transport plan and then updating the network, leading to unstable training. Fortunately, the
recently developed conditional transport (CT) (Zheng & Zhou, 2021) offers an efficient tool to align
two distributions over different supports (Wang et al., 2022; Tanwisuth et al., 2021). The CT distance
between the textual prompts and visual patches is defined from two directions:

LCT (P,Q) = Lu→g + Lg→u, (5)

where Lu→g denotes the transport distance from patch embeddings to prompts, while Lg→u denotes
the transport distance in the reverse direction. The transport distance from patch embeddings to
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prompts can be calculated as:

Lu→g =
1

M

M∑
m=1

C∑
c=1

C(um, gc)π(gc|um), (6)

where C(um, gc) is the cost function that measures the point-wise transport cost from m-th patch to
c-th prompt embedding, e.g., C(um, gc) = 1− cosine(um, gc). π(gc|um) =

pcexp(uT
mgc)∑C

c′=1
pc′ exp(uT

mgc′ )
is

the transport plan. The core idea of Eq. 6 is to assign M patches to their expected prompts. This
can be viewed as a clustering process that learns a semantic center for each class-specific prompt.
Unfortunately, only with Lu→g , many less-related patches within an image may be assigned to the
target prompt. This may push the stochastic prompt to an average point, leading to mode collapse. To
address this issue, CT introduces Lg→u from an opposite direction:

Lg→u =

C∑
c=1

pc

M∑
m=1

C(gc,um)π(um|gc), (7)

where π(um|gc) = exp(gT
c um)∑M

m′=1
exp(gT

c um′ )
. Unlike Lu→g which has the patch-clustering effect, Lg→u

aims to push the expected prompt towards patches that semantically close to it, creating a prompt-
covering effect. The CT distance in Eq. 5 provides us with a novel regularization, enabling the
learning of stochastic prompts with vision knowledge from bi-directions. The patch-to-prompt
transportation explores meaningful prompt outputs, and the prompt-to-patch transportation improves
the uncertainty of the prompt outputs.

2.3 TRAINING WITH COMBINED ELBO

Given the VLPs and labeled images Dtr, we would like to distill the pre-trained knowledge and learn
the posterior of the label-specific representation p(rc|Dtr) as well as the deterministic generative
model ϕ(vc|rc). Unfortunately, the exact posterior for rc is intractable and needs to be approximated.
To this end, we define the variational distribution q(rc|c) and employ the variational inference to
optimize the proposed method by minimizing the following combined Evidence Lower BOund
(ELBO) (Kingma & Welling):

L = −Etc=[π(vc|rc),ec],rc∼q(rc|c)logp(y|x, tc)
−DKL[q(rc|c)||p(rc)] + ηLCT (P,Q),

(8)

where we follow previous practices (Gordon et al., 2019; Derakhshani et al., 2022) and define
the variational distribution q as a Gaussian distribution conditioned on the label embedding ec:
q(rc|c) = N (u(ec),Σ(ec)), with u and Σ parameterized by two fully-connected layers. The first
term in Eq. 8 is the expected log-likelihood defined at Eq.1, the second term is the KL-divergence
that encourages the variational posterior to approach to its prior, and the last term is the CT distance
that aligns the class-specific prompt with image patches. η denotes the trade-off hyperparameter
that controls the regularization weights. Unlike most previous works that solely learn prompts from
task-specific loss (Zhou et al., 2022b; Lu et al., 2022), we optimize the proposed PBPrompt with
combined ELBO that introduces the CT distance as a regularization, guiding the label embeddings
to focus on meaningful visual concepts rather than over-fitting to the base sets. We summarize the
training algorithm in the Algorithm. 1.

Contextual Prior p(tc) Instead of treating the prior as a fixed distribution independent of the label
c, here we define the label-specific priors to further explore label semantics via the label embeddings,
e.g., p(tc) = N (ec, I). Thus compared to the fixed prior, the proposed label-specific prior introduces
additional label semantics and achieves better prior guidance.

3 RELATED WORK
The technique of prompt tuning, originating from the natural language processing (NLP) domain
and aims at best utilize pre-trained language models (Brown et al., 2020; Shin et al., 2020; Liu et al.,
2023), has gained increasing research attention in VLPs due to its impressive results (Ge et al., 2022;
Sun et al., 2022; Feng et al., 2022). For example, CLIP (Radford et al., 2021) manually designs
templates based on human knowledge and shows great potential in few/zero-shot tasks. Context
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Optimization (CoOp) (Zhou et al., 2022b) first introduces the continuous prompt into VLPs and
views the prompt tokens as a set of learnable vectors that can be optimized by minimizing the cross
entropy loss. Instead of learning static prompts, Conditional CoOp (CoCoOp) (Zhou et al., 2022a)
learns an input-specific prompt by incorporating image features via a lightweight network and shows
better generalization on unseen categories. The most related work to ours is distributed prompt tuning,
which focuses on stochastic prompt tuning. For instance, Prompt Distribution leArning (ProDA) (Lu
et al., 2022) first designs multiple handcrafted templates and then employs a Gaussian distribution
to model the latent representation. Variational prompt tuning (VPT) of (Derakhshani et al., 2022)
constructs prompt tokens by directly adding Gaussian samples into prompt vectors. SynHhesIzed
Prompt (SHIP) of (Wang et al., 2023) samples a image-dependent prompt by training a VAE with
the image features. Prompt learning with optimal transport (PLOT) (Chen et al., 2022) applies
optimal transport theory to learn multiple local prompts. While all above methods—ProDA, VPT,
and SHIP, PLOT, and ours—involve learning stochastic prompts, they are fundamentally distinct. We
model each target label as a Gaussian distribution and then generate stochastic prompts based on
label-specific samples, resulting in better lebel representations.

4 EXPERIMENTS

We follow the exact experimental setup of previous works (Zhou et al., 2022b;a) and validate the
performance of PBPrompt against the recent state-of-the-art prompt learning models on widely-
used benchmarks under various settings, including few-shot learning, base-to-new generalization,
cross-dataset transferability, and domain generalization.

4.1 EXPERIMENTAL SETUP

Datasets. For the first two tasks, we rely on 11 classification datasets, i.e., ImageNet (Deng et al.,
2009) and Caltech101 (Fei-Fei et al., 2004) for generic object classification, OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014) and FGVCAircraft (Maji et al., 2013) for fine-grained image recogni-
tion, EuroSAT (Helber et al., 2019) for satellite image classification, UCF101 (Soomro et al., 2012)
for action classification, DTD (Cimpoi et al., 2014) for texture classification, and SUN397 (Xiao
et al., 2010) for scene recognition. For the domain generalization task, we use ImageNet as the
source domain dataset and evaluate performance on ImageNetV2 (Recht et al., 2019), ImageNet-
Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks
et al., 2021a). The details of each dataset are provided at Table. C. 1.

Baselines. We compare our proposed approach with following state-of-the-art (SoTa) models:
zero-shot CLIP (Radford et al., 2021) with the fixed handcrafted prompt "A photo of a {class}.",
CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), PLOT (Chen et al., 2022), and stochastic
prompt tuning methods, including ProDA (Lu et al., 2022), VPT (Derakhshani et al., 2022) and
SHIP (Wang et al., 2023),

Implementation Details. Similar to previous works (Zhou et al., 2022b;a), PBPrompt adopts the
vision and language encoders as a ViT-B/16 (Dosovitskiy et al., 2020) and transformer (Vaswani
et al., 2017) respectively. We consistently perform prompt tuning with 16 shots and fix the prompt
length as 4 for the four primary image classification tasks across all datasets. We set the trade-off
hyperparameter η as 0.01 and run each experiment with 10 epochs on base-to-new generalization.
The label embedding ec is obtained by averaging the CLIP embedding of the class names, and we
initialize the learnable prompt embedding vectors from N (0, 0.02). For the self-attention network in
equation 3, we employ 8 heads for deeper interactions between prompt tokens. We summarize the
training details in the appendix. The results for CoOp and CoCoOp are adopted from the published
papers, except for the few-shot learning where we re-run them in the same setting that the maximum
epoch is set to 200 for 16/8 shots, 100 for 4/2 shots, and 50 for 1 shot for all datasets. For a fair
comparison, we re-run PLOT with ViT-B/16 on all the experiments in the settings above. All results
are reported as the mean value over three seeds.

4.2 EXPERIMENT RESULTS

Few-shot Learning evaluates a model’s capability to handle limited labeled data and samples. The
complete results are summarized in Fig. 3, where we find that 1) our method consistently outperforms
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Figure 3: The few-shot learning results on 11 datasets. We compare our PBPrompt with CoOp, CoCoOp and
PLOT. Overall, our proposed model outperforms the baselines in most cases. More numerical results can be
found at Table. C. 5 and Table. C. 6.

the baseline models across various scenarios, and 2) PBPrompt outperforms other methods when
trained with 1, 2, and 4 shots, showcasing a substantial performance margin on DTD, EuroSAT,
Flowers102, and FOOD101 datasets. Furthermore, as the number of training samples increases, the
performance gap between models diminishes, particularly evident in the case of training with 8/16
shots. This emphasizes the exceptional performance of our model in few-shot learning tasks. Notably,
PBPrompt surpasses CoOp with average accuracy increases of 3.14%, 2.32%, 6.33%, 1.24%, and
0.32% at 1, 2, 4, 8, and 16 shots, respectively.

Base-to-New Generalization assesses model’s generalizability in a zero-shot setting. We report the
Base-to-New results at Fig. 4 (The detailed accuracy on base and new set can be found at Table. ??).
Note that, the H score is calculated as H = (2× Base × New)/(Base + New), which is a trade-off
metric between the base and new sets. We find that PBPrompt surpasses other stochastic baselines in
terms of H score across all datasets. This demonstrates the efficiency of the introduced label-specific
SPG. Besides, due to the CT regularization, our approach successfully mitigates the overfitting issue,
showing robust ability to balance the Base and New performance.

Table 2: Cross-dataset transfer learning accuracy results of various baselines on source and target datasets. ∆:
The improvements of the proposed model compared to CoCoOp.
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CoOp 71.51 93.70 89.14 65.41 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.81
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
PBPrompt 71.71 94.87 90.62 66.00 72.44 86.34 24.82 67.69 45.62 47.13 68.83 66.40
∆ +0.69 +0.44 +0.48 +0.68 +0.56 +0.28 +2.90 +0.33 −0.11 +1.76 +0.62 +0.66

Cross-Dataset Transfer Learning measures the transfer performance from different sources, where
we train our model on ImageNet (source dataset) and then test it on 10 distinct target datasets. As
shown at Table. 2, PBPrompt has improvements on 9 out of 10 target domains compared to CoCoOp,
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Dataset Base New H

Caltech101

CoCoOp 97.96 93.81 95.84
ProDA 98.27 93.23 95.68
VPT 95.47 93.80 94.62
SHIP 97.55 95.20 96.36

B-Prompt 97.95 93.12 95.47
P-Prompt 97.35 95.00 96.16
PBPrompt 97.98 95.54 96.74

Flowers102

CoCoOp 94.87 71.75 81.71
ProDA 97.70 68.68 80.66
VPT 92.97 75.90 74.40
SHIP 94.02 74.40 83.06

B-Prompt 97.35 69.57 81.15
P-Prompt 95.21 72.35 82.22
PBPrompt 95.47 73.60 83.12

DTD

CoCoOp 77.01 56.00 64.85
ProDA 80.67 56.48 66.44
VPT 57.67 58.70 58.18
SHIP 74.88 56.88 64.65

B-Prompt 79.97 47.67 59.73
P-Prompt 77.20 57.00 65.58
PBPrompt 78.03 57.81 66.42

EuroSAT

CoCoOp 87.49 60.04 71.21
ProDA 83.90 66.00 73.88
VPT 67.97 71.63 69.75
SHIP 88.62 66.87 76.22

B-Prompt 92.46 62.58 74.64
P-Prompt 87.21 72.33 79.08
PBPrompt 89.53 72.87 80.35

Table 1: Base-to-New generalization results of
various baselines. B-Prompt: Bayesian prompt
tuning. P-Prompt: Patch-Prompt CT alignment.
More resutls can be found at Table. C. 7.

Figure 4: Performance comparison on base-to-new gener-
alization evaluated by harmonic mean. More results can be
found at Table. C. 7 and C. 8.

Table 3: Cross-domain generalization accuracy results of various baselines.

Source Target

Method Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP % 66.73 60.83 46.15 47.77 73.96
CoOp ! 71.51 64.20 47.99 49.71 75.21
CoCoOp ! 71.02 64.07 48.75 50.63 76.18
PBPrompt ! 71.71 64.53 49.32 51.64 76.71

This demonstrates that the proposed PBPrompt has the potential to transfer from a single dataset.
Moreover, we also find that PBPrompt exhibits large gaps on fine-grained datasets (FGCVAircraft,
OxfordPets, and Flowers102), suggesting the capacity to handle the discriminative features of each
category.

Domain Generalization concerns about the robustness of the distribution shift, where we assess
the proposed models on ImageNetV2, ImageNet-Sketch, ImageNet-A, and ImageNet-R after training
it on the source dataset (ImageNet). We report the results at Table. 3 and find that the PBPrompt
performs the best accuracy on all target domains over other baselines. This indicates that the learnable
stochastic prompts are less sensitive to distribution shifts and can generalize well across domains.

4.3 FURTHER ANALYSIS

Robustness and Synergistic Effect In our previous experiments, we utilized the ViT-B/16 back-
bone. However, in this study, we also employ the RN50 backbone to assess the robustness of our
model across different backbones. The few-shot learning accuracy results are presented in Table. 7(a).
As demonstrated in the results, PBPrompt provides more consistent results than the prior state-of-
the-art methods on both backbones, especially with the ViT-B/16 backbone, where PLOT suffers
a significant performance drop in comparison. Additionally, we have compared two variants of
PBPrompt, namely B-Prompt and P-Prompt, in few-shot learning and base-to-new tasks. B-Prompt
contains only the SPG module, while P-Prompt only utilizes the conditional transport framework,
both based on CoOp. We report the accuracy scores at Fig. 7(a) and Table. 1 respectively. We observe
that both variants exhibit significant improvements compared to CoOp, especially B-Prompt, which
outperforms the previous methods in most of the test cases. Furthermore, PBPrompt achieves the
highest performance on the majority of test cases among all methods by incorporating both variations,
demonstrating the powerful synergistic effect of our approach.
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The effect of Monte Carlo sampling and η Generally, increasing the number of samples in Monte
Carlo sampling leads to more stable results, but an appropriate number can introduce a moderate
level of uncertainty, ultimately enhancing the model’s generalization and representation capabilities.

Figure 5: Monte Carlo sampling numbers Figure 6: Regularization coefficient η

Meanwhile, the hyperparameter η, which balances the regularization weights, plays a crucial role in
establishing the connection between the stochastically generated prompts and various visual concepts.
We ablate these two hyperparameters on few-shot learning with 1/2/4 shots at Fig. 5 and Fig. 6. In
Fig. 5, we useµ to represent the simple adoption of the mean of multiple prompt embedding, and
we observe that employing fewer samples leads to increased uncertainty and a significant drop in
performance. This indicates that a higher number of samples is essential for achieving more reliable
results. Fig. 6 demonstrates that the presence of large coefficients can detrimentally impact results by
overemphasizing image relationships, thus potentially overshadowing CLIP’s alignment properties.
We set the sampling number as 20 and η = 0.01 by default.

Backbones ViT-B/16 RN50
Dataset 1 shot 2 shots 4 shots 1 shot 2 shots 4 shots

Caltech101

CoOp 93.19 92.97 94.50 87.51 87.84 89.52
PLOT 87.90 89.53 91.87 89.83 90.67 90.80

B-Prompt 93.57 94.10 94.75 90.10 89.70 90.56
P-Prompt 93.34 93.95 94.60 88.54 89.45 90.70
PBPrompt 93.92 94.40 94.83 90.21 90.86 90.92

DTD

CoOp 50.03 53.93 59.23 43.62 45.35 53.94
PLOT 52.20 56.03 58.37 46.55 51.24 56.03

B-Prompt 51.87 55.85 59.53 46.00 51.67 56.17
P-Prompt 50.95 55.10 59.02 46.95 48.35 55.89
PBPrompt 52.03 56.20 59.63 47.21 52.08 56.97

FOOD101

CoOp 82.70 82.77 83.63 74.25 72.61 74.49
PLOT 69.33 72.73 75.17 77.74 77.70 77.21

B-Prompt 84.97 86.03 86.21 77.02 76.45 77.58
P-Prompt 85.00 83.67 84.39 76.20 75.39 76.45
PBPrompt 85.55 86.25 86.30 77.35 77.83 78.09

SUN397

CoOp 67.32 67.67 70.14 60.12 59.60 63.24
PLOT 55.17 59.40 62.73 62.47 61.71 65.09

B-Prompt 67.98 69.00 70.20 62.42 63.03 64.83
P-Prompt 67.45 68.25 70.10 62.10 61.54 64.12
PBPrompt 68.10 69.35 70.21 62.51 63.45 64.77

(a) (b)

Figure 7: (a) Ablation studies of backbones on few-shot learning. (b) Visualization of the learned prompts.

Visualization Excitingly, we have discovered that transport plans π in Eq. 6 serve as a potent tool for
achieving visualization, allowing us to demonstrate how stochastic-generated prompts for a specific
class concentrate on the visual concepts of the corresponding images. We provide visualization
examples in Fig. 7(b) to illustrate this. More analysis and visualization can be found at Sec. D.

5 CONCLUSION

In this paper, we propose Patch-Prompts aligned Bayesian prompt tuning (PBPrompt) for pre-
trained vision-language models. PBPrompt is a Bayesian prompt tuning method that generates
label-specific stochastic prompts hierarchically under the variational inference framework comprising
a stochastic sampling network and a deterministic generative model. Moreover, we also introduce
a CT regularization that aligns the textual prompts with the image patches under the conditional
transport framework. PBPrompt is optimized by the derived combined ELBO via the stochastic
gradient algorithm. Extensive experiments over 15 datasets at various tasks are conducted to evaluate
the efficiency of our models. We hope PBPrompt will provide a simple tool for prompt tuning and
inspire future work.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level
language modeling with deeper self-attention. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 3159–3166, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang. Prompt
learning with optimal transport for vision-language models. arXiv preprint arXiv:2210.01253,
2022.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
generation. In International Conference on Machine Learning, pp. 1931–1942. PMLR, 2021.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian Bulat, Victor Guilherme Turrisi da Costa,
Cees GM Snoek, Georgios Tzimiropoulos, and Brais Martinez. Variational prompt tuning improves
generalization of vision-language models. arXiv preprint arXiv:2210.02390, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for
open-vocabulary object detection with vision-language model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14084–14093, 2022.

Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan Zhou. Bayesian attention modules. Advances in
Neural Information Processing Systems, 33:16362–16376, 2020.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference
on computer vision and pattern recognition workshop, pp. 178–178. IEEE, 2004.

Chengjian Feng, Yujie Zhong, Zequn Jie, Xiangxiang Chu, Haibing Ren, Xiaolin Wei, Weidi Xie,
and Lin Ma. Promptdet: Towards open-vocabulary detection using uncurated images. In European
Conference on Computer Vision, pp. 701–717. Springer, 2022.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021.

10



Under review as a conference paper at ICLR 2024

Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji Song, Shuang Li, and Gao Huang. Domain
adaptation via prompt learning. arXiv preprint arXiv:2202.06687, 2022.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Represen-
tations, 2019.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmidhuber.
LSTM: A search space odyssey. IEEE Trans. Neural Networks Learn. Syst., 28(10):2222–2232,
2017.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. PPT: pre-trained prompt tuning for few-
shot learning. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics, ACL 2022, pp. 8410–8423, 2022.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adver-
sarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15262–15271, 2021b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International Conference on Machine Learning, pp. 4904–4916. PMLR,
2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554–561, 2013.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. arXiv preprint
arXiv:2201.12086, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

Yuning Lu, Jianzhuang Liu, Yonggang Zhang, Yajing Liu, and Xinmei Tian. Prompt distribution
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5206–5215, 2022.

Chengcheng Ma, Yang Liu, Jiankang Deng, LingXi Xie, Weiming Dong, and Changsheng Xu.
Understanding and mitigating overfitting in prompt tuning for vision-language models. arXiv
preprint arXiv:2211.02219, 2022.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

11



Under review as a conference paper at ICLR 2024

Tao Mei, Jason J Corso, Gunhee Kim, Jiebo Luo, Chunhua Shen, and Hanwang Zhang. Guest
editorial introduction to the special section on video and language. IEEE Transactions on Circuits
and Systems for Video Technology, 32(1):1–4, 2022.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400. PMLR,
2019.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, 2020.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Ximeng Sun, Ping Hu, and Kate Saenko. Dualcoop: Fast adaptation to multi-label recognition with
limited annotations. arXiv preprint arXiv:2206.09541, 2022.

Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shujian Zhang, Hao Zhang, Bo Chen, and Mingyuan
Zhou. A prototype-oriented framework for unsupervised domain adaptation. Advances in Neural
Information Processing Systems, 34:17194–17208, 2021.

Korawat Tanwisuth, Shujian Zhang, Huangjie Zheng, Pengcheng He, and Mingyuan Zhou. POUF:
Prompt-oriented unsupervised fine-tuning for large pre-trained models. In ICML 2023: Interna-
tional Conference on Machine Learning, July 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Dongsheng Wang, Dandan Guo, He Zhao, Huangjie Zheng, Korawat Tanwisuth, Bo Chen, and
Mingyuan Zhou. Representing mixtures of word embeddings with mixtures of topic embeddings.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022, 2022.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. Advances in Neural Information Processing Systems, 32,
2019.

Zhengbo Wang, Jian Liang, Ran He, Nan Xu, Zilei Wang, and Tieniu Tan. Improving zero-shot
generalization for clip with synthesized prompts. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3032–3042, 2023.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple
visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904, 2021.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

12



Under review as a conference paper at ICLR 2024

Huangjie Zheng and Mingyuan Zhou. Exploiting chain rule and bayes’ theorem to compare probability
distributions. Advances in Neural Information Processing Systems, 34:14993–15006, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
prompt tuning. arXiv preprint arXiv:2205.14865, 2022.

13



Under review as a conference paper at ICLR 2024

APPENDIX

A DISCUSSIONS

The main purpose of the introduced Bayesian prompt generation and Patch-Prompt CT align-
ments.

One of the main contributions of the proposed model is the stochastic prompt generation, which
introduces the uncertainty into the prompt embeddings. E.g., for each category, we can generate
different prompts that capture diverse visual concepts, resulting in better class-specific representations.
Unfortunately, due to the mode-collapse problem that usually appears in most Bayesian generative
models, we find that only optimizing the stochastic module by the classification loss could lead
to suboptimal results. Motivated by previous PLOT (Chen et al., 2022), we here employ the CT
regularization to align the generated prompts and the image patches. Intuitively, we view images
are two discrete distributions over the prompt and patch embeddings. They share similar semantics
but with different domains. Ideally, those two distributions should have close semantic distance. By
minimizing the CT distance, the learned prompt embeddings tend to capture the true label-specific
visual concepts, improving the quality of the learned prompts. That is, the CT regularization improves
the performance of the method by aligning the textual prompt domain and the visual patch domain,
which is usually ignored by previous works.

The improvement is marginal when compared to CoCoOp in some cases.

We highlight the superiority of the proposed model below. First, the paper provides a novel Baeysian
prompt-generation strategy for the prompt-tuning community. This enables the learned prompt to
capture diverse visual concepts and gives the following studies a new stochastic view rather than
only focusing on deterministic paradigms. Second, consistent improvement in most cases. We here
want to note that it is a nontrivial contribution that achieves consistent improvement over 4 tasks
on 15 datasets. For the marginal improvement on several datasets, we note that previous models
(e.g., CoCoOp) have achieved high results, and thus the improvements are slight. We find that the
proposed PBPrompt usually has a significant improvement on 1/2/4 shots, which clearly highlights the
performance of our method with fewer training samples(see Table. C. 5 and Table. C. 6 for detailed
results). Besides, our method balances the seen and unseen sets well according to Table. 4. E.g.,
PBPrompt achieves 0.9%-9.14 % improvements compared to CoCoOp in terms of H score. Third,
the interpretability of the proposed model. The visualization in Fig. 7(a) shows the interpretability of
the learned prompts, while CoCoOp only reports the numerical results.

Differences between SHIP.

Both SHIP and PBPrompt introduce the uncertainty into the prompt generation process. However,
the latent variable z (v in PBPrompt) models different levels of uncertainty and comes from different
assumption. SHIP introduces the stochastic prompts into each image, and infers a sample-dependent
posterior:

q(zi) = N (u(xi),Σ(xi)), (9)

where xi denotes the feature of i-th image. While PBPrompt views each category has a underlying
distribution and infers a label-specific posterior:

q(zc) = N (u(ec),Σ(ec)), (10)

where ec denote the embedding of c-th category.

Prior on p(z). SHIP simply adopts the standard Gaussian as the prior of z, e.g., p(z) = N (0, I),
while PBPrompt utilizes the contextual prior to capture label-specific features: p(zc) = N (ec, I).
This difference enables PBPrompt to access additional label semantics, achieving better prior guid-
ance.

Training pipelines. SHIP introduces an additional feature reconstruction loss to pre-train the VAE,
and then finetunes the prompt via the task-specific loss. Our PBPrompt naturally interages the
stochastic prompts into the CLIP framework and directly optimize the prompt via the combined
ELBO.
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B METHOD DETAILS

Given the labeled training dataset D = (xj , yj)
Ntr

j=1, our proposed PBPrompt aims to learn stochastic
prompts for each class. Note that, all parameters in PBPrompt are optimized by minimizing the
combined ELBO end-to-end. We summarize the training algorithm at Algorithm. 1.

Algorithm 1 Training algorithm for our proposed PBPrompt.
Output: The trained PBPrompt, which can generate the stochastic label-specific prompts for downstream
tasks.
Input: Training set D = (xj , yj)

Ntr
j=1, a VLP, class names, and hyperparameter η.

Initialize: The prefix token embeddings, the parameters in inference network q(rc|c) and the generative
model ϕ(vc|rc).
for iter = 1,2,3,... do

Sample a batch of B image-label pairs and get the image feature and patch embeddings by feeding the
image into the image encoder f(x).
# Learning of PBPrompt
Generate C stochastic prompts hierarchically with Eq.(2) for all classes.
Get the label embeddings by feeding the prompts into the text encoder g(t).
Compute the CT distance between patches and the class-specific prompts with Eq.(5).
Compute the combined ELBO L with Eq.(8) and update all learnable parameters by minimizing the L with
the stochastic gradient descent algorithm.

end for

C EXPERIMENT DETAILS

C.1 DATA STATISTICS

Our experiments are conducted on 15 widely-used vision datasets. E.g., ImageNet Deng et al. (2009)
and Caltech101 Fei-Fei et al. (2004) for generic object classification, OxfordPets Parkhi et al. (2012),
StanfordCars Krause et al. (2013), Flowers102 Nilsback & Zisserman (2008), Food101 Bossard et al.
(2014) and FGVCAircraft Maji et al. (2013) for fine-grained image recognition, EuroSAT Helber
et al. (2019) for satellite image classification, UCF101 Soomro et al. (2012) for action classification,
DTD Cimpoi et al. (2014) for texture classification, and SUN397 Xiao et al. (2010) for scene
recognition. For the domain generalization task, we use ImageNet as the source domain dataset
and evaluate performance on ImageNetV2 Recht et al. (2019), ImageNet-Sketch Wang et al. (2019),
ImageNet-A Hendrycks et al. (2021b), and ImageNet-R Hendrycks et al. (2021a). We summarize the
data statistics at Table. C. 1

Table C. 1: Statistics of the datasets.

Dataset Classes Train Val Test
ImageNet 1000 1.28M N/A 50,000

Caltech101 100 4,128 1,649 2,465
OxfordPets 37 2,944 736 3,669

StanfordCars 196 6,509 1,635 8,041
Flowers102 102 4,093 1,633 2,463

Food101 101 50,500 20,200 30,300
FDVCAircraft 100 3,334 3,333 3,333

SUN397 397 15,880 3,970 19,850
DTD 47 2,820 1,128 1,692

EuroSAT 10 13,500 5,400 8,100
UCF101 101 7,639 1,808 3,783

ImageNetV2 1000 N/A N/A 10,000
ImageNet-Sketch 1000 N/A N/A 50,889

ImageNet-A 200 N/A N/A 7,500
ImageNet-R 200 N/A N/A 30,000
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Table C. 2: All results in the main paper were generated using shared hyperparameters when
employing the ViT-B/16 backbone.

Hyperparameters Values
Batch Size 1
Input Size 224× 224
Input Interpolation "Bicubic"
Input Pixel Mean [0.48145466, 0.4578275, 0.40821073]
Input Pixel STD [0.26862954, 0.26130258, 0.27577711]
Transforms ["random resized crop", "random filp", "normalize"]
Optimizer SGD
Learning Rate 2e-3
LR Scheduler "cosine"
Warmup Epoch 1
Warmup Type "constant"
Warmup LR 1e-5
Backbone ViT-B/16
Prompt Length 4
Prompt Initialization ""
Precision "fp16"
Number of shots 16

C.2 HYPERPARAMETER SETTING

We set the training hyper-parameters as well as the training pipeline to be the same as Zhou et al. Zhou
et al. (2022a) in terms of definitions of few-shot tasks while using ViT-B/16 in the manuscript. For
the RN50 backbone, we replace the ViT-B/16 with RN50 and set the number of shots as 4 to maintain
consistency with the other works using RN50. We list those settings at Table. C. 2.

C.3 IMPACT OF THE PATCH-TO-PROMPT AND PROMPT-TO-PATCH TRANSPORT

In the previous experiments, we view the patch-to-prompt and prompt-to-patch transport in Eq. 5
equally. To discuss the impact of those two terms, we rewrite Eq. 5 as:

LCT (P,Q) = λLu→g + (1− λ)Lg→u, (11)

where λ controls the weight of the patch-to-prompt term. We report the few-shot results with various
λ at Fig. C. 3. We find that 1) regardless of considering the Lu→g or the Lg→u, the final experimental
results were not satisfactory. 2) Promising results could be obtained by carefully choosing λ. Thus
we set this hyperparameter as 0.5 for ease of parameter tuning.

C.4 ADDITIONAL COMPARISON TO PRODA

We compared PBPrompt to PLOT in the manuscript, and extensive results show the superiority of
the proposed Bayesian framework. Note that ProDA (Lu et al., 2022) also comes from stochastic
prompt tuning. We summarize the difference below. First, ProDA focuses on the output embeddings
of prompts and employs a Gaussian distribution to model the latent representation by pre-defining K
label-specific templates. However, ours is a novel Bayesian prompt generation method based on input
embeddings, aiming to generate the label-specific stochastic prompts in a data-driven framework,
rather than based on handcraft prompts. Second, we introduce the CT regularization to align the
textual prompt domain and the visual patch domain and develop a novel combined loss to optimize
the proposed model end-to-end. While the ProDA employs an EM algorithm to train the parameters.
Last, the learned transport plan provides us with an interpretable tool to visualize the learned prompts,
while the ProDA fails to give such an interpretable.

Empirically, we report the Base-to-New comparisons (H score) at Table. C. 4. Because of the unre-
leased code of ProDA, we could only compare with results adopted from previous work (Derakhshani
et al., 2022) under the same setting on the Base-to-New task. From Table. C. 4, we find that our
proposed method outperforms ProDA on 9/11 datasets and has the best result on average accuracy.
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Dataset 0.0 0.2 0.4 0.5 0.6 0.8 1.0

DTD

1-shot 51.36 51.54 51.77 52.03 51.83 51.95 51.37
2-shots 54.43 55.67 56.20 56.34 55.85 55.20 55.67
4-shots 58.16 58.75 59.66 59.63 59.53 59.42 58.87

EuroSAT

1-shot 60.78 61.21 61.93 60.92 61.02 61.61 61.20
2-shots 68.12 68.76 68.34 68.77 68.05 67.43 67.98
4-shots 70.63 71.01 71.1 72.84 72.71 72.14 71.96

Caltech101

1-shot 93.21 93.90 93.94 93.92 93.93 93.32 93.4
2-shots 93.98 94.20 94.41 94.40 94.45 94.39 94.23
4-shots 94.78 94.85 94.83 94.83 94.83 94.80 94.51

StanfordCars

1-shot 66.21 66.54 67.10 67.30 66.70 66.98 66.49
2-shots 69.52 70.14 70.48 70.20 70.36 70.44 70.23
4-shots 72.94 73.57 73.42 73.60 73.61 73.84 73.60

Table C. 3: Ablation studies of Base-to-New generalization on Bayesian prompt tuning (B-Prompt) and
Patch-Prompt CT alignment (P-Prompt).

Table C. 4: H score of CoCoOp, ProDA, and PBPrompt on Base-to-New task.
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CoCoOp 73.10 95.84 96.43 72.01 81.71 90.99 27.74 78.27 64.85 71.21 77.64 75.83
ProDA 72.72 95.68 96.62 72.91 80.66 89.43 35.46 77.79 66.44 73.88 78.04 76.65
PBPrompt 73.76 96.66 96.92 73.02 83.12 91.22 34.64 78.35 66.41 80.34 79.51 77.86

C.5 FEW-SHOT LEARNING DETAILS

In this section, we provide the complete results on few-shot learning task using ViT-B/16 and RN50
respectively. As a result of introducing additional learnable parameters into our model, we trained
for more epochs that the maximum epoch is set to 400 for 16/8 shots, 200 for 4/2 shots, and 100
for 1 shot for all datasets. Table. C. 5 shows more detailed accuracy consistent with Fig. 3 in the
manuscript. Besides, we ablate the backbone using RN50 with CoOp Zhou et al. (2022a), PLOT Chen
et al. (2022), and our PBPrompt, and report the results in Table. C. 6. We find that our PBPrompt
also has comparable performance with other baselines, especially on 1/2/4 shots. These results, as
shown in the two tables, highlight the stable performance across different backbones, demonstrating
the strong robustness of our model.
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Table C. 5: The few-shot learning results of various methods on 11 datasets using ViT-B/16. We
report the average value over three different seeds.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

ImageNet

CoOp 68.10 69.25 69.53 70.40 71.51
CoCoOp 68.40 69.13 69.30 70.45 71.60

PLOT 67.40 68.80 69.90 70.15 71.37
PBPrompt 69.55 69.90 70.50 71.62 71.86

Caltech101

CoOp 93.13 92.97 94.50 94.73 95.50
CoCoOp 92.27 93.47 94.27 94.73 95.21

PLOT 87.90 89.53 91.87 92.90 93.80
PBPrompt 93.92 94.40 94.83 95.13 95.37

DTD

CoOp 50.03 53.93 59.23 64.37 68.40
CoCoOp 50.80 54.10 58.37 63.07 67.67

PLOT 52.20 56.03 58.37 65.57 70.17
PBPrompt 52.03 56.20 59.63 64.17 68.50

EuroSAT

CoOp 51.80 66.33 65.87 74.77 83.07
CoCoOp 51.93 64.17 67.20 75.07 82.87

PLOT 59.77 69.03 73.50 80.03 83.47
PBPrompt 60.92 68.77 72.84 80.14 84.21

FGVCAircraft

CoOp 26.20 27.90 30.03 36.00 39.73
CoCoOp 16.83 26.47 29.27 36.17 38.60

PLOT 20.20 21.87 23.90 27.13 30.57
PBPrompt 27.41 29.03 31.89 36.10 39.54

Flowers102

CoOp 73.00 81.90 86.50 94.13 96.20
CoCoOp 76.80 86.40 91.80 93.98 96.30

PLOT 70.50 80.57 88.70 93.77 95.70
PBPrompt 75.43 83.37 88.90 94.00 96.32

FOOD101

CoOp 82.70 82.77 83.63 84.00 85.33
CoCoOp 83.35 82.85 82.75 84.20 85.46

PLOT 69.33 72.73 75.17 76.70 77.87
PBPrompt 85.55 86.25 86.30 87.00 87.10

OxfordPets

CoOp 90.27 89.93 92.20 92.47 92.47
CoCoOp 90.20 88.87 91.77 91.73 92.10

PLOT 82.93 85.40 85.97 87.40 88.10
PBPrompt 91.20 91.73 92.63 93.00 93.40

StanfordCars

CoOp 67.03 70.13 73.27 76.90 79.13
CoCoOp 67.13 68.83 72.03 76.10 77.45

PLOT 45.97 51.43 53.97 59.62 64.51
PBPrompt 67.30 70.20 73.60 77.23 79.47

SUN397

CoOp 67.32 67.67 70.14 72.37 74.57
CoCoOp 65.60 66.13 69.85 70.35 73.13

PLOT 55.17 59.40 62.73 65.80 67.00
PBPrompt 68.10 69.35 70.21 72.20 74.15

UCF101

CoOp 70.07 73.30 77.87 80.10 82.40
CoCoOp 70.80 73.50 76.15 79.23 82.30

PLOT 49.63 53.20 60.80 67.23 70.50
PBPrompt 71.45 74.90 77.60 79.77 80.93

Average

CoOp 67.24 70.55 70.02 76.36 78.92
CoCoOp 66.74 70.36 72.98 75.92 78.43

PLOT 60.09 64.36 67.69 71.48 73.91
PBPrompt 69.35 72.19 74.45 77.31 79.17
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Table C. 6: The few-shot learning results of various methods on 11 datasets using RN50. We report
the average value over three different seeds.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101
CoOp 87.51 ± 1.02 87.84 ± 1.10 89.52 ± 0.80 90.28 ± 0.42 91.99 ± 0.31
PLOT 89.83 ± 0.33 90.67 ± 0.21 90.80 ± 0.20 91.54 ± 0.33 92.24 ± 0.38

PBPrompt 90.21 ± 0.45 90.86 ± 0.24 90.92 ± 0.10 91.37 ± 0.21 92.03 ± 0.17

DTD
CoOp 43.62 ± 1.96 45.35 ± 0.31 53.94 ± 1.37 59.69 ± 0.13 62.51 ± 0.25
PLOT 46.55 ± 2.62 51.24 ± 1.95 56.03 ± 0.43 61.70 ± 0.35 65.60 ± 0.82

PBPrompt 47.21 ± 1.22 52.08 ± 0.78 56.97 ± 0.55 61.84 ± 0.21 65.58 ± 0.33

EuroSAT
CoOp 52.12 ± 5.46 59.00 ± 3.48 68.61 ± 3.54 77.08 ± 2.42 83.69 ± 0.47
PLOT 54.05 ± 5.95 64.21 ± 1.90 72.36 ± 2.29 78.15 ± 2.65 82.23 ± 0.91

PBPrompt 57.34 ± 3.12 64.67 ± 1.21 73.10 ± 1.34 78.39 ± 1.72 82.20 ± 0.32

FGVCAircraft
CoOp 8.59 ± 5.79 16.52 ± 2.38 20.63 ± 2.46 26.63 ± 0.86 31.43 ± 0.96
PLOT 17.90 ± 0.09 18.94 ± 0.44 22.36 ± 0.42 26.17 ± 0.29 31.49 ± 0.89

PBPrompt 17.49 ± 1.24 18.72 ± 0.45 22.55 ± 0.44 26.71 ± 0.31 31.44 ± 0.64

Flowers102
CoOp 67.98 ± 1.98 77.58 ± 1.46 86.10 ± 1.05 91.27 ± 0.83 94.49 ± 0.40
PLOT 71.72 ± 0.97 81.19 ± 0.79 87.82 ± 0.20 92.43 ± 0.25 94.76 ± 0.34

PBPrompt 70.84 ± 1.23 81.35 ± 0.87 87.57 ± 0.34 92.44 ± 0.31 94.60 ± 0.24

FOOD101
CoOp 74.25 ± 1.52 72.61 ± 1.33 73.49 ± 2.03 71.58 ± 0.79 74.48 ± 0.15
PLOT 77.74 ± 0.47 77.70 ± 0.02 77.21 ± 0.43 75.31 ± 0.30 77.09 ± 0.18

PBPrompt 77.35 ± 0.33 77.93 ± 0.12 78.09 ± 0.21 77.79 ± 0.20 77.75 ± 0.12

ImageNet
CoOp 56.99 ± 1.03 56.40 ± 0.87 58.48 ± 0.47 60.39 ± 0.57 61.91 ± 0.17
PLOT 59.54 ± 0.16 60.64 ± 0.06 61.49 ± 0.23 61.92 ± 0.09 63.01 ± 0.13

PBPrompt 60.54 ± 0.12 60.72 ± 0.09 61.68 ± 0.13 62.00 ± 0.09 62.95 ± 0.11

OxfordPets
CoOp 85.99 ± 0.28 82.22 ± 2.15 86.65 ± 0.97 85.36 ± 1.00 87.02 ± 0.89
PLOT 87.49 ± 0.16 86.64 ± 0.06 88.63 ± 0.23 87.39 ± 0.09 87.21 ± 0.13

PBPrompt 87.75 ± 0.25 86.32 ± 0.75 89.08 ± 0.23 88.34 ± 0.14 88.45 ± 0.21

StanfordCars
CoOp 55.81 ± 1.67 58.41 ± 0.43 62.74 ± 0.16 67.64 ± 0.06 73.60 ± 0.19
PLOT 56.60 ± 0.36 57.52 ± 0.71 63.41 ± 0.29 67.03 ± 0.50 72.80 ± 0.75

PBPrompt 57.14 ± 0.21 57.76 ± 0.34 63.53 ± 0.20 67.64 ± 0.12 73.75 ± 0.34

SUN397
CoOp 60.12 ± 0.82 59.60 ± 0.76 63.24 ± 0.63 65.77 ± 0.02 68.36 ± 0.66
PLOT 62.47 ± 0.43 61.71 ± 0.65 65.09 ± 0.43 67.48 ± 0.04 69.96 ± 0.24

PBPrompt 62.51 ± 0.49 63.45 ± 0.66 64.77 ± 0.51 67.35 ± 0.08 69.93 ± 0.17

UCF101
CoOp 62.13 ± 1.14 64.05 ± 0.99 67.79 ± 0.71 72.71 ± 0.50 76.90 ± 0.50
PLOT 64.53 ± 0.70 66.83 ± 0.43 69.60 ± 0.67 74.45 ± 0.50 77.26 ± 0.64

PBPrompt 64.29 ± 0.84 66.88 ± 0.32 69.95 ± 0.55 74.86 ± 0.47 77.35 ± 0.52

Average
CoOp 59.56 ± 2.06 61.51 ± 1.39 66.47 ± 1.29 69.85 ± 0.69 73.31 ± 0.42
PLOT 62.58 ± 1.13 65.21 ± 0.72 68.62 ± 0.52 71.23 ± 0.51 73.97 ± 0.54

PBPrompt 62.97 ± 0.86 65.52 ± 0.52 68.93 ± 0.42 71.70 ± 0.35 74.18 ± 0.29

C.6 BASE-TO-NEW GENERALIZATION DETAILS

In this section, we report the complete results on base-to-new generalization using ViT-B/16 and
RN50 respectively. Table. C. 7 shows more detailed accuracy consistent with Fig. 4 in the manuscript.
Besides, we also provide comprehensive results using RN50 with CoOp Zhou et al. (2022b),
CoPLOT Chen et al. (2022), and our PBPrompt (shown at Table C. 8).
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Table C. 7: The base-to-new generalization accuracy results of various baselines on 11 datasets using
ViT-B/16. We report the average value over three different seeds, and the results are performed on a
16-shot base set and then evaluated on the held-out new class. The best and the runner-up results are
highlighted and underlined. H: the harmonic mean.

Average ImageNet Caltech 101 Oxford Pets
Base New H Base New H Base New H Base New H

CLIP 69.34 74.22 71.69 72.34 68.14 70.18 96.84 94.00 95.39 91.17 97.26 94.11
CoOp 82.66 63.22 71.65 76.14 67.88 71.77 98.00 89.81 93.72 93.67 95.29 94.47
CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
CoPLOT 77.20 60.38 67.76 75.97 69.23 72.44 96.53 82.86 89.17 93.45 79.76 86.06
CoOp+VPT 71.98 74.76 73.34 74.73 70.60 72.60 95.47 93.80 94.62 90.77 97.83 96.61
CoOp+SHIP 80.03 73.69 76.73 75.87 69.95 72.79 97.55 95.20 96.36 92.19 93.85 93.01
PBPrompt 81.36 74.65 77.86 76.90 70.87 73.76 97.98 95.37 96.66 95.83 98.03 96.92

Stanford Cars Flowers 102 Food 101 FGVC Aircraft
Base New H Base New H Base New H Base New H

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
CoCoOp 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
CoPLOT 61.41 42.69 50.37 95.26 56.03 70.56 88.45 85.28 86.84 29.63 16.17 20.92
CoOp+VPT 65.27 75.97 70.21 72.97 75.90 74.40 90.37 91.67 91.01 29.57 33.80 31.54
CoOp+SHIP 68.57 73.90 71.14 94.02 74.40 83.06 90.54 91.03 90.87 34.27 32.33 33.28
PBPrompt 72.93 73.12 73.02 95.47 73.60 83.12 90.87 91.57 91.22 35.47 33.84 34.64

SUN 397 DTD EuroSAT UCF 101
Base New H Base New H Base New H Base New H

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.02 70.53 77.50 73.85
CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.45
CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
CoPLOT 78.56 72.34 75.32 69.87 53.63 60.68 87.39 64.63 74.30 72.71 41.51 52.84
CoOp+VPT 73.77 77.90 75.77 57.67 58.70 58.18 67.97 71.63 69.75 73.23 74.63 73.92
CoOp+SHIP 79.54 75.27 77.35 74.88 56.88 64.65 88.63 66.87 76.22 81.08 76.85 78.91
PBPrompt 79.30 77.43 78.35 78.03 57.81 66.41 89.53 72.87 80.34 82.66 76.59 79.51

Table C. 8: The base-to-new generalization accuracy results of various baselines on 11 datasets using
RN50. We report the average value over three different seeds, and the results are performed on a
16-shot base set and then evaluated on the held-out new class. The best results are highlighted. H:
the harmonic mean.

Average ImageNet Caltech 101 Oxford Pets
Base New H Base New H Base New H Base New H

CoCoOp 75.7 64.6 69.71 68.3 63.1 65.60 95.0 90.0 92.43 92.3 94.6 92.44
CoPLOT 75.9 67.6 71.51 68.2 63.1 65.55 95.4 90.9 93.09 92.1 95.9 93.96
PBPrompt 75.3 69.4 72.23 68.2 63.3 65.66 94.5 92.3 93.39 92.4 95.9 94.12

Stanford Cars Flowers 102 Food 101 FGVC Aircraft
Base New H Base New H Base New H Base New H

CoCoOp 61.8 65.3 63.50 91.2 67.5 77.58 85.0 86.0 85.50 25.5 25.7 25.60
CoPLOT 63.2 66.5 64.80 89.6 69.2 78.09 85.0 85.2 85.10 25.6 26.6 26.09
PBPrompt 64.6 65.5 65.05 89.8 71.0 79.30 84.6 86.5 85.54 23.2 27.8 25.29

SUN 397 DTD EuroSAT UCF 101
Base New H Base New H Base New H Base New H

CoCoOp 75.1 73.6 74.34 73.1 50.0 59.38 88.9 33.5 48.66 76.5 61.6 68.25
CoPLOT 75.2 73.2 74.17 72.6 51.4 60.19 91.0 55.3 68.79 77.4 66.2 71.36
PBPrompt 75.1 73.7 74.40 70.3 56.2 62.46 89.7 66.2 76.18 76.1 67.1 71.32

20



Under review as a conference paper at ICLR 2024

C.7 DOMAIN GENERALIZATION DETAILS

In this section, we report the results of comparison between our method PBPrompt and PLOT on
domain generalization using RN50. As shown in Table C. 9, our method has significant improvement
on 3 out of 4 datasets using RN50 backbone.

Table C. 9: Cross-domain generalization accuracy results of various baselines using RN50.∆: The improve-
ments of the proposed model compared to PLOT.

Source Target

Method Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp ! 61.91 54.26 32.47 21.78 54.21
PLOT ! 63.01 55.11 33.00 21.86 55.61
PBPrompt ! 62.95 54.77 34.10 24.85 59.89
∆ - −0.06 −0.34 +1.10 +2.99 +4.28

C.8 CROSS-DATASET TRANSFER LEARNING DETAILS

In this section, we report the results of comparison between our method PBPrompt and other CoOp-
based methods on cross-dataset transfer learning using ViT-B/16. As shown in Table C. 10, compared
with these CoOp-based methods, the proposed method has significant improvement on 8 out of 11
datasets and only shows a slight drop on the others.

Table C. 10: Cross-dataset transfer learning accuracy results of CoOp-based method on source and target
datasets using ViT-B/16. ∆: The improvements of the proposed model compared to SHIP.
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CoOp + VPT 69.73 93.67 89.27 65.50 70.20 86.27 22.13 66.57 46.93 47.43 67.21 65.51
CoOp + SHIP - 94.04 90.38 65.55 69.67 86.40 21.90 66.26 45.69 48.17 68.52 65.69
PBPrompt 71.71 94.87 90.62 66.00 72.44 86.34 24.82 67.69 45.62 47.13 68.83 66.40
∆ - +0.83 +0.24 +0.45 +2.77 −0.06 +2.92 +1.43 −0.07 −1.04 +0.31 +0.71

C.9 TRADE-OFF ON BASE-TO-NEW GENERALIZATION

The number of training epochs causes the trade-off between performance on base and on new classes.
Specifically, more training epochs lead better accuracy on base classes and lower it on new classes.
Therefore, we training ImageNet, Caltech101, DTD, EuroSAT and Flowers102 for 50 more epochs on
base-to-new task. As shown in Table C. 11, increasing the number of epochs in the training process
can enhance performance on base classes while causing a slight decline on new classes. However, the
changes in the harmonic mean are only marginally affected. For example, with more training epochs
on Flowers102, our proposed method raises the performance on base classes by +1.21 and lower
it on new classes by −2.44. This change slightly affects the harmonic mean, reducing it by 1.37%
which is still 0.33% better than CoCoOp.

C.10 MORE ABLATION STUDY DETAILS

In this section, we validate that the stochastic generated module is the crucial factor affected the per-
formance of our proposed method instead of additional parameters in inference network. Empirically,
we also compare the results with our purposed method under Optimal Transport (OT) framework to
test the efficiency of the adopted CT module. We build two models denoted by PBPromptw/o-S and
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Table C. 11: Base-to-new generalization accuracy results of our purposed method PBPrompt with more 50
training epochs on ImageNet, Caltech101, DTD, EuroSAT and Flowers102 using ViT-B/16. (·) denoted the
difference from the original results in Table C. 7. ∆: The improvements of harmonic mean compared to CoCoOp
(without additional training epochs).

ImageNet Caltech101 Flowers102 DTD EuroSAT
Base 76.97 (+0.07) 98.01 (+0.03) 96.68 (+1.21) 80.44 (+2.41) 91.86 (+2,32)
New 70.12 (-0.75) 94.43 (-0.94) 71.16 (-2.44) 52.15 (-5.66) 68.08 (-4.79)
H 73.36 (-0.40) 96.19 (-0.47) 81.98 (-1.14) 63.28 (-1.57) 78.20 (-2.14)
∆ +0.26 +0.35 +0.27 −1.57 +6.99

PBPromptOT respectively for comparison. PBPromptw/o-S denotes the model removing the stochastic
prompt generation process and only preserving the inference network. PBPromptOT denotes the
model replace the CT framework with OT framework. Then, we conduct the ablation study on the
few-shot task (1/2/4 shots) with ImageNet, Caltech101, Flowers102, DTD and EuroSAT.

Table C. 12: The results of ablation study on five datasets using ViT-B/16. We report the average
value over three different seeds. The best results are highlighted.

Dataset Methods 1 shot 2 shots 4 shots

ImageNet

CoOp 68.10 69.25 69.53
PBPromptw/o-S 68.27 69.30 69.92
PBPromptOT 69.03 69.79 70.23
PBPrompt 69.55 69.90 70.50

Caltech101

CoOp 93.13 92.97 94.50
PBPromptw/o-S 92.86 93.91 94.51
PBPromptOT 93.39 93.76 94.62
PBPrompt 93.92 94.40 94.83

Flowers102

CoOp 73.00 81.90 86.56
PBPromptw/o-S 73.56 82.04 87.00
PBPromptOT 74.16 82.66 87.92
PBPrompt 75.43 83.37 88.90

DTD

CoOp 50.03 53.93 59.23
PBPromptw/o-S 50.65 54.55 59.40
PBPromptOT 51.95 55.66 59.50
PBPrompt 52.03 56.20 59.63

EuroSAT

CoOp 51.80 66.33 65,87
PBPromptw/o-S 52.15 66.97 68.19
PBPromptOT 61.10 67.21 71.77
PBPrompt 60.92 68.77 72.84

C.11 COMPUTATION COST EVALUATION

Table C. 13: The parameters and inference time comparison.

Settings CoOp CoCoOp PLOT(N=4) PBPrompt
# Params 2048 35360 8192 1577984
Inference Speed(images/s) 645 37 583 541

In this section, we summarize the comparison of the parameters and inference speed of the baseline
methods CoOp Zhou et al. (2022b), CoCoOp Zhou et al. (2022a), PLOT Chen et al. (2022) with 4
prompts and our PBPrompt with 10 samples. We report the number of learnable parameters and the
number of images processed by the model in 1 second during inference on the Food101 Bossard et al.
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(2014) dataset. As shown in Table. C. 13, despite the introduction of additional learnable parameters
in our model, we were able to achieve comparable inference speed.

D VISUALIZATION DETAILS

D.1 ANALYSIS FOR VISUALIZATION

Figure D1: Visualization of the learned prompts unrelated to the corresponding class.

Prompt #1 Prompt #2 Prompt #3

Top-1
The crocodile stands on the edge of 
a body of water, which has links to 
the landmass that it is standing on.

Its skin is rough and 
scaly, with a dark brown 
color.

The alligator has its 
mouth open and its 
teeth visible.

Top-2 The background is a body of water.
The crocodile’s body is 
long and slender, with a 
broad, flat tail.

The crocodile’s body is 
long and slender, with a 
broad, flat tail.

Prompt #1 Prompt #2 Prompt #3

Top-1

The elephant’s body is 
large and muscular, with a 
thick trunk and large ears.

Its skin is rough and The 
elephant has large tusks and 
appears to be looking at 
something in the distance.

The trees in the background 
are tall and leafy, with 
branches reaching up towards 
the sky.

Top-2

The elephant is standing on 
its hind legs, with its front 
legs on the ground.

The elephant’s body is large 
and muscular, with a thick 
trunk and large ears.

The elephant’s skin appears 
to be brown and rough, with 
a few patches of dirt on its 
body.

Figure D2: Prompt-caption retrieval results.

To exhibit how stochastic-generated prompts for a certain class focus on the visual concepts of
the images related to the corresponding class, we have provided some visualization examples at
Fig. 7(b) in the manuscript via employing the transport plans π to match the relations between various
textual prompts and visual patches. In the first two rows, we present two images belonging to the
"Abyssinian" and "Keeshond" respectively in OxfordPets. Obviously, from the heatmaps, the prompts
generated from the corresponding class prefer to focus on their ears, nose, eyes, and other body parts
with category-specific characteristics. In the third row, we select an image belonging to the "Hibiscus"
in OxfordFlowers and the stochastic-generated prompts pay more attention to its stems, stamens, and
petals. Simultaneously, we take an image belonging to the "Bentley Continental Supersports Conv.
Convertible 2012" in StanfordCars in the fourth row, and the corresponding prompts concentrate on
the car’s body, wheels, and roof.

For the prompts generated for classes unrelated to the image, we also provided some examples
to demonstrate the content they focused on. As shown in Fig. D1, most heatmaps concentrate on
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the environment of the object, while others pay attention to certain areas of the object but lack a
significant correlation with the object category attributes.

To explain the learned prompt from the text domain, one of the direct ways is to visualize the most
semantically close words of the generated prompts. Unfortunately, previous works find that the
most of retrieved words failed to explain the prompts (Zhou et al., 2022b). To this end, we here
adopt Mini-GPT4 to generate diverse captions and report the top-2 captions of each learned prompt
according to their cosine similarity (calculated by their CLIP features) at Table. D2. From the results,
we find that 1) The learned prompts indeed capture diverse label-specific concepts; 2) The retrieved
captions of each prompt share close semantics, which demonstrates the coherence of the learned
prompts.
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