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ABSTRACT

Recent advances in large language models (LLMs) have shown great potential to
accelerate drug discovery. However, the specialized nature of biochemical data
often necessitates costly domain-specific fine-tuning, posing critical challenges.
First, it hinders the application of more flexible general-purpose LLMs in cutting-
edge drug discovery tasks. More importantly, it impedes the rapid integration of
the vast amounts of scientific data continuously generated through experiments
and research. To investigate these challenges, we propose CLADD, a retrieval-
augmented generation (RAG)-empowered agentic system tailored to drug dis-
covery tasks. Through the collaboration of multiple LLM agents, CLADD dy-
namically retrieves information from biomedical knowledge bases, contextualizes
query molecules, and integrates relevant evidence to generate responses — all
without the need for domain-specific fine-tuning. Crucially, we tackle key obsta-
cles in applying RAG workflows to biochemical data, including data heterogene-
ity, ambiguity, and multi-source integration. We demonstrate the flexibility and
effectiveness of this framework across a variety of drug discovery tasks, showing
that it outperforms general-purpose and domain-specific LLMs as well as tradi-
tional deep learning approaches.

1 INTRODUCTION

Large language models (LLM) have revolutionized the landscape of natural language process-
ing, emerging as general-purpose foundation models with remarkable abilities across multiple do-
mains (Achiam et al., 2023; Touvron et al., 2023). However, given the inherent complexity and spe-
cialized nature of the biomolecular field, recent works emphasize the importance of domain-specific
fine-tuning to boost tasks such as molecular captioning, property prediction, or binding affinity pre-
diction (Fang et al., 2023; Chaves et al., 2024; Yu et al., 2024; Edwards et al., 2024). Consequently,
rather than employing readily available general-purpose LLMs, most efforts in drug discovery have
focused on fine-tuning LLMs using biochemical annotations or instruction-tuning datasets.

While promising, solely relying on these approaches poses significant challenges that can limit ap-
plications. On one hand, the rapid emergence of new LLM architectures and techniques (Minaee
et al., 2024; Zhao et al., 2023b) complicates maintaining domain-specific models obtained through
expensive fine-tuning. More importantly, drug discovery applications often require promptly in-
corporating new insights as they become available, for example, as a result of new experiments or
through the scientific literature—a process exacerbated by the automation of experimental work-
flows (Tom et al., 2024). In addition to being impractical, regular rounds of fine-tuning to keep
LLMs up-to-date with the latest scientific advances also introduce challenges such as catastrophic
forgetting (Luo et al., 2023).

From this perspective, retrieval-augmented generation (RAG) methods offer a promising solution
that enables dynamic adaptation of the model’s knowledge without the need for expensive fine-
tuning (Gao et al., 2023). However, applying this paradigm in the drug discovery domain presents
important obstacles. First, retrieving relevant knowledge is difficult due to the limited domain ex-
pertise of general-purpose LLMs, combined with the vastness of the chemical space (Bohacek et al.,
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1996) that renders exact retrieval suboptimal. Second, biochemical data is extremely heteroge-
neous, spanning diverse modalities such as molecules, proteins, diseases, and complex relationships
between them (Wang et al., 2023). Such data can also exist across multiple sources, introducing
challenges in factual integration (Harris, 2023). Finally, the available information is not necessarily
relevant to the query, as it may be too general, ambiguous, or partial (Vamathevan et al., 2019).

In this study, we tackle these challenges by introducing a Collaborative framework of LLM Agents
for Drug Discovery (CLADD). We assume a general setting where external knowledge is available
as expert annotations associated with molecules or as knowledge graphs that flexibly represent di-
verse biochemical entities and their relationships. CLADD is powered by general-purpose LLMs,
while also integrating domain-specific LMs, when necessary, to improve molecular understanding.
Notably, external knowledge can be updated dynamically without LLM fine-tuning.

The multi-agent collaborative framework enables each agent to specialize in a specific data source
and/or role based on their team, offering a modular solution that can improve overall information
processing (Chan et al., 2024). In particular, CLADD includes a Planning Team to determine rele-
vant data sources, a Knowledge Graph Team to retrieve external heterogeneous information in the
knowledge graph and summarize it, also through a novel anchoring approach to retrieve related
information when the query molecule is not present in the knowledge base, and a Molecule Under-
standing Team, which analyzes the query molecule based on its structure along with summaries of
external data and tools. The flexibility of the framework enables CLADD to address a wide range of
tasks for drug discovery, including zero-shot settings, while also improving interpretability through
the transparent interaction of its agents.

Overall, we highlight the following contributions:

• We present CLADD, a multi-agent framework for RAG-based question-answering in drug discov-
ery applications. The framework leverages generalist LLMs and dynamically integrates external
biochemical data from multiple sources without requiring fine-tuning.

• We demonstrate the flexibility of the framework by tackling diverse applications, including
property-specific molecular captioning, drug-target prediction, and molecular toxicity prediction.

• We provide comprehensive experimental results showcasing the effectiveness of
CLADDcompared to general-purpose and domain-specific LLMs, as well as standard deep
learning approaches. A further appeal of CLADD is its flexibility and explainability, improving
the interaction between scientists and AI.

2 METHODOLOGY

2.1 PROBLEM SETUP

Given a query molecule gq and a textual prompt describing a task of interest I, we con-
sider the general problem of generating a relevant response Agq . For instance, given gq =
‘C1=CC(=C(C=C1CCN)O)O ’ and I = ‘Predict liver toxicity’, our model should be able to gener-
ate an answer stating that Agq = ‘this molecule does not have liver toxicity concerns’.

We assume access to two types of external databases: (1) molecular annotation databases C, which
contain textual annotation about molecules (for example, detailing their functions and properties)
and (2) knowledge graphs (KGs) connecting molecules to other biomedical entities. In particular, a
KG G is composed of a set of entities E and a set of relations R connecting them. KG can include
various types of entities, such as drugs, proteins, and diseases. In this paper, we only assume that
molecule (or drug) entities are present in KG, while any other types of entities can exist.

Additionally, we assume access to pre-trained molecular captioning models that can be used as
external tools to complement the external databases. In general, any predictive model on molecules
can be considered a captioning model (Edwards et al., 2022; Pei et al., 2023), given that its output
can be simply represented as text.

2.2 CLADD

Here, we introduce CLADD, a multi-agent framework for general molecular question-answering
that supports multiple drug discovery tasks. Each agent is implemented by an off-the-shelf LLM
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Figure 1: Overview of CLADD.

prompted to elicit a particular behavior. Our framework is composed of three teams, each com-
posed of several agents: the Planning Team, which identifies the most appropriate data sources
and overall strategy given the task and the query molecule (Section 2.2.1); the Knowledge Graph
(KG) Team, which retrieves relevant contextual information about the molecule from available KG
databases (Section 2.2.2); and the Molecular Understanding (MU) Team, which retrieves and inte-
grates information from molecular annotation databases and external tools for molecule description
(Section 2.2.3); Finally, the Prediction Agent integrates the findings from the MU and KG teams
to generate the final answer. In the following sub-sections, we describe each team in detail. The
overall framework is depicted in Figure 1.

2.2.1 PLANNING TEAM

The Planning Team assesses prior knowledge for a given query molecule. The team separately as-
sesses the relevance of the molecular annotations and the knowledge graph using a MolAnn Planner
agent and a KG Planner agent.

Molecule Annotation (MolAnn) Planner. This agent first retrieves annotations for the query
molecule, cq , from the annotation database C. While these annotations can provide valuable bio-
chemical knowledge (Yu et al., 2024), they are often sparse and may lack sufficient details due to
the vastness of the chemical space (Lee et al., 2024). Given the vastness of the chemical space, it is
also not uncommon for molecules to be completely absent from databases.

To this end, the MolAnn Planner determines whether the retrieved annotations provide enough infor-
mation for subsequent analyses. Specifically, given a query molecule gq and retrieved annotations
cq , the agent is invoked as follows: oMAP = MolAnn Planner(gq, cq). oMAP is a Boolean indicating
whether annotations should be complemented with additional information from tools.

Knowledge Graph (KG) Planner. In parallel to analyzing the available description for the query
molecule, we analyze the relevance of the contextual information present in the KG. Unlike pre-
vious works in general QA tasks, which primarily rely on identifying exact entity matches within
the KG (Baek et al., 2023), the vast chemical search space and the limited coverage of existing
knowledge bases hinder such approaches.

To address this challenge, we propose leveraging the knowledge of drugs that are structurally similar
to the query drug, building upon the well-established biochemical principle that structurally similar
molecules often exhibit related biological activity (Martin et al., 2002). Specifically, we define the
anchor drug ga as the entity drug that maximizes the cosine similarity between its embedding and
that of the query molecule, among the set of all molecules in the KG (gG):

ga = argmax
g∈gG

emb(gq) · emb(g)
∥emb(gq)∥∥emb(g)∥ , (1)

where emb is a graph neural network (GNN) pre-trained with 3D geometry (Liu et al., 2021) that
outputs structure-aware molecular embeddings.

Then, the KG Planner agent decides whether to use the KG based on the structural similarity be-
tween the query molecule and the retrieved anchor drug. To do so, we also provide the Tanimoto
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similarity1 to the KG Planner, as this domain-specific metric can be leveraged by the LLM’s rea-
soning about chemical structural similarity as follows: oKGP = KG Planner(gq, ga, sq,a), where sq,a
is the Tanimoto similarity between the query and anchor molecules. oKGP is a Boolean indicating
whether the KG should be used for the prediction.

2.2.2 KNOWLEDGE GRAPH TEAM

This team aims to provide relevant contextual information about the query molecule by leveraging
the KG, and it is only called if oKGP = TRUE. It consists of the Drug Relation (DrugRel) Agent and
the Biological Relation (BioRel) Agent, both of which generate reports on the query molecule based
on different aspects of the KG. Specifically, the DrugRel Agent focuses on related drug entities
within the KG, primarily leveraging its internal knowledge, whereas the BioRel Agent focuses on
summarizing and assessing biological relationships between drugs present in the KG.

Related Drugs Retrieval. The typical approach to leveraging a KG for QA tasks involves identify-
ing multiple entities in the query and extracting the subgraph that encompasses those entities (Baek
et al., 2023; Wen et al., 2023). However, in molecular understanding for applications related to drug
discovery tasks, the question often involves only a single entity, i.e., the query molecule gq , making
it challenging to identify information in the KG relevant to the task.

Here, we introduce a novel approach for extracting relevant information for the query molecule
gq by utilizing the retrieved anchor drug ga, which exhibits high structural similarity to the query
molecule. In particular, while the drug entities in the KG G are mainly connected to other types
of biological entities (e.g., proteins, diseases), we can infer relationships among drugs by consider-
ing the biological entities they share. For example, we can determine the relatedness of the drugs
Trastuzumab and Lapatinib by observing their connectivity to the protein HER2 in the KG, as both
drugs specifically target and inhibit HER2 to treat HER2-positive breast cancer (De Azambuja et al.,
2014). Therefore, to identify relevant related drugs, we first compute the 2-hop paths connecting the
anchor drug ga to other drugs giG in the KG G, i.e., (ga, ra→e, e, ri→e, g

i
G), where r ∈ R, e ∈ E ,

and i denotes the index of the other drug. Then, we select the top-k related drugs, denoted as
gr1 , . . . , grk , corresponding to the molecules that have the greatest number of 2-hop paths to the
anchor drug. Note that while the anchor drug ga is selected based on its structural similarity to the
query molecule gq , these reference drugs are biologically related to ga, reflecting the relationships
captured within the KG.

Drug Relation (DrugRel) Agent. The DrugRel Agent generates a report on the query molecule,
contextualizing it in relation to relevant drugs present in the knowledge base for the specific task
instruction. Given a query molecule gq , its anchor drug ga, and the set of related drugs gr1 , . . . , grk ,
the DrugRel Agent is defined as follows: oDRA = DrugRel Agent (gq, ga, gr1 , . . . , grk , T , I), where
T = {sq,a, sq,r1 , . . . , sq,rk} is the set of Tanimoto similarities between the query molecule and
the retrieved drugs, and I is the task instruction. This allows the agent to leverage its internal
knowledge about related drugs while effectively assessing the relatedness of the information to the
target molecule based on the Tanimoto similarity.

Biological Relation (BioRel) Agent. On the other hand, drugs related to the query molecule in
the KG may exhibit limited structural similarity, underscoring the importance of utilizing additional
relevant information, such as shared toxicity profiles or interactions with the same target, rather than
relying solely on structural resemblance. Therefore, the BioRel Agent summarizes how the anchor
drug and the related drugs are biologically related, integrating additional biochemical information
present in the KG. Specifically, given an anchor drug ga, a set of reference drugs gr1 , . . . , grk , the
collection of all 2-hop paths P linking the anchor drug to the reference drugs, and the instruction I,
the agent generates the report as follows: oBRA = BioRel Agent(P, I, gq, ga, sq,a). This enables us
to obtain a task-relevant summary of the subgraph connected to the anchor drug.

Importantly, while both the DrugRel Agent and BioRel Agent aim to reason about the query
molecule in relation to other relevant drugs in the KG for the specific task, they leverage distinct
knowledge sources and perform different roles. Specifically, the BioRel Agent primarily leverages
the connectivity between drugs and other biological entities in the KG, focusing on interpreting and
summarizing this network of relationships and aligning it with the specific task at hand. In con-
trast, the DrugRel Agent primarily draws on its internal knowledge, triggered by the names of the

1We provide details on the Tanimoto similarity in Appendix B.
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related drug entities in the KG, and incorporates structural similarity between them. In Section 3,
we demonstrate how these agents complement each other effectively, producing a synergistic effect
when combined together.

2.2.3 MOLECULAR UNDERSTANDING TEAM

While the KG Team compiles the report by aggregating contextual knowledge, the Molecule Under-
standing (MU) Team focuses primarily on the query molecule itself. The MU Team is composed of
a single Molecule Understanding (MU) Agent, which aims to write a report on the query molecule
by leveraging its structural information, annotations from tools, and reports from other agents.

Molecule Understanding (MU) Agent. The MU Agent retrieves annotations for the query
molecule, denoted as cq . If the Planning Team decides to use external annotation tools (i.e.,
oMAP = TRUE), additional captions c̃q are generated with the external captioning tools as fol-
lows: c̃q = Captioning Tools(gq), and concatenated to the annotations retrieved from the database:
cq = cq||c̃q . External captioning tools allow the system to easily harness recent advances in LLM-
driven molecular understanding (Pei et al., 2023; Yu et al., 2024).

The agent then analyzes the structure of the molecule, contextualizing it with reports generated by
the other agents. Using the SMILES representation, the caption of the query molecule, and the
reports from the KG Team, it compiles a comprehensive molecular annotation report as follows:
oMUA = MU Agent(gq, cq, oDRA, oBRA, I).

2.2.4 PREDICTION AGENT

Finally, the Prediction Agent performs the user-defined task by considering the reports
from the various agents, including the MU and KG teams, as follows: Agq =
Task Agent(gq, oMUA, oDRA, oBRA, I). By integrating this evidence, the Prediction Agent can per-
form a comprehensive analysis of the query molecule. Importantly, the output of the Prediction
Agent can be flexibly adjusted based on the specific task requirements. For instance, it can be a
descriptive caption, a simple yes/no response for binary classification, or a more complex answer
listing the top-k targets associated with the query molecule. Such behavior leverages the zero-shot
capabilities of LLMs (Kojima et al., 2022) and does not require additional fine-tuning. Therefore, a
key advantage of CLADDis its flexibility, which enhances scientist-AI interactions.

3 EXPERIMENTS

Implementation Details. In all experiments, we utilize GPT-4o mini through the OpenAI API for
each agent. We use PrimeKG (Chandak et al., 2023) as the KG, PubChem (Kim et al., 2021) as an
annotation database, and MolT5 (Edwards et al., 2022) as an external captioning tool. Additional
implementation details and agent templates can be found in Appendix E and G, respectively.

3.1 PROPERTY-SPECIFIC MOLECULAR CAPTIONING TASK

Earlier studies on molecular captioning tasks have primarily focused on generating general descrip-
tions of molecules without targeting specific areas of interest, raising concerns about their practical
applicability in real-world drug discovery tasks. Indeed, the usefulness of a molecular description is
often task-dependent, and scientists may be interested in detailed explanations of specific character-
istics of a molecule rather than a general description (Guo et al., 2024; Edwards et al., 2024). Hence,
in this paper, we introduce property-specific molecular captioning, where the model is required to
generate a description for a given molecule customized to a particular area of interest.

Datasets. We leverage four widely recognized molecular property prediction datasets from the
MoleculeNet benchmark (Wu et al., 2018): BBBP, Sider, ClinTox, and BACE. We provide further
details on the datasets in Appendix C.

Methods Compared. We consider different baseline approaches. First, we compare recent
molecular captioning methods designed to generate general descriptions of molecules, including
MolT5 (Edwards et al., 2022), LlasMol (Yu et al., 2024), and BioT5 (Pei et al., 2023). Furthermore,
we assess general-purpose LLMs, namely GPT-4o mini and GPT-4o. Finally, we consider two
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Table 1: Performance in molecular captioning
tasks, mean AUROC with standard deviation
(in parentheses). Bold and underline indicate
the best and second-best language model-based
methods.

BBBP Sider ClinTox BACE
GNNs
GraphMVP 69.59 (1.29) 60.88 (0.41) 87.57 (3.26) 80.24 (2.92)
MoleculeSTM 70.14 (0.90) 58.69 (0.89) 92.19 (2.79) 79.24 (3.40)

Only SMILES 70.95 (1.14) 60.80 (1.18) 91.62 (2.18) 74.21 (1.32)

General LLMs
GPT-4o mini 67.85 (1.50) 58.18 (1.55) 90.74 (1.91) 74.22 (1.95)
GPT-4o 66.43 (1.47) 60.41 (1.21) 88.13 (1.74) 67.82 (4.14)

Domain LMs
MolT5 69.77 (1.89) 57.20 (0.98) 87.91 (1.25) 74.28 (4.00)
LlasMol 68.12 (1.48) 61.50 (1.66) 89.67 (0.57) 75.42 (2.98)
BioT5 69.68 (1.23) 64.65 (2.01) 92.80 (2.92) 77.23 (1.95)

CLADD 72.28 (1.04) 66.42 (1.31) 93.80 (2.30) 77.74 (3.15)

Table 2: Performance in drug target tasks (Preci-
sion @ 5). Bold and underline indicate best and
second-best language model-based methods.

(a) Overlap (b) No overlap
Activate Inhibit Activate Inhibit

GNNs (Fine-tune)
GraphMVP 1.76 1.03 1.67 0.73
MoleculeSTM 1.66 0.89 1.48 0.65

General LLMs (Zero-shot)
GPT-4o mini 1.15 1.02 1.13 0.87
GPT-4o 0.62 0.79 0.68 0.65

Domain LMs (Zero-shot) N/A N/A N/A N/A

Domain LMs (Fine-tune)
Galactica 125M 1.36 1.03 0.86 0.69
Galactica 1.3B 1.65 1.09 1.37 0.80
Galactica 6.7B 1.52 0.97 1.22 0.71

CLADD(Zero-Shot) 3.04 4.83 2.67 3.24

GNNs pre-trained with different methodologies: GraphMVP (Liu et al., 2021) and MoleculeSTM
(Liu et al., 2023). We provide further details on the baseline models in Appendix D.

Evaluation Protocol. Although property-specific captions are practical, no ground truth property-
specific captions exist for individual molecules, rendering traditional text generation evaluation
methods inapplicable. Thus, in line with recent works (Xu et al., 2024; Guo et al., 2024; Ed-
wards et al., 2024), we assess whether the generated captions can drive a classification model that
categorizes molecules based on their properties. Specifically, for a generated caption and the
SMILES representation of the target molecule, we concatenate them using a [CLS] token, form-
ing SMILES[CLS]caption, and fine-tune a SciBERT (Beltagy et al., 2019) model for property
prediction. The “Only SMILES” model utilizes only the SMILES string as input for the SciBERT
classifier. For baseline GNNs, we convert the SMILES into a molecular graph and provide it to the
model. For all the experiments, we use a scaffold splitting strategy to simulate realistic distribution
shifts (train/validation/test data split as 80/10/10%), following previous works (Liu et al., 2023). We
perform five independent fine-tuning runs of SciBERT (or GNN baselines) and report the mean and
standard deviation of the AUROC.

Experimental Results. Table 1 summarizes the results. We note the following observations: 1)
While domain-specific models outperform general-purpose LLMs, their performance remains sub-
optimal, occasionally falling behind the “Only SMILES” approach. This means that the generated
captions occasionally reduce model performance compared to using only the SMILES representa-
tion of the molecule. This aligns with previous work that found that general descriptors may lack
property-specific relevance (Guo et al., 2024; Edwards et al., 2024). 2) On the other hand, CLADD-
generated captions consistently outperform all the baseline captioners and successfully improve over
“Only SMILES” across all datasets. We attribute this improvement to the ability of CLADDto draw
on external biochemical knowledge to ground its generation and its task-specificity. 3) Moreover,
CLADDconsistently outperforms pre-trained GNN baselines, except on the BACE dataset. Interest-
ingly, this is also the only dataset for which the “Only SMILES” baseline falls short compared to
GNN models, thus highlighting the critical role of 2D topological and 3D geometric information in
this case. This paves the way for future research on injecting essential aspects of molecules, such as
topological and geometric information, into LLM understanding.

3.2 DRUG-TARGET PREDICTION TASK

Accurately predicting a drug’s protein target is essential for understanding its mechanism of action
and optimizing its therapeutic efficacy while minimizing off-target effects (Santos et al., 2017; Ba-
tool et al., 2019). Here, we evaluate the models’ ability to accurately identify which proteins a given
molecule is most likely to activate or inhibit.

Datasets. We use molecular targets present in the Drug Repurposing Hub (Corsello et al., 2017),
DrugBank (Wishart et al., 2018), and STITCH v5.0 (Szklarczyk et al., 2016), as preprocessed in
Zheng et al. (2023), including 13,688 molecules in total (details are presented in Appendix C).

Methods Compared. We evaluate two pre-trained GNNs, GraphMVP and MoleculeSTM, along
with two general-purpose LLMs—GPT-4o mini and GPT-4o, and the domain-specific language
model Galactica (Taylor et al., 2022) (details are presented in Appendix D).
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Table 3: Performance in drug toxicity prediction
task (Macro-F1). Avg. indicates the average per-
formance over four datasets. Bold and underline
indicate best and second-best methods.

hERG DILI Skin Carcinogens Avg.
General LLMs
GPT-4o mini 28.42 33.47 41.84 69.51 43.31
GPT-4o 40.45 25.76 54.51 38.91 39.90

Domain LMs
Galactica 125M 40.78 33.56 42.43 17.64 33.60
Galactica 1.3B 48.57 34.37 42.43 44.00 42.34
Galactica 6.7B 23.75 57.67 40.41 65.20 46.76
GIMLET 36.50 35.51 42.28 48.47 40.69
LlasMol 23.75 61.20 31.92 51.68 42.14

CLADD 51.46 41.10 50.43 58.31 50.33

(b)(a)

Table 4: Ablation studies. (a) On model com-
ponents. (b) On external knowledge.

Evaluation Protocol. We assess the performance of LLMs in a zero-shot setting. Specifically, for a
given target molecule, we prompt the LLMs to generate the top 5 proteins that the molecule is most
likely to activate or inhibit. The precision is then calculated by determining whether the generated
proteins match the correct answers. As baseline GNNs cannot perform this task without training in a
zero-shot setting, we fine-tune them in a few-shot setting using 10% of the data. For domain-specific
LMs, we also present fine-tuning results on the specific task. To better assess generalization power,
we separately report the performance on the test set for molecules present/not present in the external
databases (“Overlap”/“No Overlap”).

Experimental Results. Table 2 summarizes the results. We observe the following: 1)
CLADD outperforms all the baselines, with a higher likelihood of correctly identifying proteins
activated/inhibited by the input molecule. 2) Importantly, the superiority of CLADDis confirmed
for molecules not present in the caption database or knowledge graph (Table 2 (b)), showcasing
CLADD’s ability to leverage external knowledge to generalize to novel molecules. This outcome
underscores the potential of CLADD for exploring entirely new molecular spaces. 3) We observe
that domain-specific fine-tuned models, such as Galactica, GIMLET, and MolecularGPT, could not
generate five protein targets in a zero-shot setting when prompted to do so, as they are limited to
providing answers based on their fine-tuning instruction dataset. By specifically fine-tuning Galac-
tica on the task, we were able to answer the specific question, outperforming general-purpose LLMs
in most experiments, but results were still inferior to CLADD. This further highlights the flexibility
of CLADD, which leverages the zero-shot abilities of general-purpose LLMs in its architecture.

3.3 DRUG TOXICITY PREDICTION TASK

Accurate predictions of drug toxicity are crucial to ensure patient safety and minimize the risk of
adverse effects during drug development (Basile et al., 2019). Here, we evaluate the models’ ability
to predict the toxicity of a target molecule from its SMILES-based structural description.

Datasets. We use four datasets to comprehensively evaluate the performance of CLADD for drug
toxicity prediction tasks: hERG (Wang et al., 2016), DILI (Xu et al., 2015), Skin (Alves et al.,
2015), Carcinogens (Lagunin et al., 2009) datasets (details are presented in Appendix C).

Methods Compared. We compare five domain-specific LLMs—Galactica 125M, Galactica 1.3B,
Galactica 6.7B (Taylor et al., 2022), LlasMol (Yu et al., 2024), and GIMLET (Zhao et al., 2023a)
alongside two general-purpose LLMs, GPT-4o and GPT-4o mini (details in Appendix D).

Evaluation Protocol. As all the methods compared are foundation models, we evaluate their per-
formance in a zero-shot setting. Specifically, given a SMILES-based structural description of the
target molecule and a task description, the model outputs whether the molecule possesses the tar-
get property (binary classification). Using the text-formatted output generated by each model, we
compute the Macro-F1 score (Opitz & Burst, 2019) as the evaluation metric.

Experimental Results. Table 3 summarizes the results. 1) Comparing Galactica models, we ob-
serve that performance improves as the model size increases. However, this trend is not confirmed
for GPT-4o and GPT-4o mini. This suggests that larger general-purpose models do not necessarily
excel in domain-specific tasks, a trend also reported in prior research (Edwards et al., 2024). These
findings emphasize the necessity of domain-specific training in combination with model scaling. 2)
Meanwhile, CLADD outperforms all the baselines (average score across datasets), without requir-
ing domain-specific training by effectively incorporating external knowledge into general-purpose
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, the target molecule might also influence pathways related to this condition.

[...] Naftopidil is known to act as an antagonist  of alpha-1 adrenergic receptors. [...] The related drugs in the knowledge graph, such as Hydroxyzine and 
Clozapine, suggest potential interactions with histamine receptors and dopamine receptors, respectively.

Activation=[ADRA1A, HTR2A, DRD2, HDAC1, CYP3A4]

DrugRel
Agent

MU
Agent

Figure 2: Example of collaboration between agents in CLADD on the drug-target prediction task.

LLMs. This highlights the potential of integrating external knowledge at inference time to im-
prove molecular understanding, acting as an alternative (or complementary approach) to expensive
domain-specific model fine-tuning.

3.4 ABLATION STUDIES

Model Components Ablations. In Figure 4 (a), we report the results of ablations on the components
of CLADD. We observe: 1) The knowledge graph and the molecular annotations are important and
complementary data sources, as shown by the lower performance of the models with only Molecular
Understanding or Only Knowledge Graph team available (“Only MU”, “Only KG”). 2) Dynamically
selecting the relevant data sources with our Planning Team leads to better performance, leveraging
their complementarity, as suggested by the lower performance of the “No Planning”. 3) The dis-
tributed architecture of the multi-agent system is a more effective way of processing the retrieved
information. In “Only Planning”, we concatenate all the relevant data sources directly into the
prompt of the Prediction Agent, bypassing the preprocessing and report generation of the KG and
MU teams. Our results show the limitations of a single model in handling heterogeneous biological
data sources.

External Knowledge Ablations. To further assess the impact of external knowledge on model per-
formance, we evaluate the model after progressively pruning the available databases and present
our results in Figure 4 (b). We observe the following: 1) Model performance depends on external
knowledge size, validating the key role of the external knowledge to the framework. 2) Interest-
ingly, we do not observe any performance plateau, indicating that further expanding the external
knowledge could provide additional performance improvements. 3) From the bar plots, i.e., “No
CT (No Captioning Tool)” and “Use KG (Call Knowledge Graph Team),” we observe that as the
amount of external knowledge grows, the planning team increasingly depends on it. This indicates
that CLADD actively leverages external knowledge more effectively during the decision-making
process when such knowledge is more abundant.

3.5 CASE STUDIES

In Figure 2, we provide an example of agent collaboration in CLADD to identify the top 5 proteins
a query molecule is most likely to activate. First, the BioRel Agent extracts from the knowledge
graph that the anchor drug, Naftopidil, is indicated for benign prostatic hyperplasia (BPH), pointing
to likely activation of pathways related to that condition. The DrugRel Agent then complements
these findings by 1) connecting BPH with alpha-1 adrenergic receptors using its internal knowledge
(which is confirmed in the literature (Klotsman et al., 2004)), and 2) analyzing the related drugs
in the knowledge graph (e.g., Hydroxyzine and Clopamine), inferring potential interaction with
histamine and dopamine receptors. Finally, the MU agent integrates these findings with its own
evidence to provide a summarized report of the likely activated proteins. This example highlights
the complementary nature of the agents in CLADD, where the integration of diverse information
from each agent is key to its success. The distributed architecture of the model, grounded in real
data sources, also leads to increased interpretability and reliability of the generated answers.

4 CONCLUSION

In this work, we introduced CLADD, a multi-agent framework for molecular question-answering
that dynamically retrieves and integrates external knowledge to support various drug discovery tasks.
We showcased its flexibility and effectiveness across multiple tasks, outperforming both general-
purpose and domain-specific LLMs as well as standard deep learning methods, without requiring
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expensive domain-specific fine-tuning. Our analyses highlighted the complementarity of external
knowledge sources, internal LLM reasoning, and multi-agent orchestration. CLADD’s chain of mes-
sages also provides insight into its decision-making process and the role of different data sources,
fostering more interpretable scientist-AI interactions.
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A RELATED WORKS

LLMs for Molecules. Leveraging the extensive body of literature and string-based molecular rep-
resentations such as SMILES, language models (LMs) have been successfully applied to molecular
sciences. Inspired by the masked language modeling approach used in BERT training (Devlin et al.,
2018), KV-PLM (Zeng et al., 2022) introduces a method to train LMs by reconstructing masked
SMILES and textual data. Similarly, MolT5 (Edwards et al., 2022) adopts the “replace corrupted
spans” objective (Raffel et al., 2020) for pre-training on both SMILES strings and textual data, fol-
lowed by fine-tuning for downstream tasks such as molecule captioning and generation. Building
on this foundation, Pei et al. (2023) and Christofidellis et al. (2023) extend MolT5 with additional
pre-training tasks, including protein FASTA reconstruction and chemical reaction prediction. Fur-
thermore, GIMLET (Zhao et al., 2023a), Mol-Instructions (Fang et al., 2023), and MolecularGPT
(Liu et al., 2024b) adopt instruction tuning (Zhang et al., 2023) to improve generalization across a
wide range of molecular tasks. While these approaches demonstrate enhanced versatility, they still
rely on expensive fine-tuning processes to enable molecule-specific tasks or to incorporate new data.

LLM Agents for Science. An LLM agent is a system that leverages LLMs to interact with users or
other systems, perform tasks, and make decisions autonomously (Wang et al., 2024a). Recently,
LLM agents have attracted significant interest in scientific applications and biomedical discov-
ery (Gao et al., 2024), with applications including literature search (Lála et al., 2023), experiment
design (Roohani et al., 2024), and hypothesis generation (Wang et al., 2024b), among others. In
particular, agents focusing on drug discovery applications have emerged. Systems like ChemCrow
(Bran et al., 2023), CACTUS (McNaughton et al., 2024), and Coscientist (Boiko et al., 2023) focus
on automating cheminformatics tasks and experiments, streamlining computational and experimen-
tal pipelines. Other works leverage agent-based orchestration of tools and data to accelerate specific
aspects of scientific workflows, such as search (ODonoghue et al., 2023) or design (Ghafarollahi
& Buehler, 2024). In contrast to existing works, we investigate an agent-based framework that can
effectively incorporate external knowledge to improve general molecular QA. This could be used
either independently or as part of a larger system for automated drug discovery (Tom et al., 2024).

Multi-Agent Collaborations for Drug Discovery. Only a limited number of studies have explored
multi-agent frameworks in the context of drug discovery. DrugAgent (Inoue et al., 2024) introduces
a multi-agent framework integrating multiple external data sources but is limited to predicting drug-
target interaction scores. Another study with the same name employs an agentic framework for
automating machine learning programming for drug discovery tasks (Liu et al., 2024a). In contrast,
our work seeks to tackle a diverse array of drug discovery tasks, enabling applicability across a wide
variety of use cases.

B PRELIMINARIES

Tanimoto Similarity. The Tanimoto similarity is a widely accepted criterion for calculating the
similarity between two molecules based on their molecular fingerprint Bajusz et al. (2015), which
are the binary sequences that denote the presence or absence of specific substructures Rogers &
Hahn (2010). Given two molecules gi and gj with fingerprints fpi and fpj , the Tanimoto similarity
si,j is computed as follows:

si,j =
|fpi ∩ fpj |

|fpi|+ |fpj | − |fpi ∩ fpj |
. (2)

Intuitively, the Tanimoto similarity is the intersection-over-union of the sets of molecular substruc-
tures of both molecules.

C DATASETS

In this section, we provide further details on the datasets we used in Section 3. We provide a
summary of data statistics in Table 5.

C.1 DRUG TOXICITY PREDICTION TASK

For the drug toxicity prediction task, we use four datasets: hERG, DILI, Skin, and Carcinogens.
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Table 5: Data statistics.

hERG DILI Skin Carcinogens BBBP Sider ClinTox BACE ChemPert
Overlap No Overlap

# Molecules 648 475 404 278 2039 1427 1477 1513 7917 5771

# Tasks 1 1 1 1 1 27 2 1 2 2

• The Human ether-a-go-go related gene (hERG) Wang et al. (2016) plays a critical role in regulat-
ing the heart’s rhythm. Thus, accurately predicting hERG liability is essential in drug discovery.
In this task, we assess the model’s ability to predict whether a drug blocks hERG.

• Drug-induced liver injury (DILI) Xu et al. (2015) is a severe liver condition caused by medications.
In this task, we evaluate the model’s capability to predict whether a drug is likely to cause liver
injury.

• Repeated exposure to a chemical agent can trigger an immune response in inherently susceptible
individuals, resulting in Skin Alves et al. (2015) sensitization. In this task, we evaluate the model’s
capability to predict whether the drug induces a skin reaction.

• A Carcinogen Lagunin et al. (2009) refers to any substance, radionuclide, or type of radiation
that contributes to carcinogenesis, the development of cancer. In this task, we assess the model’s
ability to predict whether a drug has carcinogenic properties.

C.2 PROPERTY-SPECIFIC MOLECULAR CAPTIONING TASK

For the property-specific molecular captioning task, we use four datasets in MoleculeNet Wu et al.
(2018): BBBP, Sider, Clintox, BACE

• The blood-brain barrier penetration (BBBP) dataset consists of compounds categorized by their
ability to penetrate the barrier, addressing a significant challenge in developing drugs targeting the
central nervous system.

• The side effect resource (Sider) dataset organizes the side effects of approved drugs into 27 distinct
organ system categories.

• The Clintox dataset includes two classification tasks: 1) predicting toxicity observed during clini-
cal trials, and 2) determining FDA approval status.

• The BACE dataset provides qualitative binding results for a set of inhibitors aimed at human β-
secretase 1.

C.3 DRUG-TARGET PREDICTION TASK TASK

We rely on annotated molecular targets present in the Drug Repurposing Hub Corsello et al. (2017),
DrugBank Wishart et al. (2018) and STITCH v5.0 Szklarczyk et al. (2016), as combined and pre-
processed in Zheng et al., 2023. As we explained in Section 3, we separately report the performance
on the test set for molecules based on their information availability in the external databases (“Over-
lap”/“No Overlap”). More specifically, for “No Overlap” cases, we exclude the molecules in the
following criteria:

• We exclude the molecules if they exist in the knowledge graph.

• However, we noticed that many molecules have uninformative annotations, as also discussed in
Section E. Consequently, we decided to exclude molecules from the test set only if they have
sufficient annotations relevant to the task, as determined by GPT-4o mini.

After this process, 5771 molecules remained in the test set for “No Overlap” scenario.

D BASELINES SETUP

In this section, we provide further details on the baselines we used in Section 3. For all baseline
models, we utilize the pre-trained checkpoints provided by the authors of the original papers.
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Table 6: Links to baseline model checkpoints.

Model URL

Galactica 125M https://huggingface.co/facebook/galactica-125m
Galactica 1.3B https://huggingface.co/facebook/galactica-1.3b
Galactica 6.7B https://huggingface.co/facebook/galactica-6.7b
GIMLET https://huggingface.co/haitengzhao/gimlet
LlasMol https://huggingface.co/osunlp/LlaSMol-Mistral-7B
MolecularGPT https://huggingface.co/YuyanLiu/MolecularGPT

• Galactica Taylor et al. (2022) is a large language model designed to store, integrate, and reason
over scientific knowledge. The authors demonstrate Galactica’s capabilities in simple molecule
understanding tasks, such as predicting IUPAC names and performing binary classification for
molecular property prediction. We also fine-tune Galactica for the Drug-Target Prediction task
described in Section 3, using molecules linked to more than five proteins for activation and inhibi-
tion. For fine-tuning, we search for the optimal hyperparameters by experimenting with learning
rates of {1e − 3, 1e − 4, 1e − 5, 1e − 6} and epochs of {50, 100, 150, 200}, reporting the best
performance achieved.

• GIMLET Zhao et al. (2023a) introduces a unified approach to leveraging language models for
both graph and text data. The authors aim to enhance the generalization ability of language models
for molecular property prediction through instruction tuning.

• LlaSMol Yu et al. (2024) presents a large-scale, comprehensive, and high-quality dataset designed
for instruction tuning of large language models. This dataset includes tasks such as name conver-
sion, molecule description, property prediction, and chemical reaction prediction, and it is used to
fine-tune different open-source LLMs.

E IMPLEMENTATION DETAILS

In this section, we provide further details on the implementation of CLADD.

E.1 SOFTWARE CONFIGURATION

Our model is implemented using Python 3.11, PyTorch 2.5.1, Torch-Geometric 2.6.1, RDKit
2023.9.6, and LangGraph 0.2.59.

E.2 EXTERNAL DATABASES

In all experiments, we employ the PubChem database Kim et al. (2021) as the annotation database
C and PrimeKG Chandak et al. (2023) as the biological knowledge graph G.

The PubChem database is one of the most extensive public molecular databases available. Pub-
chem database consists of multiple data sources, including DrugBank, CTD, PharmGKB, and more
(https://pubchem.ncbi.nlm.nih.gov/sources/). The PubChem database used in
this study includes 299K unique molecules and 336K textual descriptions associated with them
(that is, a single molecule can have multiple captions sourced from different datasets associated
with it). On average, each molecule has 1.115 descriptions, ranging from a minimum of one to a
maximum of 17, as shown in Figure 3 (a). In this study, if a molecule had multiple captions, they
were concatenated to form a single caption. On the other hand, as shown in Figure 3 (b), most cap-
tions consist of fewer than 20 words, underscoring the limited informativeness of human-generated
captions. Even after concatenating multiple captions for each molecule, the majority still contain
fewer than 50 words.

PrimeKG is a widely used knowledge graph for biochemical research. The knowl-
edge graph contains 4,037,851 triplets and encompasses 10 entity types, including
{anatomy, biological processes, cellular components, diseases,
drugs, effects/phenotypes, exposures, genes/proteins, molecular
functions, and pathways}. Additionally, it includes 18 relationship types:
{associated with, carrier, contraindication, enzyme, expression
absent, expression present, indication, interacts with, linked
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(a) Number of Captions (b) Number of Words 
in a Caption

(c) Number of Words 
after Concatenation

Figure 3: Data analysis on PubChem database.

(a) Entity Type (b) Relation Type

Figure 4: Data analysis on PrimeKG knowledge
graph.

to, off-label use, parent-child, phenotype absent, phenotype
present, ppi, side effect, synergistic interaction, target, and
transporter}. The number of triplets associated with each entity and relation type is shown in
Figure 4 (a) and (b), respectively.

E.3 KG PLANNER

In section 2.2.1, we propose to utilize 3D geometrically pre-trained GNNs to retrieve molecules
highly structurally similar to the query molecule. We use GIN architecture Xu et al. (2018), which
is pre-trained with GraphMVP Liu et al. (2021) approach. The checkpoint of the model is available
at 2.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results that can supplement our experimental
results in Section 3.

F.1 ADDITIONAL ABLATION STUDIES

In Table 7, we conduct a model analysis by removing one component of the model at a time. We have
the following observations: 1) By comparing “Only Expert Annotation” and “Only Generated Cap-
tion”, we observe that relying solely on expert annotations yields significantly better performance.
This highlights the critical importance of human-generated annotations over machine-generated cap-
tions. 2) Among the three agents—DrugRel Agent, BioRel Agent, and MU Agent—we could not
determine a clear superiority in their relative importance, as the agent leading to the best perfor-
mance by itself varied by task (Activation or Inhibition). 3) Overall, we observe a decline in per-
formance when any single component of CLADD is removed, emphasizing the significance of each
component.

Moreover, we perform additional ablation studies in the property-specific molecule captioning tasks
in Figure 5. We observe that including all components (i.e., CLADD) leads to best performance
except for the BACE dataset. This is because, as illustrated in Figure 7, the BACE dataset contains
minimal relevant information in both the annotation database and the knowledge graph. Conse-
quently, the model derives minimal benefit from external knowledge, highlighting the critical role
of having relevant external information.

F.2 ADDITIONAL EXTERNAL KNOWLEDGE ANALYSIS

In Figure 6, we analyze how external knowledge is used during the decision-making process for
drug-target prediction tasks. We have the following observations: 1) As shown in Figure 6 (a)
and (b), the average length of human descriptions is considerably longer in the “Correct” case, and
the number of retrieved 2-hop paths is notably higher in the “Correct” case. This highlights the

2https://huggingface.co/chao1224/MoleculeSTM/tree/main/pretrained_
GraphMVP
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Table 7: Additional ablation studies in protein target
tasks (Precision @ 5). Bold and underline indicate
best and second-best methods.

(a) Overlap (b) No overlap
Activate Inhibit Activate Inhibit

No MolAnn Planner
- Only Expert Annotation 2.99 4.80 2.63 3.20
- Only Generated Caption 2.72 3.96 2.61 2.80
No KG Planner 2.84 4.49 2.64 2.97
No DrugRel Agent 2.90 4.79 2.48 2.99
No BioRel Agent 2.96 4.50 2.63 3.00
No MU Agent 3.04 4.17 2.66 2.59

CLADD 3.04 4.83 2.67 3.24 Figure 5: Ablation studies in the property-
specific molecular captioning task.

importance of having external information that is both high quality and abundant. 2) On the other
hand, although we anticipated a higher proportion of 2-hop paths containing Gene/Protein entities
in the “Correct” case, no significant difference was observed between the “Correct” and “Incorrect”
cases in Figure 6 (c) and (d). From these results, we argue that CLADD’s performance is not solely
reliant on retrieving external information that is directly linked to the correct answer, given that
external information can be further processed and contextualized by the agents, also integrating
different sources of evidence.

(a) (b) (c) (d)

InhibitionActivation

Figure 6: External knowledge analysis results. (a) The average length of retrieved human descrip-
tions, (b) the average number of retrieved 2-hop paths in the knowledge graph, and (c) the proportion
of entity types in 2-hop paths for correct and incorrect cases.

In Figure 7, we examine how the Planning Team determines the use of the captioning tool and
collaborates with the Knowledge Graph Team based on the datasets. We observed that, in most
cases, the KG was used for more than 50% of the query molecules, with the BACE and Skin Reaction
datasets as significant exceptions. Furthermore, we observed that the BACE and hERG datasets
lacked corresponding annotations for all query molecules.
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Figure 7: Planning team decision analysis based on different datasets. “No CT” signifies that the
planning team has decided not to utilize the captioning tool, while “Use KG” indicates that the
planning team intends to involve the Knowledge Graph Team.
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F.3 ADDITIONAL CASE STUDIES

In this section, we provide additional case studies to analyze the behavior CLADD. In Figure 8, we
observe that all three agents consistently predict dopamine-related and serotonin-related proteins as
targets. Based on the reports, Prediction Agent prioritizes these proteins over Cytochrome P450-
related enzymes in their predictions. Thus, we argue that our system efficiently prioritizes relevant
information based on consensus, functioning similarly to a majority voting system.

Ground Truth=[DRD3, DRD2, HTR1A] 

The target molecule, CN(C)C(=O)NC1CCC(CCN 2CCN(c3cccc(Cl)c3Cl)CC2)CC1.Cl, is l ikely to activate or inhibit several protein targets based on its structura
l similarity to Cariprazine. The high Tanimoto similarity (0.98) suggests it will  interact with dopamine D2 and D3 receptors (DRD2, DRD3) and serotonin r
eceptors (5-HT1A, 5-HT2A, 5-HT2B), which are critical  in treating schizophrenia and bipolar disorder. Additionally, the molecule may be metabolized by 
CYP2D6 and CYP3A4 enzymes, influencing its pharmacokinetics. Thus, the potential protein targets include DRD2, DRD3, HTR1A, HTR2A, HTR2B, CYP2D

6, and CYP3A4.

BioRel
Agent

Prediction
Agent

The target molecule shares a high Tanimoto similarity with Cariprazine, which is linked to several protein targets and enzymes. The relationships indica
te that Cariprazine, along with related drugs like Olanzapine, Chlorpromazine, and Aripiprazole, targets dopamine receptors (DRD2, DRD3) and serotoni
n receptors (HTR1A, HTR2A, HTR2B). Additionally, these drugs are metabolized by CYP2D6 and CYP3A4 enzymes. Given these connections, the potential 
protein targets for the target molecule may include DRD2, DRD3, HTR1A, HTR2A, and HTR2B, as well  as the CYP2D6 and CYP3A4 enzymes, which could i

nfluence its pharmacokinetics and therapeutic effects in conditions like bipolar disorder and schizophrenia.

The target molecule, CN(C)C(=O)NC1CCC(CCN 2CCN(c3cccc(Cl)c3Cl)CC2)CC1.Cl, exhibits a high Tanimoto similarity of 0.98 to Cariprazine, indicating a str
ong structural resemblance. Cariprazine is an atypical antipsychotic that primarily acts as a partial  agonist at dopamine D2 and D3 receptors, and also 
has affinity for serotonin receptors (5-HT1A and 5-HT2A). Given this similarity, the target molecule is likely to interact with similar protein targets, part
icularly dopamine and serotonin receptors. The presence of a piperazine moiety and a similar aromatic system suggests potential binding to these rec

eptors, which are critical in the treatment of psychiatric disorders. The lower similarities to related drugs like Aripiprazo le (0.35) and Olanzapine (0.17) 
suggest that while the target  may share some pharmacological properties, it could also exhibit unique interactions due to structural differences. There
fore, the target molecule may act ivate or inhibit  dopamine D2/D3 and serotonin 5-HT1A/5-HT2A receptors, potential ly leading to effects similar to tho
se of Cariprazine and its associated drugs. Further experimental validation would be necessary to confirm these predictions.

Activation=[DRD2, DRD3, HTR1A, HTR2A, HTR2B]

DrugRel
Agent

MU
Agent

Figure 8: Additional case studies. Red represents dopamine-related proteins, yellow represents
serotonin-related proteins, and green represents Cytochrome P450-related enzymes.

The target molecule COc1ccccc1N1CCN (CCCCN C(=O)c2ccc3ccccc3c2)CC1 may act ivate or inhibit  several protein targets based on itsstructure and the re
ports from the Tanimoto and Summary Agents. 
1. **Histone Deacetylase (HDAC)**: As an identified HDAC inhibitor, it may modulate gene expression and influence cancer pathways. 
2. **Alpha-1 Adrenergic Receptors**: Due to its structural similarity to Naftopidil, it may interact with these receptors, affecting vasodilation and blood 

pressure. 
3. **Histamine Receptors**: The presence of aromatic rings suggests potential binding to histamine receptors, influencing allergic responses. 
4. **Dopamine Receptors**: Similarit ies to Clozapine indicate possible interactions with dopaminergic pathways, relevant in psychiatric disorders. 
5. **CYP3A4**: The molecule may affect drug metabolism via interactions with this enzyme, impacting the pharmacokinetics of co-administered drugs. 
6. **BPH-related Proteins**: Given the link to Naftopidil and benign prostatic hyperplasia, it may influence pathways associated with this condition.

BioRel
Agent

Prediction
Agent Ground Truth=[ADRA1A, ADRA1D, ADRA2A, HTR1A, HTR2B, DRD1, DRD2, DRD3, DRD4]

The target molecule shares a Tanimoto similarity of 0.411 with the anchor drug, Naftopidil, which is indicated for benign prostatic hyperplasia (BPH). Th
e relationships indicate that several drugs, including Hydroxyzine, Caffeine, and Clozapine, contraindicate BPH while also in teracting with the enzyme CY
P3A4, which is crucial for drug metabolism. Given these connections, the target molecule may potentially inhibit  or activate proteins related to CYP3A4, 
affecting the metabolism of drugs that  interact with this enzyme. Additionally, since Naftopidil is l inked to BPH, the target  molecule might also influence 

pathways related to this condition, possibly through interactions with proteins involved in the signaling or pathology of BPH . Thus, potential  protein tar
gets include CYP3A4 and proteins associated with BPH-related pathways.

The target molecule COc1ccccc1N1CCN (CCCCN C(=O)c2ccc3ccccc3c2)CC1 shows a Tanimoto similarity of 0.4117 with Naftopidil, indicating a moderate str
uctural resemblance. Naftopidil is known to act as an antagonist  of alpha-1 adrenergic receptors, which are involved in vasodilat ion and blood pressure 
regulation. Given this similarity, the target molecule may also interact with adrenergic receptors or related pathways. The r elated drugs in the knowled
ge graph, such as Hydroxyzine and Clozapine, suggest potential  interactions with histamine receptors and dopamine receptors, respectively. The target  

molecule's structural features, including the aromatic r ings and nitrogen-containing heterocycles, may facilitate binding to these receptors. Additionally
, the presence of a carbonyl group (C(=O)) in the target molecule could enhance its abil ity to form hydrogen bonds, potentially increasing affinity for var
ious protein targets. Overall , the target molecule may activate or inhibit adrenergic, histaminergic, or dopaminergic pathways, warranting further inves
tigation into its pharmacological profile.

Activation=[ADRA1A, HTR2A, DRD2, HDAC1, CYP3A4]

DrugRel
Agent

MU
Agent

Figure 9: Full version of Figure 2.

21



Published as a workshop paper at MLGenX 2025

G AGENT TEMPLATES

In this section, we provide the templates for each agent used in Section 2.

Table 8: Prompts for Molecule Annotation Planner (Section 2.2.1).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to determine whether the provided description is enough for analyzing
the structure of the molecule.

Are you ready?

Description: {Retrieved Human Description}

You should answer in the following format:

Answer = YES or NO
REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 9: Prompts for Knowledge Graph Planner (Section 2.2.1).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to decide whether to utilize the knowledge graph structure by evaluating the structural
similarity between the target molecule and the anchor drug within the knowledge graph.
If the target molecule and the anchor drug show high similarity, the knowledge graph should be
leveraged to extract relevant information.

The Tanimoto similarity between the target molecule {SMILES} and the anchor drug
{SMILES} ({Drug Name}) is {Tanimoto Similarity}.

You should answer in the following format:

Answer = YES or NO
REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 10: Prompts for Biology Relation Agent (Section 2.2.2).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to predict {Task Description} by analyzing the relationships between the anchor drug,
which shares tanimoto similarity of {Tanimoto Similarity} with the target molecule,
and the most closely related drugs in the knowledge graph.

You should explain the reasoning based on the intermediate nodes between the
related drugs and the anchor drug, as well as the types of relationships they have.

The two-hop relationships between the drugs will be provided in the following format:
(Drug A, relation, Entity, relation, Drug B), where the entity can be one of the following
three types of entities: (gene/protein, effect/phenotype, disease)

Are you ready?

Target molecule: {SMILES}

Here are the two-hop relationships:
{Two-hop Paths}

DO NOT ANSWER IN THE PROVIDED FORMAT.
DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
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Table 11: Prompts for Drug Relation Agent (Section 2.2.2).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to {Task Description} by analyzing its structural similarity to anchor drugs
and related drugs, and provide an explanation grounded in its resemblance to these other drugs.

Are you ready?

The Tanimoto similarity between the target molecule {SMILES} and the anchor drug {SMILES}
({Drug Name} is {Tanimoto Similarity}.

The anchor drug {Drug Name} is highly associated with the following molecules
in the knowledge graph: {Reference Drugs}.

The Tanimoto similarities between the target molecule {SMILES} and the related drugs
in the knowledge graph are {Tanimoto Similarity}.

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 12: Prompts for Molecule Understanding Agent (Section 2.2.3).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} by using the SMILES representation
and description of a molecule, and explain the reasoning based on its description.

You can also consider the report from other agents involved in drug discovery:
- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Are you ready?
SMILES: {SMILES}
Description: {Caption}

Below is the report from other agents.
Drug Relation Agent:
{Report from Drug Relation Agent}

Biology Relation Agent:
{Report from Biology Relation Agent}

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 13: Prompts for Prediction Agent (Section 2.2.4).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} {SMILES}.

Your reasoning should be based on reports from various agents involved in drug discovery:
- Molecule Understanding Agent: Focuses on analyzing the structure of the target molecule.
- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Below is the report from each agent.

Molecule Understanding Agent:
{Report from Molecule Understanding Agent}

Drug Relation Agent:
{Report from Drug Relation Agent}

Biology Relation Agent:
{Report from Biology Relation Agent}

Based on the reports, {Task Description and Answering Format}

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
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