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Abstract—Synthetic Aperture Radar (SAR) is extensively used
for vessel detection due to its capability to produce high-
resolution images. However, detecting vessels in SAR imagery
remains challenging because of the small object sizes and reduced
resolution caused by long observation distances, often resulting
in high miss-detection rates. To address this issue, this paper
introduces a novel detection model—ship detection YOLO (SD-
YOLO), which improves small object detection accuracy while
maintaining real-time performance. Specifically, we enhance the
C3 module of YOLOv5 by incorporating Coordinate Attention
(CA) and a bottleneck mechanism, forming the CB-C3 mod-
ule. Additionally, to increase detection precision and training
efficiency, we implement the α-IoU loss function, which better
constrains detection bounding boxes, enabling the model to locate
ships more accurately. We also redesign YOLOv5’s neck layer
using a Bi-directional Feature Pyramid Network (BiFPN) to
optimize multi-scale feature fusion. Experiments on several public
SAR datasets demonstrate that SD-YOLO achieves an Average
Precision (AP) of 96.1% on the SAR ship detection data-set
(SSDD) and 73.2% on the large-scale SAR ship detection data-
set (LS-SSDD), representing improvements of 2.7% and 7.9%,
respectively. Furthermore, SD-YOLO is more lightweight than
other mainstream algorithms, with only 6.79M.

Index Terms—ship detection; YOLOv5; coordinate attention;
α-IoU; BiFPN

I. INTRODUCTION

Ship detection is crucial for a wide range of applications, in-
cluding search and rescue operations, maritime traffic control,
and automated fisheries management [1]. Although numerous
ship detection methods exist, the marine environment presents
unique challenges, such as varying weather conditions, ocean
waves, and other unpredictable natural factors, which com-
plicate detection efforts. In this context, Synthetic Aperture
Radar (SAR) offers a significant advantage due to its ability
to capture high-resolution images over large areas, regardless
of weather or lighting conditions. SAR is particularly effective
in detecting vessels on the ocean surface [2], making accurate
and real-time SAR-based ship detection results essential.
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Traditional ship detection models rely on manual feature
extraction and prior knowledge, making it challenging to
effectively capture target characteristics. Consequently, these
models often lack robustness and generalization capabilities.
In contrast, deep learning has made significant advancements
in computer vision, particularly in areas such as semantic
segmentation [3], object recognition [4], and object detection
[5]. By learning key features from large-scale datasets, deep
learning algorithms have demonstrated superior accuracy in
object detection and exhibit strong robustness.

Deep learning-based detection methods are typically classi-
fied into two categories: two-stage and single-stage algorithms
[6]. Two-stage detectors include models such as Region-based
Convolutional Neural Networks (R-CNN) [7], Fast R-CNN
[8], and Faster R-CNN [9]. R-CNN generates region proposals
and normalizes them before performing classification. Fast R-
CNN and Faster R-CNN compute features at a single scale,
striking a balance between accuracy and processing efficiency.
However, these models are generally too slow to meet the real-
time processing requirements of embedded systems [10]. To
address the demand for faster detection, single-stage models
have been developed. These detectors, such as Corner-Net,
You Only Look Once (YOLO) [6], and Single Shot MultiBox
Detector (SSD) [11], bypass the region proposal stage and di-
rectly perform detection on densely sampled positions. YOLO,
in particular, utilizes a feed-forward convolutional network for
both object localization and classification [12], making it a
popular choice for ship detection tasks.

Despite its strengths, YOLO does not effectively account
for the spatial relationships between objects in input images
[13], which hampers its detection performance, particularly
for small vessels. To address this issue, various studies have
proposed improvements to the YOLOv5 model in recent years.
For instance, Zheng et al. [14] improved the loss function
by introducing Distance Intersection over Union (DIoU) and
accounting for the Euclidean distance between actual center
points, leading to better detection accuracy. Likewise, Sun
et al. [15] used a combination of top-down and bottom-



Fig. 1. YOLO Object Detection Process.

up pathways to achieve more thorough feature fusion. By
linearizing the equations and accurately identifying vessel
position coordinates, they further increased the model’s pre-
cision. While the aforementioned algorithms improve feature
extraction network architectures, they fail to effectively inte-
grate contextual information in the final model layers, which
is crucial for accurate predictions [14], [15].

Moreover, training deep learning models for target detec-
tion requires large datasets. The primary datasets used for
synthetic aperture radar (SAR) ship detection are the SAR
Ship Detection Dataset (SSDD) [16] and the Large-Scale SAR
Ship Detection Dataset (LS-SSDD) [17]. Key differences exist
between SAR and natural images: SAR images are single-
channel, sparsely distributed, and contain relatively few ships.
As a result, when generic object detection models are applied
directly to SAR ship detection tasks, their performance tends
to degrade [18]. This underscores the urgent need for a highly
accurate and robust SAR-specific ship detection model.

In this study, considering the unique characteristics of SAR
images, we leverage the speed of the YOLOv5 algorithm to
improve ship detection accuracy. The key contributions of this
work are outlined as follows:

1) Inspired by the coordinate attention mechanism, we de-
veloped a novel feature enhancement module called CB-
C3. Unlike previous approaches [19], CB-C3 emphasizes
foreground information in input images, significantly im-
proving the model’s detection performance, particularly
for small vessels.

2) The neck layer integrates a Bidirectional Feature Pyramid
Network (BiFPN), which is more efficient than YOLOv5
[12] at extracting and fusing multi-scale feature informa-
tion, leading to improved accuracy in ship detection.

3) The loss function is enhanced with α-IoU, which extends
the traditional IoU loss into a power IoU loss by adjusting
the α parameter. Unlike previous methods [20], [21], α-
IoU allows the detector to achieve multi-level bounding
box regression when training on different SAR ship
datasets.

II. RELATED WORK

A. YOLO

YOLO is one of the most advanced real-time object de-
tection systems available today and has been widely adopted
in ship detection [6]. Unlike the R-CNN series [5], YOLO
approaches object detection as a regression problem. The
YOLO detection process is depicted in Figure 1. To generate
a fixed-size output after applying convolutions to the entire
image, the input is resized to 416 × 416 pixels. This resized
image is then divided into a grid of cells, each tasked with
detecting potential bounding boxes. Each cell provides five
parameters: w, h, x, y and confidence [6]. Here, (w, h) repre-
sent the dimensions of the target’s bounding box, while (x, y)
denote its coordinates. The confidence score reflects both
the likelihood of an object being present within the cell and
the accuracy of the predicted bounding box. In cases where
multiple bounding boxes detect the same object, YOLO uses
Non-Maximum Suppression (NMS) to select the most accurate
one.

The input layer serves as the entry point for the object
detection model, where adaptive image resizing is applied to
improve generalization across various datasets. After prepro-
cessing, the images are processed by a convolutional neural
network (CNN). The backbone network, which forms the
core of the model, is built upon architectures like AlexNet,
ResNet, VGGNet, and GoogLeNet [12]. YOLOv5s introduces
several architectural enhancements over YOLOv4, including
the addition of the Focus module in its backbone, which is not
present in YOLOv4. Furthermore, YOLOv5s incorporates two
distinct versions of the Cross Stage Partial Network (CSPNet),
distinguishing it further from its predecessor. In the neck layer,
YOLOv5s utilizes the Path Aggregation Network (PANet)
alongside CSPNet to enhance feature fusion [10]. Finally,
in the head module, YOLOv5s replaces DIoU-NMS with
Weighted NMS, resulting in a slight performance improvement
without increasing computational complexity.

B. Ship detection method based on remote sensing images

The use of remote sensing technology for ship detection has
been a critical area of research in both military and civilian
applications [22]. However, Synthetic Aperture Radar (SAR)-
based ship detection continues to face challenges, including
strong target scattering, multi-scale variations, and background
interference, which reduce detection accuracy. To address
these issues, innovative solutions like NAS-YOLOX have
emerged, combining Neural Architecture Search with a multi-
scale attention mechanism to enhance feature extraction and
fusion, thereby improving detection precision [22]. In addition
to SAR-based methods, researchers have explored alternative
approaches to enhance object detection performance in re-
mote sensing images (RSI). For instance, CamoNet, an object
camouflage network, introduces imperceptible perturbations
to deceive CNN-based detectors, improving detection capa-
bilities [23]. Moreover, efforts have been made to integrate
low-precision floating-point algorithms with quantized neural
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Fig. 2. Overall Architecture of the Proposed Model.

networks, enabling more efficient processing of deep learning
models for ship detection, such as in satellite image-based
semantic segmentation tasks [24]. Further research has fo-
cused on developing custom convolutional neural networks,
specifically training SAR ship detectors from scratch to meet
unique requirements and enhance detection accuracy [25].
To address class imbalance in SAR ship detection datasets,
interpretable evidence learning has been proposed as a solution
for learning from biased samples [26]. High-resolution feature
generators have also been developed to improve the detection
of small ships in optical remote sensing images, tackling
ongoing challenges in this domain [27]. Optimized models,
such as YOLO-OSD, leverage hybrid data-driven approaches
to enhance ship localization in multi-resolution SAR images
[28]. Additionally, unsupervised domain adaptation techniques
based on cross-domain feature interaction and balanced data
contribution have been introduced to improve detection per-
formance across diverse datasets [29]. Collectively, these ad-
vancements underscore a range of methods leveraging remote
sensing technology to enhance ship detection accuracy.

III. METHODOLOGY

A. Method Overview

The SD-YOLO framework, illustrated in Figure 2, incorpo-
rates CSPDarknet53 as its backbone, similar to YOLOv5, to
extract multi-scale features from SAR images. To effectively

capture contextual information, the framework introduces a
novel CB-C3 module during the feature extraction stage. For
multi-scale feature fusion, the high-performance BiFPN is
employed in the neck layer. Detailed descriptions of these
components are provided in Sections B and C. Given the
importance of bounding box regression in determining the
model’s detection accuracy, we introduce the α-IoU, a power
IoU loss family, during the prediction and classification stages.
The α-IoU generalizes the loss function through a unified
power parameter. A comprehensive explanation of this loss
function is provided in Section D.

B. CB-C3 Module

Attention mechanisms are commonly used in object de-
tection tasks to help models focus on key areas, particu-
larly the foreground of the image. Since the introduction
of attention techniques like squeeze-and-excitation networks
[30], efficient channel attention [31], and the convolutional
block attention module [32], the detection performance of
YOLO models has seen significant improvement. However,
the increased computational overhead associated with these
mechanisms has limited their use, particularly in networks
with lower computational capacity. To address this issue, we
propose the Coordinate Attention (CA) mechanism, designed
to enhance the network’s accuracy without adding substantial
computational burden.
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The Coordinate Attention (CA) mechanism is designed for
simplicity and adaptability, making it suitable for use across
various neural network architectures. A comprehensive discus-
sion of CA can be found in [33], which highlights its superior
performance compared to traditional attention mechanisms.
CA improves the efficiency of information transmission by
guiding convolutional neural networks to concentrate on im-
portant coordinates while filtering out irrelevant information.

The C3 module in YOLOv5 offers fewer parameters and
faster inference speed; however, its simple convolutional layer
structure leads to poor performance in detecting small objects.
To overcome this limitation, we propose the CB-C3 module,
with its detailed structure shown in Figure 3. In the original
C3 module, the bottleneck structure primarily relies on 3× 3
convolutions for feature extraction, which limits the receptive
field. To address this, we integrated average pooling within
the CA mechanism to enhance YOLOv5’s ability to capture
global information more effectively.

C. Feature Fusion Network Optimization

In the YOLOv5 architecture, the Concat operation serves
as the feature fusion module in the neck layer, concatenating
input tensors along a specified dimension to enable higher-
dimensional data processing. While this method effectively
merges multiple tensors, it has drawbacks, such as increased
computational load and the risk of dimensionality explosion.
To improve the multi-scale fusion of ship features extracted
from the backbone, we redesigned YOLOv5’s neck layer by
incorporating the BiFPN.

Feature fusion networks are crucial for capturing the contex-
tual significance of input images. The BiFPN, introduced by
Mingxing Tan in July 2020, offers two key advantages [18].
First, it enhances the efficiency of feature fusion compared
to the original FPN by integrating a downsampling path that

Fig. 4. Bidirectional Feature Pyramid Network Architecture.

transitions from high to low resolutions. Unlike PANet, BiFPN
is both more efficient and lightweight, as it removes nodes that
rely solely on single inputs [34]. Second, BiFPN introduces
skip connections between inputs and outputs, enabling the
network to more effectively combine low-level and high-level
features. Stacking multiple BiFPN modules allows the model
to progressively refine feature fusion as its depth increases.
The structure of the BiFPN module is illustrated in Figure 4,
where Xi represents the feature from the i-th input.

D. Loss Function Optimization

Intersection over Union (IoU) is a critical metric for eval-
uating object detection algorithms and calculating Average
Precision (AP). IoU measures the ratio of the overlapping
area between the predicted bounding box and the ground



truth box to their union. However, when there is no overlap
between the predicted and actual boxes, the gradient becomes
zero, rendering the traditional IoU calculation ineffective. To
address this issue, improved IoU methods, such as Generalized
IoU (GIoU) [5], have been developed. GIoU adds a penalty
term to the loss function, allowing the model to continue
learning even in cases where the predicted and ground truth
boxes do not overlap. Further advancements, including DIoU
[35] and Complete IoU (CIoU) [21], incorporate additional
factors such as aspect ratio. These methods are designed
to handle situations where one bounding box fully overlaps
another, further reducing the impact of the gradient vanishing
problem.

However, there are large differences between SAR images
and optical images, for example, the ship targets in SAR
images are smaller and more widely distributed, and the
above algorithms have certain limitations when detecting ships
in SAR images. In order to improve the prosperity of the
algorithm, this paper employs a new loss function called α-IoU
[36]. The general IoU loss is defined as LIoU = 1− IoU. The
α-IoU first use the Box-Cox transformation and generalize the
IoU loss to an α-IoU loss:

Lα−IoU = 1− IoUα, α > 0, (1)

Lα−DIoU = 1− IoUα +
ρ2α(b,b

gt)

c2α
, α > 0, (2)

furthermore, the YOLOv5 IoU loss function can be general-
ized as:

Lα−GIoU = 1− IoUα + (
|C\(b ∩ bgt)|

|C|
)α, α > 0, (3)

where b, bgt denote the central of anchor box and target box
respectively. ρ, defined as ∥b− bgt∥2, quantifies the Euclidean
distance. C denotes the smallest bounding region that includes
both the ground truth box and the predicted box. By adjusting
the α parameter, the current IoU-based loss can be extended
into a new family of IoU losses. This new family comprises
the IoU term and an additional regularization term governed
by α.

IV. EXPERIMENTAL AND DISCUSSION

A. Datasets

To assess the performance of our proposed method, we
employed the SSDD [16] and LS-SSDD [17] datasets. SSDD
[16] is an essential publicly available dataset for SAR ship
detection, containing 1,160 SAR images and 2,456 ship in-
stances. LS-SSDD [17], introduced by Li et al. in 2020,
addresses the issue of limited data volume in SSDD [16] Table
I. And we converted both datasets into YOLO and COCO
formats.

The network is trained on a Linux system equipped with
an NVIDIA GTX3090 GPU with 24GB of memory and an
Intel(R) Core(TM) i9-10940X CPU. Various maritime target
detection algorithms were compared and evaluated based on

TABLE I
SSDD AND LS-SSDD DISTRIBUTION

Dataset - Number of Samples

SSDD

Training Set 812
Validation Set 116
Testing Set 232
Total 1160

LS-SSDD

Training Set 6300
Validation Set 900
Testing Set 1800
Total 9000

speed, accuracy, and hardware requirements. Multiple exper-
imental results validated the effectiveness of the proposed
model.

B. Evaluation Metrics

The formulas for calculating Precision, Recall, and IoU are
as follows with True Positive (TP), False Positive (FP) and
False Negative (FN):

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

IoU =
Sover
Sunion

, (6)

where Sover refers to the overlapping area between the ship
target bounding box and the ground truth, while Sunion denotes
the area of their union. An IoU value exceeding 0.5 means that
the predicted bounding box overlaps with at least half of the
ground truth, which qualifies as a correct object detection and
corresponds to AP50. The definitions for AP75 and AP50:95

are based on a similar concept.

C. Ablation Study and Analysis

To demonstrate the effect of the newly proposed loss
function and innovative network design, ablation studies were
performed on both the SSDD [16] and LS-SSDD [17] datasets.
For consistency and fairness, the original YOLOv5 method
served as the baseline for comparison. Initially, during the
optimization of the α-loss function, experiments were per-
formed to determine the optimal α values for different datasets,
with the goal of maximizing the algorithm’s accuracy through
gradient descent. Table II presents the experimental results for
various α values.

We observed that for LS-SSDD [16], the highest accuracy
is achieved when α=3. In contrast, for SSDD [17], the
optimization is more effective when α=5. Consequently, we
select the most suitable α value for each detection scenario. To
verify the effectiveness of optimizing YOLOv5, we combined
three different optimization methods and conducted ablation
experiments on the SAR datasets. Table III presents the
experimental results across multiple image scenarios.



TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT α

Parameter SSDD LS-SSDD

α AP50 AP75 AP50:95 AP50 AP75 AP50:95

1 93.4 66.1 60.4 65.3 14.5 26.2
2 94 65.3 61.2 65.2 14.4 26.9
3 94.8 66.6 61.2 65.5 14.9 27.3
4 94.7 65.5 61.3 65.1 14.7 26.1
5 95.1 67.2 62 64.5 14 24.8

It is evident that the algorithm’s precision improves, with
AP50 increasing by 1.3% for SSDD [16] and 6% for LS-SSDD
[17]. Furthermore, when YOLOv5 is further optimized using
BiFPN and the new loss function, the algorithm’s performance
is enhanced, achieving AP50 values of 96.1% and 73.2%,
respectively.

D. Algorithm Performance Comparison

To assess the overall effectiveness of the proposed SD-
YOLO, we compared it with several recent advanced methods.
These methods include Cascade R-CNN [37], YOLOX [19],
Faster R-CNN [9], Tridentnet [38], and YOLOv4 [20]. Ensur-
ing fairness, all algorithms were tested using the same batch
size. The results validate the effectiveness and accuracy of the
image processing method, network design, and loss function
optimization.

Table IV presents the numerical outcomes obtained by
various methods on SSDD [16] and LS-SSDD [17] datasets.
The experimental findings across multiple scenarios indicate
that this method achieves superior accuracy compared to
other existing approaches. During SSDD [16] training, SD-
YOLO’s AP50 exceeds Centripetalnet [39] by 5.7%, and in
LS-SSDD [17], it outperforms Sparse R-CNN [40] by 19%.
Moreover, our method ranks just behind YOLO-X [19] in
FPS performance. Despite this, the approach discussed in this
paper maintains a strong advantage in real-time execution.
The experimental outcomes under typical scene conditions are
illustrated in Fig. 5. For smaller targets, YOLOv5 experiences
some missed detections, whereas SD-YOLO shows impressive
robustness and a high recognition rate.

E. Discussion

Based on the experimental data in Table II, we observed
that as α increases, the model’s accuracy improves to a
certain extent. However, the α value should not be increased
indiscriminately to enhance detection performance. For LS-
SSDD [17], when α exceeds 3, the algorithm’s accuracy tends
to decrease. We believe that indiscriminately increasing the α
value may lead to overfitting issues. Therefore, different α
values should be selected for various application scenarios.
By analyzing the first and second sets of data in Table III, we
discovered an interesting phenomenon: when the CA structure
is added to C3, the number of parameters in the algorithm
does not increase but actually decreases to some extent. We
propose two possible reasons for this. First, compared to

traditional parameter matrices, CA introduces a parameter-
sharing mechanism that reduces the number of parameters at
each position by learning attention from coordinate positions.
Second, CA incorporates dimensionality reduction operations,
which effectively represent coordinate information and reduce
the dimensionality of input features, thereby decreasing the
number of parameters. In the comparison experiments, al-
though the YOLOv5 algorithm has fewer parameters than
YOLO-X, YOLO-X achieves a higher FPS. We attribute this
to the structural differences between the algorithms.

V. CONCLUSION

In this paper, we present a novel ship detection model that
improves detection accuracy with minimal increases in algo-
rithmic complexity. Unlike traditional ship detection methods,
our approach incorporates an attention mechanism based on
the CB-C3 module, which adjusts the weight distribution of
features across different scales using 2D global pooling. To
further enhance the model’s sensitivity to ship targets, we
optimize YOLOv5’s neck layer by integrating the BiFPN.
Additionally, we introduce the α loss function in SD-YOLO
to refine the final classification, taking into account the unique
characteristics of ships in remote sensing scenarios. This
ensures that the classification process is fast, stable, and
precise. Experimental results demonstrate that this architecture
outperforms benchmark methods in terms of robustness and
accuracy on publicly available SSDD and LS-SSDD datasets.

Key challenges in SAR ship detection include dense target
distribution, significant dynamic variations, and scene element
occlusion. Our future research will focus on developing robust
techniques for detecting densely packed targets at multiple
scales.
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