Training Robust Graph Neural Networks by Modeling
Noise Dependencies

Yeonjun In'!, Kanghoon Yoon', Sukwon Yun?, Kibum Kim', Sungchul Kim?
Chanyoung Park!*

LKAIST 2UNC Chapel Hill 3Adobe Research
{yeonjun.in, ykhoon08, kb.kim, cy.park}@kaist.ac.kr
swyun@cs.unc.edu
sukim@adobe.com

Abstract

In real-world applications, node features in graphs often contain noise from various
sources, leading to significant performance degradation in GNNs. Although several
methods have been developed to enhance robustness, they rely on the unrealistic
assumption that noise in node features is independent of the graph structure and
node labels, thereby limiting their applicability. To this end, we introduce a more
realistic noise scenario, dependency-aware noise on graphs (DANG), where noise
in node features create a chain of noise dependencies that propagates to the graph
structure and node labels. We propose a novel robust GNN, DA-GNN, which cap-
tures the causal relationships among variables in the data generating process (DGP)
of DANG using variational inference. In addition, we present new benchmark
datasets that simulate DANG in real-world applications, enabling more practical
research on robust GNNs. Extensive experiments demonstrate that DA-GNN con-
sistently outperforms existing baselines across various noise scenarios, including
both DANG and conventional noise models commonly considered in this field. Our
code is available at https://github.com/yeonjun-in/torch-DA-GNN,

1 Introduction

In recent years, graph neural networks (GNNs) have demonstrated remarkable achievements in graph
representation learning and have been extensively applied in numerous downstream tasks [1} 12} 13} 4]
However, in the majority of real-world scenarios, node features frequently exhibit noise due to various
factors, leading to the creation of inaccurate graph representations [15 [6]. For instance, in user-item
graphs, users may create fake profiles or posts, and fraudsters and malicious users may write fake
reviews or content on items, resulting in noisy node features. Recent studies have revealed the
vulnerability of GNNs to such scenarios, highlighting the necessity to design robust GNN models
against noisy node features.

To this end, various methods have been proposed to make a huge success in terms of model robustness
[S,16]. These methods are founded on the independent node feature noise (IFN) assumption, which
posits that noise in node features does not impact the graph structure or node labels. Under the
IFN assumption (Fig. [I(b)), for example, Bob’s fake profile does not influence other nodes, which
is also explained by the data generating process (DGP) of IFN (See Fig. Eka)) in which no causal
relationships exist among the noisy node features X, graph structure A, and node labels Y.

However, we should rethink: In real-world applications, can noise in node features truly be
isolated from influencing the graph structure or node labels? Let us explore this through

*Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/yeonjun-in/torch-DA-GNN

examples from social networks (Fig. [I). Consider Bob, who introduces noisy node features by
creating fake profiles or posts. Other users, such as Alice and Tom, may then connect with
Bob based on his fake profile, resulting in noisy connections that contribute to graph struc-
ture noise. Over time, these noises could alter the community associations of Alice and Tom,
leading to noisy node labels. Such causal relationships among node features X, graph struc-
ture A, and node label Y (ie., A + X, Y « X, and Y < A) are depicted in Fig. Ekb).

This scenario underscore an important in-
sight: In real-world applications, noise

in node features may create a chain @ @ ® @ ® @
\ ﬁ/ N/ N/

of noise dependencies that propagate to

o—o Edges| e—eNoisy edges Community 1 Community 2

the graph structure and node labels. Py oot @; pfr‘:)';l‘le @;
This highlights the pressing need for ro- Bob Bob Bob
bust GNNs capable of addressing such F)) A ~ LV \“

noise dependencies, an aspect that has - '—'Tlxl - —*Tmn Alice Tom
been largely overlooked in current research. A'“% om A"“/ om -

Since such noise dependencies are prevalent \E/@ @ﬁ/@ @f@@
across a wide range of real-world applica-
tionsE] in addition to social networks, failing
to address them can result in significant ro- Fjgyre 1: Examples of DANG in social networks:
bustness gaps and impede the development of [EN represents independent node feature noise. Un-
more practical and robust GNN models. How- der the IFN (b), Bob’s noisy features have no effect
ever, we observe that existing robust GNN o the graph structure or node labels. However, in
models indeed fail to generalize effectively in - DANG (c), Bob’s noisy features can propagate, lead-

such noise scenario since they overlook the ing to both structural noise in the graph and label
underlying relationships among X, A,and Y pgise.

within the data generation process.

(a) Clean graph (b) IFN (c) DANG

To enhance the practicality of existing noise (O Observable O Latent)
assumptions and robust GNNs, we newly in- e 0 @
troduce a dependency-aware noise on graphs
(DANG) and propose a dependency-aware ro-
bust graph neural network framework (DA- 0 4
GNN) that directly models the DGP of DANG. (a) DGP of IFN (b) DGP of DANG
We first illustrate the DGP of DANG as shown . . . o
in Fig. [b) (c.f. Sec[3). More precisely, we Figure 2: A directed graphical model indicating a
introduce three observable variables (i.c., X, A4, PGP of () IFN, and (b) DANG.
and Y) and three latent variables (i.e., noise incurring variable ¢, latent clean graph structure Z 4, and
latent clean node labels Zy-), while defining causal relationships among these variables to represent
the data generation process of DANG. We then devise a deep generative model, DA-GNN, that
directly captures the causal relationships among the variables in the DGP of DANG by 1) deriving a
tractable learning objective based on variational inference (c.f. Sec and 2) addressing non-trivial
technical challenges in implementing the learning objective (c.f. Sec[d.2). Moreover, to rigorously
evaluate our proposed method, we propose both synthetic and real-world DANG benchmark datasets.
In our experiments, we demonstrate that DA-GNN effectively generalizes not only to DANG but also
to other noise assumptions commonly considered in this field of research. This highlights DA-GNN’s
broader applicability compared to existing robust GNN models. In summary, the main contributions
of our paper are as follows:

* We examine the gap between real-world scenarios and the overly simplistic noise assumptions

underlying previous robust GNN research, which constrain their practicality.

* To achieve this, we introduce a more realistic noise scenario, DANG, along with a robust model,
DA-GNN, improving their applicability in real-world settings.

* DA-GNN addresses DANG by modeling its DGP, resulting in superior robustness in node
classification and link prediction tasks under various noise scenarios.

* We propose novel graph benchmark datasets that simulate DANG in real-world applications to
evaluate robust GNNs under realistic and plausible noise conditions, thereby promoting practical
research in robust graph learning.

?Additional real-world examples demonstrating the practical existence of such noise are provided in Sec

2 Related Work
2.1 Noise-Robust GNN

Noise-robust GNNs aim to train robust models under feature, structure, and/or label noise, but most
existing approaches focus on only one type of noise.

Feature noise-robust GNN. AirGNN [5]] identifies and addresses nodes with noisy features based
on the hypothesis that they tend to have dissimilar features within their local neighborhoods. Conse-
quently, this approach tackles the noisy node features while assuming that the structure of the input
graph is noise-free.

Structure noise-robust GNN. RSGNN [[7] aims to train a graph structure learner by encouraging the
nodes with similar features to be connected. STABLE [8]] removes edges with low feature similarity,
learns node representations from the modified structure, and constructs a KNN graph as the refined
structure. In summary, these methods tackle the noisy graph structure while assuming that node
features are noise-free.

Label noise-robust GNN. Although there have been many label noise-robust GNNs [9, [10} [11}
124 1131 [14) [15]], all these methods are built on the assumption that either node features or graph
structures are noise-free. For example, RTGNN [10] uses small-loss approach [16]], but nodes with
noisy features or structures exhibit large losses, leading to inaccuracies of the approach. TSS [[L1]
mitigates label noise relying on the structural information, which can be noisy.

Multifaceted noise-robust GNN. SG-GSR [17] tackles multifaceted structure and feature noise by
identifying a clean subgraph within a noisy graph structure and augmenting it using label information.
This augmented subgraph serves as supervision for robust graph structure refinement. However, since
noisy label information can compromise the augmentation process, SG-GSR relies on the assumption
that node labels are free of noise.

In summary, each method assumes the completeness of at least one of the data sources, limiting their
practicality.

2.2 Generative Approach

[18]] devises a generative approach to model the DGP of instance-dependent label noise [19]. However,
extending this method to the graph domain introduces significant challenges. It requires handling
additional latent variables and complex causal relationships, such as Z4, €4, A < €4, A +— X,
Y + A, and A < Z4, each posing non-trivial obstacles beyond the straightforward extensionﬂ
WSGNN [20] and GraphGLOW [21] utilize a probabilistic generative approach and variational
inference to infer the latent graph structure and node labels. However, they assume noise-free graphs,
reducing effectiveness in real-world noisy scenarios.

3 Dependency-Aware Noise on Graphs

3.1 Formulation

In this section, we define a new graph noise assumption, DANG, and its DGP. In Fig. Ekb), X denotes
the node features (potentially noisy), Y denotes the observed node labels (possibly noisy), A denotes
the observed edges (which may contain noise), and e denotes the environment variable causing the
noise. Zy represents the latent clean node labels, while Z 4 does the latent clean graph structure
encompassing all potential node connections. We give the explanations for each causal relationship
within the DGP of DANG along with the examples in user graphs in social networks:

* X + (¢, Zy): eand Zy are causes of X. For example, users create their profiles and postings
(i.e., X) regarding their true communities or interests (i.e., Zy). However, if users decide to
display fake profiles for some reason (i.e., €), € is a cause of the noisy node features X .

e A« (Za,X): Z4 and X are causes of A. For instance, the follow relationship among users
(i.e., A) are made based on their latent relationships (i.e., Z 4). However, if a user creates a
fake profile (i.e., X), some irrelevant users may follow the user based on his/her fake profile,
which leads to noisy edges (i.e., A).

3Detailed explanation is outlined in Appendix @

e A < e: To provide a broader scope, we also posit that € is a potential cause of A. This
extension is well-founded [22} [23]], as real-world applications often exhibit graph structure
noise originating from various sources in addition to the feature-dependent noise.

e Y+ (Zy,X,A): Zy, X, and A are causes of Y. To give an example, the true communities
(or interests) of users (i.e., Zy) are leveraged to promote items to targeted users within a
community [24]]. To detect the communities, both node features and graph structures are
utilized. However, if a user has noisy node features (i.e., X) or noisy edges (i.e., A), the user
may be assigned to a wrong community (or interest), which leads to noisy labels (i.e., Y).

For simplicity, we assume e is not a cause of Y. This assumption matches real-world scenarios where
mislabeling is more likely due to confusing or noisy features rather than arbitrary sources [19]. In
other words, label noise in graphs is predominantly caused by confusing or noisy features and graph
structure (i.e., Y + (X, A)), rather than an arbitrary external factor (i.e., Y < ¢).

3.2 Discussion

1) Under DANG a graph does not contain any noise-free data sources. This point presents a
non-trivial challenge for the existing robust GNN methods to tackle DANG, as they assume the
completeness of at least one data source.

2) DANG is prevalent across diverse domains, including social, e-commerce, web, and biological
graphs. Due to space constraints, detailed statistical evidences and intuitive examples on the existence
of DANG in real-world applications are provided in Appendix|C.T]and[C.2] We acknowledge, however,
that not all noise scenarios perfectly align with DANG. For instance, in non-relational domains such
as molecular structures or protein—protein interaction networks, the graph structure is fixed and
unaffected by node feature noise. Nevertheless, we claim that such cases are rare compared to the
broad applicability of DANG across widely studied graph domains, including social, e-commerce,
web, and biological (cell-cell) networks.

3) DANG addresses the practical gap between real-world and the simplistic noise assumptions
of previous works. By introducing the DANG, we examine the practical limitations of existing
robust GNN methods and promote further practical advancements in this field.

4 Proposed Method: DA-GNN

In this section, we propose a dependency-aware robust GNN framework (DA-GNN) that directly
models the DGP of DANG, thereby capturing the causal relationships among the variables that
introduce noise. First, we derive the Evidence Lower Bound (ELBO) for the observed data log-
likelihood P (X, A,Y") based on the graphical model of DANG (Sec . Subsequently, we introduce
a novel deep generative model and training strategy maximizing the derived ELBO to capture the
DGP of DANG (Sec[d.2).

4.1 Problem Formulation

Notations. We have an undirected and unweighted graph G = (V,£) where V = {vy,...,on}
represents the set of nodes and £ € V x V indicates the set of edges. Each node v; has the node
features X; € R and node labels Y; € {0, I}C, where F' is the number of features for each node
and C indicates the number of classes. We represent the observed graph structure using the adjacency
matrix A € RV*N where A;; = 1if there is an edge connecting nodes v; and v;, and A;; = 0
otherwise. Throughout this paper, s(-, -) indicates a cosine similarity function and p(-) represents
the ReLU activation function.

Tasks: node classification and link prediction. In the node classification task, we assume the
semi-supervised setting where only a portion of nodes are labeled (i.e., VX). Our objective is to
predict the labels of unlabeled nodes (i.e., VV) by inferring the latent clean node label Zy-. In the link
prediction task, our goal is to predict reliable links based on partially observed edges by inferring the
latent clean graph structure Z 4. It is important to note that, according to the DANG assumption, the
observed node features, graph structure, and node labels may contain noise.

Learning Objective. We adopt the variational inference framework [25}|18]] to optimize the Evidence
Lower-BOund (ELBO) of the marginal likelihood for observed data, i.e., P(X, A,Y), rather than

{ oclass] @ class2 O unlabeled @ clean labeled @ noisy labeled [noisy feat. ==clean edges = noisy edges = inferred edges]

Latent Clean Graph

(a) Inference Encoders

Structure Infer|

KN gy, (ZalX, A)

(b)

Z,
X
€4

Generative Decoders

\

Structure
Generation
o, (A1X, €4, Z4

Regularized S thed
Edge Prediction <—» Edge Label
=reg L =el
127} rec—edge Pjj
1

, f 0.9
104709083 03 "
0.6, 0.9, 0.2 0.9
. 0.3

Edge 0.8,0.2 Feature e
\ prediction similarity likelihood
DANGI (X, 4) / Prediction 4, Label
Zy Feature Gen. X Lrec—feat
mm € LPo: (Xlex Zy) E E
[n-ma] -
O > 0. \
rm . 0.1
moG e Nolls?C Env. @ €4« / Prediction Label
L=l X, A nter. 0.2 0. 1%
= o g, (€1X, A, Zy)[Clean a X | Label Gen. Yiec Lois dec ¥
Noisy Graph (X,4,Y)| — likelihood G A |po,(YIX. A Zy o . 0
Z \ o e ¢ e
N(0,1)«—L4 Y oe oo

Figure 3: Overall architecture of DA-GNN. (a) With the noisy graph (X, A,Y") as inputs, we design
the inference encoders (¢1, ¢2 and ¢3) and regularizers (Lnom, Leis-enc, and L) to infer Z4, Zy,
€4, and ex. (b) Leveraging the inferred latent variables, we formulate the generative decoders (64,
62, and 03) and reconstruction loss functions (Lrec-cdges Lrec-feat> and Lis-dec) to capture the causal
relationships that generate noise in the graph.

optimizing the marginal likelihood directly. Specifically, we derive the negative ELBO, i.e., Lg1 po,
as follows:

LeLpo =

—Ezi~gs, (241%,8) Eenay, (e1x,4,2y) [108(Po, (A| X €, Z4))]
- Ee~q¢»2(6\X7A72Y)Ezy~q¢3(Zle,A) [log(pg, (X e, Zy))]

- EZYMI%(ZYIX’A) [log(pe, (Y]X, A, Zy))]

+ kl(gg, (Za|X, A)[|Ip(Z4))

+Ezy nqy, (2v1x,4) (K46, (€] X, A, Zy)|[p(€))]

T ka0, (Zy |X, A)|Ip(2Zy)) ()
where ki(-||-) denotes KL divergence. The derivation details are provided in Appendix[A] ¢ indicates
inference (encoder) network that approximates the posterior of latent variables, while py indicates
generative (decoder) network that models the likelihood of observed data given latent variables.
Our objective is to find the optimal values of network parameters ¢ = {¢1, ¢2, @3} and 6 = {6,
02, 03} that minimize the value of Lg go. By doing so, the encoders and decoders are trained to
directly capture the causal relationships among the variables that introduce noise. Consequently, it
promotes the accurate inference of the latent clean node label Zy- and latent clean graph structure Z 4
to effectively perform the node classification and link prediction tasks even in the presence of DANG.

4.2 Model Instantiations

In this section, we present the details of the practical implementation and optimization of DA-
GNN based on the learning objective, Lg go. The overall architecture and detailed algorithm of
DA-GNN are provided in Fig 3| and Algorithm [T]in Appendix, respectively. The key challenge
of the instantiation is how to accurately infer the latent variables Z 4, Zy, and € in the presence of
noisy X, A, and Y. To alleviate the challenge, we design the robust inference encoders (Fig[3[a))
and generative decoders (Fig[3[b)) with the corresponding regularizers (Fig[3[a)) and reconstruction
losses (Fig[3[b)). Consequently, the encoders would be able to accurately infer the latent variables by
capturing the causal relationships among the variables that introduce noise.

4.2.1

In this section, we describe the implementations of the encoders, i.e., ¢1, ¢3, and ¢2, that aim to infer
the latent variables, i.e., Z 4, Zy, and €, respectively.

Modeling Inference Encoder

Modeling g4, (Z4|X, A). The objective of modeling g4, (Z4|X, A) is to accurately infer the latent
clean graph structure Z 4 that enhances the message passing of a GNN model. We obtain the latent
graph A = {p;; } nxn, Where p;; = p(s(Z;, Z;)) and Z = GCNy, (X, A), and regularize A based
on the prior knowledge that pairs of nodes with high y-hop subgraph similarity are more likely to
form assortative edges [21} 26} [7]], thereby encouraging Ao predominantly include such edges. This
regularization is equivalent to minimizing kl(ge, (Z4|X, A)||p(Z4)) in Eqn. |1} However, computing
Pij in every epoch is impractical for large graphs, i.e., O(N?). To this end, we pre-define a proxy
graph based on the subgraph similarity, and compute p;; as edge weights on the proxy graph. Please
refer to the Appendix [B|for detailed information on implementation details.

Modeling g4, (Zy|X, A). The objective of modeling g4, (Zy | X, A) is to accurately infer the latent
clean node label Zy . To this end, we instantiate the encoder ¢3 as a GCN classifier. Specifically, we
infer Zy through Y = GCN,, (X, A) € RV*C We introduce the node classification 10ss Lejg.cne =

D ievr CE(Yi7 Y), where CE is the cross entropy loss. To further enhance the quality of inference
of Zy, we regularize Zy to satisfy class homophily [27] by minimizing the KL divergence between
the probability predictions Y of each node and its first order neighbors in A. The implemented loss
function is given by:

Ly = 3 S P MOV

-) (2)
eV 2 jen: Pij

where N; denotes the set of first-order neighbors of node v; within A. 1t is worth noting that this
regularization is equivalent to minimizing ki(ge, (Zyv|X, A)||p(Zy)) in Eqn.

Modeling g4, (¢| X, A, Zy'). To model g4,(¢|X, A, Zy), we simplify gq,(e|X, A, Zy) into
Uoy, (ex|X, Zy) and gg,, (€4| X, A), where ex and €4 are independent variables that incur the
feature and structure noise, respectively.

The objective of modeling ¢4,, (4| X, A) is to accurately infer the structure noise incurring variable
€ 4 that determines whether each edge is clean or noisy. To this end, we regard € 4 as a set of scores
indicating the likelihood of each observed edge being clean or noisy. To estimate the likelihood,
we utilize small loss approach [16] Precisely, we compute the set of link prediction losses as
{1 —p¢ J) (i,7) € £}, where py; represents the p;; value at the final epoch during early-learning

phase. Therefore, an edge with high D ! value can be considered as a clean edge, and we instantiate
ea as {pfj|(i,j) € E}.

To alleviate the uncertainty of a smgle tralning point s loss value, we adopt an exponential moving
average (EMA) technique: pf; b €pe p » where pf; indicates the value of p pij at the current
training p01nt and ¢ 1ndicates the decaying coef 01ent fixed to 0.9. This approach is equivalent to
minimizing kl(ge,, (€a|X, A)|p(e4)), where p(e4) is assumed to follow the same distribution as
Qgss (€4|X, A) but with lower variance.

For the encoder ¢21, we use an MLP that takes X and Zy as inputs and infers € x. Additionally, we

regularize p(ex) to follow the standard multivariate normal distribution, which means that a closed
form solution of kl(q,, (x| X, Zy)||p(ex)) can be obtained as £, = —1 2 (I4+log o5 —p3—07%)

[28]], where dj is the dimension of a ex. Note that these two regularization teehniques are equwalent
to minimizing Bz, ~q,, [k1(q4, (€| X, A, Zy)||p(€))] in Eqn.

4.2.2 Modeling Generative Decoder

In this section, we describe the implementations of the decoders, i.e., 61, 62, and 03, that generate the
observable variables, i.e., A, X, and Y, respectively.

Modeling pg, (A|X, €, Z4). The probability p(A|X, e, Z4) means the likelihood of how well the
noisy edge A is reconstructed from the latent graph structure Z4 along with € and X. Hence, we
aim to minimize —Ez, ~q,, Ec~q,, [log(pe, (A|X €, ZA))] to discover the latent graph structure Z 4
from which the noisy edge A is reconstructed given noise sources, X and e. We implement it as an
edge reconstruction loss forcing the estimated latent structure A to assign greater weights to clean
edges and reduce the influence of noisy edges, which is defined as Lrcc.cqee: Which is defined as
ﬁrec-edge:

N ~re, ~e ~
Erec-edge = |g| T ‘57| E (pijg _pi]l‘)2 + E (pL] - 0)2 5 (3)
(i,5)€€ (i,5)€EE

where £ and £~ denote the positive edges and randomly sampled negative edges, respectively. To
compute Lreccdee, We employ regularizations on both the predictions (i.e.,]5:]6 9 and labels (i.e., ﬁfé)
since the observed graph structure A contains noisy edges incurred by X and €, which introduce
inaccurate supervision.

More precisely, the regularized prediction p;;“ is defined as: p;;? = 01p;; + (1 — 61)s(X;, X;).
The main idea is to penalize p;; when s(X;, X;) is high, as the edge between v; and v; is potentially
noisy due to the influence of noisy X. To regularize labels, we adopt label smoothing approach
by ﬁfé € [0.9, 1], enhancing the robustness in the presence of noisy supervision. When an edge is

regarded as noisy (i.e., with a low ﬁfjl-), its label is close to O.ﬂ while an edge considered clean (i.e.,

with a high /¢}) has a label close to 1.

Modeling py, (X e, Zy)). The term p(X|e, Zy) indicates how well the noisy node feature X
is reconstructed from the latent clean label Zy along with e. Hence, we aim to minimize
~Eengy, B2y gy, [108(po, (X e, Zy))]. To do so, the decoder needs to rely on the information
contained in Zy, which essentially encourages the value of Zy- to be meaningful for the prediction
process, i.e., generating X. It is implemented as a feature reconstruction 10ss L. fea, Where the
decoder 65 is composed of an MLP that takes ex and Zy as inputs and reconstructs node features.
Note that the reparametrization trick [28] is used for sampling € x that follows the standard normal
distribution.

Modeling py, (Y| X, A, Zy). The term p(Y'| X, A, Zy) means the transition relationship from the
latent clean label Zy to the noisy label Y of an instance, i.e., how the label noise was generated
[18]]. For this reason, maximizing log(pg, (Y| X, A, Zy)) would let us discover the latent true label
Zy from which the noisy label Y is generated given an instance, i.e., X and A. Hence, we aim to
maximize the log likelihood, which is implemented as minimizing a node classification 10ss L5 gec-
Specifically, the decoder 3 is composed of a GCN classifier: Yge. = GCNy, (X, A, Y) € RV*C,
Note that such a learning objective is equivalent to minimizing —Ez, ~q,, [log(pe, (Y|X, A, Zy))]
in Eqn.
4.2.3 Model Training
The overall learning objective can be written as follows and DA-GNN is trained to minimize Ly,
Eﬁnal = »Ccls—enc +)\1 ﬁrec—edge +)\2£hom +)\3 (Erec—feat + ACcls—dec + Ep), (4)

where A\ and)\, are the balancing coefficients. As is fixed to 0.001. In our pilot experiments, L ec_feat
Leis-dec> and L, terms have a relatively minor impact on the model’s performance compared to the
others. As a result, we have made a strategic decision to simplify the hyperparameter search process
and improve the practicality of DA-GNN by sharing the coefficient A3 among these three loss terms.

5 Experiments

Datasets. We evaluate DA-GNN and baselines on five commonly used benchmark datasets and two
newly introduced datasets, Auto and Garden, which are generated upon Amazon review data [30, [31]]
to mimic DANG on e-commerce systems (Refer to Appendix [E.2.2]for details). The details of the
datasets are given in Appendix [E.T]

Experimental Details. We evaluated DA-GNN in both node classification and link prediction
tasks, comparing it with noise-robust GNNs and generative GNN methods. For a thorough evaluation,
we create synthetic and real-world DANG benchmark datasets, with details in Appendix We also
account for other noise scenarios, commonly considered in this research field, following [8), 15, [10].
Further details about the baselines, evaluation protocol, and implementation details can be found in

Appendix [E.3] [E.4] and [E.3] respectively.

“The value 0.9 is selected following [29].

Table 1: Node classification accuracy (%) under synthetic DANG. OOM indicates out of memory on
24GB RTX3090.

Dataset | Setting | WSGNN GraphGLOW ~ AirGNN ~ ProGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN
Clean 86.2+0.1 85.240.7 85.0+0.2 85.3+04 86.2+0.5 86.1+0.2 86.2%0.0 86.2+0.2 86.1+0.2 85.7+0.1 | 86.2+0.7

Cora DANG-10% | 80.7+0.3 79.7+0.2 79.70.5 79.6+0.7 81.9+0.3 82.2+0.7 80.7#0.7 81.0£0.5 81.8+0.3 82.7x0.1 | 82.9+0.6
DANG-30% | 70.0+0.6 71.6+0.5 71.5+0.8 74.5+0.1 71.940.5 74303 652417 73.5#0.8 72.6+1.5 76.1x0.2 | 78.2+0.3
DANG-50% | 55.9+1.1 59.6£0.1 56.2+40.8 66.4+0.4 59.9+0.5 62.8+2.4 47.1x1.8 61.9+1.4 60.9+0.4 64.3£0.5 | 69.7+0.6

Clean 76.6£0.6 76.5£1.0 71.5£0.2 72.6£0.5 75.8+0.4 74.6+0.6 76.4+0.5 75.0+1.3 76.1x0.4 75.3+0.3 | 77.3%0.6

Citeseer DANG-10% | 72.8+0.8 71.4+0.8 66.2+0.7 67.5£0.6 73.3x0.5 71.5+0.3 71.1x0.4 71.9+03 732402 74.2+0.5 | 74.3x0.9
i DANG-30% | 63.3+0.7 60.6+0.2 58.0+0.4 61.0£0.2 63.9+0.5 62.5+x1.4 61.240.6 62.5£0.7 64.2+1.9 65.6x1.0 | 65.6+0.6
DANG-50% | 53.4+0.6 48.8+0.6 50.0+£0.6 53.3+0.2 55.3+0.4 54.7+1.7 47.2+1.1 52.6+£09 542+1.8 54.8+1.8 | 59.0+1.8

Clean 92.9+0.3 94.2+0.4 93.5£0.1 90.1£0.2 93.6+0.8 93.4+0.1 94.5+x0.4 90.3+1.7 91.32x0.6 94.3+0.1 | 94.8+0.3

Phot DANG-10% | 83.9+1.8 92.1+0.8 87309 84.3x0.1 92.1x0.2 92.2+0.1 92.6+0.0 84.3%x1.3 89.4+0.5 93.0+0.1 | 93.2+0.2
%% | DANG-30% | 51.9+6.8 88.4+0.2 67.844.3 747+0.2 86.6+1.0 88.0+1.0 89.6+0.2 69.0+2.2 86.4+0.5 89.3+0.3 | 90.5+0.4
DANG-50% | 31.9+5.6 85.4+0.6 57.8+0.7 48.9+0.5 75.6+2.6 80.2+1.8 84.6£0.4 57.5£1.8 79.2+0.3 84.1x04 | 87.6x0.2

Clean 83.1£3.1 91.3+0.9 83.4+1.2 83.9+0.8 91.1x0.1 90.2+0.2 90.1+0.2 87.5+1.0 87.3*x1.0 91.3+0.7 | 92.2+0.0

Com DANG-10% | 75.0£1.2 88.0£0.7 76.8£1.8 72.0£0.2 88.1x0.7 85.9+0.5 87.6+0.7 85.7+0.9 85.9+0.1 89.5£0.5 | 89.8+0.2
P | DANG-30% | 48.5+5.8 84.9+0.4 59.240.9 66.9+0.8 81.7+0.2 80.4+1.0 84.8+0.5 74.843.5 77.0+1.5 84.5+0.4 | 86.9+0.3
DANG-50% | 39.6+4.0 80.1+0.5 44114 433203 739423 68.8+1.3 77.5£1.9 653£32 694403 78.6+0.6 | 82.2+0.4

Clean OOM OOM 58.0+0.4 OOM OOM OOM 65.7+0.6 OOM 60.4+0.5 OOM 67.4+0.4

Arxiv DANG-10% OOM OOM 50.6+0.5 OOM OOM OOM 58.4+1.2 OOM 54.3+0.4 OOM 59.7+0.8
DANG-30% OOM OOM 36.8+0.3 OOM OOM OOM 47.4%2.5 OOM 45.0£0.6 OOM 49.9£0.5
DANG-50% OOM OOM 26.1+0.2 OOM OOM OOM 38.0+4.1 OOM 38.4+0.8 OOM 44.0£1.2

Table 2: Node classification (NC) and link prediction (LP) under real-world DANG (Accuracy for
NC and ROC-AUC for LP).

Task | Dataset | Setting | WSGNN ~ GraphGLOW ~ AirGNN ProGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN

Auto Clean 71.8+4.3 77.9£1.2 69.5£0.8 63.2£0.2 69.5+04 71.6£0.9 73.4+0.5 743+0.8 76.4+02 78303 | 79.3+0.2

NC +DANG | 57.7+1.3 59.4+0.8 53.940.1 48.6£0.3 56.8+0.9 57.5#0.2 57.1x2.1 558+1.0 59.6+0.8 62.0+1.1 | 61.4+0.4
Garden Clean 87.4+0.2 88.5+0.9 78.3+1.5 78.7#0.1 83.3x1.2 84.2+40.5 85.7+0.5 87.7x0.4 87.8+¢0.2 88.1+0.3 | 88.7+0.3
+DANG | 77.6£0.8 78.1x1.5 66.1£1.7 73.0£04 76.2+0.5 772433 75624 76.1+02 76.0+0.6 80.2+0.4 | 80.2+0.8

Aut Clean 81.8+0.1 86.2+0.3 60.2#0.2 74.8#0.3 87.2+0.8 78.6+0.1 86.8+0.1 76.6+1.3 84.4+0.1 82.2+83 | 88.2+0.3

LP WO | 4 DANG | 69.1%0.6 74.8+0.2 57904 56.740.5 65.0£0.2 57.3x0.1 70.5+0.2 47.5x1.7 722402 65.67.4 | 73.6+0.6
Garden Clean 84.7+0.2 90.2+0.5 62.0£0.1 83.5£0.6 91.2+04 852402 89.2+0.3 87.0+0.9 90.4+0.3 89.2+3.8 | 92.6+0.2
+DANG | 84.6+0.7 90.1+0.4 58.240.5 83.3#0.5 91.2+0.5 85.040.1 90.0+0.7 58.6+4.5 90.4+02 86.0+7.2 | 92.4+0.4

5.1 Main Results

1) DA-GNN demonstrates superior robustness compared to baseline methods in handling noise
dependencies represented by DANG. We first evaluate DA-GNN under synthetic DANG datasets.
Table [T]shows that DA-GNN consistently outperforms all baselines in DANG scenarios, especially
when noise levels are high. This superiority is attributed to the fact that DA-GNN captures the
causal relationships involved in the DGP of DANG, while the baselines overlook such relationships,
leading to their model designs assuming the completeness of at least one data source. Moreover,
we investigate the robustness under our proposed real-world DANG datasets, Auto and Garden,
that we simulate noise dependencies within e-commerce systems. In Table 2] we observe that DA-
GNN outperforms the baselines under real-world DANG on both the node classification and link
prediction tasks. This indicates that DA-GNN works well not only under artificially generated noise,
but also under noise scenarios that are plausible in real-world applications.

2) DA-GNN also shows com-

parable or l.)etter performance ~ Feature Noise Structure Noise Label Noise
than baselines under other = »-N
noise scenarios, commonly con- g 85.0 80 2
sidered in this research field. g5 70 —3
. © .

Specifically, we evaluate the G |55, TR || A mew o o aow A oW

- o °F - 701 =& - -
robustness of DA-GNN under g™ Tran T8 1701 D50 L% 0] Iman SRS,
Commonly utilized nqde feature = . 776% 30% s0% cidan 10% 30% 50% Cléan 10% 30% 50%
noise [3], structure noise [8]], and Noise Rate (%) Noise Rate (%) Noise Rate (%)

node label noise scenarios [9] on
Cora dataselﬂ In Fig 4, we ob-
serve DA-GNN shows consis-
tent superiority or competitive
performance compared to existing robust GNNs. We attribute the robustness of DA-GNN un-
der the noise in node features to the graph structure learning module that accurately infers the latent
graph structure Z 4. The utilization of abundant local neighborhoods acquired through the inference

Figure 4: Node classification under node feature noise, structure
noise, and node label noise scenarios, which are commonly con-
sidered in robust GNN research field, on Cora dataset.

3 Additional results on other datasets are outlined in Fig and|12]in Appendix.

of Z 4 enables effective smoothing for nodes with noisy features, leveraging the information within
these neighborhoods. We attribute the effectiveness of DA-GNN under the noise in graph structures
to inferring the robust latent clean graph structure. In other words, the inference of the latent clean
graph structure Z4 assigns greater weights to latent clean edges and lower weights to observed
noisy edges by employing regularizations on both the edge predictions and labels, thereby mitigating
structural noise. For the noise in node labels, we argue that the effectiveness of DA-GNN stems
from the accurate inference of the latent clean structure. Specifically, the inferred latent node label
Zy is regularized using the inferred latent structure Z 4 to meet the homophily assumption (i.e.,
Lhom)- Leveraging the clean neighbor structure, this regularization technique has been demonstrated

to effectively address noisy labels [32]]. Cora Citeseer

3) DA-GNN outperforms all baselines under an 2,)
extreme noise scenario. In addition to a single type ~ §_ | =" b | RMINN.
of noise, we explore a more challenging noise scenario v | % et 6013 Sroie \ N
. . 0 60 { 4 EvenNet 4~ EvenNet |
where all three types of noises occur simultaneously, T~ |=Cwew \ 501 =~ NRoNN
. . . [} RTGNN RTGNN
denoted as extreme noise. It is important to note that 50| = sces J B oow
. ~@~ DA-GNN o| 40 =@ paGNN $
each type of noise does not affect the occurrence of the = 40 s b
. . . Clean 10% 30% 50% Clean 10% 30% 50%
other types Of noise, n contrast to DANG. In Flg El, Extreme Noise (%) Extreme Noise (%)
DA-GNN consistently outperforms the robust GNNs Figure 5: Node classification under extreme
under extreme noise. noise scenario.

SUMMARY: DA-GNN has a broader range of applicability than the existing robust GNNs
under various noise scenarios. Based on the above results, we assert that modeling the DGP of
DANG offers significant advantages for robustness, both under DANG and independently occurring
feature, structure, or label noise, as DA-GNN is inherently capable of handling each type of noise. In
contrast, the baseline methods assume the completeness of at least one of the data sources, resulting
in a significant performance drop when the noise rate is high.

5.2 Ablation Studies on DA-GNN Table 3: Ablation studies of various DGPs from Fig@
) .) Case 3 removes Y <+ (X, A); Case 2 additionally re-
To emphasize the importance of directly 1 ves 4 + X Case 1 additionally removes A + e,
capturing the causal relationships among equivalent to IFN (Fig@.

variables in the DGP of DANG, i.e., Y <

(X A) A« X.and A « e we re- Dataset | Setting | (a)Case 1 (b)Case2 (c) Case3 | Proposed
e > > . Clean 84.6+0.4 84.840.4 86.2+0.2 | 86.20.7
move them one by one from the graphical Cora | DANG-10% | 77403 77.3:0.3 83203 | 82.9:0.6
model of DANG (See Fig Ekb)’ and then de- DANG-30% | 68.3:04 685:02 773204 | 78.2+0.3
ion deep senerative models based on the DANG-50% | 552+02 56.1+0.3 68.7+03 | 69.7+0.6
S1gn decp gener Clean 767409 76.8+0.8 76.5+0.9 | 77.3:0.6
DGPs in a similar manner to DA-GNN. Citescer | PANG-10% | 69.550.3 69.5:0.4 73.2¢0.1 | 74.340.9
: : DANG-30% | 57.2¢1.1 577405 65.5+0.7 | 65.6£0.6

The graphical models of the derived DGPs DANG-50% | 49.2+0.5 48.7+02 57.6+2.5 | 59.0+1.8

are illustrated in Fig [6] In Table 3] we

observe that as more causal relationships 9'9 2y
are removed from the DGP of DANG, the
node classification performance decreases. @ © @ © @ ©

(a) Case 1 (b) Case 2 (c) Case 3

Below, WEOfict explanatioqs for this ob- Figure 6: Graphical models of DGPs derived from
servation from the perspective of model |y NG

derivation.

1) Removing ¥ <« (X, A), ie., Fig @c), simplifies —Ez, ~q,. [log(pe, (Y]X, 4, Zy))] to
—Ezy ~q,, [10g(po, (Y[Zy))]. This simplification hinders the accurate modeling of the label tran-

sition relationship from Zy to the noisy label Y, resulting in a degradation of model performance
under DANG.

2) Additionally, when excluding A <« X, ie., Fig @b), the inference of Z, and Zy
is simplified as follows: ¢g,(Z4]|X,A) to ge,(Za]A) and g, (Zv|X, A) to g¢e,(Zv|X).
Furthermore, the loss term —Ez, .4, Ecvg,, [log(pe, (A[X €, Z4))] is also simplified to
~Ez,~qy, Eeng,, [108(po, (Al€, Z4))]. These simplifications significantly hinder the accurate infer-
ence of Z 4 and Zy, resulting in a notable performance degradation.

3) Eliminating A < ¢, as in Fig @a), simplifies —Ez,~q, Eevg,, [l0g(po, (Ale, Z4))] to
~Ez,~qs, Eeng,, [l0g(po, (A|Z4))]. This simplification hinders the robustness of the inferred Z 4,
since the simplified loss excludes label regularization from the model training process, ultimately
resulting in performance degradation.

5.3 Complexity Analysis on DA-GNN

We provide both theoretical and empirical complexity analyses of training DA-GNN. Our findings
show that DA-GNN achieves superior performance compared to baseline methods while maintaining
acceptable training times. For a detailed discussion and comprehensive results, refer to Appendix [F1]

5.4 Sensitivity Analysis

We analyze the sensitivity of our proposed method DA-GNN in terms of its hyperparameters A1, Ao,
k, 8, and ~. Our observations indicate that DA-GNN consistently exhibit best performance regardless
of their values. Among these, k plays a critical role and requires some tuning. But, as the search
space is relatively small, we consider this acceptable. For a more comprehensive discussion and
detailed results, please see Appendix

5.5 Robustness Evaluation under Variants of DANG

We analyze the robustness of DA-GNN across different variants of DANG by varying the hyperpa-
rameter settings used in dataset generation. Specifically, in the generation process of our synthetic
DANG, we have three variables: 1) the overall noise rate, 2) the amount of noise dependency (X — A,
(X =Y, (A —=Y),and 3) the amount of independent structure noise (¢ — A). For the generation
process of our real-world DANG, we have 1) the number of fraudsters (i.e., nodes with noisy features)
and 2) the activeness of fraudsters (i.e., the amount of structure noise they introduce). As a result,
label noise also increases accordingly, in proportion to the amount of generated feature and structure
noise.

Detailed results in Appendix |F.3|show that DA-GNN consistently outperforms all baselines across
varying levels of both synthetic and real-world DANG, underscoring its robustness and practical
applicability under diverse noise conditions.

5.6 Qualitative Analysis on DA-GNN

We conduct qualitative analyses to verify how well DA-GNN infers the latent variables €4 and Z 4.
For a detailed setting and results, please refer to Appendix [F4]

6 Conclusion

This study investigates the practical gap between real-world scenarios and the simplistic noise
assumptions in terms of node features underlying previous robust GNN research. To bridge this
gap, we newly introduce a more realistic graph noise scenario called dependency-aware noise on
graphs (DANG), and present a deep generative model, DA-GNN, that effectively captures the causal
relationships among variables in the DGP of DANG. We also propose novel graph benchmarks that
simulate DANG within real-world applications, which fosters practical research in this field. We
demonstrate DA-GNN has a broader applicability than the existing robust GNNs under various noise
scenarios.

7 Limitations and Future Works

Despite broader applicability of the DANG and DA-GNN, they do not perfectly cover all possible
noise scenarios. One direction to enhance their practicality is to incorporate X <— A, suggesting
graph structure noise can inevitably lead to node feature noise. By doing so, a broader range of noise
scenarios could be addressed, further improving practical applicability. A detailed discussion on this
topic is provided in Appendix [C.3]

Acknowledgements

This work was supported by the Institute of Information & Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-2025-02304967), IITP grant
funded by the Korea government(MSIT) (RS-2022-11220157), National Research Foundation of
Korea(NRF) funded by Ministry of Science and ICT (RS-2022-NR068758).

10

References

(1]

(2]

3

—

[4

—

[5

—_—

(6]

[7

—

[8

—

[9

—

(10]

(11]

[12]

[13]

[14]

(15]

(16]

(17]

(18]

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 7370-7377, 2019.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development
in Information Retrieval, pages 165-174, 2019.

Junghoon Kim, Yeonjun In, Kanghoon Yoon, Junmo Lee, and Chanyoung Park. Class label-aware graph
anomaly detection. In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, pages 4008—4012, 2023.

Junghoon Kim, Junmo Lee, Yeonjun In, Kanghoon Yoon, and Chanyoung Park. Revisiting fake news
detection: Towards temporality-aware evaluation by leveraging engagement earliness. arXiv preprint
arXiv:2411.12775, 2024.

Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang. Graph neural networks
with adaptive residual. Advances in Neural Information Processing Systems, 34:9720-9733, 2021.

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph representa-
tion learning with test-time graph transformation. arXiv preprint arXiv:2210.03561, 2022.

Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. Towards robust graph neural networks for noisy graphs
with sparse labels. WSDM, 2022.

Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Reliable representa-
tions make a stronger defender: Unsupervised structure refinement for robust gnn. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 925-935, 2022.

Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise resistant graph neural
network on sparsely and noisily labeled graphs. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 227-236, 2021.

Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu. Robust
training of graph neural networks via noise governance. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pages 607-615, 2023.

Yuhao Wu, Jiangchao Yao, Xiaobo Xia, Jun Yu, Ruxin Wang, Bo Han, and Tongliang Liu. Mitigating label
noise on graph via topological sample selection. arXiv preprint arXiv:2403.01942, 2024.

Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Yixuan Li, and
Junzhou Huang. Noise-robust graph learning by estimating and leveraging pairwise interactions. arXiv
preprint arXiv:2106.07451, 2021.

Ling-Hao Chen, Yuanshuo Zhang, Taohua Huang, Liangcai Su, Zeyi Lin, Xi Xiao, Xiaobo Xia, and
Tongliang Liu. Erase: Error-resilient representation learning on graphs for label noise tolerance. In
Proceedings of the 33rd ACM International Conference on Information and Knowledge Management,
CIKM 24, page 270-280, New York, NY, USA, 2024. Association for Computing Machinery.

Jun Xia, Haitao Lin, Yongjie Xu, Cheng Tan, Lirong Wu, Siyuan Li, and Stan Z. Li. Gnn cleaner: Label
cleaner for graph structured data. IEEE Trans. on Knowl. and Data Eng., 36(2):640-651, February 2024.

Kaize Ding, Xiaoxiao Ma, Yixin Liu, and Shirui Pan. Divide and denoise: Empowering simple models for
robust semi-supervised node classification against label noise. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 574-584, 2024.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural networks with extremely noisy labels. Advances in neural
information processing systems, 31, 2018.

Yeonjun In, Kanghoon Yoon, Kibum Kim, Kijung Shin, and Chanyoung Park. Self-guided robust graph
structure refinement. arXiv preprint arXiv:2402.11837, 2024.

Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, and Kun Zhang. Instance-dependent

label-noise learning under a structural causal model. Advances in Neural Information Processing Systems,
34:4409-4420, 2021.

11

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(371

Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, and Masashi Sugiyama. Confidence scores make
instance-dependent label-noise learning possible. In International conference on machine learning, pages
825-836. PMLR, 2021.

Danning Lao, Xinyu Yang, Qitian Wu, and Junchi Yan. Variational inference for training graph neural
networks in low-data regime through joint structure-label estimation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 824—-834, 2022.

Wentao Zhao, Qitian Wu, Chenxiao Yang, and Junchi Yan. Graphglow: Universal and generalizable
structure learning for graph neural networks. arXiv preprint arXiv:2306.11264, 2023.

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure
learning via mutual information compression. In Proceedings of the ACM Web Conference 2022, pages
1601-1610, 2022.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure
learning for graph neural networks. Advances in Neural Information Processing Systems, 34:22667-22681,
2021.

Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Leman Akoglu.
A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge
and Data Engineering, 2021.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859-877, 2017.

Yoonhyuk Choi, Jiho Choi, Taewook Ko, Hyungho Byun, and Chong-Kwon Kim. Finding heterophilic
neighbors via confidence-based subgraph matching for semi-supervised node classification. In Proceedings
of the 31st ACM International Conference on Information & Knowledge Management, pages 283-292,
2022.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415-444, 2001.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818-2826, 2016.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of the 25th international conference on world wide web,
pages 507-517, 2016.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommen-
dations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on
research and development in information retrieval, pages 43-52, 2015.

Ahmet Iscen, Jack Valmadre, Anurag Arnab, and Cordelia Schmid. Learning with neighbor consistency for
noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4672-4681, 2022.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-based
semi-supervised learning. Advances in Neural Information Processing Systems, 32, 2019.

Jiaying Wu and Bryan Hooi. Decor: Degree-corrected social graph refinement for fake news detection.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
2582-2593, 2023.

Stephanie C Hicks, F William Townes, Mingxiang Teng, and Rafael A Irizarry. Missing data and technical
variability in single-cell rna-sequencing experiments. Biostatistics, 19(4):562-578, 2018.

Uri Shaham, Kelly P Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Montgomery, and Yuval Kluger.
Removal of batch effects using distribution-matching residual networks. Bioinformatics, 33(16):2539-2546,
2017.

Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang, Hongjun Fu,
Qin Ma, and Dong Xu. scgnn is a novel graph neural network framework for single-cell rna-seq analyses.
Nature communications, 12(1):1882, 2021.

12

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

Zehao Xiong, Jiawei Luo, Wanwan Shi, Ying Liu, Zhongyuan Xu, and Bo Wang. scgcl: an imputation
method for scrna-seq data based on graph contrastive learning. Bioinformatics, 39(3):btad098, 2023.

Sukwon Yun, Junseok Lee, and Chanyoung Park. Single-cell rna-seq data imputation using feature
propagation. arXiv preprint arXiv:2307.10037, 2023.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings, 2016.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls of
graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118-22133, 2020.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 66—74, 2020.

Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet: Ignoring odd-hop neighbors
improves robustness of graph neural networks. arXiv preprint arXiv:2205.13892, 2022.

Yeonjun In, Kanghoon Yoon, and Chanyoung Park. Similarity preserving adversarial graph contrastive
learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 867-878, 2023.

13

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s core contributions,
including the proposed method, its motivation, and the evaluation setting. These sections
accurately reflect the content of the main body, particularly in terms of the scope of the
experiments and the novelty of the approach. The claims made are neither overstated nor
misleading and are substantiated by the results and analysis presented in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

14

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Please refer to Section 7

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide full derivation of our objective in Appendix A.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-

perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our source code in the anonymous github repository and detailed
implementation details in Appendix [E.5|

15

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our source code including data and running code in the anonymous
github repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Appendix [E.5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run all models multiple times and calculate the average and standard
deviation to allow for the statistical comparisons.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide our GPU resource information in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

17

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: To the best of our knowledge, we do not violate the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

18

https://neurips.cc/public/EthicsGuidelines

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite and state the original papers and resources.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the proper documentation in Appendix [E.2}
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

19

paperswithcode.com/datasets

15.

16.

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Derivation Details of Evidence Lower BOund (ELBO)

We commence by modeling joint distribution P(X, A,Y"). We assume that the joint distribution
P(X, A,Y) is differentiable nearly everywhere regarding both ¢ and the latent variables (¢, Z 4, Zy).
Note that the generative parameter 6 serves as the decoder network that models the distribution
P(X,A,Y). The joint distribution of P(X, A,Y") can be represented as:

pg(X,A,Y):// / pe(X7AaK€a ZAaZY)deZAdZY' (5)
€ ZA Zy

However, computing this evidence integral is either intractable to calculate in closed form or requires
exponential time. As the evidence integral is intractable for computation, calculating the conditional
distribution of latent variables pg(e, Z4, Zy | X, A,Y) is also intractable:

p9(X7A7 Yv €, ZAa ZY)
po(X,A,Y)

p@(ea ZAaZY|X7AaY) = (6)

To infer the latent variables, we introduce an inference network ¢ to model the variational distribution
qs(€, Za, Zy|X, A,Y), which serves as an approximation to the posterior pg (€, Za, Zy|X, A, Y).
To put it more concretely, the posterior distribution can be decomposed into three distributions
determined by trainable parameters ¢1, ¢, and ¢3. Based on the observed conditional independence
relationships °, we decompose ¢4 (€, Za, Zy | X, A,Y") as follows:

Q¢(€7 ZA7 ZY|X7 A7 Y) = q¢, (ZA‘X7 A7 6)Q¢2 (€|X> A7 ZY>C]¢>3 (ZY|X7 A7 Y) (7)

For simplicity, we introduce two additional assumptions. First, when the node features X and
observed graph structure A are given, latent clean graph structure Z 4 is conditionally independent
from the noise-incurring variable €, i.e., ¢4, (Za|X, A, €) = ¢4, (Z4]|X, A). Second, when X and
A are given, latent clean labels Zy is conditionally independent from the observed node labels Y,
ie., gp, (Zyv|X,AY) = q4,(Zy|X, A). This approximation, known as the mean-field method, is
a prevalent technique utilized in variational inference-based methods [33}20]. As a result, we can
simplify Eqn. [7]as follows:

Q¢(67 Za, ZY|X’ A, Y) = q¢, (ZAlX’ A)Q¢2 (6|X7 A, ZY)Q¢3(ZY‘X’ A)' ¥

To jointly optimize the parameter ¢ and €, we adopt the variational inference framework [25} [18]] to
optimize the Evidence Lower-BOund (ELBO) of the marginal likelihood for observed data, rather
than optimizing the marginal likelihood directly. Specifically, we derive the ELBO for the observed
data log-likelihood P(X, A,Y’). First, we factorize the joint distribution P(X, A, Y, ¢, Z4, Zy)
based on the graphical model in Fig. 2[b) in the main paper:

P(X7 Av Ya €, ZA) ZY)
= P()P(Z4)P(Zy)P(X|e, Zy) P(Ale, X, Z4)P(Y|X, A, Zy).)

Thus, the conditional distribution Py(X, A,Y|e, Z4, Zy) can be represented as follows:

Py(X, A Y e, Za, Zy) = Py, (X|e, Zy)Py, (Ale, X, Za) Py, (Y|X, A, Zy). (10)

Recall that the conditional distribution g4 (€, Z4, Zy | X, A,Y) is factorized as in Eqn. [8| Now, we
derive the ELBO for the observed data log-likelihood P(X, A,Y):

®We observe the following conditional independence relationships in Fig. b):) Zs LY|X,A)e, (2)
Zal Zv|A X, e,(3)e LY|Zy, X, A.

21

logpg(X,A,Y)zlog// / po(X, A Y, e, Za, Zy)dedZ 4dZy
eJZpJZy

Q¢(6,ZA,Zy|X7A,Y)
=lo // / X, AY €, 724,72
. cJZ4 Zype(4 Y)Q¢(6,ZA,ZY|X7A’Y)

pg(X, A7 Y, €, ZA7 Zy)
Q¢(€, ZA, Zy|X, A, Y):|
pg(X, A7 Y, €, ZA, Zy)
Q¢(€, ZA7 Zy|X, A, Y)
p(e)p(Za)p(Zy)
qs(€,Za, Zy | X, AY)
Do, (A|X, €, ZA)p92 (X|€, Zy)p93 (Y|X, A, Zy):|
qs(€, 24, Zy| X, AY)

=108 E (¢, 74,2y)~ao(e. 24,2y | X,AY) [

2 B, 24,2y)~ (.24, 2y | X,AY) [IOg] := ELBO

=E(e, 24,2y)~as(e,24,2v1X,A4,Y) {10%

+log

= E(c. 24,2y)~a0 (6,24, 2v X, AY) | 108(Po, (A| X, €, Z4))

+log(pey (X[e Zy)) + log(ps, (Y]X, 4, zy>>]

TR o PLOP(Za)p(Zy)
(E,ZA,Zy)Nq¢(E,ZA,Zy|X,Y,A) | q¢(e, ZA,ZY|X’A7Y)

Y

The last equation of Eq. [TT|can be more simplified. We present the simplified results in Eqn. [T2][T3]
El, and@ where we abuse the notation Ez, 4, (z4]x,4)> Ecngy, (c|x.4.2y)> a0 Ezy g, (2 |x,4)
as Gy, , ¢, » and gg,, respectively:

E(e.24.2y)~ao(e. 24,2y |X,4,Y) [l08(Po, (A X, €, Z4))]
=Ky, Eq,,Eq,, [log(pe, (A|X €, Z4))]

dé1 "doy
= Eq,, Eq,, [log(pe, (A|X, €, Z4))], (12)
and
E(e. 24,2y)~as (e, 24,2y | X,A,Y) [108(Po, (X €, Zy))]
= E%l]qusg Eq¢3 [log(pe, (X|€, Zy))]
= EQ¢2]Eqabg [log(p92 (X|€a ZY))} ’ (13)
and

E(e, 24,2y)~as(e.24, 2y |X,A,Y) [108(po, (Y X, A, Zy))]
=Eq, E Eq¢3 [log(p93 (Y|Xa A, ZY))]

9oy —dpo

= Eq,, [log(pe, (Y[X, A, Zy))]. (14)
In a similar way, the last term can be also simplified:

22

p(e)p(Za)p(Zy)]
Q¢(6, ZA7 Zy ‘X, A, Y)

p(Za)p(e)p(Zy)]
dp, (ZA |Xa A)q¢2 (€|X7 A, ZY)q¢3 (ZY |X7 A)

E(e, 24,2y)~ag(e,24,2y |X,Y,A) {log

= Eqd)l EQ¢2 Eq¢3 |:10g

p(Z4) p(e)
= oo, [l‘)g 4. (ZalX, A)] oo Fas, P"g 2ol X, A ZYJ
p(Zy)]
s (ZY‘Xv A)
= —kl(go (ZalX, A[p(Z4)) — By, k(g (X, 4, Zy)|p(e))]
~ kl(go (Zy1X. A)|p(2Zy)). (s)

We combine Eqn. and[T3]to get the negative ELBO, i.e., LgLgo:

+ IE%3 {log

Letgo = —Ez, gy, (241x,2) Eengy, (e x,4,2y) [l0g(po, (A[X, €, Z4))]

= By, (e1%,4,2v)EZy nay, (2v|x,4) [108(Po, (X €, Zy))]

— Ezy nayy (2v1X,4) [log(po, (Y X, A, Zy))]

+ kl(qes (Zy |X, A)lIp(Zy)) + Kl(g4,(Za| X, A)|Ip(Z4))

+Ezy nqy, (2v1x,4) [Kl(ag, (€| X, A, Zy)|[p(e))] - (16)

B Details of Model Instantiations

B.1 Details of regularizing the inference of 7 4

We regularize the learned latent graph A based on the prior knowledge that pairs of nodes with high
~-hop subgraph similarity are more likely to form assortative edges [21} 26, [7], thereby encouraging

A to predominantly include such edges.

However, computing p;; in every epoch is impractical for large graphs, i.e., O(N?). To mitigate
the issue, we pre-define a candidate graph that consists of the observed edge set £ and a k-NN
graph based on the y-hop subgraph similarity. We denote the set of edges in the k-NN graphs as
£ ,Z . Then, we compute the p;; values of the edges in a candidate graph, i.e., E,Z U €&, instead of all

edges in {(i,5)|i € V,j € V}, to estimate the latent graph structure denoted as A. It is important to
highlight that obtaining &' is carried out offline before model training, thus incurring no additional
computational overhead during training. This implementation technique achieves a similar effect
as minimizing kl(g4, (Z4|X, A)||p(Z4)) while significantly addressing computational complexity
from O(N?) to O(|E] U &[), where N2 > |E] U £

C Further Discussion on DANG

C.1 Statistical Analysis on Evidence of DANG

To provide empirical evidence of the DANG assumption in addition to intuition, we conduct a
statistical analysis on a real-world news network, PolitiFact [34], where node features represent
news content, node labels correspond to news topics or categories, and edges denote co-tweet
relationships—that is, instances where the same user tweeted both pieces of news. The network
includes both fake and benign news, with fake news regarded as feature noise induced by malicious
user intent (ex).

To investigate noise dependency patterns associated with the presence of fake news, We hypothesize
that the presence of fake news (i.e., feature noise) leads to noisy graph structures and noisy node
labels in news networks. Specifically, we assign a semantic topic to each news article as a node label
using k-means clustering over BERT embeddings of the article content. For each node in the graph,

23

Table 4: Statistics comparison between Fake news and Benign news.

Category Mean 25% 50% (Median) 75%
Fake news 1.330 1.402 1.465 1.494
Benign news 1.084 1.004 1.353 1.431
Mann-Whitney U test (p-value) 4.19e—25

we compute the Shannon entropy of the semantic topic distribution among its neighboring nodes. We
then compare these entropy values between fake and benign news nodes.

In Table] descriptive statistics reveal that fake news nodes generally exhibit higher entropy than
benign news nodes, suggesting that benign news tends to connect to semantically similar articles
(homophilic), whereas fake news is more frequently connected to semantically dissimilar articles
(heterophilic). This observation aligns with common user behavior: people typically share news
related to their interests, whereas fake news is often propagated indiscriminately, regardless of topical
relevance [4]]. Furthermore, a non-parametric statistical test (Mann—Whitney U test) confirms that the
difference in entropy values between fake and benign news is statistically significant. These findings
suggest that the presence of fake news (i.e., node feature noise) introduces noisy and heterophilic
edges into the graph structure. Furthermore, model-based automated news topic prediction often
performs poorly due to noise in both features and graph structures, ultimately resulting in incorrect
label annotations.

In summary, these findings empirically support the noisy dependency scenario in real-world scenario
where feature noise (i.e., fake news content) can propagate through the graph, generating noisy edges
and noisy labels. This highlights the need for our work that explicitly model and mitigate such noise
dependencies in real-world networks.

C.2 Intuitive Examples of DANG

» User graphs in social networks: These graphs feature nodes that may represent user’s profile or
posts, with follow relationship among users defining the graph’s structure. The node labels could
denote the communities (or interests) of the users. In such scenarios, if users might create fake
or incomplete profiles for various reasons, including privacy concerns, some irrelevant users may
follow the user based on his/her fake profile, which leads to noisy edges. Moreover, if a user has
noisy node features or noisy edges, the user may be assigned to a wrong community (or interest),
which leads to noisy labels.

» User graphs in e-commerce: Users might create fake or incomplete profiles for various reasons,
leading to noisy node features. As a result, products that do not align with the user’s genuine
interests could be displayed on a web or app page, encouraging the user to view, click on, or
purchase these products. Consequently, users are more likely to engage with irrelevant products,
leading to a noisy graph structure due to the user’s inaccurate features. Moreover, this distortion in
users’ information and interactions can also alter their associated communities, resulting in noisy
node labels.

* Item graphs in e-commerce: Fake reviews on products written by a fraudster (i.e., noisy node
features) would make other users purchase irrelevant products, which adds irrelevant edges between
products (i.e., graph structure noise). Consequently, this would make the automated product category
labeling system to inaccurately annotate product categories (i.e., label noise), as it relies on the node
features and the graph structure, both of which are contaminated.

 Item graphs in web graphs: The content-based features of web pages are corrupted due to poor
text extraction or irrelevant information, which leads to noisy node features. In such case, the
algorithm responsible for identifying hyperlinks or user navigation patterns might create incorrect or
spurious connections between nodes, leading to noisy graph structure. Furthermore, if the features
of the nodes are noisy, the algorithms that rely on these features to assign labels (e.g., classifying a
web page as a news site or a forum) may result in noisy node labels. Moreover, noises in the graph
structure (e.g., incorrect links between web pages) can distort the relational information used by
graph-based algorithms, leading to noises in the node labels.

24

Q Observable O Latent

(O—0—)
@0"0’

(a) DGP of DANG (b) Additionof 4 - X

Figure 7: A directed graphical model indicating a DGP of (a) DANG, and (b) the case when adding
causal relationship A — X.

 Item graphs in citation graphs: In an academic citation network, nodes represent academic papers,
edges represent citation relationships, and node features include attributes like title, abstract, authors,
keywords, and venue. Recently, generative Al agents have created numerous fake papers with
plausible but incorrect attributes, leading to noisy node features. These fake papers get indexed
and resemble genuine ones, causing algorithms or researchers to mistakenly create citation links
between real and fake papers based on content similarity or keywords, resulting in noisy graph
structure. For instance, a well-crafted fake abstract may cause genuine papers to erroneously cite
it. Fake papers can corrupt classification algorithms, skewing topic distributions and distorting the
citation graph. This affects metrics like citation counts, h-index calculations, and paper influence
scores, propagating errors through algorithms that rely on the graph structure, ultimately leading to
noisy node labels.

* Biological Networks: In addition to the user-item graphs, DANG manifests in the domain of
single-cell RNA-sequencing (scRNA-seq). Specifically, in this graph the primary resource is a
cell-gene count matrix. A cell-cell graph is commonly employed for downstream tasks, where each
cell and its corresponding gene expression are represented as a node and node feature, respectively,
and the cell type is considered a node label. However, the node feature, representing gene expression
derived from the cell-gene count matrix, often contains noise due to various reasons, such as the
dropout phenomenon [35]] and batch effect [36]. Since the cell-gene count matrix is the main
resource for generating the cell-cell graph [37,138]139], such noise acts as a significant obstacle in
designing an effective graph structure. Additionally, cell types are annotated using transcripted
marker genes, which serve as distinctive features characterizing specific cell types. Noisy node
features, therefore, can lead to the misprediction of cell types (node labels). This issue of noise in
node features in the biological domain underscores the critical challenge in real-world scenarios.

C.3 Extension of DANG

While the proposed DANG and DA-GNN demonstrate broader applicability compared to existing
methods, they do not perfectly cover all possible noise scenarios. One potential direction to enhance
their practicality is to incorporate the causal relationship X < A, which suggests that graph structure
noise can inevitably lead to node feature noise—an occurrence that may manifest in certain real-world
scenarios. For instance, consider a social network where node features represent the content to which
a user is exposed or interacts with (e.g., views, clicks, or likes), while the graph structure denotes
the follower relationships. In such a scenario, if a user follows or is followed by fake accounts, the
graph structure might incorporate noisy links (i.e., noisy graph structure). This, in turn, can impact
the content to which users are exposed and their interactions (i.e., noisy node features), eventually
influencing their community assignments (i.e., noisy node labels). In other words, the noisy node
feature and noisy graph structure mutually influence the noise of each other, ultimately incurring the
noisy node label. We illustrate its DGP in Fig[7(b). Given that its DGP covers a broader range of
noise scenarios that occur in real-world applications than DANG, we expect that directly modeling its
DGP has the potential to enhance practical applicability. However, this is a topic we leave for future
work.

D Further Discussion on DA-GNN

While the implementation of DA-GNN draws inspiration from the spirit of VAE [28]] and CausalNL
[L8], we address complex and unique challenges absent in [28l [18]. Specifically, the incorporation of
A necessitates handling supplementary latent variables and causal relationships, such as Z4, €4, 4
—ex, A X, Y «+ A, A+ Z,, each posing non-trivial obstacles beyond their straightforward
extension.

25

* While [[18]] assumes that € only causes X, DANG posits that € also causes A, denoted as A «+
e 4. Consequently, DANG requires a novel inference/regularization approach for € 4, which is not
addressed in [[18], presenting a distinctive technical challenge.

* A simplistic uniform prior is employed to regularize the modeling of Zy in [18]. However, upon
close examination of the relationship Y <— A, we advocate for a novel regularization approach for
Zy based on the principle of homophily. This method cannot be elicited through a straightforward
application of [18] to the graph.

* By incorporating A, Z 4, and their associated casualties, we address distinct technical challenges,
specifically the inference/regularization of Z 4 and the generation of A, which cannot be accommo-
dated by a mere extension of 18] to the graph. In particular, we utilize graph structure learning to
model Z 4, and frame the generation of A as an edge prediction task, incorporating novel regular-
ization techniques for both edge prediction and label. Moreover, we regularize Z 4 leveraging our
novel prior knowledge to enhance the accuracy and scalability of inference.

We argue that these components are non-trivial to handle through a straightforward application of
[18] to the graph domain.

E Details on Experimental Settings

E.1 Datasets

We evaluate DA-GNN and baselines on five existing datasets (i.e., Cora [40], Citeseer [40]], Amazon
Photo and Computers [41]]), and ogbn-arxiv [42] and two newly introduced datasets (i.e., Amazon
Auto and Amazon Garden) that are proposed in this work based on Amazon review data [30, [31] to
mimic DANG caused by malicious fraudsters on e-commerce systems (Refer to Appendix [E.2.2]for
details). The statistics of the datasets are given in Table[5] These seven datasets can be found in these
URLs:

* Cora: https://github.com/ChandlerBang/Pro-GNN/

* Citeseer: https://github.com/ChandlerBang/Pro-GNN/

* Photo: https://pytorch-geometric.readthedocs.io/en/latest/

* Computers: https://pytorch-geometric.readthedocs.io/en/latest/
* Arxiv: https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

¢ Auto: http://jmcauley.ucsd.edu/data/amazon/links.html
* Garden: http://jmcauley.ucsd.edu/data/amazon/links.html

Table 5: Statistics for datasets.
Dataset | #Nodes | #Edges #Features # Classes

Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
Arxiv 169,343 | 1,166,243 128 40
Auto 8,175 13,371 300 5
Garden ‘ 7,902 ‘ 19,383 300 5

E.2 Details of Generating DANG
E.2.1 Synthetic DANG

For the synthetic DANG settings, we artificially generate the noise following the data generation
process of the proposed DANG scenario. First, we randomly sample a subset of nodes V"' (i.e.,
10%, 30%, and 50% of the whole node set V). To inject node feature noise into the sampled nodes,
we randomly flip 0/1 value on each dimension of node features X; from Bernoulli distribution with

26

probability p = + S°F | X, which results in the noisy features X! After injecting the feature
noise, we generate a feature-dependent structure noise (i.e., A < X)) and feature-dependent label
noise (i.e., Y + (X, A)). For the feature-dependent structure noise, we first calculate the similarity
vector for each node v; as {s(X;", X;)|v; € V" v; € V} where s(-,-) is a cosine similarity
function, and select the node pairs whose feature similarity is top-% highest values. We add the
selected node pairs to the original edge set £, which results in £, To address feature-dependent
label noise, we replace the labels of labeled nodes (i.e., training and validation nodes) with randomly
sampled labels from a Multinomial distribution, with parameters determined by the normalized
neighborhood class distribution. Finally, for the independent structure noise (i.e., A < €), we add
the randomly selected non-connected node pairs to the £™Y. Detailed algorithm is provided in
Algorithm[2]

E.2.2 Real-world DANG

We have introduced and released two new graph benchmark datasets, i.e., Auto and Garden, that
simulate real-world DANG scenarios on e-commerce systems. To construct these graphs, we utilized
metadata and product review data from two categories, "Automotives" and "Patio, Lawn and Garden,"
obtained from Amazon product review data sources [30, 31]. Specifically, we generated a clean
product-product graph where node features are represented using a bag-of-words technique applied
to product reviews. The edges indicate co-purchase relationships between products that have been
purchased by the same user, and the node labels correspond to product categories. We perform
both node classification and link prediction tasks, which are equivalent to categorizing products and
predicting co-purchase relationships, respectively.

We simulate the behaviors of fraudsters on a real-world e-commerce platform that incurs DANG.
When the fraudsters engage with randomly selected products (i.e., when they write fake product
reviews), it would make other users purchase irrelevant products, which introduces a substantial
number of malicious co-purchase edges within the graph structure. Additionally, this activity involves
the injection of noisy random reviews into the node features. To provide a more detailed description,
we designated 100 uers as fraudsters. Furthermore, each of these users was responsible for generating
10 fraudulent reviews in both the Auto and Garden datasets. To generate fake review content, we
randomly choose text from existing reviews and duplicate it for the targeted products. This approach
guarantees that the fake reviews closely mimic the writing style and content of genuine reviews, while
also incorporating irrelevant information that makes it more difficult to predict the product category.

In e-commerce systems, to annotate the node labels (i.e., product categories), machine learning-based
automated labeling systems are commonly utilized. Specifically, human annotators manually label
a small set of examples, which is used as the training examples to the machine learning model.
Subsequently, a machine learning model is trained on these manually labeled product samples to
automatically assign categories to other products. Therefore, the systems rely on the information
about the products, e.g., reviews of products and co-purchase relationships, to assign categories to
products. However, due to the influence of the fraudsters, the noisy node features (i.e., fake product
reviews) and noisy graph structure (i.e., co-purchase relationships between irrelevant products) may
hinder the accurate assignment of the automated labeling systems, which leads to the noisy node label.
To replicate this procedure, we selected 5 examples per category class, which is equivalent to manual
labeling process. We then trained a GCN model, leveraging the node features, graph structure, and
manually labeled nodes, to predict the true product categories. Consequently, our set of labeled nodes
are composed of both manually labeled nodes and nodes labeled using the GCN model. Importantly,
the labels of unlabeled nodes were left unchanged and still represented their actual categories. The
data generation code is also available athttps://github.com/yeonjun-in/torch-DA-GNN,

We again emphasize that while existing works primarily focus on the unrealistic noise scenario
where graphs contain only a single type of noise, to the best of our knowledge, this is the first
attempt to understand the noise scenario in the real-world applications. Furthermore, we propose new
graph benchmark datasets that closely imitate a real-world e-commerce system containing malicious
fraudsters, which incurs DANG. We expect these datasets to foster practical research in noise-robust
graph learning.

27

https://github.com/yeonjun-in/torch-DA-GNN

E.3 Baselines

We compare DA-GNN with a wide range of noise-robust GNN methods, which includes feature
noise-robust GNNs (i.e., AirGNN [5]]), structure-noise robust GNNs (i.e., ProGNN [43]], RSGNN [7]],
STABLE [8] and EvenNet [44])), label noise-robust GNNs (i.e., NRGNN [9] and RTGNN [10]), and
multifaceted noise-robust GNNS (i.e., SG-GSR [[L7]). We also consider WSGNN [20] and GraphGlow
[21] that are generative approaches utilizing variational inference technique.

The publicly available implementations of baselines can be found at the following URLs:

* WSGNN [20] : https://github.com/Thinklab-SITU/WSGNN

¢ GraphGLOW [21]] : https://github.com/WtaoZhao/GraphGLOW
* AirGNN [5] : https://github.com/Ixiaorui/AirGNN

e ProGNN [43] : https://github.com/ChandlerBang/Pro-GNN

¢ RSGNN [7] : https://github.com/EnyanDai/RSGNN

e STABLE [§] : https://github.com/likuanppd/STABLE

e EvenNet [44] : https://github.com/Leirunlin/EvenNet

* NRGNN [7] : https://github.com/EnyanDai/NRGNN

e RTGNN [7] : https://github.com/GhostQ99/RobustTrainingGNN
¢ SG-GSR [17] : https://github.com/yeonjun-in/torch-SG-GSR

E.4 Evaluation Protocol

We mainly compare the robustness of DA-GNN and the baselines under both the synthetic and
real-world feature-dependent graph-noise (DANG). More details of generating DANG is provided in
Sec[E.Z2] Additionally, we consider independent feature/structure/label noise, which are commonly
considered in prior works in this research field [5, (7, 8,145, [10]. Specifically, for the feature noise
[S]], we sample a subset of nodes (i.e., 10%, 30%, and 50%) and randomly flip 0/1 value on each
dimension of node features X; from Bernoulli distribution with probability p = % Ef;l X,;. For the
structure noise, we adopt the random perturbation method that randomly injects non-connected node
pairs into the graph [8]. For the label noise, we generate uniform label noise following the existing
works [10, [9]].

We conduct both the node classification and link prediction tasks. For node classification, we perform
a random split of the nodes, dividing them into a 1:1:8 ratio for training, validation, and testing nodes.
Once a model is trained on the training nodes, we use the model to predict the labels of the test nodes.
Regarding link prediction, we partition the provided edges into a 7:3 ratio for training and testing
edges. Additionally, we generate random negatives that are selected randomly from pairs that are not
directly linked in the original graphs. After mode learning with the training edges, we predict the
likelihood of the existence of each edge. This prediction is based on a dot-product or cosine similarity
calculation between node pairs of test edges and their corresponding negative edges. To evaluate
performance, we use Accuracy as the metric for node classification and Area Under the Curve (AUC)
for link prediction.

E.5 Implementation Details

For each experiment, we report the average performance of 3 runs with standard deviations. For
all baselines, we use the publicly available implementations and follow the implementation details
presented in their original papers.

For DA-GNN, the learning rate is tuned from {0.01, 0.005, 0.001, 0.0005}, and dropout rate and
weight decay are fixed to 0.6 and 0.0005, respectively. In the inference of Z 4, we use a 2-layer GCN
model with 64 hidden dimension as GCNy, and the dimension of node embedding d; is fixed to
64. The ~y value in calculating y-hop subgraph similarity is tuned from {0, 1} and k in generating
k-NN graph is tuned from {0, 10, 50, 100, 300}. In the inference of Zy, we use a 2-layer GCN
model with 128 hidden dimension as GCNg, . In the inference of ex, the hidden dimension size of
€x,1.e., do, is fixed to 16. In the inference of € 4, the early-learning phase is fixed to 30 epochs. In

28

Table 6: Hyperparameter settings on DA-GNN for Table m

Dataset | Setting | Ir A A2 0, kv
Clean 0.01 0.003 0.003 0.1 300 1

Cora DANG-10% | 0.005 0.003 0.003 02 50 1
DANG-30% | 0.001 0.003 0.003 02 100 1
DANG-50% | 0.0005 30 0.003 03 50 1

Clean 0.0005 0.003 0.3 0.1 50 O

Citeseer DANG-10% | 0.005 0.3 0.003 0.3 10 O
DANG-30% | 0.001 0.003 0.003 0.1 300 1
DANG-50% | 0.001 0.003 0.003 0.1 300 1

Clean 0.01 0.03 0.3 0.1 10 O

Photo DANG-10% | 0.0005 0.03 0.3 0.1 10 0
DANG-30% | 0.001 3 0.003 0.1 10 O
DANG-50% | 0.0005 30 0.03 0.1 10 0

Clean 0.01 30 0.03 0.1 10 0

Com DANG-10% 0.01 0.3 0.03 0.1 10 O
P | DANG-30% 0.01 0.003 0.003 0.1 10 0
DANG-50% | 0.0005 0.003 0.03 0.1 10 O

Clean 0.01 0.03 0.003 0.1 0 1

Arxiv DANG-10% 0.01 0.003 0.03 0.1 0 1
DANG-30% 0.01 0.003 0.003 0.1 0 1
DANG-50% | 0.005 3 0.03 0.1 0 1

the implementation of the loss term —Ez,q, Eevq,, [log(ps, (A| X, €, Z4))], we tune the 6, value
from {0.1, 0.2, 0.3}. In the overall learning objective, i.e., Eqn[d] A, is tuned from { 0.003, 0.03.
0.3, 3,30 }, A is tuned from { 0.003, 0.03. 0.3 }, and A3 is fixed to 0.001. We report the details of
hyperparameter settings in Table [6]

For all baselines, we follow the training instruction reported in their paper and official code. For
AirGNN, we tune A € {0.0, 0.2, 0.4, 0.6, 0.8} and set the others as mentioned in the paper for all
datasets. For ProGNN, we use the training script reported in the offical code since there are no
training guidance in the paper. For RSGNN, we tune o € {0.003, 0.03, 0.3, 3, 30}, 5 € {0.01, 0.03,
0.1, 0.3, 1}, n, € {0, 10, 100, 300, 400}, and learning rate € {0.01, 0.005, 0.001, 0.0005} for all
datasets. For STABLE, We tune ¢; € {0.0, 0.01, 0.02, 0.03, 0.04}, t5 € {0.1,0.2,0.3}, k € {1, 3,
5,7, 11, 13}, and a € {-0.5, -0.3, -0.1, 0.1, 0.3, 0.6} for all datasets. For EvenNet, we tune A €
{0.1, 0.2, 0.5, 0.9} for all datasets following the training script of the official code. For NRGNN, we
tune o € {0.001, 0.01, 0.1, 1, 10}, 8 € {0.001, 0.01, 0.1, 1, 10, 100}, and learning rate € {0.01 ,
0.005, 0.001, 0.0005} for all datasets. For RTGNN, we tune K € {1, 10, 25, 50, 100}, thys. € {0.7,
0.8,0.9,0.95}, a € {0.03,0.1,0.3, 1}, and v € {0.01, 0.1}, and learning rate € {0.01, 0.005, 0.001,
0.0005}. For WSGNN, we use the best hyperparameter setting reported in the paper since there are
no training guidance in the paper. For GraphGLOW, we tune learning rate € {0.001, 0.005, 0.01,
0.05}, embedding size d € {16, 32, 64, 96}, pivot number P € {800, 1000, 1200, 1400}, A € {0.1,
09}, H € {4,6}, E € {1,2,3}, a € {0, 0.1, 0.15,0.2,0.25, 0.3}, and p € {0, 0.1, 0.15, 0.2, 0.25,
0.3}. For SG-GSR, we tune learning rate € {0.001, 0.005, 0.01, 0.05}, A\¢ € {0.2,0.5, 1, 2, 3,4, 5},
Asp and Mg € {1.0,0.9,0.7,0.5, 0.3}, and Ay € {0.1,0.3,0.5, 0.7, 0.9}.

F Additional Experimental Results

F.1 Complexity Analysis

Theoretical Complexity. We present a theoretical complexity analysis on training DA-GNN. The
computational cost of encoding Zy and ex is identical to that of GCN and MLP forward pass.
The regularization of Zy requires O(c - |£; U &|). Encoding Z 4 requires O(d; - |£, U &|), which
is significantly reduced by our regularization from O(d; - N?). The computation of encoding €4
requires O(d; - £). Please note that this computation can be ignored since it occurs only during the
early learning phase. Decoding A requires O(|€ 4+ £7|). Decoding X and Y requires MLP and GCN
forward pass. The primary computational burden stems from the encoding Z 4 and decoding A. Our
regularization technique has alleviated this computational load, making DA-GNN more scalable.

29

Large Scale Graph. To demonstrate the scalability of DA-GNN, we consider a larger graph dataset,
ogbn-arxiv [42]. Table[T|clearly illustrates that DA-GNN exhibits superior scalability and robustness
in comparison to other baseline methods.

Table 7: Training time comparison on Cora dataset under DANG 50%.
Training time | AirGNN ProGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN
Total (sec) 20.9 702.1 159.9 533 0.8 100.3 118.7 86.3 ‘ 46.3

per epoch (sec) 0.04 1.77 0.16 - 0.004 0.20 0.18 0.11 0.09

Training Time Comparison We compare the training time of DA-GNN with the existing noise
robust graph learning baselines to analyze the computational complexity of DA-GNN . In Table
we report the total training time and training time per epoch on Cora with DANG 50%. Note that
since STABLE is a 2-stage method, we did not report the training time per epoch. The results show
that DA-GNN requires significantly less total training time and training time per epoch compared
to ProGNN, RSGNN, STABLE, NRGNN, RTGNN, and SG-GSR. This suggests that DA-GNN’s
training procedure is faster than that of most baselines while still achieving substantial performance
improvements. Although AirGNN and EvenNet require much less training time than DA-GNN,
their node classification accuracy is notably worse than other methods, including DA-GNN. This
indicates that, despite their fast training times, they may not be suitable for real-world deployments. In
summary, DA-GNN demonstrates superior performance compared to the baselines while maintaining
acceptable training times.

F.2 Sensitivity Analysis

We analyze the sensitivity of the coefficient A\; and A\, in Eqnf4] 6, and . To be specific, we increase
A1 value from {0.0,0.003,0.03, 0.3, 3}, A2 value from {0.0, 0.003, 0.03, 0.3}, 8 from {0.1,0.2,0.3},
and v from {0, 1}. We then evaluate the node classification accuracy of DA-GNN under DANG.

* In Fig[8(a) and[0fa), we notice that DA-GNN consistently surpasses the state-of-the-art baseline,
EvenNet, regardless of the \; value, demonstrating the robustness of DA-GNN. Furthermore, we
observe that the performance significantly drops when A; = 0. This highlights the importance of
modeling the causal relationship A < (X, ¢, Z4) for robustness under DANG, as \; is directly
related to the loss term Legge-rec, i-€., —Ez, Ec [log(pe, (A|X, €, Z4))].

* In Fig[§[b) and[9{b), we observe that DA-GNN generally outperforms the sota baseline regardless
of the value of)\, indicating the stability of DA-GNN. Moreover, we can see a performance
decrease when A2 = 0. This observation suggests that the regularization on the inferred la-
tent node label Zy using the inferred latent structure Z 4 effectively handles the noisy labels.
This conclusion is drawn from the fact that \s is directly linked to the loss term Lo, i.€.,

kl(qes (Zy | X, A)llp(Zy)).

* In Fig[8fc) and Pfc), we analyze the hyperparameter sensitivity of k and observe that k plays
a critical role and requires some tuning. To recap the role of k, we pre-define a proxy graph
based on subgraph similarity, where each node connects to k£ neighbors. We then compute p as
the edge weights on this proxy graph, which corresponds to the regularization term minimizing
kl(gs, (Za|X, A)||p(Z4). Sensitivity to k highlights the importance of accurately inferring the
latent graph structure Z 4. This is expected, as using rich neighborhood information from Z 4
enables robust message passing, which helps mitigate noise in the observed graphs. We restrict the
search to just five values: {0, 10, 50, 100, 300}. This narrow range consistently yielded effective
performance across all seven datasets, suggesting that tuning k is not overly burdensome.

* In Fig[§[d) and[0[(d), we observe that DA-GNN consistently outperforms the state-of-the-art base-
line, EvenNet, across all values of 6, demonstrating the robustness of the prediction regularization
method in Eqn3]

* In Fig[§[e) and[J(e), we observe that DA-GNN consistently surpasses the state-of-the-art baseline,
EvenNet, across all values of vy, emphasizing the stability of regularizing the inferred Z 4 in
modeling ¢4, (Z4]| X, A).

30

(a) A; Sensitivity

(b) A, Sensitivity

Photo dataset
(c) k Sensitivity

(d) 6 Sensitivity

(e) y Sensitivity

©
N}

©
S

DA-GNN
SOTA Baseline

92

90

90

92

90

92

90

DA-GNN
SOTA Baseline

88

85

DA-GNN
SOTA Baseline

88

DA-GNN
SOTA Baseline

88

DA-GNN
SOTA Baseline

Node Classif. Acc (%)

8

80

86

0.03

6
0.3 3 0.003 0.03 0.3 10 50 100 0.1 0.2 0.3 0 1
M A k 2 v

Figure 8: Sensitivity analysis on A1, A2, 6, and . We conduct the experiments on Photo dataset
under DANG-30%

Computers dataset

3\,90 (a) A; Sensitivity (b) A, Sensitivity (c) k Sensitivity (d) 6 Sensitivity % (e) y Sensitivity
9]

K8 88 88 88 88

+ 86 86 86 86 86

(%]

(%]

© % DA-GNN 84 DA-GNN 84 DA-GNN 84 DA-GNN 84 DA-GNN

O 82 SOTA Baseline 82 SOTA Baseline 82 SOTA Baseline 82 SOTA Baseline 82 SOTA Baseline
3 80 80 80 80 80

o 0.003 0.03 0.3 3 0.003 0.03 0.3 10 50 100 0.1 0.2 0.3 0 1
= A1 Az k 6 1%

Figure 9: Sensitivity analysis on A1, Ao, 6, and . We conduct the experiments on Computers dataset
under DANG-30%

F.3 Robustness Evaluation under Variants of DANG

F.3.1 Variants of Synthetic DANG

In the generation process of our synthetic DANG, we have three variables: 1) the overall noise rate,
2) the amount of noise dependency (X — A, X — Y, A — Y), and 3) the amount of independent
structure noise (¢ — A).

Table 8: Node classification results on DANG with increased noise dependency

Dataset | Setting | AirGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN
DANG-10% | 78.3£0.3 79.0+0.1 79.5+0.4 76.9+1.2 78.6+0.5 78.8+0.5 78.5+0.2 | 79.8+0.2
Cora DANG-30% | 57.6+0.5 67.9+0.6 652+1.4 55.8+1.3 63.8+0.9 66.1+0.6 56.9+0.7 | 67.0+0.3
DANG-50% | 40.1£0.5 49.4+0.9 45.7+1.2 40.5%x1.0 47.5+0.5 48.1+0.8 40.1x1.2 | 51.6+0.9
DANG-10% | 65.71.1 72.9+0.4 68.4+0.7 68.8+0.6 69.7+1.0 69.840.0 70.3+x0.5 | 72.7+0.3
Citeseer | DANG-30% | 57.2+0.9 63.3+0.6 57.2#0.1 57.2+0.5 59.6+0.7 60.1+0.7 62.0+0.9 | 64.9+0.6
DANG-50% | 39.8+0.7 49.4+1.0 41.3+1.8 42.2+0.5 42.9+0.6 43.7+0.7 46.1+x1.3 | 51.4+0.2

For the first variable, our experiments already addressed it by varying the noise rate from 0
to 50.

For the second variable, we conduct an additional analysis by substantially increasing
or decreasing the degree of noise dependency. Specifically, we increase the number of
structure noise edges caused by feature noise by approximately 4x, and similarly amplify
the amount of label noise induced by both feature and structure noise by 4x. We also
evaluate a setting where noise dependencies are completely removed—this corresponds to
a scenario with independent feature and structure noise. As shown in Table[§]and Table[9]
DA-GNN consistently outperforms all baselines on the strong presence of noise dependency,
and shows competitive performance on the weak presence of noise dependency.

For the third variable, we perform an additional analysis by doubling the amount of inde-
pendent structure noise. We also evaluate the case where no independent structure noise
is present. As shown in Table [I0] and Table [TT} DA-GNN consistently outperforms all
baselines across both settings.

These results demonstrate that DA-GNN consistently outperforms other baselines under varying
degrees of DANG, highlighting its practical applicability across diverse real-world noise conditions.

31

Table 9: Node classification results on DANG without noise dependency

Dataset | Setting | ArGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN
DANG-10% | 83.1+0.4 83.9+0.6 83.9+0.4 84.0+0.5 83.8+0.2 84.840.2 84.8+0.1 | 84.8+0.1
Cora DANG-30% | 77.7£0.5 79.9+04 76.8+0.6 74.8+0.6 77.8+0.8 80.0+0.1 80.1+0.1 | 80.1+0.3
DANG-50% | 66.9+2.6 72.7+0.6 70.3x1.8 61.3+x3.4 69.1+0.8 73.2+0.6 72.0+0.2 | 75.4+0.0
DANG-10% | 68.8£0.3 75.9+0.9 71.9+0.6 74.0+0.3 74.1+0.7 74.4+0.4 75.5+0.5 | 75.9+0.4
Citeseer | DANG-30% | 63.6+0.2 70.7£0.5 67.3x0.2 67.9+0.3 69.740.3 69.4+0.6 72.0+0.4 | 71.5+0.3
DANG-50% | 59.7#0.7 64.6x0.7 59.3+0.6 61.3+0.6 63.4+0.4 64.6£0.2 66.4+0.3 | 64.7+0.6

Table 10: Node classification results on DANG without independent structure noise

Dataset | Setting | AirGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN
DANG-10% | 81.1£0.5 81.1+0.6 83.1+0.7 81.4+0.3 82.1+0.3 82.6+0.2 82.5+0.1 | 83.9+0.3
Cora DANG-30% | 73.9+1.7 73.6£0.3 76.9+0.3 69.7+0.7 76.3x0.4 74.8+0.9 77.7£0.3 | 79.6+£0.6
DANG-50% | 64.6+2.3 60.3x1.3 66.4+0.6 51.6x0.5 64.4+1.0 62.8+0.6 69.5+1.0 | 72.1+0.4
DANG-10% | 68.3+0.6 71.8+0.7 72.4+0.9 72.840.1 73.1+0.3 73.74#0.2 74.5+0.4 | 74.7+0.1
Citeseer | DANG-30% | 58.5+0.5 63.5+0.9 64.6£0.2 63.1+0.4 64.3x1.4 64.8£0.9 66.1+0.6 | 66.4+0.6
DANG-50% | 54.3#0.2 55.9+0.3 58.1+x1.0 51.2+#2.1 56.7+0.2 56.6+0.9 59.3+0.6 | 60.3+1.2

F.3.2 Variants of Real-world DANG

We conduct an experiment where we independently double each of the following: (1) the number of
fraudsters (i.e., nodes with noisy features) and (2) the activeness of fraudsters (i.e., the amount of
structure noise they introduce) in our real-world DANG generation process. As a result, label noise
also increases accordingly, in proportion to the amount of generated feature and structure noise.

As shown in Table DA-GNN demonstrates competitive performance and, in many cases, outper-
forms other baselines under these intensified noise conditions.

Cora Citeseer Cora Citeseer Cora Citeseer
B
85.0 - 76 851, 7518 80 o 7 ’\-'\o\‘
— N = —=— GCN —— GCN & - > .
82.5{ —»— GCN 741 —— GCN RSGNN L RSGNN —e— GCN —e— GCN

AIrGNN
#- SG-GSR
—e— DA-GNN

Node Clas. Acc (%)
8
>

-
\70

—e— DA-GNN

™

.

AIrGNN
#- SG-GSR

#- STABLE
SG-GSR
—e— DA-GNN

@
S

L

Node Clas. Acc (%)

707 —m- sTABLE

SG-GSR
—8— DA-GNN

65 \

Node Clas. Acc (%)

~
=)

o
=]

NRGNN
4~ RTGNN
—8— DA-GNN

AN

60 NRGNN
A~ RTGNN

—8— DA-GNN

.

50

Feature Noise (%)

Clean 10% 30% 50% Clean 10% 30% 50%

Feature Noise (%)

Structure Noise (%)

Clean 10% 30% 50%

Clean 10% 30% 50%
Structure Noise (%)

Clean 10% 30% 50%

Uniform Label Noise (%)

Clean 10% 30% 50%
Uniform Label Noise (%)

Figure 10: Node classification
accuracy under independent
feat. noise.

Figure 11: Node classification
accuracy under independent
stru. noise.

Figure 12: Node classification
accuracy under independent
label noise.

F.4 Qualitative Analysis
In Fig[I3|b), we analyze the inference of Z 4 by comparing the dis-

(a) p§' Comparison

tribution of p;; values, which constitute the estimated latent graph >0 Clean
structure A, between noisy edges and the original clean edges. It is £ DANG 50%
evident that the estimated edge probabilities ;; for noisy edges are S TR TR Y TR TR
predominantly assigned smaller values, while those for clean edges ' ' pe! value '
tend to be assigned larger values. It illustrates DA-GNN effectively . i
mitigates the impact of noisy edges during the message-passing 10 (b) pj Comparison
process, thereby enhancing its robustness in the presence of noisy @ Clean Edges

. T . c Noisy Edges
graph structure. This achievement can be attributed to the label &
regularization effect achieved through the accurate inference of € 4. 02 02 os o8 10
Specifically, as the observed graph structure contains noisy edges, pyj value

the inaccurate supervision for Ly c4ge impedes the distinction be-
tween noisy edges and the original clean edges in terms of edge
probability values p;;. However, the label regularization technique
proves crucial for alleviating this issue, benefitting from the accurate
inference of € 4.

Figure 13: (a) Distribution of
ﬁfl- values. (b) Distribution
of Di; values under DANG-
50%. Dashed lines are aver-
ages. Cora dataset is used.

32

Table 11: Node classification results on DANG with increased independent structure noise

Dataset | Setting | AirGNN RSGNN STABLE EvenNet NRGNN RTGNN SG-GSR | DA-GNN

DANG-10% | 78.9+0.7 81.6+0.3 80.9+0.5 78.9+0.3 79.9+0.4 81.8+0.3 81.4+0.2 | 82.5+0.2
Cora DANG-30% | 66.1£1.8 70.6£0.9 72.0£0.8 61.0+0.9 722+0.6 70.1x0.6 72.4+0.2 | 75.4+0.4
DANG-50% | 47.3+0.5 56.7+0.2 57.9+1.6 42.1+2.1 58.8+0.6 55.6+0.5 61.2+1.5 | 65.4%0.6
DANG-10% | 66.5+0.4 74.0£0.3 70.8+0.4 70.3+0.8 71.9+0.1 72.6x0.3 72.6x0.4 | 73.6+0.2
Citeseer | DANG-30% | 58.0+0.2 63.8+0.6 62.3£1.8 60.1+0.3 61.6£0.9 63.2+0.5 63.7+0.8 | 65.1+0.5
DANG-50% | 49.4+0.6 55.1+0.3 51.7#1.7 459+0.7 50.8+0.8 52.0+1.1 54.2+0.2 | 55.4+1.2
Table 12: Node classification results on variants of real-world DANG
Dataset | Setting | AirGNN RSGNN STABLE EvenNet NRGNN RTGNN | DA-GNN
Auto DANG w/ doubled # frauds 54.6£1.5 534407 554%0.1 56.5%0.6 559+1.5 54.3+27 | 60.1x0.7
DANG w/ doubled structure noise | 56.9+0.7 50.9+0.6 58.1+2.0 53.6+£2.2 55.8+1.3 56.78+0.8 | 55.6+1.0
Garden | DANG W/ doubled # fraudsters | 57.1+1.3 65.0:0.5 69.8423 69.31.8 70.8£0.7 70.6:0.9 | 719+0.6
DANG w/ doubled structure noise | 69.942.8 69.4+1.3 72.0£0.5 72.420.9 71.0+24 753204 | 74.4+0.2

We qualitatively analyze how well DA-GNN infers the latent variables € 4 and Z 4. In Fig[T3[a), we
investigate the inference of € 4 by comparing the distribution of ﬁfjl values estimated during training

on clean and noisy graphs (DANG-50%). We observe that ¢! values estimated from the clean graph
tend to be close to 1, while those from the graph with DANG are considerably smaller. It suggests the
inference of € 4 was accurate, as the high values of ﬁf]l indicate that the model recognizes the edge

(i,7) as a clean edge.

Furthermore, to verify the distinction between the noisy and clean scenarios, We conduct a non-
parametric analysis, Mann—Whitney U test, which require no distributional assumptions. The results
are as follows:

* Fig[[3]a): Statistic=62337852.0, p-value=0.0
* Fig[I3]b): Statistic=40277922.0, p-value=0.0.

Note that we found the scipy.stats package displays p-values as zero when they are extremely low.
Therefore, we reported the corresponding test statistics with p-values. The results indicate highly
significant differences between the groups.

F.5 Comparison with the Naive Combination of Existing Works

So far, we have observed that existing approaches fail to generalize to DANG since they primarily
focus on graphs containing only a single type of noise. A straightforward solution might be to naively
combine methods that address each type of noise individually. To explore this idea, we consider
AirGNN as the feature noise-robust GNN (FNR), RSGNN as the structure noise-robust GNN (SNR),
and RTNN as the label noise-robust GNN (LNR). We carefully implement all possible combinations
among FNR, SNR, and LNR.

In Table[T3] we observe that naive combination can improve robustness in some cases, but it may
not consistently yield favorable results. For example, combining FNR and SNR notably enhances
robustness. However, when we combine all three (FNR, SNR, and LNR), which is expected to yield
the best results, performance even decreases. This could be attributed to compatibility issues among
the methods arising from the naive combination. Furthermore, although some combinations improve
robustness, DA-GNN consistently outperforms all combinations. We attribute this to the fact that
naively combining existing methods may not capture the causal relationships in the DGP of DANG,
limiting their robustness. In contrast, DA-GNN successfully captures these relationships, resulting
in superior performance.

33

Table 13: Comparison with the naive combination of existing noise-robust graph learning methods.
FNR, SNR, and LNR denote the feature noise-robust, structure noise-robust, and label noise-robust
graph learning methods, respectively. We consider AirGNN as FNR, RSGNN as SNR, and RTGNN
as LSR methods.

Component | Cora | Citeseer

FNR SNR LNR‘ Clean DANG 10% DANG 30% DANG 50%‘ Clean DANG 10% DANG 30% DANG 50%

v X X 85.0£0.2 79.7+0.5 71.5+0.8 56.2+0.8 71.5+0.2 66.2+0.7 58.0+0.4 50.0+0.6
X v X 86.2+0.5 81.9+0.3 71.9+0.5 58.1+0.2 75.8+0.4 73.3%0.5 63.9+0.5 55.3+0.4
X X v 86.1+0.2 81.6+0.5 72.1+0.6 60.8+0.4 76.1+0.4 73.2+0.2 63.5+2.1 54.2+1.8
v v X 86.0x0.3 82.0+0.3 75.020.8 68.8+0.6 75.1x0.8 73.1£0.6 63.6x0.8 57.8+0.8
v X v 85.2+0.7 70.1£0.1 56.7x0.4 48.0£0.5 75.8+0.5 72.3%£0.3 59.0£0.7 49.0£0.2
X v v 85.0+0.2 79.4£0.9 72.3x0.5 63.0+0.4 76.7x0.3 74.3+0.9 64.8+£0.3 55.3x0.5
v v v 86.3+0.3 82.4+0.3 67.0+0.9 53.6x0.6 76.6x0.2 73.0£0.7 64.1£0.2 52.7#1.1

DA-GNN | 86.2+0.7 82.9+0.6 78.2+0.3 69.7+0.6 | 77.3x0.6 74.3+0.9 65.6x0.6 59.0+1.8

Algorithm 1 Training Algorithm of DA-GNN.

A A S

N

_
=4

—
—

_
N

—_
[O¥]

_
»

—_
W

a

—_
~

—_
o0

9

I}
T

\]

)
»

I}
bl

)
AR

I}
o

%)
9

I}
>

)
*®

29:
30: end while
31: Return: learned model parameters ¢1, @2, ¢3, 02, 03

Input: Observed graph G = (V, £), node feature X € RV *¥ node label Y € RV*C
Initialize trainable parameters ¢1, 2, ¢3, 02, O3

Initialize ﬁfjl to one vector 1.

Generate a k-NN graph £ based on the -hop subgraph similarity

Pre-define a candidate graph by & U &

while not converge do

/* Inference of Z 4 */
Feed X and A to GCNy, to obtain the node embeddings Z

Calculate the p;; on the candidate graph &, U € based on Z to obtain A.
/* Inference qf Iy */ .
Feed X and A to GCNgy, to get'Y
/* Inference of ex */
Feed X and Y to the MLP,, to get node embeddings that follow A/ (0, I)
/* Inference of €4 */
if early-learning phase then
B, pl(s(Z:, Z,5)
iy < &b + (1= &)
Convert ﬁfjl into 75
end if
/* Generation of A */
Obtain an edge prediction w;; = 61p;; + (1 — 61)s(X;, X;)
/* Generation of X */ .
Obtain the reconstruction of node features based on decoder MLPy, and its input ex and Y.
/* Generation of Y */
Obtain node prediction Y. based on classifier GCNp, and its input X and A.
/* Loss calculation */
Calculate the objective function Leis-enc + A1 Lrec-edge + A2Lhom + A3 (Lrec-feat + Lets-dec + Lp)-
/* Parameter updates */
Update the parameters ¢1, ¢, ¢3, 02, 63 to minimize the overall objective function.

34

Algorithm 2 Data Generation Algorithm of Synthetic DANG.

. Input: Clean graph G = (V, £), node feature X € RY*¥ node label Y € RV noise rate

n%
/* Injection of feature noise */
Yroisy ¢ Randomly sample a % subset of nodes
Xnoisy ~ X
for v; in V™'Y do

pit= 5 X

for j < 1to F'do

X?;"Sy <+ BernoulliSample(p;)
end for

: end for

: /* Injection of feature-dependent structure noise */
D EMOIY ¢ £

: for v; in V™% do

s« 0ecRVN
for j < 1to N do
S; < S()(l;msy7 Xj)
end for A
Append k pairs of nodes with the highest s values to £"°'%Y

: end for

. /* Injection of feature-dependent label noise */
DY Y

. for v; in V¥ do

if v; has noisy feature or noisy structure then
p; < Obtain normalized neighborhood class distribution of node v;
Y™ < MultinomialSample(p;)

end if

: end for

: /* Injection of independent structure noise */

: Randomly append pairs of nodes to £"'Y

: Return: noisy graph G = (), %), noisy node feature X"*¥, noisy node label Y Y

35

	Introduction
	Related Work
	Noise-Robust GNN
	Generative Approach

	Dependency-Aware Noise on Graphs
	Formulation
	Discussion

	Proposed Method: DA-GNN
	Problem Formulation
	Model Instantiations
	Modeling Inference Encoder
	Modeling Generative Decoder
	Model Training

	Experiments
	Main Results
	Ablation Studies on DA-GNN
	Complexity Analysis on DA-GNN
	Sensitivity Analysis
	Robustness Evaluation under Variants of DANG
	Qualitative Analysis on DA-GNN

	Conclusion
	Limitations and Future Works
	Derivation Details of Evidence Lower BOund (ELBO)
	Details of Model Instantiations
	Details of regularizing the inference of ZA

	Further Discussion on DANG
	Statistical Analysis on Evidence of DANG
	Intuitive Examples of DANG
	Extension of DANG

	Further Discussion on DA-GNN
	Details on Experimental Settings
	Datasets
	Details of Generating DANG
	Synthetic DANG
	Real-world DANG

	Baselines
	Evaluation Protocol
	Implementation Details

	Additional Experimental Results
	Complexity Analysis
	Sensitivity Analysis
	Robustness Evaluation under Variants of DANG
	Variants of Synthetic DANG
	Variants of Real-world DANG

	Qualitative Analysis
	Comparison with the Naive Combination of Existing Works

