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Abstract—Brain tumors remain a major healthcare challenge
due to their complexity, high mortality rates, and profound im-
pact on patients’ lives, making accurate diagnosis and treatment
crucial. Multi-modal MRI scans, particularly FLAIR and T2-
weighted (T2w) images, offer complementary information about
tumor structure and progression. However, real-world clinical
settings often face the challenge of missing imaging modalities,
limiting comprehensive assessments. To address this issue, we
propose a CycleGAN-based framework for translating between
FLAIR and T2w MRI scans using the BraTS dataset from the
Medical Decathlon Challenge. This dataset includes 3D MRI
scans with segmentation masks outlining key tumor regions
such as edema, non-enhancing tumor, and enhancing tumor.
Our framework uses U-Net-based generators and PatchGAN
discriminators, optimized with multiple loss functions, including
adversarial, cycle consistency, structural similarity index (SSIM),
and pixel-wise losses. These ensure that the generated images
are both anatomically accurate and visually realistic. We apply
preprocessing steps like intensity normalization, background
removal, and data augmentation to maintain structural details
and enhance training stability. Our quantitative evaluation shows
promising results, achieving SSIM scores of 0.8226 for T2w
and 0.7767 for FLAIR. Qualitative analysis further highlights
improved tumor visibility and clearer anatomical structures,
particularly around tumor boundaries. By addressing the chal-
lenge of incomplete imaging datasets, our method not only
enhances data availability for tasks like tumor segmentation
but also supports more comprehensive diagnostic workflows.
This approach represents a step forward in advancing precision
medicine for brain tumor analysis through multi-modal MRI
synthesis.

Index Terms—Brain Tumor, Multi-modal MRI, CycleGAN,
Image-to-Image Translation, Medical Imaging Enhancement

I. INTRODUCTION

RAIN tumors are among the most prevalent and deadly
forms of cancer, with the World Health Organization
(WHO) estimating that over 700,000 new cases of primary
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brain and central nervous system (CNS) tumors are diagnosed
annually worldwide [1]. Brain tumor detection and analysis
are crucial in medical imaging as they can significantly
influence diagnosis, treatment, and prognosis. Neuroimaging
techniques, such as MRI scans, are the gold standard for
visualizing brain tumors due to their non-invasive nature
and high resolution [2]. However, the complexity of brain
tumor characteristics—such as their varying shapes, sizes,
and locations—makes manual tumor segmentation both
time-consuming and error-prone [3]. Thus, automation in
brain tumor analysis is becoming increasingly important
[4]. This research addresses the challenges of traditional
methods for detecting brain tumors, particularly the issues
with accuracy and efficiency in manual segmentation. Manual
methods often struggle to distinguish between tumor types
like gliomas, meningiomas, and metastases, and are prone
to errors due to operator variability [5]. Automated systems
also face difficulties with different MRI sequences, such as
FLAIR and T2-weighted images, which vary in contrast and
resolution, leading to inconsistent results. This highlights the
need for more advanced automated systems that can provide
faster, more accurate, and consistent tumor segmentation [6].
The proposed approach wuses a dual-task Generative
Adversarial Network (GAN) with CycleGANs to translate
images between FLAIR and T2-weighted MRI scans, based
on a UNet architecture. CycleGANSs are ideal as they work
with unpaired datasets, common in medical imaging. The
framework includes two generators: one to convert FLAIR
to T2-weighted images and the other to do the reverse.
Cycle-consistency loss ensures important tumor features are
preserved, improving segmentation accuracy. Using both
MRI modalities enhances tumor boundary detection and
segmentation, employing perceptual losses like SSIM and



pixel-wise loss to refine the model’s performance. Specifically,
the framework will learn to generate synthetic T2-weighted
images from FLAIR images and vice versa, thus improving
the reliability and accuracy of brain tumor segmentation. The
expected outcomes include improved segmentation accuracy,
better generalization to new MRI scans, and more effective
tumor detection using both FLAIR and T2-weighted MRI
data. By integrating SSIM and pixel-wise loss, the model will
enhance both perceptual and pixel-level accuracy.

II. LITERATURE REVIEW

Gupta et al. [7] Gupta et al. (2021) explore using Cycle-
GAN:S for brain tumor detection and classification with MRI
scans, combining them with InceptionResNetV2 for classifi-
cation. Their approach uses CycleGANs to generate synthetic
MRI images for data augmentation and image translation
between different MRI modalities, improving classification
accuracy. While this method shows promise, it focuses mainly
on data augmentation and relies on pre-trained models. In
contrast, our research integrates CycleGANSs for FLAIR to T2-
weighted MRI translation followed by UNet-based segmen-
tation, directly enhancing tumor segmentation and boundary
delineation. This makes our approach more versatile and
focused on improving segmentation across multiple tumor
types and MRI modalities.

Mohammadi Azni et al. [8] focus on improving brain
tumor segmentation by integrating CycleGANs with deep
learning models for multi-channel MRI images. Their two-
step approach first uses CycleGAN to generate synthetic
features from different MRI modalities, which are then used
by segmentation networks. Transfer learning further enhances
feature extraction, improving segmentation accuracy. While
their study uses CycleGANs for feature extraction and seg-
mentation, our research integrates CycleGANs for FLAIR
to T2-weighted MRI translation followed by a UNet-based
segmentation network in a single pipeline. This enables more
precise tumor boundary delineation and improves model gen-
eralization across multiple modalities and datasets, addressing
challenges like data scarcity and modality variability.

Wang et al. [9] propose a Two-Stage Generative Model
(TSGM) combining CycleGANs with Variance Exploding
stochastic differential equations (VE-JP) for brain tumor detec-
tion. The first stage generates synthetic abnormal MRI images
using CycleGANSs, and the second stage reconstructs healthy
regions, highlighting tumor abnormalities. This model incorpo-
rates multi-modal MRI data to improve segmentation accuracy.
While Wang et al. (2022) use a two-stage framework, our
approach integrates CycleGANs for MRI modality translation
(e.g., FLAIR to T2-weighted) and tumor segmentation within
a single UNet-based pipeline. This unified model directly
improves tumor boundary delineation and addresses challenges
like data scarcity and modality variability.

Xue et al. [10] reviews deep learning methods for multi-
modal tumor segmentation, highlighting the importance of
combining data from various MRI modalities (T1, T2, FLAIR)

for more accurate segmentation. The authors discuss architec-
tures like CNNs, U-Net, and CycleGANs, emphasizing the
challenges of handling modality variability and the need for
large annotated datasets. Despite advancements, they point out
issues with generalization across diverse datasets and imaging
protocols.While Xue et al. focus on the general benefits of
multi-modal segmentation, my research integrates CycleGANs
for FLAIR to T2-weighted image translation, followed by
UNet-based segmentation in a unified pipeline. This approach
directly improves tumor boundary delineation, optimizing both
translation and segmentation in one model. Unlike their work,
which uses separate models for each task, my research also
focuses on enhancing model generalization across various
MRI modalities, addressing challenges like data scarcity and
modality-specific variability.

Veit et al. [11] explore using CycleGANs for data augmen-
tation in CT image segmentation, specifically transforming
contrast-enhanced CT images into non-contrast images to
augment the training dataset. They show that using synthetic
data generated by CycleGANSs significantly improves the seg-
mentation performance of a U-Net model, especially in out-of-
distribution scenarios, enhancing model generalization. While
Veit et al. (2019) focus on CycleGAN-based data augmentation
for CT segmentation, my research applies CycleGANs for
multi-modal MRI translation (FLAIR to T2-weighted images),
followed by UNet-based segmentation in a unified pipeline.
This approach directly targets tumor segmentation, improving
both image translation and segmentation accuracy, unlike their
separate augmentation and segmentation process.

Li et al. [12] focus on the use of deep convolutional neural

networks (CNNs) for brain tumor classification using multi-
modal MRI data. They propose a hybrid model combining
CNNs with recurrent neural networks (RNNs) to capture both
spatial and temporal features in MRI scans. The model is
designed to handle the inherent temporal changes in tumor
growth by analyzing MRI scans taken at different time points.
Their method achieves high accuracy in classifying tumors
into various types and stages. In contrast, our research utilizes
CycleGANSs for FLAIR to T2-weighted MRI translation, fol-
lowed by UNet-based segmentation, focusing on direct tumor
boundary delineation rather than classification. Unlike Li et
al.’s hybrid approach, which integrates temporal features for
classification, our framework aims to improve segmentation
accuracy and model generalization across MRI modalities.
In conclusion, the related work section compares various
deep learning methods for brain tumor segmentation, with
an emphasis on CycleGANs and multi-modal MRI data. Our
framework advances brain tumor segmentation by addressing
challenges related to data scarcity, modality variability, and
model generalization.

III. DATASETS

A. Data Collection & Preprocessing

The information used in this research information from
the Brain Tumor Segmentation (BraTS) Dataset, which is
regularly updated the TASKO1_BrainTumor section from the



Fig. 1. Overview of Datasets
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Fig. 2. Workflow Diagram of CycleGAN Architecture

Medical Decathlon Challenge is the primary dataset used in
this project. It includes four MRI modalities: T1-weighted
(T1), T1-weighted with contrast (T1-Gd), T2-weighted (T2),
and FLAIR (Fluid-Attenuated Inversion Recovery), each of-
fering a comprehensive view of brain structure and pathol-
ogy. Tumors are labeled and categorized into regions like
necrotic/non-enhancing tumor core, peritumoral edema, and
enhancing tumor. Figure 1 shows the overview of the BraTS
dataset includes 3D MRI volumes with a typical resolution
of 240x240x155 (Height x Width x Depth), with multiple 2D
slices representing cross-sectional views of the brain. Each
patient has four 3D volumes (one for each modality), resulting
in a total of 620 2D slices per patient (155 slices for each
modality). The dataset includes both High-Grade Gliomas
(HGG) and Low-Grade Gliomas (LGG), which helps the

model generalize better. we mainly use CycleGAN to change
unpaired images with FLAIR and T2 modalities. To get the
model ready for changing FLAIR images into T2-like images
and the other way around, 3D volumes are handled by extract-
ing 2D slices. The data preprocessing for the BraTS dataset
begins by extracting the FLAIR (index 0) and T2-weighted
(index 3) MRI modalities from the original 3D volumes sized
240x240x155. To focus on meaningful anatomical regions,
slices containing more than 75% background were excluded,
reducing computational overhead and ensuring the network
primarily learned from slices with relevant tissue structures.
Central cropping was performed to standardize the resolution,
extracting 140x140 pixel slices centered on the region of
interest, thereby removing extraneous areas and aligning brain
structures consistently across samples. Each 3D volume was



then split along the axial axis, producing 155 two-dimensional
slices per modality, resulting in a large dataset (750,000 slices)
for training. This slice extraction step enhanced the dataset
size and enabled the model to learn robust 2D relationships.
Intensity normalization was applied using min-max scaling to
normalize intensities to the [0, 1] range, mitigating variations
between scans and improving the stability of training by
ensuring a consistent input range. To prevent overfitting and
ensure robust generalization, the slices were randomly shuffled
and split into training and testing sets. Furthermore, data aug-
mentation techniques, including horizontal/vertical flipping,
small-angle rotations, and scaling, were applied to improve
the model’s generalization capabilities. These augmentations
simulated imaging variations encountered in clinical practice,
enhancing the model’s resilience to differences in orientation,
positioning, and contrast.

IV. METHODOLOGY
A. Model Architecture

Figure 2 shows the proposed framework leverages a Cycle-
GAN architecture comprising two U-Net-based generators and
one PatchGAN discriminator.

1) Overview of CycleGAN Model: The core implemen-
tation of the CycleGAN architecture establishes bidirectional
mappings between two distinct image domains—in this case,
the FLAIR and T2w MRI modalities. This is achieved using
two generator networks and a shared discriminator archi-
tecture. Each generator employs a U-Net-inspired encoder-
decoder structure, wherein the encoder extracts multi-scale
features from input slices via a sequence of convolutional
and downsampling layers. The decoder reconstructs the target
domain image through transposed convolutions, supported by
skip connections that retain spatially localized information
critical for structural fidelity. [9] Complementing these gener-
ators, a PatchGAN discriminator evaluates the realism of syn-
thesized images at the patch level, focusing on local features
rather than the global image context to enhance fine-grained
details. The training process involves alternating updates to the
generator and discriminator networks. Generators are trained
to minimize a composite loss function, which integrates ad-
versarial loss to encourage realism, cycle-consistency loss to
enforce bijective mappings, structural similarity (SSIM) loss to
preserve perceptual quality, and pixel-wise loss to ensure low-
level accuracy. In parallel, the discriminator is optimized to
accurately differentiate between real and generated images at
the patch scale. This adversarial interplay drives the generators
to produce outputs that not only deceive the discriminator
but also maintain structural and domain consistency. The
training pipeline leverages PyTorch for efficient gradient com-
putation and backpropagation. Feedback from the PatchGAN
discriminator, combined with composite loss functions, guides
the optimization of generator weights. This stable adversarial
learning process enables high-quality, unpaired image trans-
lation between FLAIR and T2w MRI scans. The architecture
ensures modality synthesis with strong structural preservation,
offering a robust solution for medical imaging tasks.

2) Generators (U-Net-based): The generators
(Grrarr—»12w and Grow—rprarr) are designed using
U-Net, a fully convolutional network with skip connections.
This architecture efficiently captures multi-scale information,
ensuring high-quality image synthesis while preserving
anatomical structures. The encoder consists of sequential
convolutional blocks with batch normalization and ReLU
activation, progressively downsampling the input, while the
decoder uses transposed convolutional layers for upsampling
and incorporates skip connections to the corresponding
encoder layers to retain spatial details. [13]

3) Discriminator (PatchGAN): The PatchGAN-based dis-
criminator distinguishes between real and generated images
at the patch level, enhancing the realism of generated images
by focusing on local textures. It is composed of convolutional
layers with LeakyReLU activation and instance normalization.
The output is a probability map where each value indicates the
authenticity of a specific patch [14].

B. Loss Functions

Multiple loss functions are combined to ensure that the
generated images are both realistic and structurally consistent
with the original modality:

o Adversarial Loss: Encourages generators to produce

realistic images that fool the discriminator. [15]

Ladv(Gv D) = ECENPdma [IOg D(l)]
+E.np. flog(1 = D(G(2)))] (1)

e Cycle Consistency Loss: Enforces the preservation of
anatomical features by penalizing deviations when trans-
lating images back to the original modality [16].

Leyeie(Gror,Gror) =
|Gr—p(Gro7r(FLAIR)) — FLAIR||
+ |G (Gro p(T2w)) — T2w|| 2)

o Structural Similarity Index (SSIM) Loss: Ensures the
generated images retain structural and perceptual quality
[15].

£SSIM =1- SSIM(G(.%‘),y) (3)

« Pixel-wise Loss: Reduces pixel-level differences between
generated and target images using Mean Squared Error
(MSE) [17].

Lpizer = |G(z) = yl® S

The total loss is computed as:

Etotal = Eadv + )\cycleﬁcycle + /\SSIMESSIM + Apixelﬁpixel
)
(18]

C. Training Pipeline & Implementation Details

The training pipeline involves alternating updates for
the generator and discriminator to ensure effective learn-
ing. During generator training, synthetic images are gen-
erated (e.g., Grrarr—Tow(FLAIR)), and the original



modality is reconstructed using cycle consistency (e.g.,
GrowsrrarR(Grrarr—r2w(FLAIR))) [19]. The total
generator loss is computed and backpropagated. For discrim-
inator training, the discriminator is trained to differentiate
between real and synthetic images by computing adversarial
loss for both, updating its weights accordingly. The evaluation
step involves assessing the quality of generated images using
metrics such as Structural Similarity Index Measure (SSIM),
Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error
(MSE). The implementation details include training on GPUs
for computational efficiency, utilizing Adam optimizers with
a learning rate of 2 x 10~%. A mini-batch size is employed to
accommodate the large size of MRI data, and the models are
trained for 10 epochs with periodic monitoring of loss curves
and validation results [20].

V. RESULTS

FLAIR (('BRATS_066.nii.gz', 'BRATS_447.nii.gz')) Generated T2W Generated FLAIR

FLAIR (('BRATS_635.nii.gz', 'BRATS_635.nii.gz')) Generated T2W

FLAIR (('BRATS_237.nii.gz', 'BRATS_227.nii.gz')) Generated T2W

; \

FLAIR (('BRATS_266.nii.gz', 'BRATS_319.nii.gz"))

Generated T2W Generated FLAIR

FLAIR (('BRATS_179.nii.gz', 'BRATS_274.nii.gz')) Generated T2W

Fig. 3. Overview of Generated synthetic Images from flair to T2w

A. Qualitative Results - Generated images

To evaluate CycleGAN’s performance, we analyzed 264 test
images, with six examples shown in Figure 3. The generated
T2W images preserve anatomical structures and closely re-
semble original T2W scans. The translated FLAIR images
show improved clarity and tumor boundary contrast, enhancing
diagnostic visibility. Despite minor noise, structural integrity is
maintained, validating CycleGAN’s effectiveness in modality
translation.

Table 1 summarizes CycleGAN’s performance. The model
achieved an average SSIM of 0.8226 for T2W and 0.7767 for
FLAIR, indicating strong structural similarity in generated im-
ages. A low test loss of 0.0391 confirms accurate and consis-
tent modality translation. These results validate CycleGAN’s
effectiveness for high-quality medical image generation.

TABLE 1
RESULTS OF THE MODEL PERFORMANCE METRICS

Metric

Average SSIM (T2w)
Average SSIM (FLAIR)
Average Test Loss

Value
0.8226488021878994
0.7767238470762636

0.03911158226507443

B. Training and testing loss trends

In Figure 4, we present the training and testing loss curves,
both calculated using SSIM loss, where the testing SSIM loss
is defined as

SSIM Testing Loss = 1 — SSIM_loss(fake_T2w, T2w)

+ SSIM_loss(cycle_FLAIR, FLAIR)
(6)

a) Training loss: The training loss starts high but de-
creases rapidly, then stabilizes, indicating that the model
effectively learns modality translation by minimizing recon-
struction and SSIM-based losses. This trend reflects successful
optimization during training.

b) Testing loss: The testing loss remains consistently
higher than the training loss but shows stable behavior with
low fluctuation, suggesting that the model generalizes well
to unseen data and avoids overfitting, maintaining robust
performance throughout.

c) Convergence analysis: Convergence analysis shows
that both training and testing losses gradually con-
verge—training loss stabilizes near 1.0 and testing loss around
1.1. This convergence confirms that the CycleGAN maintains a
strong balance between fitting the training data and performing
well on test data. The stable loss curves further validate the
model’s reliability in generating high-quality cross-modality
images.

VI. DISCUSSIONS

This study addresses the challenge of translating between
unpaired FLAIR and T2W MRI scans, offering a practical
solution when certain modalities are unavailable. Quantitative
results show strong structural preservation with SSIM scores
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of 0.8226 (T2W) and 0.7767 (FLAIR), and a low test loss of
0.0391, indicating high-quality, consistent outputs. Qualitative
results further confirm improved clarity and tumor boundary
visibility, especially in generated FLAIR images, supporting
downstream tasks like segmentation. [21]. The model is robust
across diverse MRI datasets, though mild blurring can occur
with low-quality inputs. Future enhancements like advanced
normalization or perceptual loss may address these issues.
Its ability to work with unpaired data and maintain local
structural accuracy makes the framework highly valuable for
clinical applications, aiding in multimodal image completion
and analysis.

VII. CONCLUSION AND FUTURE WORK

Our CycleGAN-based framework for unpaired image-to-
image translation between FLAIR and T2W MRI scans
demonstrates strong structural fidelity, with SSIM scores of
0.8226 (T2W) and 0.7767 (FLAIR). The generated images en-
hance tumor visibility and structural clarity, showing potential
to improve diagnostic accuracy and streamline medical imag-
ing workflows. This approach effectively addresses incomplete
datasets by generating missing modalities, supports clinical
decision-making, and enhances data diversity for machine
learning tasks like segmentation. Future work will focus on
clinical validation, 3D volumetric translation, and improved
visual quality through larger datasets and advanced loss func-
tions. This framework marks a step forward in precision
medicine and accessible diagnostic support.
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