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Juho Lähteenmaa3 juho.lahteenmaa@hus.fi

Tobias Heimann2 tobias.heimann@siemens-healthineers.com

Andreas Maier1 andreas.maier@fau.de

Dominik Neumann2 dominik.neumann@siemens-healthineers.com

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Erlangen, Germany
2 Digital Technology and Innovation, Siemens Healthineers, Erlangen, Germany
3 HUS Helsinki University Hospital, Comprehensive Cancer Center, Helsinki, Finland

Editors: Accepted for publication at MIDL 2025

Abstract

Breast cancer, the second most common cancer globally, often metastasizes to the lungs,
requiring frequent computed tomography (CT) scans to monitor disease progression. Man-
ual analysis by radiologists is time-consuming and prone to variability, underscoring the
need for automated systems to enhance accuracy and efficiency. The goal of such systems
is to optimize processes like RECIST score calculation for tumor response assessment. This
study presents a pipeline for the automated temporal analysis of breast cancer lung metas-
tases. Existing lung nodule detection and segmentation models were adapted for detecting
and segmenting breast cancer metastases. Registration-based lesion tracking was incorpo-
rated, and a novel Temporal Lesion Pair Classifier was developed to identify significant
lesions and estimate tumor load evolution by summing their diameters, following an adap-
tation of the RECIST guidelines. Evaluated on a unique dataset of breast cancer patients,
each with multiple annotated CT scans at different disease stages, the proposed pipeline
demonstrated a 42% reduction in median tumor size progression discrepancy for consecu-
tive study pairs and improved tumor response classification accuracy by 22% at the patient
level.

Keywords: Longitudinal disease assessment, Lung metastasis in breast cancer, Computed
Tomography (CT), Deep learning, Lesion detection and selection

1. Introduction

Breast cancer affects over 2.3 million individuals annually and is a leading cause of cancer-
related death among women worldwide (WHO, 2023). It commonly metastasizes to specific
organs, with the lungs being the second most frequent site after bones (Yang et al., 2022;
Wang et al., 2019). The prognosis for lung metastases is poor, with a 5-year survival rate of
16.8% (Schuler and Murdoch, 2021), necessitating continuous CT scans to monitor disease
progression and evaluate treatment effectiveness (Yang et al., 2020).
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In clinical trials, RECIST 1.1 guidelines are a framework widely used for measuring
solid tumors and assessing changes in tumor size over time (Eisenhauer et al., 2009). Under
RECIST , two to five target lesions are selected at baseline, with no more than two lesions
per organ. These target lesions must be measurable, with non-nodal lesions requiring a
minimum diameter of 10 mm as assessed by CT scans. The sum of diameters (SoD) of
these target lesions is calculated at baseline and re-evaluated at each follow-up. Non-target
lesions are monitored to determine stability, progression, or disappearance. The objective
tumor response is categorized as complete response (CR), partial response (PR), stable
disease (SD), or progressive disease (PD). PR indicates a ≥ 30% reduction in SoD, PD
an increase of ≥ 20% or the appearance of new lesions, and SD reflects changes within
these thresholds. CR is defined as the disappearance of all significant lesions. Automatic
calculation of clinically relevant criteria, such as RECIST, requires robust methods for lesion
detection, segmentation, tracking, and assessment across multiple time points.

Previous works on longitudinal analysis in cancer types and organs other than breast
cancer have demonstrated the potential of automated methods. In (Mukherjee et al., 2024),
the focus was on lesion matching across scans with varying annotations and scan parameters
using image registration and the Hungarian algorithm, achieving accurate lesion correspon-
dence. In (Venkadesh et al., 2023; Li et al., 2023), deep learning approaches have leveraged
temporal information to improve malignancy predictions. Only few works concentrate on
RECIST score estimation, which is essential for assessing treatment response in clinical
settings. In (Zhou et al., 2024), a pipeline was developed for RECIST score estimation in
liver cancer integrating lesion detection and image registration methods. This pipeline was
trained on comprehensively annotated liver lesion data, with RECIST scores calculated by
selecting target lesions from detected lesions. However, its performance was only evaluated
on liver tumors, limiting its applicability to other cancer types.

Factors such as lesion size, morphology, and growth rate are critical for cancer prognosis,
however, many studies do not consider temporal dynamics (MacMahon et al., 2017; Liao
et al., 2019). Indeed, most current approaches for breast cancer metastasis focus on single
time-point analyses, neglecting the need for longitudinal assessments critical for monitoring
disease progression and assessing tumor burden over time (Moreau et al., 2021; Li et al.,
2023). While the analysis of lung metastasis is crucial for evaluating disease progression
in breast cancer, research in these areas remains limited compared to studies on bone and
lymph node metastases (Yang et al., 2020; Liu et al., 2021; Moreau et al., 2020).

Methods developed for lung cancer are often not directly applicable to breast cancer
metastases in the lung. Pulmonary metastases from breast cancer frequently present as
numerous well-defined nodules, whereas primary lung cancers typically appear as solitary,
irregularly shaped nodules (Stana et al., 2025). Existing datasets are often not designed to
address the unique characteristics of breast cancer metastases in the lungs, posing additional
challenges in developing robust, generalizable models.

This work presents an automated system for the temporal analysis of breast cancer
metastases in the lungs using longitudinal 3D CT data. We leverage existing single-
timepoint lung nodule detection and segmentation models trained on lung cancer images
to detect and segment breast cancer metastases. Lesion tracking is performed using im-
age registration. A novel Temporal Lesion Pair Classifier (TLPC) is introduced to identify
temporally significant lesions for the automatic estimation of a RECIST-like score to assess
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disease progression. The ultimate goal is to provide a reliable, efficient, and precise tool for
clinical decision support in the management of metastatic breast cancer.

The key contributions of this study are two-fold. First, a complete pipeline for auto-
mated longitudinal analysis of metastatic lesions, integrating proven single-timepoint anal-
ysis modules, is proposed. Second, a novel Temporal Lesion Pair Classifier to identify
significant lesions for estimating disease progression in alignment with an adaptation of the
RECIST guidelines is proposed. The pipeline is evaluated on a unique dataset of breast
cancer patients, with an average of 4 scans per patient. An expert radiologist identified and
annotated up to 15 of the most significant lesions per patient, focusing on those showing
notable growth or shrinkage.

2. Methods

2.1. Pipeline Description

The pipeline for temporal analysis of disease progression (shown in Figure 1) consists of five
submodules: (i) lesion detection to identify potential candidates, (ii) lesion segmentation to
determine lesion boundaries, (iii) lesion tracking, which aligns scans from consecutive studies
and matches detected lesions to form lesion pairs for tracking changes over time, (iv) lesion
pair identification using a novel method called the Temporal Lesion Pair Classifier (TLPC),
which categorizes lesion pairs as either Significant or Insignificant, and (v) longitudinal
analysis, where only pairs classified as Significant are considered, ensuring that the system
focuses on clinically relevant lesions.
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Figure 1: Overview of the proposed pipeline for automated longitudinal assessment of breast
cancer lung metastases.

2.2. Lesion Detection and Segmentation

The lung lesion detection process leverages a proprietary system developed by Siemens
Healthineers, originally designed for lung cancer detection. This system is an adaptation
of the baseline two-stage nodule detection framework presented in (Liu et al., 2020), with
modifications to enhance lung lesion detection. It utilizes a RetinaNet-based detector (Ross
and Dollár, 2017) to identify candidate nodules, followed by candidate classification using
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an ensemble of DenseNet3D (Huang et al., 2017) and EfficientNet3D (Tan and Le, 2019)
models, which generates nodule classification scores, helping to identify detected candidates
that are more likely to be nodules. The models were trained on a variety of datasets,
including NLST (Team, 2011), LUNA (The Cancer Imaging Archive, 2024), and internal
collections, ensuring robust performance across diverse nodule types. The detection outputs
lesion bounding boxes, which are then fed into a DenseUNet-based segmentation model
(Leotta et al., 2019), originally developed for lung cancer nodule segmentation, to extract
volumetric lesion masks.

2.3. Lesion Tracking

Lesion tracking ensures consistent monitoring of metastatic lesions across consecutive time
points. Rigid registration was employed to align CT scans, as standardized acquisition
protocols (such as breath-hold scanning) and minimized anatomical variability prevented
large deformations between scans, making rigid registration sufficient for this purpose. The
registration process employed anatomical landmarks identified using a deep reinforcement
learning technique (Marschner et al., 2022), which detected up to 80 landmarks per scan.
These landmarks included key structures such as the spine, lung apex, clavicles, kidneys,
and liver. The alignment was achieved using a least-squares rigid registration method based
on singular value decomposition (SVD) of the cross-covariance matrix between two sets of
3D landmarks (Arun et al., 1987). Lesions across consecutive scans were matched using an
Intersection over Union (IoU) threshold of 0.1. To ensure small lesions were not missed due
to potential registration inaccuracies, a minimum lesion diameter of 20 mm was applied
for matching purposes, temporarily assigning this value to lesions smaller than 20 mm.
These thresholds were determined heuristically. Matched lesions were retained for temporal
analysis, while unmatched lesions were excluded to filter out potential false positives. This
also accounted for lesions appearing or disappearing between scans, preventing consistent
tracking over time. More details on lesion tracking are provided in appendix B.1.

2.4. Lesion Pair Identification (Temporal Lesion Pair Classification)

A major contribution of this study is the development of a Temporal Lesion Pair Classifier
(TLPC) to address the challenge of identifying clinically significant lesions for RECIST
assessment. Since radiologists typically annotate only the most relevant lesions—those ex-
hibiting substantial shrinkage or growth over time—the TLPC ensures that the system
focuses on these key lesions, distinguishing them from less relevant ones and enabling clini-
cally meaningful longitudinal analysis. The input to the TLPC are 3D lesion pairs extracted
from consectuive CT images. During training, lesion pairs identified by the lesion tracking
process described in section 2.3 were used. These were labeled as Significant, if they were
annotated by the radiologist, and Insignificant, if not. The Insignificant category includes
both false positives detected by the system and true lesions that were not annotated by the
radiologist, as only the most clinically relevant lesions were selected for assessment. The
TLPC incorporates DenseNet-based feature extractors pre-trained on lung cancer data,
obtained from the system described in section 2.2, leveraging prior knowledge for lesion
classification. For both training and inference, each lesion in the consecutive study pair was
processed separately through parallel DenseNet instances, extracting features that were then
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concatenated and passed to a binary classifier. For the classification head of the model’s
architecture, a design replicating the original DenseNet framework was adopted, adjusted
to process concatenated feature maps (lesion pair features). The classification architecture
included an Adaptive Average Pooling layer followed by a fully connected layer for binary
classification. This lightweight design, with only 4K parameters, was selected due to its
efficiency and effective performance in lesion pair classification.

2.5. Longitudinal Analysis

To enable the automatic estimation of disease progression, this study incorporated temporal
analysis based on an adaption of the RECIST guidelines. The original RECIST classification
includes the categories PD, PR, SD, and CR. In this study, the CR category was replaced
with a ”No Lesions” class, as no patients in the dataset exhibited complete response. This
also enabled identification of cases with no significant lesions detected.

The longest diameter of the detected lesions was calculated by identifying boundary
voxels within the segmentation mask of each axial slice and determining the maximum
pairwise distance between all pairs of boundary points. For temporal analysis, the SoD
at each time point was calculated by aggregating the diameters of the selected candidates
identified in each image. These values were subsequently used to evaluate disease progression
across consecutive study pairs and to calculate objective tumor response at the patient level.

3. Data

This study utilized a unique dataset provided by Helsinki University Hospital. It includes
longitudinal CT scans from 94 breast cancer patients with lung metastases, with an average
of 4 scans per patient. Radiologists annotated up to 15 significant lung lesions per patient,
focusing on those exhibiting notable growth or shrinkage. The longest axial diameters of
these lesions were recorded to enable temporal tracking of disease progression. As shown in
Figure 2, the same lesions were annotated by the radiologist at each timepoint.

Figure 2: An overview of a patient’s lesion data with temporal annotations.

The CT studies were acquired using devices from Siemens Healthineers, GE Medical
Systems, and Toshiba. The in-plane spatial resolution ranged from 0.47 mm × 0.47 mm to
0.98 mm × 0.98 mm. Slice thickness varied between 1.5 mm and 5 mm (3.3 ± 0.8 mm).
The dataset was randomly divided into training, validation, and test sets at the patient
level. Of the 394 studies, 80% were used for training and validation (of which 80% for
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training and 20% for validation), and 20% were reserved for testing. This resulted in 60
patients (252 studies) in the training set, 15 patients (63 studies) in the validation set, and
19 patients (79 studies) in the test set. Model and hyperparameter selection was conducted
on the validation set.

4. Experiments and Results

We performed multiple experiments to assess the performance of individual submodules
within the proposed pipeline and to evaluate its overall end-to-end performance for temporal
analysis of disease progression. All experiments were conducted on a Tesla V100 GPU
(NVIDIA Corporation) with 16 GB of dedicated memory.

i) Lesion Detection: The RetinaNet model, originally trained on lung cancer data, was
fine-tuned to detect lung lesions from breast cancer metastases. The detection performance
was compared to the original pretrained RetinaNet (from the proprietary system mentioned
in section 2.2), and to a MONAI implementation of RetinaNet (Cardoso et al., 2022) trained
on the LUNA dataset (available as ’Lung Nodule CT Detection’ in the MONAI model zoo).

The pretrained and fine-tuned detection models outperformed the MONAI model in
terms of sensitivity with the pretrained model achieving the best performance at 0.81,
compared to 0.79 for the fine-tuned model and 0.62 for the MONAI model. Due to the
complexity of the RetinaNet model and limited data, fine-tuning led to increased detections
but also a rise in false positives and false negatives, resulting in fewer true positives. There-
fore, the pretrained model, with better overall performance, was selected for longitudinal
analysis (further details in appendix A).

ii) Lesion Tracking: For lesion tracking, we used the estimated rigid transformation to
transform candidate lesions from the first scan into the coordinate system of the second scan.
After a hyperparameter search (detailed in the appendix B.2), we selected an IoU threshold
of 0.1 and a minimum diameter of 20 mm for lesion matching, where lesions smaller than 20
mm were temporarily assigned this value to prevent small lesions from being missed due to
registration inaccuracies, achieving 84% correct matches when applied to the ground truth
data on the validation set.

iii) Lesion Pair Identification: The TLPC model was trained for 100 epochs using
the original DenseNet classifier adapted for binary input with the feature extractor frozen.
The preprocessing included clipping image intensities to the range [-1024, 300] HU, linear
normalization to [0,1], and resampling to a 0.5 mm isotropic resolution. Data augmentation
included random rotations, flipping, zooming, and intensity adjustments to enhance model
generalization. Class weights were applied in the weighted cross-entropy loss function to
address the imbalance between 829 significant and 9145 insignificant lesion pairs in the
training set. The Adam optimizer (Diederik, 2014) was used for training with a learning
rate of 1× 10−3.

The TLPC model achieved an accuracy of 87% and a weighted F1-score of 0.89. The
confusion matrix and ROC curve showing the evaluation results of the TLPC model on the
validation set in Figure 3 indicate 413 false positives and 64 false negatives, with an AUC of
0.90. These results demonstrate the model’s effectiveness in distinguishing significant from
insignificant lesion pairs.
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Figure 3: Confusion matrix and ROC curve illustrating the TLPC model’s classification
performance on the validation set, classifying tracked lesion pairs as significant
or insignificant.

iv) Longitudinal Analysis: We evaluated the whole pipeline (consisting of lesion de-
tection, segmentation, tracking and identification) for temporal analysis on the test set.
We considered both the estimation of disease progression for two consecutive time points
and estimation of the objective tumor response on patient-level. We compared our pipeline
with a baseline only including lesion detection and segmentation at each time point and
calculating the SoD of the detected lesions at each time point.

For the consecutive study pairs, to quantify tumor load dynamics and how well they are
aligned with the GT, the relative change in SoD between timepoint 1 and 2 was computed
as

∆SoD =
SoD2 − SoD1

SoD1
, (1)

where SoD1 and SoD2 are the SoDs of timepoint 1 and 2. To assess the similarity
between the predicted and ground truth (GT) trends, the absolute difference between their
relative changes was calculated. This metric will be referred to as the Relative Change
Discrepancy in Sum of Diameters:

RCD-SoD = |∆SoDGT
−∆SoDPrediction

| . (2)

Patient-level tumor response was assessed across multiple time points by combining
consecutive time-point analyses. The SoD was calculated at each time point based on lesions
detected, matched, and classified as significant. When inconsistencies in SoD arose between
overlapping study pairs due to differences in lesion selection or classification, the average
SoD was used. Finally, predictions and ground truth were evaluated using an adaptation
of the RECIST criteria as a multi-class classification problem, categorizing responses into
PD, SD, PR, and No Lesions.

a) Disease progression for consecutive timepoints via SoD: Figure 4, left, compares
the proposed pipeline to the baseline in terms of the RCD-SoD. The proposed approach
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achieved a lower RCD-SoD of 10.73 compared to the baseline result of 18.71, representing
a 42% reduction (p=0.001 using a Wilcoxon signed-rank test).

Baseline Proposed Pipeline
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Figure 4: Comparison of RCD-SoD values for the baseline and proposed pipeline for con-
secutive study pairs (left), Confusion matrices for both pipelines in patient-level
evaluation of tumor response classification based on RECIST classes (right).

b) Disease progression at patient level via RECIST adaptation: The Baseline and Pair
Classification methods were assessed at the patient level, focusing on the full available
patient history rather than only two consecutive scans as in previous experiments. This
was done by aggregating the SoD values from the pairwise analysis for each time point.
Figure 4, right, presents the confusion matrices, while Table 1 summarizes the classification
metrics. The proposed pipeline improved all metrics with respect to the baseline results.
Most notably, it achieved a higher accuracy of 83% compared with the baseline method
(67%).

Table 1: Classification performance of the Baseline and Proposed Pipelines for adapted
RECIST scores. The RECIST classes include PR, SD, PD, and No Lesions.

Method Accuracy Precision Recall F1-Score
(Wtd. Avg.) (Wtd. Avg.) (Wtd. Avg.)

Baseline 0.67 0.62 0.67 0.64
Proposed Pipeline 0.83 0.90 0.83 0.86

5. Discussion and Perspectives

This work presents a deep learning-based pipeline for the longitudinal analysis of breast
cancer lung metastases. By integrating lesion detection, segmentation, tracking, and identi-
fication techniques, the system estimates disease progression and objective tumor response
in accordance with an adaptation of the RECIST guidelines. Evaluated on a unique dataset
of 94 patients, the pipeline demonstrated significant improvements in tracking accuracy and
reduction of false positives.
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The evaluation of the TLPC model on the validation set showed a reduction in the
number of false positives from 6337 detected lesions by the baseline detection method to
413 false positive lesion pairs. The TLPC model reduced the median RCD-SoD by 42%
for consecutive study pairs compared to the baseline and improved tumor response clas-
sification accuracy from 67% to 83% at the patient level. These results underscore the
system’s capability to enhance lesion tracking and provide clinically relevant insights, such
as RECIST-based response evaluation.

Key limitations include the small dataset size, which constrained the fine-tuning of the
detection model, and the reliance on rigid registration, which is less effective for long-term
lesion tracking. Additionally, patient-level response estimation relied on aggregated study-
pair results, limiting its precision. Future work should address these by improving lesion
tracking across multiple time points, incorporating deformable registration, and handling
cases with the emergence of new lesions or the complete disappearance of others.

Overall, this study introduces a fully automated end-to-end pipeline for longitudinal
tumor load assessment in breast cancer lung metastases. A key contribution is the TLPC,
which distinguishes clinically significant and insignificant lesions. By mimicking RECIST-
based decision-making, TLPC enables a clinically meaningful, automated tumor response
assessment. This framework offers a structured and clinically relevant solution for longitu-
dinal tumor analysis, addressing a gap not extensively covered by existing approaches.

In conclusion, this study highlights deep learning’s potential to automate disease pro-
gression estimation and RECIST score calculation, improving tracking consistency and
reducing false positives to enhance clinical workflows.
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Appendix A. Lesion Detection

A.1. Experiment and Results

For fine-tuning of the RetinaNet, CT scans in the training set were resampled to 1 mm
isotropic resolution and data augmentation included cropping, flipping, zooming, rotations,
and intensity adjustments to enhance generalization. Fine-tuning was performed using SGD
with momentum (Sutskever et al., 2013), focal loss, and a maximum of 1000 epochs, selecting
the model with the lowest validation loss for evaluation. The optimizer was configured with
a learning rate of 1 × 10−2, momentum of 0.9, weight decay of 3 × 10−5, and Nesterov
acceleration.

We compared the lesion detection results of the fine-tuned model with the original
model trained on lung cancer data as described in section 2.2. Additionally, we compare
to a MONAI’s RetinaNet implementation (Cardoso et al., 2022) with publicly available
weights trained on the LUNA dataset for lung nodule detection.

The performance of the detection methods was evaluated by measuring sensitivity, along
with the counts of true positives (TPs), false positives (FPs), and false negatives (FNs) per
scan. To determine TPs, the center coordinates and radii of annotated lesions, calculated
as half of their longest axial diameters, were used. Detected candidates’ center coordinates
were compared to these annotations by calculating the Euclidean distance between their
centers. A candidate was classified as a TP if it lay within the spherical region defined by the
radius of the annotated lesion. Candidates that did not match any annotated lesions were
classified as FPs. Sensitivity was calculated as the proportion of annotated lesions correctly
detected, providing a comprehensive assessment of the detection method’s performance.

The results of the performance of the lesion detection models are presented in Table
2. Both the pretrained and fine-tuned detection models outperform the MONAI model
in terms of maximum sensitivity, defined as the sensitivity achieved when considering all
detected lesions without confidence threshold filtering, as well as the number of true positives
(TPs). However, the MONAI model exhibits fewer false positives (FPs). The pretrained
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RetinaNet model outperformed the fine-tuned version in terms of sensitivity and had less
FPs. While the fine-tuned model identified more candidates, it resulted in more FPs without
significant improvement in sensitivity. Overall, the pretrained model demonstrated more
reliable detection performance on the dataset, likely due to the limited size of the dataset
available for fine-tuning. However, it produced a high number of false positives, which may
include both insignificant lesions that were not annotated by the radiologist and non-lesions
mistakenly detected by the model.

Metric MaxS TP FP FN

MONAI Model 0.62 357 1527 214
Pretrained Model 0.81 464 6337 107
Fine-tuned Model 0.79 449 7645 122

Table 2: Performance comparison for all models measured by the maximum sensitivity
(MaxS), true positives (TP), false positives (FP) and false negatives (FN).

Appendix B. Lesion Tracking

B.1. Methodology

The alignment between two consecutive CT sancs was achieved using a least-squares rigid
registration method based on singular value decomposition (SVD) of the cross-covariance
matrix between two sets of 3D landmarks (Arun et al., 1987). Given two sets of n corre-
sponding landmarks, P,Q ∈ R3×n with landmarks pi,qi ∈ R3, i = 1, . . . , n, the objective
is to find a rigid transformation consisting of a rotation matrix R ∈ R3×3 and a translation
vector t ∈ R3 that minimizes the sum of squared distances between corresponding points:

min
R,t

n∑
i=1

∥qi − (Rpi + t)∥2 . (3)

The landmarks are first centered by subtracting their respective centroids cP , cQ. The
cross-covariance matrix K is then computed as

K =

n∑
i=1

p′
iq

′T
i , (4)

where p′
i and q′

i represent the centered landmarks. Applying SVD to K: K = UΣVT ,
the optimal rotation matrix is calculated as R = VUT . The translation vector is obtained
as t = cQ − RcP . The resulting rigid transformation T, comprising R and t, ensures
alignment of corresponding landmarks across consecutive images.

B.2. Experiment and Results

To evaluate the landmark-based rigid registration, the method was assessed by calculating
the Target Registration Error (TRE) using available anatomical landmarks (mentioned in
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section 2.3), including the right and left primary bronchi, right and left lung tops, and
carina bifurcation. The mean TRE of this approach was compared to a näıve translation-
based registration using image centroids. The results showed a 98.2% improvement, with
the mean TRE reduced from 430 mm to 7.2 mm.

To determine the most effective criteria for lesion matching, various IoU thresholds and
minimum diameters were tested. For each combination, the matched lesions were compared
against the ground truth annotations to verify if they corresponded to the same lesion as
identified by the radiologist. The criteria yielding the highest number of correct matches
in the validation set were selected. After evaluating various criteria, an IoU threshold of
0.1 and a minimum diameter of 20 mm were selected as the optimal parameters, achiev-
ing 84% correct matches when applied to the ground truth data on the validation set.
These settings consistently identified corresponding annotated lesions across consecutive
time points. While an alternative criterion with a minimum diameter of 30 mm (using
the same IoU threshold) achieved a slightly higher correct match rate of 85%, it was ulti-
mately not adopted due to also a higher incidence of incorrect matches (33 wrong matches)
compared to the 20 mm threshold (4 wrong matches). Table 3 presents results from the
evaluation of candidate matching criteria for the various configurations.

Table 3: Evaluation Results for various candidate matching criteria.
Min. Diameter [mm] IoU Percentage of Correct Matches

10 0.1 60%
10 0.3 29%
10 0.5 13%
20 0.1 84%
20 0.3 79%
20 0.5 49%
30 0.1 85%
30 0.3 79%
30 0.5 49%

Finally we compared our approach against an advanced lesion tracking method proposed
by (Vizitiu et al., 2023), which utilizes a multi-scale self-supervised learning framework for
lesion tracking. Using the original criteria from that study, the method achieved 38%
correct matches. After adapting it to the minimum lesion matching diameter criteria,
where all lesions below 20 mm were adjusted accordingly, performance improved to 70%
correct matches. However, it remained lower than the accuracy achieved with the proposed
approach.
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