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ABSTRACT

Error correcting codes (ECCs) are a fundamental technique for ensuring reli-
able communication over noisy channels. Recent advances in deep learning
have enabled transformer-based decoders to achieve state-of-the-art performance
on short codes; however, their computational complexity remains significantly
higher than that of classical decoders due to the attention mechanism. To ad-
dress this challenge, we propose EfficientMPT, an efficient message-passing trans-
former that significantly reduces computational complexity while preserving de-
coding performance. A key feature of EfficientMPT is the Efficient Error Correct-
ing (EEC) attention mechanism, which replaces expensive matrix multiplications
with lightweight vector-based element-wise operations. Unlike standard attention,
EEC attention relies only on query-key interaction using global query vector, ef-
ficiently encode global contextual information for ECC decoding. Furthermore,
EfficientMPT can serve as a foundation model, capable of decoding various code
classes and long codes by fine-tuning. In particular, EfficientMPT achieves 85%
and 91% of significant memory reduction and 47% and 57% of FLOPs reduction
compared to ECCT for (648, 540) and (1056, 880) standard LDPC codes, respec-
tively.

1 INTRODUCTION

In modern digital communication, reliable data transmission over noisy channels is a primary ob-
jective. A fundamental approach to achieving this objective is the careful design of error correcting
codes (ECCs) to correct noisy errors caused by channel impairments. ECC decoders have benefited
from advances in deep learning, achieving improvements over conventional decoding algorithms
for various code classes. Among them, neural network-based decoders using the transformer archi-
tecture (Vaswani et al., 2017) have achieved state-of-the-art decoding performance for short-length
codes, since the transformer is one of the most powerful neural network structures (Choukroun &
Wolf, 2022; 2023; Park et al., 2023; Choukroun & Wolf, 2024a;b). The first transformer-based
decoder, known as the Error Correction Code Transformer (ECCT) (Choukroun & Wolf, 2022),
employs masked self attention module. Recently, a more efficient transformer-based decoder, the
Cross-Attention Message-Passing Transformer (CrossMPT) (Park et al., 2025) has been introduced,
utilizing a masked cross-attention module, which is more effective than self-attention for error cor-
rection.

However, transformer-based decoders for ECCs face significant challenges due to the high com-
putational complexity of the attention module (Choukroun & Wolf, 2022; 2023; Park et al., 2023;
Choukroun & Wolf, 2024a;b). Specifically, the attention module exhibits a quadratic complexity of
O(n2) (Vaswani et al., 2017; Chang et al., 2023), where n denotes the number of tokens or the code
length in transformer-based decoders. This excessive complexity increases memory usage and com-
putational complexity restricts the practical application of transformer-based decoders. Designing
an efficient attention module is critical for reducing the decoding complexity of transformer-based
ECC decoders and allowing longer codes to benefit from the advantages of transformer-based de-
coders.

In this work, we propose a transformer-based decoder called Efficient Message-Passing Trans-
former (EfficientMPT). EfficientMPT significantly reduces the number of parameters, memory us-
age, and computational complexity (i.e., floating point operations (FLOPs)) while maintaining supe-
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rior decoding performance. Notably, these reductions become more pronounced as the code length
increases, enabling our model to effectively decode long codes.

EfficientMPT consists of two types of EfficientMPT blocks, which iteratively update magnitude and
syndrome embeddings, similar to message-passing algorithms. A key feature of EfficientMPT block
is the Efficient Error-Correcting (EEC) attention, which relies only on query-key interaction using
the parity-check matrix (PCM). During the query-key interaction, a global query vector is generated
to effectively capture global contextual information across all syndrome and magnitude elements.
This global query vector aggregates information from all positions of the syndrome and magnitude
embeddings, providing a condensed representation of their overall structure. Leveraging the global
query vector, EEC attention replaces the costly matrix multiplications typically used in standard
attention mechanisms. Instead, it employs efficient element-wise vector-based operations, signifi-
cantly reducing memory usage and computational complexity. Combined with this approach, EEC
attention integrates the PCM into the attention module, enabling the model to embed the code struc-
ture. EfficientMPT updates magnitude and syndrome embeddings by simply adding the embedding
with the attention output without any other complicated operations. This integration facilitates the
training efficiency of EfficientMPT.

Furthermore, EfficientMPT features a bit position-invariant and code length-invariant architecture,
making it a foundation model for ECC decoding. EfficientMPT, trained across several codes simulta-
neously, achieves notable decoding performance on trained codes. For unseen codes, the fine-tuning
technique enables EfficientMPT to decode without the need to train the decoder from scratch.

Our EfficientMPT significantly reduces i) GPU memory usage, ii) FLOPs, and iii) the number
of parameters while showing the state-of-the-art decoding performance for transformer-based de-
coders. The complexity reduction scales favorably with increasing code length. We believe that this
represents an important step toward enabling efficient decoding for a wide range of lengths with
transformer-based decoders.

2 RELATED WORK

Transformer-based decoders are a subclass of model-free neural decoders. Model-free neural de-
coders adopt general neural network architectures–fully-connected network (Gruber et al., 2017;
Kim et al., 2018), recurrent neural network (Bennatan et al., 2018))–for ECC decoding, without re-
lying on existing decoding algorithms (Dai et al., 2021; Buchberger et al., 2021; Kwak et al., 2023).
Model-free decoders using transformer architectures are referred to as transformer-based decoders.

The first transformer-based decoder, ECCT (Choukroun & Wolf, 2022), employs a masked self-
attention module to enhance training efficiency. The mask matrix, derived from a PCM, is designed
to embed the code structure and capture relationships between bit positions. Building on this ap-
proach, several transformer-based decoders have been proposed. An extension of ECCT with mul-
tiple masks (Park et al., 2023) was introduced to improve its decoding performance by increasing
the diversity of the mask matrix. Furthermore, a foundation model for ECCT (FECCT) Choukroun
& Wolf (2024a) was proposed, enabling the decoding of various code classes by training a sin-
gle model. This approach demonstrates that transformer-based decoders can indeed function as
foundation decoders. Also, an end-to-end learning framework for transformer-based decoding was
proposed (Choukroun & Wolf, 2024b).

However, all these methods use the concatenation ỹ, which combines the magnitude |y| and syn-
drome s(y) of the received vector y (i.e., ỹ = [|y|, s(y)]) for the masked self-attention module. This
results in a large attention map with high computational complexity and memory usage. The atten-
tion map of the original ECCT (Choukroun & Wolf, 2022) is sparse, as the mask matrix discards
unrelated positions entirely. However, the approaches in (Choukroun & Wolf, 2024a;b) introduce
a dense matrix that is added element-wise to the attention map. Instead of enforcing sparsity by
masking out connections, this matrix applies a continuous weighting to the attention scores, thereby
retaining a dense attention map.

Conversely, CrossMPT (Park et al., 2025) employs a masked cross-attention module and processes
magnitude |y| and syndrome s(y) separately, as they exhibit distinct characteristics. Accordingly,
CrossMPT iteratively updates their embeddings through two cross-attention modules, which im-
proves decoding performance. This approach also reduces decoding complexity by decreasing the
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attention map size and increasing the sparsity of the mask matrix. Likewise, the proposed EEC
attention module processes the magnitude and syndrome separately, with a further simplified atten-
tion mechanism. As a result, it significantly reduces the number of parameters, memory usage, and
FLOPs, without compromising the decoding performance achieved by CrossMPT.

3 BACKGROUND

3.1 ERROR CORRECTING CODES

Consider a linear block code C, defined by a generator matrix G ∈ Fk×n
2 and a PCM H ∈

F(n−k)×n
2 , where they satisfy GH⊤ = 0 over {0, 1} with modulo 2 addition. A codeword

x ∈ C ⊆ {0, 1}n is encoded by multiplying the message m of size k with G (i.e., x = mG).
Let xs be the binary phase shift keying (BPSK) modulated signal of x, where xs = 1−2x, and let y
be the noisy channel output when xs is transmitted. In the additive white Gaussian noise (AWGN)
channel, this can be modeled as y = xs + z, where z ∼ N (0, σ2). The decoder’s objective is to
recover the original codeword x by correcting errors caused by noise. Upon receiving y, the decoder
computes the syndrome s(y) = Hyb, where yb = bin(sign(y)). Here, sign(a) returns +1 if a ≥ 0
and −1 otherwise, while bin(−1) = 1 and bin(+1) = 0.

3.2 TRANSFORMER-BASED DECODERS

The transformer-based decoders employ a syndrome-based preprocessing method to address the
overfitting problem (Bennatan et al., 2018; Choukroun & Wolf, 2022). In this preprocess-
ing step, decoders generate the magnitude vector |y| = (|y1|, . . . , |yn|) and the syndrome vector
s(y) = (s(y)1, . . . , s(y)n−k) from the received vector y, which are then used as input to the trans-
former. The magnitude and syndrome vectors are used to estimate the multiplicative noise z̃s, de-
fined as: y = xs + z = xsz̃s. The goal is to estimate z̃s from the observed data. The decoder
function f outputs ẑs, and the estimated codeword x̂ is computed as x̂ = bin(sign(yf(y))). If the
multiplicative noise is accurately estimated, then sign(z̃s) = sign(ẑs) and sign(z̃sẑs) = 1.

All prior transformer-based decoders incorporate a mask matrix within the attention mechanism to
effectively learn model relationships among codeword bits (Choukroun & Wolf, 2022; Park et al.,
2023; Choukroun & Wolf, 2024a;b; Park et al., 2025). The decoding performance depends on the
choice of the mask matrix since it discards less important relationships and focuses on critical ones
to facilitate learning. The mask matrix is derived from the PCM H, which explicitly defines direct
relationships between codeword bits based on parity check equations.

3.3 ATTENTION MODULE

The attention module can be described by three components: Query (Q), key (K), and value (V).
Let X,X′ ∈ Rn×d be the input embeddings, where n is the input vector size and d is the
embedding dimension. The input embedding X is projected to the query using the trainable
weight matrix WQ ∈ Rd×d by Q = XWQ and the input embedding X′ is projected to the
key and value using the trainable weight matrices WK,WV ∈ Rd×d by K = X′WK, and
V = X′WV. To enable multi-head attention, Q, K, and V are split into h heads, where each
head has a reduced dimensionality dh = d/h such that Q =

[
Q1, · · ·,Qh

]
, K =

[
K1, · · ·,Kh

]
,

V =
[
V1, · · ·,Vh

]
, where [·, ·] denotes concatenation. Finally, the attention output Y can be

computed as: Y =
[
Attn(Q1,K1,V1), · · ·,Attn(Qh,Kh,Vh)

]
WO, where Attn(Q,K,V) =

softmax
(
QKT/

√
dh

)
V and WO ∈ Rd×d denotes the output weight matrix. This mechanism is

also known as scaled dot-product attention. If X = X′, the operation is referred to as self-attention;
if X ̸= X′, it is called cross-attention.

4 METHOD

In this section, we introduce a novel transformer-based decoder called EfficientMPT. Our proposed
EfficientMPT (presented in Figure 1), incorporating EEC attention module (presented in Figure 2(c),
has the following three key distinctive characteristics.
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Figure 1: Architecture of EfficientMPT.

Query-key interaction with global context. The EEC attention module focuses solely on query-
key interaction with a global query vector. The global query vector encapsulates comprehensive
contextual information from all syndrome or magnitude elements. This approach eliminates the use
of the value vector V, simplifying the process and reducing computational complexity.

Efficient vector-based attention. Standard attention mechanisms exhibit quadratic complexity
O(n2) due to the matrix multiplication involved. In contrast, EEC attention generates a global
query vector through row-wise summation and combines it with the key matrix using broadcasted
element-wise multiplication. This approach reduces both memory usage and computational com-
plexity.

ECC specialized attention with PCM. In the architecture of EfficientMPT, we incorporate the
PCM to interchangeably convert between the magnitude and syndrome domains. This effectively
embeds the code structure into the transformer, as the PCM defines the constraints that all valid code-
words must satisfy. This approach is distinct from standard attention mechanisms, where the PCM
is indirectly used to construct the mask matrix, whereas EfficientMPT utilizes the PCM directly. In
other words, we develop a new attention mechanism specialized for ECC decoding.

Efficient model for foundation ECC decoder. The entire process in EfficientMPT is invariant to bit
positions and code lengths, sharing the parameters across various code classes. Trained on multiple
codes simultaneously, a single EfficientMPT model can achieve superior decoding performance
across several code classes and even generalizes to unseen codes with minimal fine-tuning.

4.1 ARCHITECTURE OF EFFICIENTMPT

Figure 1 presents the architecture of the proposed EfficientMPT. We first generate the magnitude
embedding M = [M1; · · ·;Mn] ∈ Rn×d where Mi = |yi|WM for i = 1, . . . , n. Similarly, we
generate the syndrome embedding S = [S1; · · ·;Sn−k] ∈ R(n−k)×d where Si = s(y)iWS for
i = 1, . . . , n − k. Here, WM ∈ R1×d and WS ∈ R1×d are trainable parameters. To establish Effi-
cientMPT as a position-invariant and length-invariant foundation model for ECC decoding, we use
the shared WM for magnitude embeddings and the shared WS for syndrome embeddings (Choukroun
& Wolf, 2024a).

Two gray boxed blocks in Figure 1 are referred to as EfficientMPT blocks. The first EfficientMPT
block, located on the left, contains an ECC attention module that updates the magnitude embedding
M to M′ using the syndrome embedding S. The query Q1 and key K1 are computed as follows:

Q1 = SWQ, K1 = SWK

By applying the proposed EEC attention, which will be explained in the next subsection, we obtain
the attention output ∆M, which is added to the magnitude embedding M. The result is then passed
through a normalization layer, followed by a feedforward layer with a residual connection, to obtain
the updated magnitude embedding M′. Note that the query and key are derived from the same
embedding type,the syndrome embedding, which differs from the configuration used in the standard
attention mechanisms.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

: Row-wise sum⊛ : Broadcasted element-wise multiplication ⊗ : Matrix multiplication∑

Magnitude: 𝐌 ∈ 𝑛 × 𝑑 Syndrome: 𝐒 ∈ (𝑛 − 𝑘) × 𝑑

*

𝑑ℎ

𝑑K

ℎ

𝑑

Linear Linear

(2𝑛 − 𝑘) × 𝑑

Linear

𝑑

𝑑

𝑑

𝑑

Linear

𝑑

𝑑

Q V

⋅,⋅

𝐌 𝐒

(2𝑛 − 𝑘) × 𝑑

2𝑛 − 𝑘

𝑑ℎ

2𝑛 − 𝑘

2𝑛 − 𝑘

2𝑛 − 𝑘
2𝑛 − 𝑘

𝑑ℎ

𝑔(𝐇)
𝐇

⊕

softmax

(a) Masked self-attention

𝑑

𝑑K

ℎ

Linear

Linear Linear

(𝑛 − 𝑘) × 𝑑

𝑑

𝑑

𝑑

𝑑

Linear

𝑑

𝑑

Q V

𝐒 𝐌

𝑛 − 𝑘

𝑛

𝑛

𝑑ℎ

𝑑ℎ

𝑑ℎ

𝑛
𝑛 − 𝑘

𝑔(𝐇)
𝐇

⊕

softmax

(b) Masked cross-attention

⊕

𝑑

𝐌

𝑑

⊙

𝑑

𝑑

Linear

Linear

(𝑛 − 𝑘) × 𝑑

𝑑

𝑑

Q

Linear

K

∑

𝑑ℎ

𝐇

softmax 𝑛 − 𝑘

1
𝑑ℎ

𝑑ℎ

𝑛 − 𝑘

ℎ *
Global

query

vector

𝐒

𝐒 + 𝚫𝐒

𝐪g𝐥𝐨𝐛𝐚𝐥

(c) EEC attention

Figure 2: Comparison of attention modules for transformer-based ECC decoders. (a) Masked self-
attention module, (b) masked cross-attention module (Park et al., 2025), and (c) proposed EEC
attention module.

The second EfficientMPT block updates the syndrome embedding using the updated magnitude
embedding M′. The query Q2 and key K2 are computed as follows:

Q2 = M′WQ, K2 = M′WK.

Similar to updating the magnitude embedding, adding the attention output ∆S to the syndrome
embedding S efficiently produces the updated S′, which is then utilized to refine the magnitude
embedding in the next EfficientMPT block. This process is repeated N times.

Finally, two output embeddings (magnitude and syndrome embeddings) from the last EfficientMPT
block pass through a normalization layer. The magnitude embedding is then added to the resized
syndrome embedding, which is resized from (n − k) × d to n × d by multiplying the PCM H.
The combined output embedding then passes through a fully connected layer which reduces the
n × d embedding to a one-dimensional n vector. We want to note that all trainable parameters in
EfficientMPT are position-invariant and length-invariant, which indicates that EfficientMPT can be
utilized as a foundation decoder for ECCs.

4.2 EFFICIENT ERROR CORRECTING (EEC) ATTENTION

Figure 2 illustrates three different attention modules employed in transformer-based decoders. As
shown in Figure 2(a), the masked self-attention module used in (Choukroun & Wolf, 2022; Park
et al., 2023) concatenates magnitude and syndrome embeddings as input, resulting in a size of (2n−
k) × d. Thus, the attention-map has a size of (2n − k) × (2n − k) for each header. Figure 2(b)
shows the masked cross-attention module employed in CrossMPT (Park et al., 2025) for updating the
syndrome embedding. As previously noted, CrossMPT utilizes two distinct masked cross-attention
modules to separately update magnitude and syndrome embeddings. Each cross-attention has an
attention map of size (n− k)× n. Since CrossMPT employs two cross-attention modules, the total
size of the attention maps is 2n(n− k).

Figure 2(c) shows the proposed ECC attention module used to update the syndrome embedding,
which is located in the second EfficientMPT block in Figure 1. Unlike standard attention mech-
anisms that rely on computationally expensive matrix multiplications, the ECC attention module
employs row-wise summation and broadcasted element-wise multiplication in Figure 3. This design
choice is a key factor in reducing computational complexity.
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Without loss of generality, we describe the EEC attention module that updates the syndrome embed-
ding using information from the magnitude embedding. For the other attention module that updates
the magnitude embedding, the roles are simply reversed, with the syndrome embedding used to up-
date the magnitude embedding. The magnitude embedding M ∈ Rn×d is projected to the query Q,
key K by weight matrices WQ, WK ∈ Rd×d, respectively. Next, Q and K are split into h attention
heads, generating Qi,Ki ∈ Rn×dh for i = 1, . . ., h.

For the query, we compute the global query vector as follows:

qi
global = softmax

 n∑
j=1

Qi(j)

 ∈ R1×dh ,

where Qi(j) denotes the jth row vector of Qi (i.e., Qi = [Qi(1); · · ·;Qi(n)]). This global query
vector is a critical component of the EEC attention mechanism, as it efficiently captures the global
contextual information of the magnitude domain. By condensing the magnitude information across
all elements into a single vector, the global query vector acts as a high-level representation that
can be applied uniformly across the syndrome domain, allowing the model to propagate magnitude
information in a highly efficient manner.

∑

(a)

⊛*

(b)

Figure 3: (a) Row-wise sum-
mation and (b) broadcasted
element-wise multiplication.

The next step is to project the magnitude information into the syn-
drome domain using the PCM H. Specifically, the key matrix
Ki ∈ Rn×dh is transformed into Ki

H = HKi ∈ R(n−k)×dh . This
transformation is essential because the PCM H inherently encodes
the code structure, representing the relationships between the mag-
nitude and syndrome elements. By applying H, the model effec-
tively maps the magnitude information into a representation within
the syndrome domain. This allows the global query vector, which
contains magnitude information, to be distributed across a matrix in
the syndrome space, enhancing its effectiveness for error correction.

The global query vector qi
global is then broadcasted and element-

wise multiplied with Ki
H:

∆S =
[
q1
global ⊛K1

H, · · ·,qh
global ⊛Kh

H

]
WO ∈ R(n−k)×d,

where ⊛ denotes the broadcasted element-wise multiplication. This operation allows the global
context information of the magnitude, captured in the global query vector, to be propagated across
all rows of the matrix Ki

H in the syndrome domain. Essentially, the global query vector broadcasts
this global context information directly into the syndrome space, enabling efficient context sharing.

The output of EEC attention ∆S represents the update for the syndrome embedding, learned di-
rectly from the magnitude information. This update is applied to the original syndrome embedding
through simple addition: S ← S + ∆S. Then, the updated syndrome embedding pass through the
normalization layer and the fully-connected layer to obtain the updated syndrome embedding. For
the second attention module, the same process is applied to the magnitude embedding.

5 EXPERIMENTAL RESULTS

We adopt the same training setup as ECCT and CrossMPT: 1000 epochs, 1000 minibatches per
epoch, and 128 samples per minibatch, using the Adam optimizer (Kingma & Ba, 2014). The learn-
ing rate is initialized at 10−4 and gradually decreases to 5 × 10−7, using a cosine decay scheduler.
The model is trained on all-zero codewords over Eb/N0 from 3 dB to 7 dB, and tested on randomly
generated codewords. All simulations are performed on NVIDIA GeForce RTX A5000 GPUs and
AMD EPYC 7763 CPU.

5.1 DECODING PERFORMANCE

Figures 4(a), 4(b), and 4(c) compare the BER performance of EfficientMPT, CrossMPT, and ECCT
for short codes. All simulations are conducted with h = 8, N = 6, and d = 128. Across dif-
ferent code classes, EfficientMPT outperforms the original ECCT and achieves decoding perfor-
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Figure 4: BER comparison for different code classes.

Table 1: Comparison of GPU memory usage, FLOPs, and the number of parameters between Effi-
cientMPT, CrossMPT, and ECCT.

Memory usage FLOPs # of parameters
Codes Parameter EfficientMPT CrossMPT ECCT EfficientMPT CrossMPT ECCT EfficientMPT CrossMPT ECCT

WiMAX LDPC (576, 432)
0.05 GB 0.13 GB 0.31 GB 0.92 G 1.11 G 1.65 G 1.09 M 1.70 M
(16%) (42%) (100%) (56%) (67%) (100%) (64%) (100%)

802.11n LDPC (648, 540)
0.05 GB 0.13 GB 0.34 GB 0.94 G 1.11 G 1.78 G 1.09 M 1.78 M
(15%) (38%) (100%) (53%) (62%) (100%) (61%) (100%)

WiMAX LDPC (1056, 880)
0.07 GB 0.26 GB 0.82 GB 1.65 G 2.04 G 3.80 G 1.09 M 2.65 M

(9%) (32%) (100%) (43%) (54%) (100%) (41%) (100%)

WiMAX LDPC (2304, 1152)
0.18 GB 2.63 GB 6.02 GB 8.18 G 12.27 G 22.46 G 1.09 M 9.60 M

(3%) (44%) (100%) (36%) (55%) (100%) (11%) (100%)

5G NR LDPC (3328, 640)
0.31 GB 8.42 GB 17.98 GB 21.44 G 34.65 G 62.76 G 1.09 M 21.98 M

(2%) (47%) (100%) (34%) (55%) (100%) (5%) (100%)

BCH (31, 16)
36.19 MB 38.27 MB 38.57 MB 50.9 M 56.1 M 57.9 M 1.09 M 1.20 M

(94%) (99%) (100%) (88%) (97%) (100%) (91%) (100%)

BCH (63, 45)
36.19 MB 38.54 MB 39.52 MB 90.2 M 99.9 M 106.4 M 1.09 M 1.21 M

(92%) (98%) (100%) (85%) (94%) (100%) (90%) (100%)

Polar (64, 32)
36.19 MB 38.76 MB 40.05 MB 0.11 G 0.12 G 0.13 G 1.09 M 1.21 M

(90%) (97%) (100%) (85%) (92%) (100%) (90%) (100%)

Polar (128, 64)
36.21 MB 40.44 MB 47.62 MB 0.22 G 0.25 G 0.28 G 1.09 M 1.21 M

(76%) (85%) (100%) (79%) (89%) (100%) (90%) (100%)

LDPC (121, 70)
36.21 MB 40.07 MB 44.43 MB 0.20 G 0.23 G 0.26 G 1.09 M 1.23 M

(82%) (90%) (100%) (77%) (88%) (100%) (89%) (100%)

mance comparable to CrossMPT. Additional results for various code parameters are provided in
Appendix B.

Figures 4(d), 4(e), and 4(f) compare the BER performance of three standard LDPC codes: (576, 432)
WiMAX, (648, 540) IEEE 802.11n, and (1056, 880) WiMAX LDPC codes. All simulations are per-
formed with h = 8, N = 10, and d = 128. Additionally, we include the performance of the belief
propagation (BP) decoder. Both CrossMPT and EfficientMPT outperform the BP decoder with
maximum iterations of 20 and 50. We note that ECCT for all these long codes and CrossMPT for
(1056, 880) LDPC codes could not be trained due to memory limitations in our simulation envi-
ronment. However, even for lengths exceeding 1000, EfficientMPT remains trainable and achieves
performance gains over the BP decoder. More results are presented in Appendix B, C, D, and E.
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5.2 COMPLEXITY ANALYSIS

Table 1 compares GPU memory usage, computational complexity (FLOPs), and the number of train-
able parameters across EfficientMPT, CrossMPT, and ECCT for various code classes. All results are
obtained under the condition N = 6 and d = 128. For GPU memory usage, we measure the peak
memory usage during the training of a single batch.

The table clearly demonstrates the GPU memory efficiency of EfficientMPT, which consistently
requires less GPU memory across all code types. As the code length increases, the memory us-
age gap between EfficientMPT and other methods becomes more pronounced. For instance, for
the (3328,640) 5G NR LDPC code, EfficientMPT requires only 0.35 GB, whereas CrossMPT and
ECCT require 8.42 GB and 17.98 GB, respectively. In other words, CrossMPT and ECCT require
nearly 20× and 50× more memory than EfficientMPT. This substantial improvement is attributed
to the proposed EEC attention module in EfficientMPT, which performs vector-based element-wise
operations instead of matrix multiplications on large attention maps, such as (2n − k)2 for ECCT
and 2n(n− k) for CrossMPT.

500 1000 1500 2000 2500 3000

Code length

0

1

2

3

4

5
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F
L
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P
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10
10

ECCT
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EfficientMPT

Figure 5: Comparison of FLOPs for Ef-
ficientMPT, CrossMPT, and ECCT for
various 5G NR LDPC codes.

Furthermore, EfficientMPT effectively reduces FLOPs
compared to other methods, with the reduction becom-
ing more pronounced as the code length increases. For
the (3328, 640) 5G NR LDPC code, EfficientMPT re-
quires only 21.48 G, whereas CrossMPT and ECCT re-
quire 34.65 G and 62.76 G, respectively–representing a
38% reduction.

To further investigate the effectiveness of EfficientMPT,
we additionally compare FLOPs in a graph, supple-
menting the results in Table 1. Figure 5 presents
the FLOPs of 5G NR LDPC codes based on a base
graph of size 10 × 52 with various lifting factors Z =
1, 2, 4, 8, 16, 32, 64 (Richardson & Kudekar, 2018). The
lifting process generates LDPC codes of size (52 ×
Z, 10 × Z). Since all 5G LDPC codes in the figure are
derived from the same base graph, they share the same code structure regardless of the lifting factor.
This setup ensures a fair comparison, focusing on the impact of code length while preserving the
code structure. As shown in the figure, EfficientMPT exhibits nearly linear FLOPs, unlike other
methods. This is because the only operation with quadratic complexity in Figure 2(c) is the multi-
plication with PCM, which is not a dominant computation compared to other operations.

The last column in Table 1 presents the number of trainable parameters. Note that CrossMPT
and ECCT have the same number of parameters. Since all parameters in EfficientMPT are code-
invariant, the number of parameters remains constant across different code classes as long as N and
d are the same. For N = 6 and d = 128, EfficientMPT consistently maintains 1.09 M param-
eters (specifically, 1,097,649), whereas the number of parameters in CrossMPT and ECCT grows
rapidly with increasing code length. These results demonstrate that EfficientMPT achieves superior
efficiency in all aspects of computational complexity compared to CrossMPT and ECCT.

5.3 FOUNDATION EFFICIENTMPT

To train EfficientMPT as a foundation ECC decoder, we train EfficientMPT on four different codes:
(64, 32) LDPC, (121, 60) LDPC, (121, 70) LDPC, and (121, 80) LDPC codes. We refer to this
model as foundation EfficientMPT (FEfficientMPT). In Figure 6, we compare FEfficientMPT with
EfficientMPT, ECCT, and foundation ECCT (FECCT) (Choukroun & Wolf, 2024a). The decoders
trained on a single code (EfficientMPT, ECCT) are trained for 1000 epochs, whereas the foundation
models (FEfficientMPT, FECCT) are trained for 4000 epochs since they are trained on four differ-
ent codes. Figure 6(a) shows the performance for the (121, 70) LDPC code, which is one of the
trained codes, while Figures 6(b) and 6(c) present the performance for the (204, 102) MacKay and
(1920, 1600) WiMAX LDPC codes, which are unseen codes. The number following FEfficientMPT
and FECCT denotes the number of fine-tuning epochs. For example, ‘FEfficientMPT-0’ denotes the
foundation EfficientMPT without fine-tuning and ‘FEfficientMPT-300’ denotes the foundation Effi-
cientMPT fine-tuned for 300 epochs.
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Figure 6: Decoding performance of (a) (121,70) LDPC code, (b) (204,102) MacKay LDPC code,
and (c) (1920,1600) WiMAX LDPC code.

In Figure 6(a), EfficientMPT and FEfficientMPT exhibit nearly identical performance, which means
that the EfficientMPT model can be trained as a foundation ECC decoder without performance
degradation. Figure 6(b) demonstrates that FEfficientMPT with fine-tuning (FEfficientMPT-300)
outperforms ECCT and achieves decoding performance comparable to EfficientMPT, even for un-
seen codes. Notably, Figure 6(c) shows that although FEfficientMPT initially struggles to decode
unseen codes, its performance steadily improves with fine-tuning and eventually surpasses the con-
ventional BP decoder for the long WiMAX LDPC code. This result is practically meaningful be-
cause it demonstrates that FEfficientMPT model can be adapted for longer codes using a pretrained
foundation model trained on short codes, eliminating the need for expensive full-scale training of
long codes from scratch.

5.4 TRAINING H MATRIX

(a) Initial random PCM (b) Trained PCM

Figure 7: The values of trainable matrix (a) before
the training and (b) after the training.

In the EfficientMPT architecture, we utilize (or
multiply) the PCM to embed the code struc-
ture. For further analysis, we replace the PCM
H with a trainable matrix. The trainable ma-
trix is randomly initialized and optimized along
with other parameters during training. Figure 7
shows the trainable matrix before and after the
training on the (64, 32) LDPC code. The darker
the tone of each element, the larger its value.
Initially, as shown in Figure 7(a), the train-
able matrix is a random matrix. However, af-
ter training, Figure 7(b) reveals that the trained
matrix develops a structure closely resembling the original PCM. In Appendix G, we illustrate a
comparison between the trained PCM and the original PCM. This observation further supports the
use of the PCM in EfficientMPT.

6 CONCLUSION

In this work, we proposed EfficientMPT, a transformer-based decoder that overcomes the compu-
tational limitations of standard attention mechanisms in ECC decoding. EEC attention simplifies
the standard attention by employing broadcasted element-wise operations and effectively learns the
code structure by incorporating the PCM into the attention mechanism. Leveraging the proposed
EEC attention, we develop EfficientMPT, which significantly reduces the computational complexity
while maintaining the superior decoding performance of CrossMPT. In addition, EfficientMPT can
also serve as a universal and foundation-level decoder. A single model can achieve notable decod-
ing performance across several code classes and even on unseen codes. The reduced computational
complexity of EfficientMPT enables support for longer code lengths, allowing more practical codes
to benefit from the advantages of transformer-based decoders and enhancing the feasibility of their
application to long codes.
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A APPENDIX

B ADDITIONAL RESULTS FOR VARIOUS CODE PARAMETERS

Table 2 demosntrates the decoding performance for various code classes and parameters for h = 8,
N = 6, and d = 128. Across different code classes, EfficientMPT outperforms the original ECCT
and achieves decoding performance comparable to CrossMPT.
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Table 2: Comparison of the BER performance at three different Eb/N0 values (4 dB, 5 dB, 6 dB)
for EfficientMPT, CrossMPT, and ECCT (Choukroun & Wolf, 2022).

Codes Method EfficientMPT CrossMPT ECCT

4 dB 5 dB 6 dB 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB

BCH
(31,16) 9.11e-4 8.44e-5 3.58e-6 9.26e-4 9.63e-5 3.79e-6 1.68e-3 2.51e-4 2.35e-5
(63,36) 7.44e-3 1.31e-3 9.85e-5 6.53e-3 9.98e-4 8.49e-5 7.75e-3 1.29e-3 1.12e-4
(63,45) 3.26e-3 3.20e-4 1.50e-5 2.74e-3 2.74e-4 9.10e-6 3.70e-3 4.14e-4 1.79e-5

Polar
(64,32) 5.86e-4 4.10e-5 1.56e-6 5.51e-4 4.70e-5 1.66e-6 9.21e-4 7.95e-5 4.46e-6
(64,48) 1.73e-3 1.88e-4 1.63e-5 1.49e-3 1.67e-4 1.22e-5 1.73e-3 2.12e-4 1.53e-5
(128,64) 8.68e-4 2.27e-5 3.25e-7 5.40e-4 1.35e-5 3.88e-7 2.69e-3 1.77e-4 5.13e-6

LDPC
(121,60) 3.63e-3 1.18e-4 3.99e-7 3.23e-3 9.47e-5 3.83e-7 5.68e-3 2.46e-4 1.67e-6
(121,70) 9.50e-4 1.23e-5 4.26e-8 8.59e-4 1.13e-5 2.46e-8 1.66e-3 3.68e-5 1.10e-7
(121,80) 3.51e-4 4.11e-6 1.68e-8 3.38e-4 2.89e-6 1.31e-8 6.5e-4 1.0e-5 7.25e-8

C COMPARISON WITH DC-ECCT AND E2E DC-ECCT

Table 3: BER comparison between DC-ECCT, E2E ECCT, and EfficientMPT

Method DC-ECCT E2E ECCT EfficientMPT

Parameter 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB

(31,16) BCH 8.50e-04 6.19e-05 3.58e-06 7.54e-04 1.14e-04 2.65e-06 7.13e-04 5.49e-05 2.20e-06
(64,32) Polar 5.81e-04 2.78e-05 1.08e-06 5.05e-4 3.10e-05 2.07e-06 4.33e-04 2.83e-05 1.02e-06
(49,24) LDPC 3.81e-03 1.43e-03 7.39e-04 1.87e-03 1.55e-04 4.42e-06 1.14e-03 6.15e-05 1.14e-06

Table 3 compares the BER performance of EfficientMPT with DC-ECCT, E2E DC-
ECCT (Choukroun & Wolf, 2024b), which are improved architectures of ECCT. All results are
obtained by training with 1024 samples per minibatch, for 1000 epochs, with 1000 minibatches per
epoch. The decoding performances of DC-ECCT and E2E DC-ECCT are obtained from Choukroun
& Wolf (2024b). For all BCH code, polar code, and LDPC code, EfficientMPT outperforms all
DC-ECCT and E2E DC-ECCT.

D COMPARISON WITH SUCCESSIVE CANCELLATION LIST DECODER

Table 4: Comparison with SCL decoder for polar codes

Method SCL(L=1) SCL(L=4) ECCT CrossMPT EfficientMPT

Parameter 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB

(64,32) 6.76e-04 6.31e-05 1.89e-06 3.01e-04 2.25e-05 7.99e-07 9.21e-04 7.95e-05 4.46e-06 5.53e-04 4.68e-05 1.66e-06 5.86e-04 4.10e-05 1.56e-06
(64,48) 2.05e-03 2.23e-04 1.72e-05 1.24e-03 1.79e-04 1.31e-05 1.73e-03 2.09.E-37 1.53e-05 1.40e-03 1.67e-04 1.22e-05 1.73e-03 1.88e-04 1.63e-05
(128,64) 2.32e-04 8.38e-06 1.12e-06 6.77e-05 1.93e-06 2.72e-08 2.69e-03 1.77e-04 5.13e-06 5.42e-04 1.35e-05 3.89e-07 8.68e-04 2.27e-05 3.25e-07

We compare the decoding performance of the successive cancellation list (SCL) decoder with ECCT,
CrossMPT, and EfficientMPT for polar codes. The performance of the SCL decoder is taken from
Choukroun & Wolf (2022) and Park et al. (2025). Since the SCL decoder for polar codes has
been extensively studied over time, while transformer-based decoders are still in the early stages
of research, it remains challenging for transformer-based methods to outperform the SCL decoder.
Nevertheless, both CrossMPT and EfficientMPT demonstrate significantly better performance than
the original ECCT for polar codes, and achieve comparable performance to the SCL decoder for
the (64, 48) polar code. In other words, we can improve decoding performance over the original
transformer-based decoder while greatly reducing decoding complexity. These findings suggest that
continued research in this direction can lead to further meaningful advancements in transformer-
based ECC decoding.
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Figure 8: Decoding performance of (a) (1824, 1520) WiMAX LDPC code and (b) (2304, 1920)
WiMAX LDPC code for the proposed method and BP decoders

E DECODING RESULTS FOR LONGER CODES

Figure 8 compares the decoding performance of the proposed EfficientMPT with that of conven-
tional belief propagation (BP) decoders for long codes. For the (1824, 1520) WiMAX LDPC code,
EfficientMPT is trained from scratch, while for the (2304, 1920) WiMAX LDPC code, we fine-tune
a pre-trained EfficientMPT model for 200 epochs. Our method outperforms the BP decoder with
maximum iterations of 20 and 50.

This range of code lengths is particularly challenging for conventional transformer-based decoders.
EfficientMPT, however, enables a broader range of code lengths to benefit from the advantages of
transformer-based decoding. Rather than relying on code-specific models, a single EfficientMPT
model achieves strong decoding performance across various code types, demonstrating the univer-
sality of foundation decoders. When deployed as a foundation decoder, such a model can signifi-
cantly reduce hardware complexity and power consumption by supporting multiple generations of
codes within a unified architecture—effectively functioning as a “multiple-in-one” decoder. The ef-
fectiveness of EfficientMPT also extends the applicability of transformer-based decoders to a wider
range of practical scenarios.

F FEFFICIENTMPT WITH VARIOUS FINE-TUNING SETTINGS FOR UNSEEN
CODES
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Figure 9: Decoding performance of (a) (204,70) MacKay LDPC code and (b) (1920,1600) WiMAX
LDPC code for various fine-tuning epochs.
Figure 9 presents the decoding performance of FEfficientMPT under various fine-tuning settings for
unseen codes. The pretrained FEfficientMPT model was initially trained on four different LDPC
codes–(64, 32), (121, 60), (121, 70), and (121, 80)–for 4000 epochs.

For the (204, 102) MacKay LDPC code, only a few epochs of fine-tuning are sufficient to achieve su-
perior decoding performance. In contrast, for the (1920, 1600) WiMAC LDPC code, FEfficientMPT
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initially struggles with decoding unseen codes. However, its performance gradually improves with
fine-tuning.

These results demonstrate that leveraging a pretrained foundation model trained on short codes
remains effective for decoding long codes when fine-tuning technique is applied.

G COMPARISON OF TRAINED AND ORIGINAL PCM

(a) Trained PCM (b) Original PCM

Figure 10: Comparison of the trained PCM and the original PCM. The larger its value, the darker
the tone of each element.

Instead of utilizing the PCM in the EfficientMPT architecture, we replace the PCM H with a train-
able matrix for (64, 32) LDPC code. After the training, we obtain the trained PCM as shown in
Figure 10(a), whose structure closely related to the original PCM in Figure 10(b). This observation
further reinforces the justification of incorporating the PCM in EfficientMPT.

H COMPARISON WITH BM DECODER

We compare Berlekamp-Massey (BM) decoder with transformer-based decoders. The table shows
a performance comparison between the BM decoder, ECCT, CrossMPT, and EfficientMPT. The re-
sults demonstrate that transformer-based decoders outperform the BM decoder and EfficientMPT
shows comparable decoding performance with CrossMPT. Additionally, thanks to the novel EEC
attention module, EfficientMPT achieves this powerful decoding performance with significantly re-
duced computational complexity.

The results in this table highlight a key advantage of our approach: EfficientMPT not only serves as
a universal decoder capable of handling various code classes, but also surpasses the performance of
code-specific classical decoders like the BM algorithm.

Table 5: BER comparison between BM, ECCT, CrossMPT, and Proposed methods for BCH codes

Code (n,k) SNR BM ECCT CrossMPT EfficientMPT

(31,16) BCH
4 dB 1.16e-02 1.68e-03 9.26e-04 9.11e-04
5 dB 3.14e-03 2.51e-04 9.63e-05 8.44e-05
6 dB 5.49e-04 2.35e-05 3.79e-06 3.58e-06

(63,36) BCH
4 dB 6.66e-03 7.75e-03 6.53e-03 7.44e-03
5 dB 9.17e-04 1.29e-03 9.98e-04 1.31e-03
6 dB 5.91e-05 1.12e-04 8.49e-05 9.85e-05

(63,45) BCH
4 dB 7.80e-03 3.70e-03 2.74e-03 3.26e-03
5 dB 1.46e-03 4.14e-04 2.74e-04 3.20e-04
6 dB 1.42e-04 1.79e-05 9.01e-06 1.50e-05

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

I COMPARISON IN RAYLEIGH FADING CHANNEL

We evaluate the performance of ECCT, CrossMPT, and EfficientMPT on a Rayleigh fading channel.
In previous papers, ECCT and CrossMPT are known to be robust to the non-Gaussian channels,
such as Rayleigh fading channel. To compare with previous two works, we use the same fading
channel as in ECCT and CrossMPT. The received codeword is given as y = hx + z, where h is an
n-dimensional i.i.d. Rayleigh distributed vector with a scale parameter α = 1 and z N(0, σ2). The
following results demonstrate the BER performance of ECCT, CrossMPT, and EfficientMPT:

Table 6: BER comparison between BCH (31, 16) and LDPC (121, 70) codes

Codes BCH (31,16) LDPC (121,70)

Method 4 dB 5 dB 6 dB 4 dB 5 dB 6 dB

ECCT 5.61e-03 2.38e-03 9.85e-04 2.01e-02 6.93e-03 1.82e-03
CrossMPT 3.95e-03 1.43e-03 4.95e-04 1.42e-02 3.98e-03 8.17e-04

EfficientMPT 4.29e-03 1.65e-03 5.06e-04 1.45e-02 4.13e-03 8.42e-04

As the results demonstrate, EfficientMPT also maintains robust decoding performance even on this
non-AWGN channel.

J PIPELINING OF EFFICIENTMPT

Although EfficientMPT may appear to be limited in throughput and latency due to its serial atten-
tion blocks, a pipelining strategy—commonly employed in various ECC decoders–can be applied
to significantly enhance its decoding throughput (as illustrated in Figure 13, Appendix K in (Park
et al., 2025)). By unrolling the two EfficientMPT blocks within each layer for parallel hardware
implementation, the model can process two consecutive codewords simultaneously. Specifically,
while the second EfficientMPT block (responsible for syndrome updates) operates on the first code-
word, the first block (responsible for magnitude updates) can begin decoding the next codeword.
This pipelining approach allows EfficientMPT to maintain high and competitive throughput, even in
fully parallel processing environments.
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