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Abstract

Automated data visualization plays a crucial
role in simplifying data interpretation, enhanc-
ing decision-making, and improving efficiency.
While large language models (LLMs) have
shown promise in generating (code to produce)
visualizations from natural language, the ab-
sence of comprehensive benchmarks limits the
rigorous evaluation of their capabilities. We in-
troduce Text2Vis, a benchmark designed to as-
sess text-to-visualization models, covering 20+
chart types and diverse data science queries,
including trend analysis, correlation, outlier de-
tection, and predictive analytics. It comprises
1,985 samples, each with a data table, natu-
ral language query, short answer, visualization
code, and annotated charts. The queries in-
volve complex reasoning, conversational turns,
and dynamic data retrieval. We benchmark 10+
open-source and closed-source models, reveal-
ing significant performance gaps, highlighting
key challenges, and offering insights for future
advancements. We then propose an actor-critic
agentic inference framework, where feedback
from a critic model refines the generator’s out-
put, increasing GPT-40’s pass rate from 26%
to 42% over the direct approach and improving
chart quality. Finally, we introduce an auto-
mated LLM-based assessment framework for
scalable evaluation that measures answer cor-
rectness, code execution success, visualization
readability, and chart accuracy. We release
Text2Vis at < redacted >.

1 Introduction

Data visualization transforms raw data into mean-
ingful visual representations, allowing users to gain
insights and make data-driven decisions across var-
ious fields such as finance, healthcare, marketing,
and scientific research (Aparicio and Costa, 2015;
Hoque et al., 2022). It is an integral part of the data
science workflow, frequently used for exploratory
data analysis, outlier detection, pattern recogni-
tion, and feature identification. However, creating

Data Table (38 by 2 )
Date |Closing Price

Query: What will be the next two days' closing prices for Apple stock
using a 3-day Simple Moving Average? Also plot the trend in Apple's
closing prices over the past 15 trading days.

01/13/2025 234.40

Line Chart 02/03/2025 228.01

Apple Stock: Last 15 Davs Trend and 3-Dav SMA Forecast for Next 2 Days

Code Answer: 233.87,232.63
»

tplotlib.pyplot as plt

Closing Price

# Show plot
p1t.show()

Date

Figure 1: Example from the Text2Vis benchmark.
Input: A data table containing historical stock prices
and a query. Output: Python code for visualization, the
predicted answer, and an annotated textual explanation.
The chart is generated from the code.

accurate and intuitive visualizations is challeng-
ing due to the need to correctly interpret natural
language queries, select relevant data and trans-
form it (if needed), understand suitable visualiza-
tion types, and write appropriate code for visual-
ization (Shen et al., 2022). This problem is unique
as it integrates multiple modalities—visual repre-
sentation, natural language understanding, logical
reasoning, and code generation—making it signif-
icantly more complex than traditional NLP tasks.
This process typically requires expertise in data
science, programming languages, and visualization
libraries (e.g., Matplotlib, Vega-Lite (Satyanarayan
et al., 2016)), creating a significant barrier for non-
technical users (Ali et al., 2016; Waskom, 2021;
Bisong and Bisong, 2019). While natural language
interfaces (NLIs) like Tableau’s Ask Data (Tableau,
2025) can generate basic charts from queries, they
lack flexibility, automation, customization, and ad-
vanced analytical capabilities.

LLMs have demonstrated strong performance
in code generation and data analysis (Nejjar et al.,
2025), making them promising for automated visu-
alization tasks (Liu et al., 2021; Hoque and Islam,
2024; Maddigan and Susnjak, 2023). By under-



Dataset Data Query

Web Data Conversa- Unans- Multistep Text Text

Chart NLP to Chart

Type Type Retrieval tional  werable r i A E inability Variety Python Specification
WikiSQL (Zhong et al., 2017) Real NL2SQL X X X X X X SQL Only  No N/A
nvBench (Luo et al., 2021) Synthetic NL2Vis X X X X X X 7 Types No Direct
NLV-Utterance (Srinivasan et al., 2021) Real Simple Agg. X X X X X X 10 Types No Direct
ADVISor (Liu et al., 2021) Real Aggregation X X X X v X 3 Types No Direct
VisEval (Chen et al., 2024) Real + Synth. Mid-Complex X X X v X X 7 Types Yes Direct
Text2Vis (Ours) Real + Synth. Complex Hard v v '4 v v v >20 Types  Yes Open

Table 1: Comparison of Text2Vis with existing text-to-visualization benchmarks.

standing natural language queries, identifying rel-
evant data attributes, recommending chart types,
and generating visualization code, LLMs can lower
the barrier for non-experts to explore data with-
out extensive technical expertise. However, as
LLMs advance in coding and reasoning—often ri-
valing human performance on benchmarks—there
is a growing need for more rigorous evaluations
with complex, real-world tasks. Existing text-to-
visualization benchmarks often fail to capture this
complexity, limiting themselves primarily to natu-
ral language to SQL translation or simple visual-
ization mappings based on direct mentions of data
table columns (Zhong et al., 2017; Luo et al., 2021;
Srinivasan et al., 2021; Liu et al., 2021). Most of
them rely on rule-based methods or Vega-Lite spec-
ifications rather than code generation, limiting their
practical applicability. A recent benchmark (Chen
et al., 2024) evaluates LLM-driven visualization
generation but lacks diverse chart types, real-world
data science tasks, and multi-step reasoning. More-
over, most queries in it have explicit chart-type
mentions (e.g., “draw a line chart...”) rather than
accommodating open-ended queries, underscoring
the need for a more comprehensive benchmark.

Another major limitation of existing benchmarks
is their omission of concise textual answers along-
side generated visualizations, despite the fact that
users often create charts to address specific data-
driven questions. For instance, as shown in Fig. 1,
an analyst aiming to predict Apple’s stock closing
price in two days using a three-day moving aver-
age would benefit not only from the visualization
but also from an annotated answer. Providing such
textual answers enhances task effectiveness and en-
ables users to validate the accuracy of the generated
visualization (e.g., ensuring the model correctly
computes a ‘3-day moving average’ rather than
mistakenly applying a ‘5-day moving average’).

To address these limitations, we introduce
Text2Vis, a comprehensive benchmark designed
to rigorously evaluate LLMs on real-world text-to-
visualization tasks. Text2Vis features 1,985 queries
reflecting real-life data science challenges, cover-

ing complex analytical reasoning, statistical analy-
sis, trend analysis, outlier detection, and correlation
analysis (Figure 2). Unlike previous benchmarks, it
supports a wide range of visualization types, includ-
ing bar charts, line charts, scatter plots, heatmaps,
and specialized visualizations (Table 1). We also
incorporate “retrieval-augmented" queries, which
require models to fetch additional data before vi-
sualization, and conversational queries involving
follow-up interactions. This makes Text2Vis a
more rigorous and realistic challenge, leading to
noticeable performance drops for most LLMs com-
pared to simpler benchmarks.

To enhance visualization generation and reason-
ing, we also propose an actor-critic agentic frame-
work for iterative code refinement. In this approach,
the actor model generates responses and visualiza-
tion code, while the critic model provides feedback
to refine the output. Our experiments show that
this approach significantly outperforms direct in-
ference, producing more accurate, interpretable,
and reliable visualizations. In summary, our con-
tributions include: (i) Text2Vis, a comprehensive
benchmark featuring 1,985 queries that reflect di-
verse, real-world data science challenges, including
complex analytical reasoning and multi-step tasks;
(i) an actor-critic agnetic inference approach
for iterative code refinement, which significantly
enhances the accuracy, readability, and reliability
of generated visualizations; (iii) a comprehensive
LLM-based evaluation framework that assesses
answer correctness, code execution, visualization
readability, and chart accuracy, enabling scalable
and consistent benchmarking; and (iv) extensive
evaluations with 10 open- and closed-source mod-
els, revealing significant performance gaps and
common failure patterns, providing valuable in-
sights to guide future improvements in LLM-driven
visualization generation.

2 Related Work

Text-to-Visualization Benchmarks Existing
benchmarks for text-to-visualization systems
often oversimplify the complexity of real-world
analytical tasks by either treating the problem



(a) Reasoning

(b) Outlier Detection

Questi

Question: Assuming that 'Yes, would' resp

increase by 20% annually, ‘No, would not' responses
decrease by 10% annually, and 'Depends' responses
remain constant, in which year will the 'Yes, would'
responses surpass the 'No, would not' responses?
Provide the answer along with a line chart that

: Analyzing the distributions across
all age groups for both males and females, determine
whether there is an extreme outlier in the female age
group percentages using the 1.5*IQR method, and specify
the age group where this outlier occurs?

Box Plot of Age Group Percentages by Gender

(c) Summary Statistics

Question: Analyzing the distributions of exam scores
among the five universities, identify the university that
exhibits a bimodal distribution in exam scores. Calculate
the mean exam score for each mode, and then determine
the difference between these two means.

(d) Multiple Charts

Question: By analyzing the data from 2001 to 2019,
determine whether the gap between female and male
percentages is widening or narrowing over time, and predict
the gap in 2025 using linear regression. Provide your answer
supported by a dashboard with detailed visuals.

visualizes the trends over time.

Tz 068
Median: 10.25

8
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(e) Trend Prediction (f) Correlation Analysis
Question: Analyzing the data for Albania and Dominica
from 2005 to 2008, which entity shows a stronger negative

linear correlation between the years and its data values?

Question: Based on the given data of 'Value' over time
periods 1 to 3, predict the 'Value' at time period 5 using a
second-degree polynomial regression model. Provide
the predicted value as a number rounded to the nearest
whole number. 2
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Question:
temperature data from 1980 to 2020. Based on this data,
calculate the increase in temperature over this period in
degrees Celsius.

Analysis: The gap is widening over time; predicted 2025 gap: 3.10%

(g) Web Data Retrieval

Retrieve the global average surface
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Figure 2: Examples of different question types used in data analysis, including trend prediction, reasoning, outlier
detection, correlation analysis, summary statistics, and retrieval-augmented tasks.

as language-to-SQL translation or reducing it
to basic visualization mapping (e.g., assigning
data columns to chart axes) (Zhong et al., 2017;
Luo et al., 2021; Srinivasan et al., 2021; Liu
et al., 2021; Chen et al., 2024). For example,
WikiSQL (Zhong et al., 2017) and nvBench (Luo
et al., 2021) focus primarily on NL2SQL tasks,
while NLV-Utterance (Srinivasan et al., 2021) and
ADVISor (Liu et al., 2021) map textual queries
to visualization specifications but do not support
complex analytical queries or multi-step reasoning.
Additionally, these benchmarks rely on Vega-Lite
specifications rather than generating Python code,
limiting their applicability to practical workflows.
Quda (Fu et al., 2020) annotates user queries with
analytical tasks (e.g., retrieving values, finding
extrema) but lacks ground truth visualizations,
making it insufficient for evaluating end-to-end
visualization systems. More recently, VisEval
(Chen et al., 2024) was adapted from nvBench;
however, its small dataset (146 samples), limited
chart variety, and reliance on queries with explicit
chart-type mentions make it inadequate for
assessing real-world scenarios.

As summarized in Table 1, existing benchmarks
suffer from following key limitations: (1) a nar-
row focus on simple question and chart types, (2) a
lack of multi-step analytical reasoning tasks, and
(3) a disconnect from practical workflows, such as
web data retrieval, conversational interactions, and
handling unanswerable questions. These shortcom-
ings hinder the evaluation of models for real-world

text-to-visualization applications, underscoring the
need for more comprehensive benchmarks—a gap
this work aims to address.

LLMs for Automated Visualization NLP-
driven visualization generation has evolved from
rule-based grammar models to deep learning and
LLMs. Early methods relied on predefined tem-
plates but struggled with ambiguity and scalabil-
ity (Narechania et al., 2020), leading to hybrid ap-
proaches like RGVisNet (Song et al., 2022) and
ADVISor (Liu et al., 2021), which improved data
extraction and visualization generation. Recent ad-
vancements in LLMs have significantly enhanced
their ability to generate visualization code from
natural language queries (Hoque and Islam, 2024;
Maddigan and Susnjak, 2023). Chat2VIS (Mad-
digan and Susnjak, 2023) leveraged prompt engi-
neering to enable LLMs to generate visualizations,
while ChartLlama (Han et al., 2023) further im-
proved chart interpretation through multi-modal
instruction tuning. Despite these advancements,
challenges in grounding, correctness, and execution
reliability persist, as highlighted by VisEval (Chen
et al., 2024). To overcome these limitations, we
introduce an agentic approach that enhances LLM-
driven visualization generation through a structured
feedback loop and contextual adaptability.

Visualization Evaluation Early works like AD-
VISor (Liu et al., 2021) and NLV-Utterance (Srini-
vasan et al., 2021) focused on verifying syntactic
correctness and manually inspecting visualizations



but lacked scalability for complex queries and large
datasets. Chen et al. (2023) explored LLMs for
data interpretation and visualization design, though
their manual grading was inefficient for large-scale
benchmarking. Podo et al. (2024) introduced a
structured evaluation framework assessing code
correctness, visualization legality, and semantic
alignment and VisEval (Chen et al., 2024) partially
utilized LLMs for readability and visual accuracy.
However, LLM-based chart correctness—ensuring
that the generated chart accurately represents the
query’s intent and underlying data—alongside an-
swer correctness remains a key bottleneck. To ad-
dress this, we propose a comprehensive evaluation
framework leveraging LLMs and Matplotlib to as-
sess answer and chart correctness, as well as visual
quality, readability, and execution success.

3 TEXT2VIS

We curated and synthesized a diverse dataset of
data tables, queries, charts, and metadata. The
dataset creation involved three key steps: (1) data
table collection, (2) query generation and annota-
tion, and (3) dataset analysis.

3.1 Data Table Construction

We started with the existing ChartQA cor-
pus (Masry et al., 2022), which originally scraped
22K data tables from four diverse sources:
(i) Statista (Statista, 2024), (ii) Pew Research (Pew,
2024), (iii) Our World In Data or OWID (Pew,
2024), and (iv) Organisation for Economic Co-
operation and Development or OECD (OWID,
2024). This corpus covers a variety of topics in-
cluding economics, politics, finance, climate, and
health. From this collection, we manually curated
2K high-quality tables based on complexity, diver-
sity, and analytical richness.

To broaden dataset variety and increase complex-
ity further, we generated 173 synthetic tables using
OpenAl ol-preview and Gemini Flash 1.5 Pro, in-
corporating missing values, multi-variable depen-
dencies, and non-linear patterns. After rigorous val-
idation, we removed 239 tables due to issues with
table quality or overly simple/problematic queries.
The final dataset comprises 1,935 carefully curated
tables, providing a robust benchmark for evalu-
ating text-to-visualization models across diverse
real-world scenarios and complex analytical tasks.

3.2 Query Generation and Annotations

Query Generation and Expansion Three co-
authors of this paper, who are also experts in data

Donut Boxplot

Histogram
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Scatter
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Figure 3: Common chart types in our Text2Vis.

science, manually crafted 600 high-quality queries
reflecting real-world challenges such as trend anal-
ysis, statistical computations, correlation analysis,
outlier detection, comparisons, deviation analysis,
predictive modeling, time-series analysis, forcast-
ing, and geospatial analysis. These queries em-
phasize complex reasoning, making them more
challenging than those in existing benchmarks. To
expand this initial set, we leveraged multiple LLMs,
including OpenAl ol-preview, Gemini Flash 1.5
Pro, and Claude. Using few-shot prompting, we
generated 1,624 additional queries, broadening the
coverage of analytical tasks and reasoning-based
challenges. After manual verification, 239 tables
and queries were removed due to quality concerns.

Visualization Code and Answer Generation
For each query, we generated visualization code
using OpenAl ol-preview based on two li-
braries, Matplotlib (Bisong and Bisong, 2019) and
Seaborn (Waskom, 2021), as these are among the
most versatile and widely used data visualization
libraries in Python. In addition, we generated short
answers, visualization summaries, and metadata,
including chart type and axis labels. All outputs
were manually reviewed, corrected, and refined to
ensure accuracy, clarity, and relevance.

3.3 Dataset Analysis

Data Table Statistics Our dataset consists of 1,985
data tables covering over 60 countries and diverse
demographic and sectoral domains, including fi-
nance, healthcare, politics, energy, technology, de-
mographics, and environment. It exhibits structural
diversity, with tables containing an average of 10
rows (max: 1,000) and 3.2 columns (max: 15),
ensuring a mix of compact and extensive datasets.
It also includes clean data (1,789 tables), noisy
data (191 tables), and hybrid cases, enabling robust



Question Category (%)

Question Complexity Task Type

Closed/ Single query/ Data Given/ Single/ Answerable/
Open-Ended Conversational Web-data Retrieval Multi-Chart Unanswerable

Easy Medium Hard Extra Hard Analytical Exploratory Predictive Prescriptive

90/10 80/20 97/3 90/10 89/11

343

245 1098 686 700 593 191 10

Table 2: Distribution of question categories, chart types, question types based on complexity, and tasks type in Text2Vis.

evaluation of models handling real-world inconsis-
tencies. Additionally, it focuses on query complex-
ity, with a strong emphasis on hard queries (1,173)
while maintaining a balanced range of challenges
across different difficulty levels.

Query Diversity To analyze this, we used GPT-40
to automatically categorize each natural language
query across three dimensions: (i) Question type,
(iii) Question complexity and (if) Task type.

Text2Vis encompasses a diverse set of question
types that evaluate various aspects of analytical
reasoning and visualization generation (Table 2).
While most questions take a given data table and
query as input, expecting a specific answer as out-
put (closed-ended), others are open-ended, allow-
ing for multiple possible visualizations. 20% ques-
tions involve multi-turn conversations, simulating
natural dialogue in analytical workflows. Simi-
larly, while many questions provide data tables, a
small number of queries (3%) require models to
retrieve external data before generating visualiza-
tions. Additionally, certain questions expect mod-
els to produce multiple visualizations to explore
complex datasets (10%), reflecting real-world sce-
narios in dashboards and infographics where a sin-
gle visualization is insufficient. Finally, unanswer-
able queries (11%) appear across all categories,
adding complexity by requiring models to recog-
nize when a valid response cannot be generated.
The overall query set is highly challenging, with
most questions categorized as hard (1,098) or extra
hard (686). Examples of different query types are
illustrated in Figure 2 and Appendix A.2.

The dataset spans a broad range of data sci-
ence tasks, including analytical (700 queries), ex-
ploratory (593), predictive (191), and prescriptive
(10), capturing real-world multi-step and interac-
tive data exploration scenarios(Table 2). It also
demonstrates significant linguistic richness, with
an average question length of 217.87 characters
and 34.15 tokens, covering a vocabulary of 6,776
unique tokens. This ensures syntactic complexity
and variability. The combination of diverse data
sources, multi-faceted queries, and linguistic depth
makes Text2Vis a challenging and realistic bench-
mark for text-to-visualization models.

Code Diversity and Complexity Matplotlib and
Seaborn are two of the most widely used Python
libraries for visualization, and we provide code in
both to ensure broad compatibility and adaptability.
To measure the diversity of axis labels, we used
cosine distance between the TF-IDF vectors of the
axis labels (for both X and Y). The average dis-
tance was 0.97, indicating that our dataset includes
a wide range of unique labels, covering different
contexts and visualization types. In terms of code
complexity, our scripts average 33.74 lines of code,
1,146 characters, and 123.72 tokens. Additionally,
with an average of 5.34 comments per script, we
prioritize clarity and maintainability, aligning with
real-world visualization coding practices.

Visual Diversity Our dataset includes over 20 types
of visualizations, encompassing not only common
charts like bar and line charts but also more com-
plex and less frequent types such as treemaps, box-
plots, waterfall charts, and dashboard-style multi-
chart visualizations (Figure 3). This diverse col-
lection enhances model robustness by exposing it
to a wide range of chart types and visual styles
(e.g., color, layout). To quantify color diversity,
we converted images to LAB color space and
computed pairwise Euclidean distances between
dominant colors, yielding a Mean CIEDE2000
(Sharma et al., 2005) Color Distance of 13.9, indi-
cating strong variation in color schemes. To mea-
sure visual and textual diversity, we extracted text
using OCR, derived visual features using CLIP
(Contrastive Language-Image Pretraining) (Rad-
ford et al., 2021), and computed text embeddings
via a Sentence Transformer (Reimers, 2019). This
analysis produced a Mean Cosine Distance of
0.6924, highlighting strong diversity across both
chart structures and annotations.

4 Methodology

We define the Text2Vis task as a text-to-
visualization generation problem that evaluates
how well a model can translate natural language
queries into a visualization annotated with con-
cise textual answers. The dataset consists of V ex-
amples, denoted as D = {t;, ¢i, ai, vi}ﬁvzl, where
each example includes a data table ¢;, a natural lan-
guage query g;, the corresponding short answer a;,



and the visualization code v;. The model is tasked
with generating both a; and v; based on ¢; and ¢;,
with v; producing an executable visualization code.

4.1 Models

We evaluated both state-of-the-art closed-source
models and open-source models to benchmark
text-to-visualization generation capabilities. For
closed-source models, we tested GPT-40 (Ope-
nAl, 2024) and Gemini 1.5-Flash (Team, 2024),
which are widely used for natural language under-
standing and code generation. For open-source
models, we prioritized deployment feasibility in
the real-world and mostly selected models with
less than 10B parameters. More specifically,
we evaluated Qwen2.5-7B-Instruct, Qwen2.5-7B-
Coder (Yang et al., 2024), Mistral-7B (Jiang et al.,
2023), LLaMA 3.1-8B, DeepSeek-Coder-V2-Lite
(DeepSeek-Al et al., 2024) and DeepSeek-R1-
Distill-LLaMA-8B (Guo et al., 2025), as well as
CodeLlama-7B-Instruct (Roziere et al., 2023). For
CodeLlama, we also use its 13B and 34B versions.

4.2 Evaluation Criteria

To comprehensively assess text-to-visualization
models, we define four key evaluation criteria.

Answer Match: Evaluates how accurately the
generated textual response aligns with the ground
truth. We use GPT-40 as an evaluator due to its im-
pressive judging capabilities (Hackl et al., 2023).

Code Execution: Measures whether the gener-
ated visualization code executes without errors in
Matplotlib. This ensures that the generated code is
syntactically correct and produces an actual output.

Readability and Visualization Quality: Simi-
lar to VisEval (Chen et al., 2024), we assessed the
clarity and quality of the generated charts using
GPT-4o. This included evaluating aspects like lay-
out, axis scaling, titles, labels, and color schemes.

Chart Correctness: Measures whether the gen-
erated chart accurately represents the intent of the
query and the underlying data. We again use GPT-
4o as an evaluator for this metric.

For scoring, Answer Match and Code Execu-
tion Success are binary (1 for success, O for fail-
ure), while Readability & Visualization Quality and
Chart Correctness are rated on a scale from 1 to 5.
A sample is considered a pass if the code executes
successfully, the answer matches the ground truth,
and the combined readability and chart correctness
scores exceed 3.5 (implying while some readability
or chart correctness issues may exist, the output

1. Initial Response Generation

Data Table... ... User Input
« Characteristic, Annual turnover in million euros... ...
. Years 2008-2016
. Turnover Values 191985.5, 143670.0, 178858.4
Query: From the annual turnover data from 2008 to 2016, ...
determine the year in which the annual turnover deviated
the most from this average, and compute the value of that
deviation in million euros.

Generating Response... ...
1.Answer: 5841
o 2.Code: import matplotlib.pyplot as plt
|m| years = ['2008', '2009', '2010'
turnovers = [191985.5, 143670.0,
Actor plt.figure(figsize=(10, 6))
plt.plot(years, turnovers, marker='o', ....... )
e Missing Numpy Import ,
PLlt.show() Incorrect Annotation
2. Error Analysis & Feedback

Response Validation... ...
1.Answer Feedback: Incorrect calculation. The ....

computed as Max(abs(Turnover - Average Turnover)).

Mistake Type: Calculation Error

The maximum deviation year should be recomputed ......

The highest deviation is 50023.8 million euros,..in 2009.
2. Code Feedback: Missing import : Import numpy as np ...

Incorrect Annotation Formatting: 'Max Deviation: 2009
..... [max_deviation_index]:.1f} million euros'

Should be formatted in a single line or properly broken.

Critic

3. Revised Response Generation

Correcting Response... ... Annual Turnovers from 2008 to 2016
220000

Answer: 2009, 50023.76 million euros
Code: 2000+ T
import matplotlib.pyplot as plt g”"“‘“’
Q import numpy as np % 190000~

years = ['2008', '2009', '2010' ...] ... Z 000
deviations=[abs(turnover-average_turnover) 3

Final Answer.
2009, 50023.8

Z 170000
m.. H
Actor pax_index=deviatis.index(max(deviations) # %

plt.plot(years,turnovers, marker='o',...) 150000

o P 140000+
plt.annotate (f' MaxYear

{deviations[max_index]:.1f} . Year

Figure 4: Our Agentic Inference Framework where the
Actor (e.g., Gemini) generates an initial response, while
the Critic (e.g., GPT-40 for validation, Matplotlib for
visualization execution) assesses and provides feedback.

remains interpretable). The evaluation prompt for
chart correctness and readability, along with the
scoring guide, is provided in Table 12.

4.3 Text2Vis Inference Approaches

We use two approaches to assess the performance
of text-to-visualization models: a direct inference
and an agentic inference framework.

(i) Direct Inference: In this method, the model
is given a prompt containing a natural language
query, a corresponding data table, with instructions
to generate the response in JSON format.

(ii) Agentic Inference: To enhance the quality of
generated responses, we employ an actor-critic-
based agentic inference framework (see Figure 4),
where a critic model iteratively refines the output
of the generator (actor) (Islam et al., 2024; Shinn
et al., 2023). The key steps are as follows:

(1) Initial Response Generation (Actor Step):
The actor model generates an initial response con-
taining the answer, visualization code, and sum-
mary based on the given query and data table.

(2) Critic Evaluation & Feedback Generation:
A separate critic model evaluates the generated



Code Exec.|Answer |Visual Clarity| Chart Final

Model

Success | Match | Readability |Correctness|Pass Rate
GPT-40 0.87 0.42 345 3.15 0.26
Gemini-1.5-Flash 0.83 0.34 33 29 0.17
CodeLlama-7b 0.60 0.10 2.15 1.69 0.01
CodeLlama-13b 0.52 0.15 1.75 1.38 0.04
CodeLlama-34b 0.39 0.22 0.91 0.80 0.04
Llama-3.1-8B 0.72 0.24 1.68 1.59 0.07
Mistral-7B 0.39 0.24 1.4 1.31 0.06
Qwen2.5-7B 0.80 0.29 2.82 2.73 0.13
Qwen2.5-Coder-7B 0.31 0.24 1.25 1.26 0.04
DeepSeek-Coder-V2-Lite 0.75 0.22 2.93 2.63 0.10
DeepSeek-R1-Distill-Llama-8B 0.35 0.33 1.24 1.12 0.07

Table 3: Automatic evaluation results on Text2Vis using
direct inference for different models. Higher values
indicate better performance. Visual Clarity Readability
and Chart Correctness are rated out of 5.

response based on the defined evaluation criteria.
It identifies potential errors in the answer, code
execution issues, and readability problems in the
visualization. The critic then provides feedback to
improve the initial response.

(3) Refinement & Final Response Generation:
The actor model takes both the initial response
and the critic’s feedback into account to produce
a refined final response. This iterative refinement
process ensures that the final output is more aligned
with the intent of the query. To ensure inference
efficiency, only one round of iteration is performed.

We explore three different feedback mechanisms
in the agentic framework: (1) Self-Critique Using
the Same Model: The same model that generates
the initial response acts as the critic, reviewing
its own output (Saunders et al., 2022). (2) Cross-
Model Feedback: Another external model acts as
the critic. (3) Execution-Based Feedback: Feed-
back is derived from the code execution in Mat-
plotlib, ensuring syntax correctness.

5 Experiment Results
5.1 Automatic Evaluation

Results for Direct Inference: Table 3 presents
the automated evaluation results for all models as-
sessed using the direct inference approach. The
models were evaluated based on predefined criteria.
GPT-40 achieved the highest performance, with
87% code execution success, 42% correct answer
match, average visual clarity rating of 3.45, and a
final pass rate of 26%. Among open-source models,
Qwen2.5-7B performed the best, followed closely
by DeepSeek-Coder-V2-Lite, both achieving a fi-
nal pass rate of 13% and 10% respectively.
Despite its larger size, CodelLlama-34B per-
formed poorly, reinforcing that increased model
size does not necessarily improve structured data
comprehension. Our analysis found that in over
50% of failure cases, the model struggled to ex-

Model Code Exec.|Answer |Visual Clarity| Chart Final
Success | Match | Readability |Correctness/Pass Rate
GPT-40 (without agentic) 0.87 0.42 345 3.15 0.26
GPT-40 & Gemini-1.5-Flash 0.91 0.49 3.85 3.87 0.36
GPT-40 & GPT-40 0.94 0.53 3.99 4.02 0.42
GPT-40 & Matplotlib 0.94 0.37 3.96 4.02 0.34

Table 4: Comparison of GPT-40’s direct performance
(without agentic) and agentic inference frameworks.
Higher values indicate better performance.

tract relevant data elements from the query, lead-
ing to execution failures. However, we observe
that while retrieval performance worsens with in-
creasing model size in the CodeLLlama family, the
answer correctness metric shows slight improve-
ments. This suggests that larger models may better
interpret and reason about queries but still face
difficulties in structured data handling.

Results for Agentic Inference: The results in
Table 4 demonstrates the effectiveness of the agen-
tic framework in improving GPT-40’s performance
across all evaluation criteria. The use of feedback
mechanisms enhanced both answer correctness and
code execution rates. When using self-feedback,
the answer match score increased from 0.42 to 0.53,
a 26% improvement, with noticeable gains in vi-
sualization clarity and correctness. Most notably,
the final pass rate increased from 0.25 to 0.42, a
68% improvement, demonstrating the substantial
impact of iterative refinement with only one round.
The best-performing feedback method was GPT-40
with self-critique, achieving the highest code ex-
ecution success rate (94%) and chart correctness
(4.02). While Matplotlib execution feedback also
maintained high code execution success, its final
pass rate (34%) suggests that external validation
alone may not be as effective as iterative language-
based refinement. These results highlight the effec-
tiveness of agentic learning.

5.2 Human Evaluation

We also selected 236 samples with a distribution
similar to the original dataset for human evaluation.
These samples were first verified by a new annota-
tor (with discussions being held with the original
annotator to fix any disagreements). Then the eval-
uation was conducted using the best-performing
closed-source model: GPT-40, and 2 open-source
models (LLaMA-3.1-8B & Qwen2.5-7B).

For answer match, all responses were manually
reviewed. For readability and visualization qual-
ity, we followed the same structured criteria as
the automated evaluation. For chart correctness,
we compared the generated visualization with the



Code Exec. | Answer | Visual Clarity Chart Final

Model

Success Match | Readability | Correctness | Pass Rate
GPT-40 0.87 0.39 332 3.30 0.30
Llama-3.1-8B 0.72 0.28 1.79 1.67 0.09
Qwen2.5-7B 0.80 0.31 3.03 2.94 0.17

Table 5: Human Evaluation results on Text2Vis using
direct inference for different models.

ground truth code and chart, to assign a score out of
5. An author expert in data science and visualiza-
tion manually reviewed each sample and provided
ratings for both aspects. The goal was to assess
the reliability of LLM-based evaluation against hu-
man judgment. We found that across all 3 models,
the difference between automated and manual eval-
uation was within 15%. The detailed result for
manual evaluation is presented in Tables 5.

5.3 Ablation Studies
To evaluate the impact of dataset complexity on

model performance, we conducted ablation stud-
ies across various question types. As expected,
performance declined for more complex questions,
such as those requiring web-based data retrieval
or multiple chart generations (Table 7). Notably,
GPT-40 and Gemini-Flash-1.5 outperformed open-
source models on these tasks. Models also strug-
gled with unanswerable queries, highlighting diffi-
culties in recognizing when no valid visualization
or response can be generated. Interestingly, they
performed better on conversational queries, possi-
bly due to the contextual grounding acquired during
pre-training and instruction-tuning. Lastly, open-
ended queries were handled slightly more effec-
tively than closed-ended ones, indicating a stronger
ability to generate diverse and flexible responses.

6 Error Analysis

We conducted a qualitative analysis to identify key
error patterns. Our findings are as follows:

Code Execution Errors Syntax errors such as
unterminated string literals, missing commas, and
shape mismatches (e.g., "shape mismatch: objects
cannot be broadcast to a single shape') were com-
mon. Some models failed with plotting libraries,
causing attribute errors (e.g., "’PathPatch’ object
no attribute ’get_ydata’"). Also some models ex-
hibited naming issues (e.g., vy instead of years)
and indentation errors. See Figure 6(c, d, f, g).

Data Import and Retrieval Issues Several mod-
els struggled with defining datasets (name ‘df’ is
not defined) and parsing date formats (time data
‘Sept 2000’ does not match format %b %Y). Most
failed in web data retrieval tasks, see Figure 6h.

Logical and Analytical Reasoning Errors Mis-
takes in multi-step calculations, incorrect metric

KeyError IndexError

JSONDecodeError
DataSourceError

ImportError

NameError

ParserError

ConversionError AttributeError

TypeError

ValueError

SyntaxError

Figure 5: Error type distribution with square root trans-
formation applied to prevent the SyntaxError category
from dominating the chart.

selection, and flawed logic led to misleading out-
puts. See Figure 6b.

Visualization Clarity Issues Issues like miss-
ing labels, inconsistent axis scaling, and poor color
schemes impacted interpretability, even when tech-
nically correct. See Figure 6(e).

Instruction-Following Failures Many
coder models failed to follow natural lan-
guage instructions. CodeLlama-34B  of-
ten attempted to load external CSV files
(pd.read_csv (’data.csv’)) instead of
processing in-context data. See Figure 6a.

Incomplete Code Generation Mistral and
Llama-3.1 frequently produced incomplete imple-
mentations, lacking dataset definitions or key meth-
ods. See Figure 6g.

7 Conclusion

We introduced Text2Vis, a benchmark for eval-
uating LLLMs in text-to-visualization tasks, inte-
grating diverse datasets and over 20 chart types to
assess complex questions involving multi-step rea-
soning, multi-chart generation, retrieval tasks, and
conversational queries. Our evaluation of open- and
closed-source models revealed critical limitations
of LLMs, with error analysis highlighting key areas
for improvement. We proposed an agentic infer-
ence framework with feedback loops that enhanced
visualization accuracy, interpretability, and adapt-
ability. This framework can further refine LLM
performance by improving reasoning over struc-
tured data and enabling more accurate and explain-
able results. Additionally, the Text2Vis dataset will
serve as a valuable resource for enhancing large
language models’ capabilities in code generation
tasks, ensuring better alignment with real-world
analytical challenges and improving their ability to
generate reliable, high-quality visualizations.



Ethical Considerations

Our work focuses on sharing benchmark data and
evaluation results to promote transparency and re-
producibility in text-to-visualization research. All
datasets used in Text2Vis are publicly available.
The authors manually verified all LLM-generated
queries and visualizations to ensure data integrity
and accuracy.

We maintained fairness in model comparisons
by applying consistent evaluation criteria across
both open-source and closed-source models.

Limitations

While Text2Vis provides a comprehensive bench-
mark for evaluating text-to-visualization generation
models, it has limitations as well. First, although
our dataset incorporates diverse real-world and syn-
thetic data, it may not fully capture the range of
complexities present in specialized domains. Sec-
ond, our evaluation heavily relies on LLM-based
automated assessment frameworks, which, while
efficient, may introduce biases in interpreting vi-
sualization quality or correctness. Although we
observed strong alignment between human and au-
tomated evaluations, finer details in visualization
aesthetics or interpretability may still be better cap-
tured through manual analysis.

Additionally, the benchmark provides code using
Matplotlib and Seaborn libraries, but we have not
included code for other popular visualization frame-
works like D3.js or Vega-Lite. However, LLMs can
be used for code conversion to these libraries. Fur-
thermore, we tested multiple prompting strategies
and found that our selected prompt yielded robust
results. Engineering prompts may further change
overall model performance. Furthermore, although
this benchmark provides code in two languages,
we performed all the experiments using Matplotlib,
which is the most widely used visualization library.
Future work can explore evaluating Seaborn-based
code visualization.

Lastly, while our agentic learning framework
demonstrated significant improvements, it intro-
duces computational overhead, which may limit
scalability for larger datasets or more resource-
constrained environments. As an alternative, we
showed how Matplotlib feedback can also provide
similar improvements in performance.
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A Appendices

A.1 Data Science Question Categorization
Framework

Data science plays a crucial role in uncovering in-
sights, identifying trends, making predictions, and
driving informed decision-making. However, data-
related questions vary in complexity and purpose.
To better organize and analyze such questions, they
can be categorized into four broad groups. These
categories help structure the analytical approach
and determine the appropriate methods for answer-
ing each type of question.

A.1.1 Exploratory: Understanding Patterns
and Structures

Some questions are aimed at understanding the
overall structure of the data, identifying trends, or
summarizing key characteristics. These questions
do not necessarily seek to establish relationships
between variables but rather focus on obtaining a
broad overview of the dataset.

Exploratory questions can be categorized into
the following subcategories: Insights, Trend Anal-
ysis, Statistical Summaries, Distribution Analysis,
Categorical Data Analysis, Geospatial Analysis,
Hierarchical Data Analysis, and Multi-Variable
Analysis, each focusing on different aspects of un-
derstanding data patterns and structures.

Insights Insights-based questions focus on ex-
tracting key findings and meaningful observations
from raw data. These questions often highlight no-
table patterns, distributions, or summary statistics.

Example: What are the top five best-selling
products in the last six months?

Trend Analysis Trend analysis aims to identify
changes in data over time, such as growth, decline,
or seasonal fluctuations. These questions often
involve historical patterns to detect trends.

Example: How have website visitor numbers
changed over the past year?

Statistical Summaries Statistical summaries
provide numerical insights into datasets, such as av-
erages, variances, and standard deviations. These
questions help quantify overall data characteristics.

Example: What is the median income of em-
ployees in each department?

Distribution Analysis Distribution analysis fo-
cuses on understanding how values in a dataset are
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https://help.tableau.com/current/pro/desktop/en-us/ask_data.htm
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spread across a range. It helps detect skewness,
uniformity, or concentration in the data.

Example: What percentage of customers fall
within different age groups?

Categorical Data Analysis These questions fo-
cus on analyzing groups of categorical variables
to understand their distributions, relationships, or
proportions.

Example: What percentage of total sales come
from each product category?

Geospatial Analysis Geospatial analysis is con-
cerned with visualizing and understanding spatial
distributions across geographic regions.

Example: What is the distribution of customer
locations by city?

Hierarchical Data Analysis Hierarchical analy-
sis examines data structured in a nested or multi-
level format, often represented through tree struc-
tures.

Example: How is the company’s organizational
hierarchy distributed across different departments?

Multi-Variable Analysis This analysis focuses
on examining interactions between multiple vari-
ables simultaneously to identify complex relation-
ships.

Example: How do age, income, and location
influence customer purchasing behavior?

A.1.2 Analytical: Explaining Relationships
and Diagnosing Data

Certain questions go beyond simple observation
and focus on explaining why specific patterns or
anomalies exist in the data. These questions in-
vestigate relationships between variables, detect
irregularities, and provide insights into underlying
factors.

Analytical questions can be categorized into the
following subcategories: Reasoning, Correlation
Analysis, Outlier Detection, Deviation Analysis,
and Comparison Analysis, each focusing on un-
covering relationships, detecting anomalies, and
understanding variations in data.

Reasoning Reasoning-based questions focus on
understanding causality, hypothesis testing, and
logical deductions to explain why certain patterns
or anomalies exist in the data.

Example: Why do customers in certain regions
spend more on our products?

12

Correlation Analysis Correlation analysis exam-
ines the strength and direction of relationships be-
tween two or more variables, helping to understand
dependencies in data.

Example: Is there a relationship between adver-
tising budget and sales revenue?

QOutlier Detection Outlier detection identifies un-
usual or extreme values in the dataset that may
indicate errors, fraud, or unique trends.

Example: Are there any anomalies in the
monthly transaction amounts that need investiga-
tion?

Deviation Analysis Deviation analysis measures
how much data deviates from expected baselines,
identifying significant variations or shifts in pat-
terns.

Example: How much does employee perfor-
mance vary from the expected target levels?

Comparison Analysis Comparison analysis fo-
cuses on evaluating differences and similarities be-
tween datasets, categories, or time periods.

Example: How do customer engagement met-
rics compare between last year and this year?

A.1.3 Predictive: Forecasting Future Events

Some questions are forward-looking, focusing on
making informed predictions about future out-
comes based on historical data. These questions
rely on identifying past trends to estimate what is
likely to happen next.

Predictive questions can be categorized into
the following subcategories: Predictive Analysis,
Time-Series Analysis, Forecasting, and Anomaly
Prediction, each focusing on using past data to
estimate future outcomes and detect potential irreg-
ularities.

Predictive Analysis Predictive analysis focuses
on estimating future outcomes based on historical
data patterns, often using statistical models or ma-
chine learning techniques.

Example: What is the likelihood that a customer
will renew their subscription next year?

Time-Series Analysis Time-series analysis in-
volves examining data that changes over time to
identify trends, cycles, and seasonal effects.

Example: How do stock prices fluctuate over
different time periods?



Forecasting Forecasting predicts future values
based on past trends and patterns, commonly used
in sales, finance, and demand planning.

Example: What will be the expected revenue
for the next quarter?

Anomaly Prediction Anomaly prediction fo-
cuses on detecting rare but significant future events
that deviate from expected patterns, such as fraud
detection or equipment failures.

Example: Can we predict which transactions
are likely to be fraudulent?

A.1.4 Prescriptive: Recommending
Data-Driven Actions

Certain questions are designed to guide decision-
making by providing actionable insights. Instead of
just analyzing past data or predicting future trends,
these questions focus on identifying the best possi-
ble course of action.

Prescriptive questions can be categorized into the
following subcategories: Decision Support, Clas-
sification & Labeling, Clustering Analysis, and
Causal Inference, each focusing on recommend-
ing actions based on data insights and optimization
techniques.

Decision Support Decision support focuses on
recommending optimal strategies or actions based
on data analysis. It helps businesses or individuals
make informed choices by considering past trends
and current conditions.

Example: What is the best pricing strategy to
maximize profit while maintaining customer satis-
faction?

Classification & Labeling Classification and la-
beling involve assigning predefined categories or
labels to new data points based on learned patterns
from historical data.

Example: Should this email be categorized as
spam or not?

Clustering Analysis Clustering analysis identi-
fies groups of similar data points within a dataset,
allowing segmentation and targeted decision-
making.

Example: Can customers be segmented into dif-
ferent groups based on their purchasing behavior?

Causal Inference Causal inference seeks to de-
termine cause-and-effect relationships between
variables, helping understand the impact of changes
or interventions.
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Example: How does increasing the marketing
budget affect customer retention rates?

A.2 Query Types and Examples

To ensure a comprehensive evaluation of text-to-
visualization models, the Text2Vis dataset includes
diverse query types that reflect real-world data anal-
ysis scenarios. These queries are designed to test
various aspects of model reasoning, retrieval ca-
pabilities, response complexity, and visualization
diversity. Specifically, we categorize our dataset
along the following dimensions:

* Closed vs. Open-Ended Queries — Distin-
guishes between questions expecting a spe-
cific answer as output (closed-ended) and the
ones that are open-ended, allowing for multi-
ple possible visualizations.

* Single query vs. Conversational — Differen-
tiates between single query with multi-turn in-
teractions where each query builds on prior re-
sponses and independent, standalone queries.

* Data given vs. Web-data Retrieval — Clas-
sifies queries based on whether they require
retrieving external web data before generating
visualizations.

* Single vs. Multi-Chart — Compares queries
requiring a single visualization versus those
needing multiple coordinated charts com-
monly found in dashboards and infographics.

* Answerable vs. Unanswerable Queries —
Identifies whether a query has a definitive an-
swer based on available data or if it requires
additional assumptions, external knowledge,
or subjective interpretation.

The following sections provide examples of few
of them.

Conversational Queries: These queries simulate
multi-turn interactions where each question builds
on the previous answer, testing the model’s ability
to maintain context and continuity across queries.

* Q1: Can you visualize the overall trend in un-
employment in the USA from 2000 to 20207
A1l (Open-Ended): The unemployment rate
shows a significant spike during the 2008 fi-
nancial crisis, peaking in 2009, followed by a
steady decline until 2020. Code: Line chart
showing the unemployment trend from 2000
to 2020.



* Q2: What year had the highest unemploy-
ment rate? A2 (Short Answer): 2009. Code:
Bar chart highlighting the year 2009 with the
highest unemployment rate.

Q3: Based on the provided unemployment
trend graph, what key patterns and anoma-
lies can you identify? Discuss any significant
changes, potential causes, and long-term im-
plications. A3 (Open-Ended): The unem-
ployment trend shows a sharp spike in 2009,
likely reflecting the impact of the 2008 finan-
cial crisis. Post-2010, there is a gradual de-
cline, suggesting economic recovery. How-
ever, smaller fluctuations in later years may
indicate cyclical job market instabilities. A
steep increase in recent years could be linked
to external shocks such as a global pandemic
or policy shifts. Code: Line chart with an
outlier marker on the year 2009.

Retrieval-Augmented Queries: These queries
require models to fetch additional data before visu-
alization, testing their ability to integrate external
data sources dynamically.

* Q1: Retrieve the unemployment data for the
USA from 2000 to 2020 and visualize the
trend. A1l (Open-Ended): The data shows
a consistent trend with notable spikes during
economic downturns, such as in 2009. Code:
Line chart showing the unemployment rate in
the USA from 2000 to 2020 after retrieving
relevant data.

Q2: Based on the retrieved data, which
year had the lowest unemployment rate? A2
(Short Answer): 2019. Code: Bar chart
showing the year 2019 with the lowest un-
employment rate.

Short Answer vs. Open-Ended Queries: These
queries distinguish between concise factual re-
sponses and detailed analytical insights.

* Short Answer Query: What is the highest
unemployment rate recorded in the USA be-
tween 2000 and 2020? A (Short Answer):
9.6% in 2009. Code: Single bar chart high-
lighting 2009.

* Open-Ended Query: Analyze the unemploy-
ment trend in the USA from 2000 to 2020 and
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discuss any significant fluctuations. A (Open-
Ended): The data indicates a sharp rise in un-
employment during the 2008 financial crisis,
followed by a gradual recovery. The COVID-
19 pandemic in 2020 caused another spike.
Code: Line chart with annotations on signifi-
cant years (2009 and 2020).

Unanswerable Queries Unanswerable queries
arise when the required data is not available in
the dataset or the question cannot be logically an-
swered based on the provided information. These
queries generally fall into the following types:

* Missing Data Queries — When the dataset
does not contain the required information. Ex-
ample: Asking for unemployment data from
1995 when the dataset only covers 2000 on-
ward.

* Ambiguous Queries — When the question
lacks specificity and can have multiple inter-
pretations. Example: Asking for "employ-
ment trends" without specifying sector or re-
gion.

* Contradictory Queries — When the query
asks for information that is logically impossi-
ble. Example: Asking for the highest unem-
ployment rate in 2025 when the dataset does
not contain future data.

* Hypothetical Queries — When the question
asks about alternative scenarios not repre-
sented in the data. Example: Asking what
the unemployment rate would have been if the
2008 financial crisis had not occurred.

A.3 Common Data Visualization Error

Figure 5 highlights examples of common visual-
ization errors, including incorrect labeling, syntax
errors, and data issues. Figure 6 also provides de-
tailed examples of model failures. Finally, Figure 7
shows a word cloud of the most common words
that appeared in our evaluation error messages.

A.4 Prompt Construction

To promote transparency in query generation and
reproducibility for evaluation, we provide the ex-
act prompts used to generate our queries, evaluate
our models, and develop our agentic framework.
Finally, we have provided our prompts exactly, in-
cluding the evaluation criteria and scoring schema
used for comprehensive LLM-based evaluation.



(a) Instruction-following Issues

Question: By how much percentage would Spain
need to increase its share to match Finland's
share in 1993, given that Finland had a higher
percentage of people agreeing with the statement
*most people can be trusted'? Provide the
required percentage increase.

import matplotlib.pyplot as plt
import pandas as pd

data = pd.read_csv('data.csv')
data.plot(kind="bar")
plt.title('Percentage
plt.xlabel('Country")
plt.ylabel('Percentage Ii
plt.show()

crease in Measu

rease’)
CodeLlama-34B-Instruct expects a

FileNotFoundError

Cell In[90], line 3
1 import matplotlib.pyplot as plt
2 import pandas as pd

----> 3 data = pd.read_csv('data.csv')

(e) Readability Issues

Question: Which category among 'Agency’, 'All Other,
and 'Finance' has the highest positive skewness in its
counts over the years 2012 to 2018, as measured by
Pearson’s skewness coefficient?

Box Plot of Counts by Category (2012-2C
Skewness: 1.26
L486.50

15433100

(b) Logical Issues

Question: Given the private health per

(c) Shape Mismatch Issues
Question: After the standard deviation of the

person in 2004 for Argentina, Fiji, and Benin, and
assuming each country's expenditure grows annually at
different rates, after how many years will Benin's
expenditure per person surpass Fiji's expenditure per
person?

years = np.arange(0, 50)

exp_values = [initial * (1 + rate) ** y for initial

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(10, 6))
plot(years, exp_values[o], label
plot(years, exp values[1], labe
plot(years, exp_values[2], lab
axhline(y=exp_values[1][1], c
title('Private Health Expendi
xlabel (" vears')
ylabel('Expenditure per Perfon')
Tegend()
grid(True)
show()

or=
ure Growth Over Yi

mismatch due to incorrect variable
(y instead of years) in deepsedR:""""""
coder-v2-lite

ValueError

cell In[224], line 12
9 exp_values = [initial * (1 + rate) ** y for
11 plt.figure(figsize=(10, 6))

---> 12 plt.plot(years, exp_values[6], label="Argen

Traceback

(f) Syntax Issues
Question: By analyzing the of

combined class percentages from both U.S. and EU
realms, identify the class with the highest percentage that
is more than one standard deviation above the mean.
Provide the name of this class.

data = {'Characteristic':
‘2011

‘2014 :

[ "More angr
[3, 2, 1, @],
[3, 2, 1]}

# Create a DataFrame

df = pd.DataFrame(data)
. Value missing in Liama 7b model
# Plotting

L . Lead to shape mismatch
plt.figure(figsize=(10,

plt.bar(df['Characteristic'], df['201
plt.bar(df['characteristic'], df['2e1

ValueError

(9) Incomplete Code

public library shares across different locale codes, and
computing the proportional difference of each locale's
share to the overall share, which locale has the largest
positive proportional difference relative to the overall
share?

labels = [£"{locale}

{'+* if deviation >= § else ' }{deviation}
# colors

colors = ['red’, ‘orange\, 'yellow', 'gree

# Create the treemap
plt.figure(figsize=(12,8))

squarify.plot(sizes=shares, \label=1abels,

Assuming that the crop vyield per hectare
increases by 2% for every 10 kg/ha increase in fertilizer
application rate from a base yield of 50 tons/ha without any
fertilizer, and given the fertilizer application rates in 2002 for
Papua New Guinea and Guyana, what is the difference in
crop yields per hectare between the two countries in tons
per hectare, rounded to two decimal places?

# Plot

fig, ax = plt.subplots(figsize=(10, 6
ax.plot(countries, data, marker='o0")
ax.set_title('Growth Rates of Countrit
ax.set_xlabel( Country')
ax.set_ylabel('value')

(d) Indentation Issues
Question: By Which country among the given four
experienced the greatest percentage decrease in the metric
from 1990 to 20167

# Create DataFrame
df = pd.DataFrame(data)

Decrease from 1990 t
plt.title( Percentage rease in Metric fr
plt.show() Improper indentation in

eepseek-coder-vz -lite
cell In[zse], line 1:

= pd.DataFrame( dat a)

IndentationError: unexpected indent

Question: What was the highest annual global average
temperature anomaly (in degrees Celsius) recorded
between 1880 and 2020, and in which year did it occur?
lata = pd.read_csv('https://raw.githubuserc
tClean the datas Remove rows with missing
lata = data.dropna()

lata = data[["year\, 'avg_temp']]

tFind the maximum temgerature anomaly
1ax_temp = data['avg_tdup’].max()
1ax_year = data.loc[dataY 'avg temp'].idxmax
Gemini Flash 1.5 Pro Fai

I to Fect Data
data[ 'avg_temp'])

tCreate the plot
r1t.plot(data[ 'year'],

GPT-40 model ' plt.title( Proportional Diffyrence of Publ ax.set_xticklabels(countries
generated poor quality plt.axis('off') — ]
chart. plt.show() GPT-4.0 model cell In[236], line 29 0/ zell In[237], line 4
I Cell In[10], line 15 produced incorrect ax.set_xticklabels(colntries 1 import matplotlib.pyplot as plt
labels = ff”(_locale} syntax. Mistral 7b model produced incomplete code 2 import pandas as pd
SyntaxError: incomplete input -===> 4 data - pd.read_csv("https://raw.git
Agency All Other SyntaxErrer: unterminated string literal ( & #rlaan tha data Ramnva rawe with
Figure 6: Common errors in Data Visualization generation.
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Figure 7: Most Frequent Words in Error Messages Across All Evaluated Models.
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Question Type Count

Comparison Analysis 467
Deviation Analysis 362
Trend Analysis 346
Distribution Analysis 146
Forecasting 142
Outlier Detection 140
Statistical Summaries 138
Correlation Analysis 75
Reasoning 52
Predictive Analysis 31
Hierarchical Data Analysis 22
Time-Series Analysis 18
Insights 16
Categorical Data Analysis 12
Decision Support 7
Others 11

Table 6: Distribution of various visualization tasks in the
Text2Vis Dataset. Insights, Trend Analysis, Statistical Sum-
maries, Distribution Analysis, Categorical Data Analysis, Hi-
erarchical Data Analysis, and Multi-Variable Analysis fall
under the Exploratory category. Reasoning, Correlation Anal-
ysis, Outlier Detection, Deviation Analysis, and Comparison
Analysis fall under the Analytical category. Predictive Anal-
ysis, Time-Series Analysis, and Forecasting fall under the
Predictive category. Decision Support falls under the Prescrip-
tive category.



Model Closed/ Single Query/ Data Given/ Single/ Answerable/
Open-Ended | Conversational | Web-data Retrieval | Multi-Chart | Unanswerable
GPT-40 0.24/0.26 0.20/0.50 0.26 / 0.08 0.26 / 0.26 0.29/0.03
Gemini 1.5 Flash 0.17/0.19 0.13/0.33 0.18/0.17 0.17/0.17 0.19/0.06
CodeLlama-7b-hf 0.02/0.01 0.02/0.01 0.00/0.02 0.02/0.03 0.02/0.00
CodeLlama-13b-hf 0.05/0.00 0.03/0.08 0.04 /0.00 0.04/ 0.04 0.05/0.00
CodeLlama-34b-hf 0.05/0.02 0.02/0.13 0.04 /0.00 0.05/0.01 0.05/0.00
Llama-3.1-8B 0.07/0.04 0.05/0.14 0.07/0.00 0.07/0.05 0.07/0.00
Mistral-7B 0.05/0.09 0.04/0.12 0.04 /0.06 0.06/0.04 0.06/0.01
Qwen2.5-7B 0.03/0.15 0.11/0.22 0.14/0.00 0.14/0.06 0.14/70.07
Qwen2.5-Coder-7B 0.04/0.04 0.02/0.11 0.14/0.00 0.04/0.03 0.04/0.00
DeepSeek-Coder V2-Lite 0.10/ 0.09 0.08/0.21 0.10/0.02 0.10/0.09 0.11/0.04
DeepSeek-R1-Distill-Llama-8B | 0.06/0.10 0.06/0.10 0.07/0.02 0.07/0.05 0.07/0.02

Table 7: Performance breakdown for text-to-visualization models across different evaluation categories.

Category

Prompt Template

Conversational

Query
Generation

You are given a dataset in JSON format from my Data Table. Using this dataset, generate a complex, conversational data analysis task
consisting of 4 to 5 interrelated steps. Each step should logically build on the previous one to ensure a natural flow of analysis.

To ensure clarity, two examples are included to demonstrate the expected structure. Please review these before generating new tasks. Then,
create similar tasks that are diverse, contextually relevant, and dependent on the new Data Table provided.

Each conversation step should include:

forecasting) that directly relates to the dataset.

highlighting key insights.

* Text Summary: A concise explanation of the insights derived from the visualization.

Example Input:

Data Table

Expected JSON Output Format:

{ "Question":
nn o mylabeln:

" "

, "Answer": "...",

Answer: Precisely answers the question.

.., "ylabel": "..." )

"Code":

" n
ey

"TextSummary" :

" n

Question: A data-driven question requiring multi-step reasoning (e.g., trend analysis, variability comparison, peak detection,

Python Code Using Matplotlib: A self-contained code snippet that generates a relevant visualization, including clear annotations

Metadata: Include fields such as "ChartType", "xlabel", and "ylabel" to specify the visualization type and axis labels.

, "ChartType":

Ensure that each step builds on the previous one, creating a logically structured multi-step data analysis task. Maintain clarity, conciseness,
and accuracy in all responses. Additionally, ensure that the generated tasks are diverse and well-aligned with the specific structure and
patterns observed in the examples, while adapting to the new dataset provided.

Table 8: Prompt Templates for Conversational Query Generation.
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Category

Prompt Template

Scatter Plot

You are given the following data table:

data_text

Before proceeding, evaluate whether the dataset is suitable for generating a question that is best answered by a scatter plot visualization. A
dataset is considered suitable for scatter plot analysis if it contains at least two numerical variables that can be meaningfully compared.

If the dataset is NOT suitable for scatter plot analysis, please output an empty JSON object with the key "skip" set to t rue and do not
generate any further content.

If the dataset is suitable, then perform the following tasks:

1. Generate a Single, Very Complex Data Science Question:
¢ The question must require multi-step reasoning and deep analysis.
» Design the question specifically for a scatter plot visualization. For example, it may ask to analyze the relationship, correlation,
or pattern between two numeric variables, identify outliers, or compare distributions.
2. Provide a Short Answer:
¢ The answer must be precise.
3. Output Python Code for a Scatter Plot Visualization:

« Use matplotlib to generate a scatter plot.
« Ensure the code annotates key insights on the plot.

4. Include a Text Summary:

* Provide a concise explanation of the reasoning behind the answer, highlighting the main insight derived from the scatter plot.

5. Provide Metadata:

« ChartType: Set this to "Scatter".
 xlabel: The variable used for the X-axis.
« ylabel: The variable used for the Y-axis (if not applicable, use "N/A™).

To ensure clarity, two examples with scatterplot are included to demonstrate the expected structure. Please review these before generating new
query and responses. Then, create similar query that are diverse, contextually relevant, and dependent on the provided data table.
Output Requirements:

¢ Return all the above information in a valid JSON format without any additional text or commentary.
* Follow this exact JSON structure:
Example Input:

Data Table

Expected JSON Output Format:

{ "Question": "...", "Answer": "...", "Code": "...", "TextSummary": "...", "ChartType":
"Scatter", "xlabel": "...", "ylabel": "..." )

Table 9: Prompt Template for Generating a Scatter Plot Query
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Category Prompt Template

Response  You are a data visualization expert. Given a structured data table, respond to the following user question based on the data.
Input Data:

« Data Table: {row[ Data Table’]}
¢ Question: {row[’Question’]}
Task:
1. Answer: Provide a precise and concise response based on the data. If no clear answer is available, return "unanswerable".

2. Visualization Code: Generate Python Matplotlib code to create a meaningful visualization that accurately represents the data. Ensure
annotations and highlights are included.

3. Summary: Briefly explain why this visualization is appropriate and how it supports the answer.
Important Requirement:
¢ The output must be in a valid JSON format without any extra text, markdown formatting, or explanations.
* Ensure the JSON structure strictly follows the format below.

Expected JSON Output Format:

oo

{ "Answer": "...", "Visualization Code": "...", "Summary": "..." }

Table 10: Prompt Template for Model Response Generation

Category Prompt Template

Agentic Framework  You are an expert in model response validation and refinement. Given a structured data table, Ground truth answer, a user-generated
question, and an initial model response, your task is to validate and refine the model output for accuracy, correctness, and completeness.
Input Data:
e Data Table: {row[’Table Data’]}

¢ Question: {row[’Question’]}

Initial GPT-40 Response: {gpt response}
Task:
1. Answer Validation: Verify correctness and identify errors if any.
2. Visualization Code Validation: Check for syntax errors, readability issues, or execution problems.

3. Summary Validation:

 Ensure the summary logically aligns with the answer and visualization.
¢ Check for inconsistencies or misleading explanations.

4. Refinement Task:

* Based on the feedback, refine the model response to correct errors.
« Ensure the response is precise, formatted correctly, and adheres to the required JSON format.

Output Requirements:
« Ensure the final output is in a valid JSON format without extra text or markdown formatting.
¢ The JSON structure must strictly follow the format below.

Expected JSON Output Format:

{ "Answer": "...", "Visualization Code": "...", "Summary": "..." }

Table 11: Prompt Template for Agentic Framework
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Category Prompt Template

Evaluation  You are an evaluation expert responsible for assessing the accuracy of generated answers and the quality of visualizations. Given a structured
data table, a user-generated question, a model-generated response, and an image-based visualization, your task is to validate the correctness of
the response and evaluate the visualization quality.

Input Data:

* Data Table: {row[’ Table Data’]}

* Question: {row [’ Generated Question’]}

Generated Answer: {row [’ Generated Answer’]}

* Ground Truth Answer: {row [’ Answer’ ]}

Generated Image: {row [’ Generated image’]}

Task:
1. Answer Matching: Compare the generated answer with the ground truth using following evaluation criteria.
2. Visualization Evaluation: Score the visualization based on following evaluation criteria.

Evaluation Criteria:

1. Answer Matching (Binary: 1 or 0)

* Match if numbers are close (e.g., "48.77" vs "48.73") or equivalent percentage formats (e.g., "100" vs "100

* Match if the ground truth appears within the generated response (e.g., "100" in "The result is 100").

 For long ground truth answer, match is considered as long as the core summary remains the same, even if the wording differs.
« Allow minor spelling variations or abbreviations (e.g., "Albenia" vs "Albania", "USA" vs "United States").

* No match if the meaning changes significantly (e.g., "Fragile" vs "Extreme fragility").

2. Readability and Quality Score (0-5)

« Labels and Titles: Are they clear, concise, and correctly positioned?

« Layout Spacing: Is the layout well-organized with no clutter?

« Color Accessibility: Are colors distinct and accessible (colorblind-friendly)?

« Axis Scaling: Are axes correctly labeled and proportional?

« Chart Type Suitability: Is the visualization appropriate for the data type (e.g., line chart for trends)?

* Font and Legends: Are fonts readable, and legends properly aligned?

* Annotation Readability: Are annotations (e.g., data labels, callouts) clear, well-placed, and non-overlapping?

3. Chart Correctness Score (0-5)

¢ Query Alignment: Does the visualization correctly address the question?
« Data Integrity: Are all data points accurately plotted?
« Insight Representation: Does the chart effectively communicate its key insights based on its type?
* Handling Missing Data: Is missing data presented appropriately without misleading distortion?
« Complexity Handling: For multi-step queries, is the visualization logically structured?

¢ 5.0 — Excellent: Clear, accurate, and no issues.

¢ 4.5 — Very Good: Minor issues but does not impact understanding.

¢ 4.0 — Good: Small flaws like minor misalignments.

¢ 3.5 - Decent: Some readability/accuracy issues but still interpretable.

3.0 — Average: Noticeable problems that affect clarity or correctness.
¢ 2.5 - Below Average: Several issues that may lead to misinterpretation.
¢ 2.0 — Poor: Significant issues making the chart unclear.
¢ 1.5 — Very Poor: Major readability or correctness flaws.
¢ 1.0 — Unusable: Completely unclear or misleading.
¢ 0.0 - Failed: The visualization is unreadable or irrelevant.
Output Requirements:
* Ensure the final output is in a valid JSON format without additional text.

Expected JSON Output Format:

{ "Answer Match": "...", "Readability and Quality Score": "...", "Chart Correctness Score": "..." }

Table 12: Prompt Template for Evaluating Results Using the GPT-4.0 Model.
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