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ABSTRACT

All-in-one adverse weather image restoration aims to remove multiple degrada-
tions, such as rain, haze, and snow, using a single model. Despite their broad
applicability, existing methods typically compromise performance, delivering bal-
anced rather than optimal results for individual degradations due to their multi-task
nature. Moreover, they often suffer from a significant performance drop when a
domain gap exists between training and testing data. To address these challenges,
we propose the Degradation Disentanglement and Transfer Network (DDTNet),
which carries out domain adaptation for all-in-one models. Since paired degraded-
clean images are unavailable at inference, DDTNet disentangles and transfers
degradation patterns from target-domain degraded images to source-domain clean
images, generating domain-adaptive pairs for fine-tuning and improving target-
specific restoration. The core of DDTNet is the Degradation Disentanglement
Module (DDM), which consists of Degradation Coupled Attention (DCA) to cap-
ture both general and weather-specific features, enabling effective disentangle-
ment and transfer of degradation patterns. Experimental results demonstrate that
DDTNet significantly improves existing all-in-one models across real-world de-
raining, desnowing, and dehazing datasets.

1 INTRODUCTION

Image de-weathering seeks to recover clean images from weather-degraded inputs. In the past, much
research focuses on addressing a single weather condition, such as deraining (Jiang et al., 2022; Hu
et al., 2019; Wang et al., 2020; 2019; Fu et al., 2017; Jiang et al., 2020; Li et al., 2019b; Chen et al.,
2024; Gao et al., 2024), dehazing (Wu et al., 2021; Guo et al., 2022; Song et al., 2023; Liu et al.,
2019; Deng et al., 2020; Yu et al., 2022; Qin et al., 2020; Zhang et al., 2024; Fang et al., 2025),
and desnowing (Chen et al., 2020; 2021; Liu et al., 2018; Zhang et al., 2021; Wang et al., 2017).
However, as weather conditions are inherently unpredictable and vary over time, methods designed
for a single type of weather-induced degradation have limited practical applicability.

To overcome these limitations, all-in-one image de-weathering (Li et al., 2022; Valanarasu et al.,
2022; Chen et al., 2022; Park et al., 2023; Potlapalli et al., 2023; Cui et al., 2025; Sun et al., 2024;
Zhang et al., 2023b) has recently gained popularity. Unlike task-specific approaches, a unified model
aims to handle multiple weather scenarios within a single framework, making it more adaptable to
real-world applications. To achieve effective all-in-one restoration, several studies have incorporated
weather-specific prompts, such as weather type queries (Valanarasu et al., 2022) and degradation-
specific prompts (Potlapalli et al., 2023; Tian et al., 2025). However, despite enhancing the model’s
adaptability, prompt-based methods still face two major issues. First, the joint multi-task training
strategy often results in suboptimal performance on individual tasks, with a noticeable performance
drop compared to single-task models. Second, most all-in-one methods suffer from a domain gap
between training and testing data, which limits generalization ability and causes ineffectiveness in
real-world deployment.

To address the challenges of cross-task performance degradation and domain sensitivity, we intro-
duce a Degradation Disentanglement and Transfer Network (DDTNet) for domain adaptation in
all-in-one image de-weathering.
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Figure 1: (a) For test-time adaptation, DDTNet disentangles and transfers degradation patterns from
a target-domain degraded image to a source-domain clean image, generating paired images for fine-
tuning an arbitrary all-in-one restoration model. (b) DDTNet comprises the Degradation Disentan-
glement Module (DDM), where a two-stage Degradation Coupled Attention (DCA) is developed to
separate degradation patterns from a degraded image. The separated degradation patterns are then
transferred via an encoder-decoder architecture.

As shown in Figure 1(a), the key component of DDTNet is the Degradation Disentanglement Module
(DDM), which uses a Degradation Coupled Attention (DCA) mechanism to effectively disentangle
diverse degradation patterns. The DCA is a two-stage attention mechanism applied to learnable
degradation-sensing tokens. In the first stage, these tokens serve as queries to retrieve degraded
features from the input image, yielding degradation tokens that encode the underlying degradation
patterns. In the second stage, the roles are reversed: the image tokens act as queries to aggregate the
information stored in these new degradation tokens for distilling degradation features. Repeating
this two-stage interaction can progressively disentangle degradation patterns from the image. This
disentanglement strategy is the core of our work, which allows DDTNet to transfer isolated degra-
dation patterns from a target-domain degraded image to a source-domain clean image. As shown in
Figure 1(b), this transfer process generates domain-adaptive paired data, consisting of clean source
images with target-domain degradation patterns. These synthetic yet aligned pairs not only embed
target-domain characteristics but also adapt to weather-specific conditions such as rain, haze, snow,
or even mixed weather, which are then used to fine-tune de-weathering models. Through explicitly
aligning the restoration with target-domain degradations, DDTNet improves model performance and
restoration quality in challenging real-world scenarios.

This work makes three primary contributions. First, we present DDTNet to tackle two critical chal-
lenges in all-in-one image restoration: suboptimal cross-task performance and sensitivity to domain
gaps. DDTNet disentangles and transfers degradation patterns from target-domain degraded images
to source-domain clean images, hence generating paired, domain-adaptive images for fine-tuning
all-in-one restoration models. Second, we propose DCA, a two-stage attention mechanism that ef-
fectively identifies and separates degradation patterns from degraded images by alternating the roles
of queries and key-value pairs between degradation sensing tokens and image tokens. Finally, ex-
perimental results show that DDTNet significantly improves existing all-in-one restoration models
on benchmark real-world deraining, desnowing, and dehazing datasets.

2 RELATED WORK

All-in-One Image Restoration. All-in-one image restoration aims to address multiple degradations
using a unified model. To tackle this task, several studies (Chen et al., 2022; Zhu et al., 2023; Potla-
palli et al., 2023; Cui et al., 2025; Tian et al., 2025) learn both degradation-specific and degradation-
agnostic features within a unified framework. Potlapalli et al. (2023) integrate degradation-specific
cues into a unified model via learnable prompts to handle diverse degradations. Cui et al. (2025) ex-
tract degradation-specific frequency subbands to adaptively address different degradations through
frequency mining and modulation. Tian et al. (2025) introduce degradation-aware feature perturba-
tions to align degradation-specific prompts with the unified model. Although these methods demon-
strate the potential of unified networks to handle diverse degradations, they often yield suboptimal
performance on individual tasks due to the joint multi-task training strategy. Additionally, the do-
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Figure 2: (a) DDTNet is a dual-branch network whose top branch extracts degradation features from
a degraded image Id via a Degradation Encoder (DE) and a Degradation Disentanglement Mod-
ule (DDM). The DDM leverages Spatial-wise and Channel-wise Degradation Coupled Attention
(S-DCA and C-DCA) to effectively separate degradation features. In contrast, the bottom branch
extracts content features from a clean image Ic using a Content Encoder (CE). Finally, it fuses
degradation and content features to generate the degradation-transferred image Io. (b) DCA is a
two-stage attention mechanism. In the first stage, degradation-sensing tokens (T ) retrieve degraded
features from the input image to produce degradation tokens (T̃ ) that encode the underlying degra-
dation patterns. In the second stage, the image tokens act as queries to aggregate the information
stored in T̃ , thereby distilling degradation features.

main gap between training and testing data frequently causes significant performance drops, severely
degrading restoration results in real-world scenarios.

Domain Adaptation for Image Restoration. Domain adaptation in the field of image restoration
aims to narrow the domain gap between the source domain and the target domains, ensuring that
models trained on synthetic data generalize well to real-world scenarios. There were several early
studies (Wei et al., 2021; Shao et al., 2020) focusing on single-degradation scenarios. For instance,
Wei et al. (2021) and Shao et al. (2020) utilize CycleGAN Zhu et al. (2017) to generate pseudo-
training data for deraining and dehazing tasks. Chi et al. (2021) introduce a meta-auxiliary learning
strategy to enable fast test-time adaptation for deblurring. Although these methods alleviate the do-
main gap issue in single-degradation scenarios, they lack the flexibility to generalize across multiple
types of degradations. Therefore, Liao et al. (2025) propose a general domain adaptation framework
built upon a pre-trained diffusion model (Ho et al., 2020), which computes a diffusion loss to align
restored outputs of synthetic and real-world data. However, since this method is not tailored for
all-in-one image restoration, which requires both degradation-specific and degradation-general fea-
tures, it cannot effectively handle multiple degradations within a unified framework. In contrast, our
proposed DDTNet integrates both degradation-specific and degradation-general features to achieve
degradation-transfer–driven adaptation, which transfers degradation patterns from target domains to
clean images in the source domain and, in turn, enables robust domain adaptation across diverse
restoration tasks.

3 PROPOSED METHOD

3.1 OVERVIEW

This section introduces the Degradation Disentanglement and Transfer Network (DDTNet), a frame-
work designed to transfer degradation patterns from degraded images in an unseen target domain to
clean images in a source domain. Synthesizing domain-adaptive image pairs, DDTNet facilitates
test-time adaptation via this transfer process. It enables fine-tuning and achieves performance im-
provement of restoration models under unseen degradation conditions.

As illustrated in Figure 2(a), DDTNet consists of two parallel branches: the top branch for ex-
tracting degradation features and the bottom branch for extracting content features. Given a de-
graded image Id ∈ RH×W×3 and a clean image Ic ∈ RH×W×3, DDTNet employs a Degra-
dation Encoder (DE) and a Content Encoder (CE) to obtain multi-scale degradation features
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{Fi
d ∈ R

H

2i
×W

2i
×Ci} = DE(Id) and content features {Fi

c ∈ R
H

2i
×W

2i
×Ci} = CE(Ic), where

the channel dimension Ci = 32 · 2i, and i ∈ {0, 1, 2} indexes the feature scale. At each scale,
the degradation features Fi

d are processed by the proposed Degradation Disentanglement Module
(DDM), which integrates three parallel Spatial-wise Degradation-Coupled Attention (DCAS) and
Channel-wise Degradation-Coupled Attention (DCAC) layers. The DDM disentangles degradation
patterns to produce distilled degradation features F̃ d

i = DDM(F d
i ) ∈ R

H

2i
×W

2i
×Ci , effectively sup-

pressing scene content while preserving degradation cues as

DDM(F d
i ) = Conv

(
Concat

(
(DCAS)

3(F d
i ), (DCAC)

3(F d
i )
))

, (1)

where (DCAS)
3 and (DCAC)

3 denote the sequential application of three spatial and three channel
attention layers, respectively.

We apply the Transfer Decoder (TD) to fuse multi-scale distilled degraded features F̃ d
i and content

features F c
i , generating the degradation-transferred image Io ∈ RH×W×3 as

F i = TDi

(
Concat

(
F̃ d
i , F

c
i , F

(i+1)↑)) , i ∈ {0, 1, 2}, (2)

where F 3 := ∅, and F 0 := I0. Here, (·)↑ denotes upsampling by a factor of two, and {TDi}2i=0
are the Transfer Decoders for different scales. In the following, we detail the DCA module and its
spatial and channel variants DCAS and DCAC.

3.2 DEGRADATION COUPLED ATTENTION (DCA)

The goal of our proposed DCA is to disentangle degradation patterns not only in single-degradation
scenarios but also under complex mixed degradations, such as rain combined with haze or snow com-
bined with haze. As illustrated in Figure 2(b), DCA adopts a two-stage attention mechanism guided
by degradation-sensing tokens, enabling it to capture both degradation-general and degradation-
specific features.

Let the input features of DCA be X ∈ RN×D, which contains N tokens of dimension D. In the
first stage, X is processed by linear projection layers L to generate the key and value features, i.e.,
Xk ∈ RN×D and Xv ∈ RN×D, which is formulated as

(Xk, Xv) = L(X). (3)

We then introduce a set of learnable degradation-sensing tokens T ∈ RM×D, consisting of M
tokens of dimension D. These tokens are linearly projected as queries, T q = L(T ), to retrieve
degradation-related information from X , which produces the degradation tokens T̃ ∈ RM×D. The
resulting T̃ can be regarded as a set of degradation kernels that encode the underlying degradation
patterns. This process is carried out via cross attention, namely,

T̃ = softmax(
T q · (Xk)⊤√

D
) ·Xv + T, (4)

where T q = L(T ), and ⊤ denotes the transpose operation. In practice, we set M = 256.

In the second stage, the roles are reversed: the input features X act as queries to aggregate the
information stored in the degradation tokens T̃ , thereby distilling degradation features. Specifically,
we process X and T̃ through linear projection layers L to generate the query, key, and value features,
denoted as Xq ∈ RN×D, T̃ k ∈ RM×D, and T̃ v ∈ RM×D, respectively, as

Xq = L(X) and (T̃ k, T̃ v) = L(T̃ ). (5)

Next, the distilled degradation features X̃ ∈ RN×D, which retain only degradation cues while
suppressing scene content, are obtained via

X̃ = softmax(
Xq · (T̃ k)⊤√

D
) · T̃ v +X. (6)

To effectively disentangle degradation patterns in the proposed DDM, we apply DCA along both
the spatial and channel dimensions of the features. The Spatial-wise DCA (DCAS) emphasizes the
geometric structure and spatial distribution of degradations, while the Channel-wise DCA (DCAC)
concentrates on the contrast and intensity attenuation of degradation, as detailed below.
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Spatial-wise Degradation Coupled Attention (DCAS). Let the input to DCAS be X ∈
RH×W×C . We first reshape X into a 2D tensor X ∈ RHW×C , corresponding to HW tokens of C
dimensions. The reshaped X is then processed by the DCA operations defined in Equations (3)–(6).
Lastly, the output is reshaped back to H ×W × C to produce the result of DCAS.

Channel-wise Degradation Coupled Attention (DCAC). Let the input to DCAC be X ∈
RH×W×C . We first apply spatial pooling to X to obtain Xpool ∈ R24×24×C , and then reshape
it into a 2D tensor Xpool ∈ RC×576, corresponding to C tokens of dimension 576. The pooled
features are then processed by the DCA operations defined in Equations (3)–(6), and the output is
reshaped back to 24 × 24 × C. Finally, bilinear upsampling is utilized to restore the resolution to
H ×W × C, yielding the output of DCAC.

3.3 LOSS FUNCTION

DDTNet is trained on degraded–clean-mixed triplets {(Idi , Ici , Imi )}Ni=1, where the ground-truth
mixed image Imi preserves the scene content of Ici while exhibiting the same degradation patterns as
Idi , as described in Section 4.1. To supervise the generation of each degradation-transferred image
Ioi = DDTNet(Idi , I

c
i ), we adopt the ℓ1 reconstruction loss, defined as

L =
1

N

N∑
i=1

∥Ioi − Imi ∥1. (7)

3.4 DOMAIN-ADAPTIVE FINE-TUNING PROCESS

After training, DDTNet is employed to transfer degradation patterns from target-domain degraded
images {Idi }Ni=1 to source-domain clean images {Ici }Ni=1, randomly sampled from a source-domain
dataset. As illustrated in Figure 1(b), for each pair (Idi , I

c
i ), DDTNet generates a degradation-

transferred image Ioi = DDTNet(Idi , I
c
i ), which preserves the scene content of Ici while embedding

the degradation patterns from Idi . This process allows us to construct domain-adaptive training pairs
Dadapt = {(Ioi , Ici )}Ni=1, which are then used to update restoration models during testing, thereby
enhancing their generalization and performance in the target domain.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS.

Datasets. We construct a set of degraded–clean–mixed triplets {(Idi , Ici , Imi )}Ni=1, where Idi de-
notes a degraded image, Ici a clean image, and Imi a synthesized mixed image that preserves the
scene content of Ici while incorporating the degradation patterns of Idi . To generate Imi with con-
sistent degradation patterns but diverse scene contents, we employ rain masks from Rain100H and
Rain100L (Yang et al., 2017), as well as snow masks from Snow100K (Liu et al., 2018), to synthe-
size rainy and snowy images. For hazy images, we directly adopt RESIDE (Li et al., 2019a), which
provides hazy images with controlled haze density and atmospheric light across different scenes.

During training, we sample 5, 000 triplets for each of the three tasks, yielding a total of 15, 000
pairs for jointly optimizing DDTNet and the restoration models. To evaluate the effectiveness of
DDTNet, we use the real-world WeatherStream dataset (Zhang et al., 2023a), which contains 4, 500
hazy, 3, 000 rainy, and 3, 960 snowy images with corresponding clean counterparts. This dataset
poses a particularly challenging benchmark as it includes not only single-degraded cases but also
mixed degradations, such as rain with haze and snow with haze.

DDTNet Configuration. We optimize DDTNet using the Adam optimizer with a learning rate of
1 × 10−4, a batch size of 4, and 150 training epochs. DDTNet comprises 31 million parameters
and achieves an inference time of 33 ms on an NVIDIA RTX A5000 GPU, with inputs resized to
256×256.

Restoration Models. To evaluate the effectiveness of DDTNet for domain adaptation, we adopt
three state-of-the-art (SOTA) restoration models: PromptIR (Potlapalli et al., 2023), AdaIR (Cui
et al., 2025), and DFPIR (Tian et al., 2025). All models are initially trained in an all-in-one manner

5
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Table 1: Performance gains with DDTNet on three restoration models, PromptIR, AdaIR, and DF-
PIR on WeatherStream across three real-world weather types: rain, snow, and haze.

Rain Snow Haze Average
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

PromptIR Baseline 22.96 0.762 21.36 0.738 19.08 0.689 21.13 0.730

+DDTNet 23.82
(+0.86)

0.770
(+0.008)

22.12
(+0.76)

0.744
(+0.006)

20.72
(+1.64)

0.695
(+0.006)

22.22
(+1.09)

0.736
(+0.006)

AdaIR Baseline 22.92 0.761 21.26 0.738 18.58 0.687 20.92 0.729

+DDTNet 24.17
(+1.25)

0.775
(+0.014)

22.49
(+1.23)

0.749
(+0.011)

20.48
(+1.90)

0.701
(+0.014)

22.36
(+1.44)

0.742
(+0.013)

DFPIR Baseline 22.95 0.753 21.12 0.717 20.09 0.675 21.19 0.710

+DDTNet 24.04
(+1.09)

0.765
(+0.012)

21.80
(+0.68)

0.719
(+0.002)

21.16
(+1.07)

0.680
(+0.005)

22.13
(+0.94)

0.716
(+0.006)

Average Gain +1.07 +0.011 +0.89 +0.006 +1.54 +0.008 +1.16 +0.008

Figure 3: Quantitative comparison of training schemes. All-in-one methods (PromptIR, AdaIR, and
DFPIR) often underperform compared to their task-specific versions. In contrast, DDTNet enhances
the performance of all-in-one models, allowing them to surpass task-specific performance.

on the 15, 000 synthesized training pairs, following their respective default training configurations.
During testing, each model is further fine-tuned for a single epoch using the domain-adaptive pairs
generated by DDTNet, enabling efficient adaptation to the target domain.

4.2 PERFORMANCE EVALUATIONS

Quantitative Comparison. Table 1 reports a quantitative comparison of three SOTA all-in-one
image restoration models: PromptIR (Potlapalli et al., 2023), AdaIR (Cui et al., 2025), and DF-
PIR (Tian et al., 2025). Here, “Baseline” denotes models trained without DDTNet, while “+DDT-
Net” refers to their DDTNet-enhanced counterparts. The results clearly show that DDTNet consis-
tently and significantly boosts performance across all models on WeatherStream. Specifically, our
DDTNet yields an impressive average PSNR gain of 1.09 dB for PromptIR, 1.44 dB for AdaIR,
and 0.94 dB for DFPIR. Furthermore, when broken down by task, DDTNet achieves average PSNR
improvements of 1.07 dB for deraining, 0.89 dB for desnowing, and 1.54 dB for dehazing.

Figure 3 further compares the three restoration models under three training schemes: (1) task-
specific training, (2) all-in-one training, and (3) all-in-one training enhanced with DDTNet. The
results confirm that all-in-one training typically suffers from inter-task interference, yielding subop-
timal results compared to task-specific training. In contrast, integrating DDTNet not only alleviates
this interference but also enables all-in-one models to outperform their task-specific counterparts.
Overall, these findings show that DDTNet not only improves restoration performance on unseen tar-
get domains but also effectively mitigates the limitations of conventional all-in-one training schemes.

Qualitative Comparison. Figure 4 illustrates several examples of degradation-transferred images,
where the degraded inputs are selected from WeatherStream and the clean images are sampled from
RESIDE. In each case, DDTNet faithfully reproduces the degradation patterns of the degraded image
while preserving the scene content of the clean image. This shows that DDTNet can successfully
generate domain-adaptive pairs that align with the target-domain degradation distribution, thereby
enabling effective fine-tuning of restoration models and improving their performance during testing.

We further present qualitative comparisons of de-weathering results using three restoration models:
PromptIR (Figure 6), AdaIR (Figure 7), and DFPIR (Figure 8). Here, “Baseline” denotes the mod-
els trained without DDTNet, whereas “+DDTNet” indicates their DDTNet-enhanced counterparts.
The baseline models often struggle to cope with diverse degradation patterns in the target domain,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Clean images Degraded images Transferred images

Rain

Snow

Haze

Clean images Degraded images Transferred images

Figure 4: Qualitative results of degradation-transferred images. Degradation patterns from Weath-
erStream target-domain images are transferred to clean source-domain images from RESIDE.

while the DDTNet-enhanced models effectively remove complex degradations, producing visually
superior and perceptually more pleasing results. These visualizations highlight DDTNet’s strong
cross-domain generalization capability in handling diverse real-world weather degradations.

Figure 5: t-SNE visualization of the
learned degradation tokens.

Analysis of Degradation Tokens. Figure 5 presents a
t-SNE visualization of the learned degradation tokens T̃ ,
obtained by randomly sampling 50 images per task (de-
raining, desnowing, and dehazing). It reveals that the
degradation tokens are well-clustered according to weather
type: rain samples (blue) are grouped in the upper-
right, haze samples (orange) in the lower-left, and snow
samples (green) near the center. This clear separation
across weather types, combined with strong intra-class
consistency, indicates that the degradation tokens T̃ ef-
fectively capture and disentangle degradation-specific fea-
tures. Such discriminative representations are crucial for
enabling reliable degradation transfer within an all-in-one
framework.
Comparison with Existing Domain Adaptation Methods. Since most existing domain adapta-
tion methods for image restoration are tailored to single degradations, we compare DDTNet with
the only general-purpose domain adaptation approach, Noise-DA (Liao et al., 2025). To ensure a
fair comparison, we re-implement Noise-DA with its official restoration backbones and train it on
our dataset under the all-in-one training scheme. As reported in Table 2, Noise-DA exhibits limited
generalization capabilities: while it yields gains on the deraining and desnowing tasks, it causes
a performance drop on dehazing, reflecting its lack of adaptability to diverse degradations in an
all-in-one setting. In contrast, DDTNet disentangles heterogeneous degradation patterns to gener-
ate domain-adaptive pairs, consistently boosting the restoration performance across all tasks and
achieving a substantial average PSNR gain of 5.67 dB over the baseline.

4.3 ABLATION STUDIES

To analyze the quality of the generated degradation-transferred images, we construct a test set of
900 degraded–clean-mixed triplets {(Idi , Ici , Imi )}900i=1 on Rain100H/Rain100L (Yang et al., 2017),
Snow100K (Liu et al., 2018), and RESIDE (Li et al., 2019a), with 300 triplets per task, to synthesize
rainy and snowy images. We then provide a component analysis of DDTNet and DCA.

Ablation Study of DDTNet. Table 3 presents an ablation study of DDTNet with its two DCA
components: DCAS and DCAC. We implement four variants of the network, including 1) Net1: a
pure encoder–decoder architecture without DDM, serving as the baseline; 2) Net2: Net1 augmented

7
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Table 2: Quantitative comparison between DDTNet and Noise-DA on WeatherStream, with the
restoration backbone employed by Noise-DA as the baseline.

Rain Snow Haze Average
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Baseline 16.23 0.496 15.32 0.484 18.06 0.561 16.74 0.514

+Noise-DA 19.11
(+2.88)

0.596
(+0.100)

17.24
(+1.92)

0.577
(+0.093)

16.93
(-1.13)

0.583
(+0.022)

17.76
(+1.02)

0.586
(+0.072)

+DDTNet 24.56
(+8.33)

0.779
(+0.283)

21.55
(+6.23)

0.735
(+0.251)

21.12
(+3.06)

0.699
(+0.138)

22.41
(+5.67)

0.737
(+0.223)

Rain

Snow

Haze

Input Baseline + DDTNet GT

Figure 6: Qualitative comparison of PromptIR Potlapalli et al. (2023) on WeatherStream between
its baseline and DDTNet-enhanced versions.

Table 3: Component analysis of
DDTNet on the average PSNR of
degradation-transferred images across
Rain100H/L, Snow100K, and RESIDE.

Enc–Dec
DDM

PSNR
DCAS DCAC

Net1 ✓ 31.59
Net2 ✓ ✓ 34.30
Net3 ✓ ✓ 32.44
Ours ✓ ✓ ✓ 34.53

Table 4: Component analysis of Degradation-
Coupled Attention (DCA) on the average PSNR of
degradation-transferred images across Rain100H/L,
Snow100K, and RESIDE.

Enc–Dec
Degr.-Sensing Attention Layers

PSNR
Tokens Attn–L1 Attn–L2

Net1 ✓ 31.59
Net4 ✓ ✓ ✓ 33.00
Net5 ✓ ✓ ✓ 33.35
Ours ✓ ✓ ✓ ✓ 34.53

with DCAS alone in the DDM; 3) Net3: Net1 augmented with DCAC alone in the DDM; and 4)
Ours: the complete DDTNet with both DCAS and DCAC. The results show that Net2 consistently
surpasses Net1 across all three tasks, while Net3 enhances Net1 on deraining and dehazing but not
on desnowing. Our proposed DDTNet achieves the best overall performance among all variants.
Specifically, DDTNet improves the PSNR of the baseline encoder-decoder model by 2.07 dB for
deraining, 1.80 dB for desnowing, and 4.93 dB for dehazing.

Ablation Study of DCA. Table 4 analyzes the effectiveness and contributions of the proposed
Degradation-Coupled Attention (DCA). DCA is composed of three key components: degradation-
sensing tokens, attention layer 1, and attention layer 2. We compare four module configurations,
including 1) Net1: a pure encoder–decoder architecture without DDM, identical to the baseline in
Table 3; 2) Net4: Net1 augmented with attention layers 1 and 2 in DCA, but without degradation-
sensing tokens. In this case, the attention layers directly perform self-attention on the input features,
functioning as a purely data-driven mechanism; 3) Net5: Net1 augmented with degradation-sensing
tokens and attention layer 2, where the tokens are directly fed into the second attention layer with-
out applying the coupling mechanism; 4) Ours: the full DDTNet with all DCA components. The
results demonstrate that both degradation-sensing tokens and the coupled attention layers individu-
ally improve the baseline. Crucially, the complete integration of all three components significantly
outperforms the other variants. This verifies the effectiveness of the proposed degradation-coupled
attention in facilitating robust degradation transfer.
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Rain

Snow

Haze

Input Baseline + DDTNet GT

Figure 7: Qualitative comparison of AdaIR on WeatherStream between its baseline and DDTNet-
enhanced versions.

Rain

Snow

Haze

Input Baseline + DDTNet GT

Figure 8: Qualitative comparison of DFPIR on WeatherStream between its baseline and DDTNet-
enhanced versions.

Limitations. DDTNet requires degraded-clean-mixed triplets for supervision during training,
which may limit scalability when such triplets are scarce or costly to obtain.

5 CONCLUSION

We propose the Degradation Disentanglement and Transfer Network (DDTNet), a novel approach
designed to address domain adaptation in all-in-one image de-weathering. Since paired de-
graded–clean images are typically unavailable during testing, DDTNet transfers degradation pat-
terns from target-domain degraded images onto source-domain clean images, thereby generating
domain-adaptive pairs for test-time fine-tuning of restoration models. This adaptation process can
significantly enhance the generalization capability of restoration models to unseen domains. The
core of DDTNet lies in the Degradation-Coupled Attention mechanism, which integrates learnable
degradation-sensing tokens with a two-stage attention process to disentangle degradation patterns.
In the first stage, the degradation-sensing tokens query the input features to encode degradation
cues and generate degradation tokens. In the second stage, the input features act as queries to ag-
gregate information from these degradation tokens, thus distilling degradation features. Extensive
experiments demonstrate that DDTNet substantially improves the performance of state-of-the-art
all-in-one restoration models across real-world deraining, dehazing, and desnowing benchmarks,
validating its effectiveness for robust cross-domain adaptation.
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ETHICS STATEMENT

This study develops a model for transferring weather-related degradation patterns. It does not in-
volve human subjects, personal data, or sensitive content, and it adheres to the ICLR Code of Ethics.
All experiments use publicly available deraining, desnowing, and dehazing datasets under appropri-
ate licenses. We do not foresee privacy, safety, or fairness concerns; the method is intended solely
to improve image quality in adverse-weather scenarios and is not designed for harmful applications.

REPRODUCIBILITY STATEMENT

All experimental results in this study are reproducible, and the implementation details (Section 3.2)
and experimental settings (Section 4.1) are specified in the main text. The full codebase, pretrained
weights, and documentation will be released publicly upon acceptance.
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A APPENDIX

DDTNet
Supervised Learning

Degraded Images

Clean Images

Transferred Images Ground-truth
Pairs

ASM parameters
for Haze

Mask for
Rain, Snow

Figure A1: Pipeline of data synthesis and optimization in DDTNet. We synthesize degraded–clean
triplets sharing the same degradation but different content, enabling end-to-end optimization of the
network.

A.1 PIPELINE OF DATA SYNTHESIS AND OPTIMIZATION IN DDTNET.

As shown in Figure A1, we collect degraded–clean triplets that share the same degradation patterns
but different in content. For rainy and snowy images, we use the degradation masks (rain streaks and
snow masks) from Rain100H (Yang et al., 2017), Rain100L (Yang et al., 2017), and Snow100K (Liu
et al., 2018) to synthesize the degraded images. For hazy images, we directly adopt the RESIDE
dataset (Li et al., 2019a), which provides hazy images sharing the same haze characteristics (haze
density and atmospheric light) but differing in content. Next, we describe the data synthesis process
for generating rainy, snowy, and hazy images.

Rain and snow. Given a clean image Ic ∈ RH×W×3, we utilize rain or snow masks M ∈
RH×W×1 ∈ [0, 1] to generate rainy or snowing image Id ∈ RH×W×3 as

Id = (1− λM)⊙ Ic + (λM)⊙ c, (8)

where ⊙ denotes element-wise multiplication, λ ∈ [0, 1] is the mask coefficient, and the c ∈
R1×1×3 ∈ [0, 1] represents the chromatic aberration value.

Haze. Given a clean image Ic ∈ RH×W×3, previous methods (Li et al., 2019a) often rely on the
atmonspheric scattering model (ASM) to generate hazy image Ih ∈ RH×W×3 as

Ih = Ic × T + α× (1− T ),

T = e−β×d,
(9)

where α ∈ R3 denotes the atmonspheric light, T ∈ RH×W×1 denotes the transmission map, β ∈ R1

and d ∈ RH×W×1 denote the haze density and depth map.

A.2 ADDITIONAL QUALITATIVE RESULTS

Figure A2 presents additional degradation-transferred results along with their corresponding degra-
dation features. These results demonstrate that DDTNet successfully disentangles and transfers
degradation patterns, thereby producing realistic degradation-transferred images. Figures A3 to A5
present additional restored images generated by PromptIR (Potlapalli et al., 2023), AdaIR (Cui et al.,
2025), and DFPIR (Tian et al., 2025), respectively. These results demonstrate that these methods
effectively enhance the baseline model, removing artifacts and producing more realistic images.
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Figure A2: Qualitative results of degradation-transferred images.
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Rainy Image Clean Image

Baseline + DDTNet

Snowy Image Clean Image

Baseline + DDTNet

Hazy Image Clean Image

Baseline + DDTNet

Figure A3: Qualitative comparison of PromptIR Potlapalli et al. (2023) on the Weather-
Stream (Zhang et al., 2023a) between its baseline and DDTNet-enhanced versions.
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Baseline + DDTNet

Snowy Image Clean Image

Baseline + DDTNet

Hazy Image Clean Image

Baseline + DDTNet

Rainy Image Clean Image

Figure A4: Qualitative comparison of AdaIR (Cui et al., 2025) on the WeatherStream (Zhang et al.,
2023a) between its baseline and DDTNet-enhanced versions.
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Rainy Image Clean Image

Baseline + DDTNet

Baseline + DDTNet

Snowy Image Clean Image

Baseline + DDTNet

Hazy Image Clean Image

Figure A5: Qualitative comparison of DFPIR (Tian et al., 2025) on the WeatherStream (Zhang et al.,
2023a) between its baseline and DDTNet-enhanced versions.
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A.3 THE USE OF LARGE LANGUAGE MODELS

We used large language models exclusively for linguistic refinement. All research motivations,
ideas, methodologies, analyses, and results are entirely those of the authors. No AI tools were
employed for conceptual development, data generation, analysis, or interpretation.
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