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ABSTRACT
Cross-modal coherence modeling is essential for intelligent systems
to help them organize and structure information, thereby under-
standing and creating content of the physical world coherently like
human-beings. Previous work on cross-modal coherence modeling
attempted to leverage the order information from another modality
to assist the coherence recovering of the target modality. Despite
of the effectiveness, labeled associated coherency information is
not always available and might be costly to acquire, making the
cross-modal guidance hard to leverage. To tackle this challenge,
this paper explores a new way to take advantage of cross-modal
guidance without gold labels on coherency, and proposes the Weak
Cross-Modal Guided Ordering (WeGO) model. More specifically, it
leverages high-confidence predicted pairwise order in one modality
as reference information to guide the coherence modeling in an-
other. An iterative learning paradigm is further designed to jointly
optimize the coherence modeling in two modalities with selected
guidance from each other. The iterative cross-modal boosting also
functions in inference to further enhance coherence prediction in
each modality. Experimental results on two public datasets have
demonstrated that the proposed method outperforms existing meth-
ods for cross-modal coherence modeling tasks. Major technical
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modules have been evaluated effective through ablation studies.
Codes are available at: https://github.com/scvready123/ IterWeGO.
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1 INTRODUCTION
Humans understand the world, to comprehend its semantics and
dynamics, based on their organization and structuring of the infor-
mation they perceive from various sources, seeking patterns and
sequences that provide coherence to their understanding. In general,
humans have remarkable skills in coherence modeling regardless
of the information modality, which might be acquired from some
childhood activities such as Picture-Telling [16, 44]. Such abilities
are also essential to Artificial Intelligence (AI) models, which not
only enhance the decision making by providing insights into the
relationships and dependencies between different pieces of informa-
tion [37], but also enable systems to understand context better [62],
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Figure 1: Uni-modal and Cross-Modal (CM) Coherence Mod-
eling (CM) tasks shown by a sentence ordering case according
to whether using the guidance from another modality. This
paper focuses on the CMCM task without using cross-modal
ORDER information but only leverages weak guidance across
modalities as shown in the green part.

leading to more contextually relevant responses and actions. Co-
herence modeling may further benefit down-stream applications
such as storytelling, educational materials and content marketing.

For these significance, coherence modeling has been an active
research topic in AI research. For example, in the area of natural
language processing (NLP), sentence ordering [4, 14, 38, 49] aims
to organize a set of sentences into a coherence piece of text with a
logically consistent order, which is one of the fundamental textural
coherency modeling problems. Coherence modeling is also a keen
topic in the era of Large Language Models (LLMs) since it has been
involved in various areas, from the text summarization in NLP [62]
to the video understanding in Computer Vision (CV) or even other
multi-modal tasks [18, 40, 57, 61]. Existing effort has been made to
investigate the coherence modeling capability of existing LLMs in
different tasks, and demonstrated that state-of-the-art LLMs like
GPT-4 have not achieved human-level ability in terms of coherence
evaluation [52], leaving coherence modeling under-explored.

Coherence modeling is challenging due to the complex and di-
verse relations existing to determine the logic for the construction
of different pieces of content [11, 21], including temporal relations,
casual relations, discourse relations and many others. For example,
in the sentence ordering task, it is required to first understand the
semantics of each sentences, based on that to discover relations ex-
isting between different sentences and predict the order accordingly.
From another perspective, exploring coherency patterns based on
only single-modality data is difficult due to the limited information
from only a single view, making the underlying logic difficult to
explore [34, 41]. In comparison, Human perception is internally
cross-modal, which facilitate them to better capture the dependency
between different segments of content in any modality [28, 41].
Inspired by cross-modal human cognition [10, 36, 46], a previous
study [9] proposed cross-modal coherence modeling method, which
leverages additional information from another modality and use
it as the reference to learn the order in target modality. The cross-
modal correspondence and the order information in the additional
modality may offer useful guidance. However, despite of the effec-
tiveness, this method requires gold labels for the order information
from the additional modality, which is not always available and
would be expensive and time-consuming to acquire.

To further address this limitation, this paper introduces a more
flexible cross-modal coherence modeling approach, which leverages
the predicted instead of labeled order information in one modality
to enhance the order modeling in another, as shown in the bot-
tom part of Figure 1. The basic idea is that the two modalities for
cross-modal coherence modeling are semantically correlated, if
there is coherence information observed in one modality, the other
modality could benefit from it as long as the coherence information
is correlated and reliable. To be specific, we introduce the Weak
Cross-modal Guided Ordering model (WeGO), which employs the
predicted pairwise order in one modality as the reference informa-
tion to guide the order prediction in another modality. Such weak
guidance is selectively applied based on the prediction confidence
of the reference order and the semantic correlation between the
specific elements across modalities. An Iterative Learning para-
digm is further designed to optimize the ordering models of two
modalities jointly, one at each time with feasible guidance from
another, making the proposed method to be IterWeGO. At the
inference stage, cross-modal order guidance functions iteratively
for different modalities for multiple steps to boost uni-modal order
prediction. The main contributions of this paper are as follows:
• We work on cross-modal coherence modeling task and propose
a novel cross-modal guidance method WeGO, which effectively
take advantage of relevant but weak order reference from another
modality to guide the order modeling in the target modality.

• We propose an iterative learning paradigm to leverage weak
cross-modal order guidance for both modalities during training,
and learn the ordering models of two modalities jointly.

• We evaluate the proposed method on two public cross-modal
coherence modeling datasets and compare it with existing com-
petitive baselines. Experimental results demonstrate that the pro-
posed method consistently outperforms all compared methods
by large margins, showing great superiority of it.

2 RELATEDWORKS
2.1 Coherence Modeling
Coherence modeling has been studied in various tasks in literature,
including the most representative two: Sentence Ordering in NLP
and Visual Storytelling in multimedia understanding.

Sentence ordering is representative coherence modeling task in
the area of NLP, with early-stage methods mostly built based on do-
main knowledge and language-based features [4, 8, 19, 27, 39]. For
example, these methods use vectors of linguistic features in prob-
abilistic transition models. In recent years, with the development
of deep learning and NLP technologies, more advanced methods
apply an encoder-decoder framework and retrieve the final order
using pointer networks [14, 26, 43, 53, 58]. Topological sorting is
also applied to address the sentence ordering problem [47, 49]. With
the boost of pre-trained language models, BERT-based [15], BART-
based [13] and other pre-trained language model-boosted sentence
ordering networks have been proposed and achieved competitive
performance. Graphs are applied to enhance the sentence represen-
tations for the sake of ordering learning [59, 63], also to implement
set modeling without orders and more suitable for the input.

Storytelling is a higher-level coherence modeling task for co-
herency modeling, which requires to generate the sentences that



Leveraging Weak Cross-Modal Guidance for Coherence Modelling via Iterative Learning MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

can be ordered properly to construct a coherent story [30, 33]. Vi-
sual storytelling is a further extension of storytelling with multi-
modal input, which requires the generated story to be consistent
to the given visual content [1, 29]. Such a cross-modal coherence
modeling task help to develop human-like artificial intelligent meth-
ods that understand the grounded event structure that go beyond
descriptive language only [42]. Early methods mostly leveraged
CNNs and RNNs into an integrated encoder-decoder architecture
to comprehend visual input and generate textual output respec-
tively [12, 55]. More recent methods attempted to enhance the
reasoning or planing abilities of the model by applying more ad-
vanced or large-scale pre-trained modules. For example, Liu et al.
[42] proposed to introduce the planning procedure for visual sto-
rytelling relying on pre-trained language models, which help to
generate less repetitive, more logical stories with more details. Al-
though both visual storytelling and our cross-modal ordering task
target at cross-modal coherence modeling, we are faced with un-
ordered materials for both modalities while the visual storytelling
offers well-ordered image sequences as grounding reference for the
text generation.

2.2 Cross-Modal Learning
Cross-modal learning generally aims to learn a unified represen-
tation of two modalities, mostly vision and language. It plays an
important role in many different cross-modal tasks, such as vision-
language retrieval [6, 31, 56], vision question answering [3, 48, 60],
vision-language alignment [9], multi-modal sentiment classifica-
tion [24, 32], visual captioning [5, 7], cross-modal relation extrac-
tion [17, 20], etc. With the extraordinary development of the large-
scale pre-training, Vision-Language pre-training (VLP) has become
a mainstream research direction recently. The goal of VLP is to
learn unified representation of different modalities through large-
scale learning based on large-scale image-text pair data, which can
further benefit the above-mentioned downstream tasks.With a dual-
stream architecture, CLIP has exhibited remarkable performance
on zero-shot recognition and several downstream tasks by applying
effective contrastive learning [51]. For further enhancement, Pyra-
midCLIP [23] introduced fine-grained interactions between two
modalities to achieve better cross-modal alignment. CyCLIP [25]
introduced geometrical consistency constraints. SoftCLIP [22] re-
laxed the one-to-one cross-modal alignment constraint and instead
introduced intra-modal guidance to enable many-to-many rela-
tionships between the two modalities, which further enhance the
pre-training performance cross-modal learning model.

Cross-modal learning is generally a sub-field of multi-modal
machine learning [2, 45, 54]. From another perspective, it aims to
use data from additional modalities to improve a uni-modal task.
Lin et al. [41] proposed a cross-modal learning method by treating
data from other modalities as additional training samples to help
with the uni-modal few-shot learning. Jin et al. [31] proposed to
apply the idea of Banzhaf Interaction to explicitly capture the fine-
grained semantic relationships between vision and text, and use
it as additional learning signals to improve the contrastive cross-
modal learning. Qin et al. [50] investigated how to improve the
correspondence across visual and textural modalities in cross-modal
learning, which might contain ubiquitous noise in labeled pair data.

Ju et al. [32] proposed joint learning method for sentiment analysis
by incorporating the image-text relation to leveraging the visual
guidance for text understanding. With a similar idea, cross-modal
coherence modeling task aims to leverage the additional guidance
from another modality to facilitate the coherence model learning
in one modality. However, different with previous work, this study
tries to leverage not only the cross-modal semantic information, but
also the order information to specifically help with the uni-modal
coherence modeling task.

3 METHOD: ITERWEGO
In this section, we introduce the proposed Weak Cross-modal
Guided Ordering model with Iterative Learning (IterWeGO). In
the following part, We first introduce single modal encoders for
the semantic and context encoding of multi-modal input. Then, we
detail the cross-modal guidance module to leverage weak order as
reference. In the end, we demonstrate the iterative boosting mecha-
nism for learning and inference, which enables to enhance ordering
learning and prediction in two modalities simultaneously.

3.1 Problem Formulation
This paper studies the cross-modal coherence modeling, specifically
on the task of sentence and image ordering problem. Given a set of
sentences and a set of images, both unordered, the task is to learn
to organize the elements in each set with proper orders based on
the semantics so that the two parts of content would make one
coherent story, either in natural language or visual illustration.

3.2 Intra-Modal Semantic & Contextual
Encoding

Given an image set X𝑖 consisting of several unordered images
{𝑋𝑖1, 𝑋𝑖2, ...𝑋𝑖𝑀 }, where 𝑁 = |X𝑖 | denotes the number of images
in the set. Each image 𝑋𝑖𝑘 ∈ X𝑖 can be analyzed by a visual model
𝐹 , i.e., a semantic encoder to extract the visual content features as
𝑒𝑒𝑒𝑖𝑘 = 𝐹𝜎 (𝑋𝑖𝑘 ), where 𝜎 denotes the parameters in the model 𝐹 ().
It is important to exploit semantic relations between different ele-
ments, i.e., images or sentences, for recovering coherence in the set.
Towards this end, we further design an intra-modal context encoder
equipped with the scaled dot-product self-attention to obtain the
contextual representation [8]. Context-aware representations for
the set of images can therefore be obtained as 𝐸𝐸𝐸𝑖 = 𝑀𝐻_𝐴𝑡𝑡𝛽 (𝐸𝐸𝐸𝑖 ),
where 𝐸𝐸𝐸𝑖 is the matrix composed of the content representations
of all images in the set as 𝐸𝑖 = {𝑒𝑖1, 𝑒𝑖2, ...𝑒𝑖 |X𝑖 | }. 𝛽 denotes the
parameters in the context encoder𝑀𝐻𝐴𝑡𝑡 (). Similarly, for the in-
put sentence set S𝑗 = {𝑆 𝑗1, 𝑆 𝑗2, ..., 𝑆 𝑗𝑁 }, where 𝑀 = |S𝑗 |, each
sentence 𝑆 𝑗𝑘 can be analyzed by a semantic encoder 𝐺𝜂 first to
obtain the content representation 𝑒𝑒𝑒 𝑗𝑘 . The whole set of content
representations is further passed to a context encoder 𝑀𝐻_𝐴𝑡𝑡𝛾
similar as images to obtain context-aware representation 𝐸̂𝐸𝐸 𝑗 . 𝜂 and
𝛾 are trainable parameters for the encodes.

3.3 Semantic-Aligned Cross-Modal Order
Guidance

Based on the context-aware representations, we can further model
the relative order of any two elements (in the textual or visual
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Figure 2: Framework of the proposed IterWeGO model. An iterative learning paradigm is designed to optimize the ordering
models of two modalities jointly with continuous guidance from each other. The weak cross-modal order guidance is applied
selectively at each learning step based on the predicted pairwise order through semantic cross-modal alignment.

modality) by devising a pairwise order classifier ℎ𝛿𝐼 (𝑥1, 𝑥2) with
trainable parameters 𝛿𝐼 . For example, for two images 𝑋𝑖1, 𝑋𝑖2 with
context-aware representations being 𝑒𝑒𝑒𝑖1, 𝑒𝑒𝑒𝑖2, their pairwise order
result turns to be 𝑜𝑖12 = ℎ𝛿𝐼 (𝜌 (𝑒𝑒𝑒𝑖1, 𝑒𝑒𝑒𝑖2)), where 𝜌 is the integration
function, for example, can be the concatenation operation. We for-
mulate pairwise order prediction as a binary classification problem
and apply a logistic function further to predict the probability of
two situations (𝑋𝑖1 > 𝑋𝑖2 or 𝑋𝑖2 > 𝑋𝑖1) as 𝑠𝑖12 = Sigmoid(𝑜𝑖12 ).

For a target image setX𝑖 , there are in total
( 𝑛
2
)
pairs. All pairwise

order probability scores of the set consist of an 𝑁 × 𝑁 square,
corresponding to the number of images in the set, which can be
denoted as 𝐵 ∈ R𝑁×𝑁 . Similarly, for each sentence set we have
the order matrix 𝐴 ∈ R𝑀×𝑀 in which each element denotes the
pairwise order probability of the corresponding two sentences.

To explore deeper connections between two modalities and en-
hance the semantic alignment between the associated image and
text sets, we further leverage cross-modal semantic similarity
modeling as illustrated in Figure 2. Specifically, we apply a pre-
trained cross-modal models on the input sets of the two modalities
respectively, and further obtain the cross-modal similarity matrix
𝐶 ∈ R𝑀×𝑁 . Each element 𝑐𝑚𝑛 ∈ 𝐶 measures the semantic similar-
ity of the two corresponding elements from two modalities based
on their cross-modal content representations.

With the cross-modal semantic similarity matrix, we can apply
cross-modal order guidance based on a simple idea that the pre-
diction of pairwise order in one modality is highly related to the
corresponding pairwise score in another modality. The cross-modal
similarity matrix serves as a bridge to link two modalities to en-
sure the order guidance is only applied between semantic-aligned

cross-modal elements. Furthermore, our cross-modal guidance is
only invoked when the prediction confidence of the pairwise score
in the referred modality is high, making it qualified to become a
guidance. To effectively leverage cross-modal order guidance, we
design a cross-modal guided order matrix updating (CGO-MU) al-
gorithm to update the pairwise order matrix in one modality. For
example, the order matrix of the image set 𝐵 can be refined with the
CGO-MU algorithm based on the order matrix of the sentence set𝐴
and the cross-modal similarity matrix 𝐶 as 𝐵′ = CGO-MU(𝐵 |𝐴,𝐶).
Detailed steps of CGO-MU is introduced in Algorithm 1, according
to which we can also derive the way to obtain the refined sentence
order matrix by 𝐴′ = CGO-MU(𝐴|𝐵,𝐶) .

3.4 Cross-Modal Learning and Inference with
Iterative Boosting

As illustrated in the upper part in Figure. 2, we introduce an Iterative
Boosting (IB) mechanism to enable the cross-modal guidance to be
applied and benefit the ordering model learning in both the visual
and textual modalities. The iterative learning paradigm is applied to
further optimize the uni-modal modules of image and text ordering
iteratively with cross-modal guidance being leveraged and updated
along with the iterative training. The optimization is implemented
based on the cross-entropy loss on the pairwise order prediction,
which is specifically as follows if taking image ordering learning as
an example:

L𝐼𝑚𝑔 = − 1
|X|

1
|X𝑖 |2

∑︁
X𝑖 ∈X

∑︁
𝑘,𝑙∈X𝑖

𝑦𝑘𝑙Softmax(𝑏′
𝑘𝑙
), (1)
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Algorithm 1: Cross-modal Guided Order Matrix Updating
(CGO-MU) for Image Matrix
Input :Sentence Set Order Score Matrix 𝐴, Image Set Order Score

Matrix 𝐵, Cross-Modal Semantic Similarity Matrix𝐶 ,
Mask Threshold 𝜃

Output :Refined Image Set Score Matrix 𝐵′

1 Masked Sentence Set Score Matrix 𝐴̂
2 𝐴̂ = zeros_like(𝐴)
3 Step 1:
4 for 𝑖 ∈ [0, 𝑀 ] do
5 for 𝑗 ∈ [0, 𝑀 ] do
6 if 𝐴[𝑖, 𝑗 ] > 𝜃 then
7 𝐴̂[𝑖, 𝑗 ] = 𝐴[𝑖, 𝑗 ]
8 end
9 end

10 end
11 𝐵′ = copy(𝐵)
12 Step 2:
13 for 𝑝 ∈ [0, 𝑀 ] do
14 for 𝑞 ∈ [0, 𝑀 ] do
15 if 𝐴̂(𝑝,𝑞) ≠ 0 then
16 𝑖𝑑𝑥1 = Argmax(𝐶 (𝑝 ) )
17 𝑖𝑑𝑥2 = Argmax(𝐶 (𝑞) )
18 𝐵′ (𝑖𝑑𝑥1, 𝑖𝑑𝑥2)+ = 𝐴(𝑝,𝑞)
19 end
20 end
21 end
22 RETURN 𝐵′

where 𝑏′
𝑘𝑙

∈ 𝐵′ is refined predicted pairwise order of the elements
𝑋𝑘 and 𝑋𝑙 (not that for simplicity we omit 𝑋 and denote images
by their index as 𝑘 and 𝑙 in the above equation). 𝑦𝑖 𝑗 is the ground-
truth label of the corresponding order, which could be 0 or 1. X
is the collection of all image sets in the training data. All training
parameters involved in the images ordering model (𝜎 , 𝛽 and 𝛿𝐼 )
get updated after the optimization. Similarly, the sentence ordering
loss can be defined as:

L𝑆𝑒𝑛 = − 1
|S|

1
|S𝑖 |2

∑︁
S𝑖 ∈S

∑︁
𝑘,𝑙∈S𝑖

𝑧𝑘𝑙Softmax(𝑎′
𝑘𝑙
), (2)

where 𝑎′
𝑘𝑙

∈ 𝐴′ and 𝑧𝑘𝑙 are the refined predicted and ground-
truth pairwise order of the element pair < 𝑆𝑘 , 𝑆𝑙 > respectively.
Optimizing L𝑆𝑒𝑛 updates all parameters involved in the sentence
ordering process.

In inference, we use topological sort algorithm to find the order
of the whole image/sentence set based on the pairwise order pre-
dicted by our cross-modal coherence model. Specifically, we build
a ordering graph (directed) for each set, in which each element (im-
age or sentence) serves as a node and the pairwise order suggests
the directed edge between the two corresponding nodes. For each
node, we can calculate its overall order score by summarizing the
in/out edges, and sort the score of all nodes to obtain the final order
list for the target set. Iterative boosting functions during inference
too, which enables to update the order prediction iteratively across
modalities for several times to achieve better accuracy for ordering
in each modality.

4 EXPERIMENTS AND RESULTS
To evaluate the effectiveness of the proposed approach, we con-
duct extensive experiments on two standard coherence modeling
datasets, i.e., SIND [30] and TACoS-Ordering [9].

4.1 Experimental Settings
We apply ViT and BERT as the content encoder to process images
and sentences respectively, and conduct fine-tuning on two uni-
modal ordering tasks. The contextual encoders for text and image
share the same structure, which is combined by Self Attention
Layers and Feed Forward Layers [9]. The cross-modal alignment
module relying on semantic similarity is implemented by a CLIP
model. This model is fine-tuned before applying in the IterWeGO
with the cross-modal pairs in the target dataset in a contrastive
learning manner. Threshold to select valid cross-modal guidance is
set to 0.8 for image-to-text and 0.9 for text-to-image respectively
based on empirical results. The setting of threshold is a trade-off
between the quality and quantity of the leveraged cross-modal
guidance. Empirical results suggest that the performance of the
model stays stable when it is set within a certain range. During
training, we employ Adam [35] optimizer to minimize the loss, with
initialized learning rate of 2× 10−4. The batch size of SIND is set to
64, while TACoS-Ordering is 32. We apply 8 parallel heads for all the
multi-head attention layer and the hidden size is 768. In inference,
we apply multi-step cross-modal guidance to enhance the order
prediction in each modality untill the best performance is reached.
In accordance with previous work [8, 9], we apply three metrics
to evaluate the performance of different methods for cross-modal
ordering tassk, which are Accuracy (short in Acc), Perfect Match
Ratio (PMR) and Kendall’s Tau (𝜏).

4.2 Comparison with Baselines
We compare the proposed IterWeGO model with the following
competitive coherence modeling approaches.
• LSTM+PtrNet [43]: This method uses an LSTM-based encoder
to obtain the context representation and the pointer network as
the decoder to predict the order.

• L-TSort [49]: It implements topological sort to optimize the
relative order constraint between paired sentences.

• AttOrderNet (AON) [14]: It applies self-attention-based encoder
and autoregressive decoder, which is very similar to our work
except the autoregressive decoding. Following [9], we test two
versions, AON-UM andAON-CM, for comprehensive comparison.
AON-UM exploits single-modal data only, which is just as applied
in the original paper. AON-CM is the expanded cross-modal
version which takes data from both modalities as input.

• RankNet [38]: It also applies similar encoders with AON and
our NACON, but employs ranking strategy for the output order.
We also implement two versions of single-modal and cross-modal,
RankNet-UM and RankNet-CM, for comparison.

• NACON [9]: It is the state-of-the-art coherencemodelingmethod
employing a basic encoder-decoder framework with an unique
non-autoregressive decoder to tackle with the permutation chal-
lenge for order prediction. It leverages cross-modal guidance
with ground-truth orders to boost the coherence modeling of the
singe modality.
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Table 1: Overall Cross-Modal Coherence Modeling Performance

Model
Sentence Ordering Image Ordering

SIND TACoS-Ordering SIND TACoS-Ordering
Acc PMR 𝜏 Acc PMR 𝜏 Acc PMR 𝜏 Acc PMR 𝜏

LSTM+PtrNet 43.84 11.26 0.4471 38.86 10.09 0.6967 23.23 2.27 0.0714 23.34 2.41 0.4543
L-TSort 42.66 10.03 0.4798 38.1 9.44 0.7009 23.13 1.97 0.072 20.93 1.93 0.4089
AON 44.16 11.97 0.4494 39.42 10.61 0.7003 24.54 2.65 0.0906 23.5 2.76 0.4355

RankNet 42.33 9.79 0.4587 34.91 8.46 0.6701 22.75 1.66 0.078 19.15 1.54 0.3618
NACON-UM 47.86 14.48 0.5115 43.06 11.22 0.7405 25.12 2.59 0.1056 24.95 3.24 0.4641
NACON-UM* 50.81 16.87 0.5498 44.42 11.93 0.76 27.84 3.68 0.1584 26.92 3.36 0.5169

IterWeGO-UM 49.48 15.39 0.5646 44.47 11.99 0.7665 26.37 2.41 0.1601 29.52 3.84 0.5987
IterWeGO-UM-NoCon 48.19 15.21 0.5552 45.07 12.24 0.77 33.55 6.68 0.3094 29.85 3.72 0.6342

IterWeGO (Ours) 54.45 20.91 0.6450 46.20 12.52 0.7775 36.48 8.01 0.3512 32.92 4.61 0.6579

Improv. (%) 7.2 23.9 17.3 4.0 4.9 2.3 31.0 117.7 121.7 22.3 37.2 27.3

NACON1 65.06 35.49 0.6549 45.39 11.37 0.7668 44.05 13.9 0.3371 28.14 3.54 0.5197
NACON* 72.92 48.09 0.7318 54.49 30.73 0.8309 48.03 17.23 0.4433 40.84 15.17 0.7282

1 NACON and NACON* both leverage additional cross-modal order labels, therefore can be seen as the upper bound of our model. NACON* is an advanced version applying same
visual and textual encoders as IterWeGO.

4.3 Overall Performance
The overall performance of all compared methods, including the
proposed IterWeGO and the baselines, are shown in Table. 1. From
the table we have the following observations.

• Compared to the methods without using additional cross-modal
order labels, the proposed IterWeGO method outperforms them
all on both the Sentence Ordering and the Image Ordering tasks
across the two datasets, showing consistent effectiveness in the
general coherence modeling task. We can also observe that the
leveraged cross-modal guidance (in Sec. 3.3) and the contextual
encoding (in Sec. 3.2) are both effective by comparing the perfor-
mance of IterWeGO with two variants: -UM and -UM-NoCon.

• The proposed IterWeGO gains more performance improvement
in the image ordering task than for the sentence ordering task.
From the overall results we can see that all methods perform bet-
ter for sentence ordering than image ordering, which suggests
that sentences are relatively easier to be ordered than images,
and images ordering are more challenging. Since our IterWeGO
leverages weak cross-modal guidance, which is predicted rela-
tive order information instead of the pre-obtained gold labels, it
is more effective when the modality to receive the guidance is
challenging and the modality to offer the guidance is easy. Image
ordering with sentence order guidance is exactly such a task, in
which case the weak guidance is more reliable. In comparison, of-
fering image order guidance for sentence ordering tries to apply
a weaker model to facilitate a stronger model, which therefore
is more difficult. Nevertheless, our IterWeGO still achieves sig-
nificant performance improvement comparing other methods,
showing general effectiveness of the idea of leveraging cross-
modal order guidance to boost the uni-modal ordering.

• By comparing different metrics, we further observe that our
method gain relatively more performance in terms of PMR and
𝜏 , which measure exact match and relative orders respectively.
Such results demonstrate good capability of our IterWeGO to

Table 2: Performance of IterWeGO variants on SIND with dif-
ferent Iterative Boosting (IB) settings: 1) without IB in Train-
ing and Inference; 2) without IB in the Inference; 3) without
IB in Training; and 4) the IterWeGO.

Model Sentence Ordering Image Ordering
Acc PMR 𝜏 Acc PMR 𝜏

w/o IB in T&I 49.48 15.39 0.5646 26.37 2.41 0.1610
w/o IB in T 50.92 17.09 0.5891 34.79 6.50 0.3214
w/o IB in I 49.11 14.80 0.5659 24.68 2.45 0.1232
IterWeGO 54.46 20.91 0.6450 36.48 8.01 0.3512

explore the orders rather than the exact positions of different
segments in both modalities.

• Table 1 also demonstrates the noticeable difference of perfor-
mance of IterWeGO across datasets. The effectiveness of our
model seems to bemore obvious on the SIND dataset than TACoS-
Ordering, suggesting that the idea of cross-modal order guidance
is particularly useful when the images and sentences are better
aligned and matched.

• We also illustrate the performance of two NACON models at the
bottom two rows in the table. Specifically, NACON denotes origi-
nal method [9] and NACON* denotes the advanced version using
ViT and BERT to replace the image and sentence encoders in the
original model to keep consistent with the IterWeGO method.
Both NACON and our IterWeGO incorporate cross-modal order
guidance. Although the performance of NACONs seems to be
higher, it needs to be noticed that NACONs use gold order labels
while our method only relies on predicted relative order informa-
tion, which is much weaker guidance comparatively. From this
perspective, NACONs may be seen as upper-bound reference to
our IterWeGO model. While compared to NACONs, our model
is also more feasible to apply since it does not need such gold
labeled order annotations.
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Figure 3: Illustration of the performance of two type of mod-
els (IterWeGO and IterWeGO w/o IB in training) with differ-
ent Iterative Boosting (IB) steps during inference.

4.4 Impact of Iterative Boosting
To verify the effectiveness of our iterative boosting strategy, we
conduct ablative experiments on SIND dataset and illustrate the
results in Table 2. The first two rows of results correspond to the
models without applying cross-modal iterative boosting during
training. As shown from the results, applying iterative inference
only can boost the ordering performance. When we implement it-
erative boosting strategy during both training and inference stages,
the performance achieves the best owing to the synchronization
signal between training and inference. We also note an interesting
phenomenon that solely apply iterative training yields a slightly
lower result comparing to without using it (w/o IB in I v.s. w/o IB
in T&I ). This may result from the discrepancy between training
and inference, because in the case of w/o IB in I, the inference is
conducted in uni-modal only, which is different from the training
stage leveraging cross-modal guidance. But if the cross-modal guid-
ance, aka, the iterative boosting is also applied during inference,
the performance will significant improve (w/o IB in I v.s. IterWeGO).

We take a further step to investigate the mechanism of our itera-
tive strategy by delving into the iteration steps during inference.
Specifically, we implement 10 iteration steps during inference and
measure the performance for each step. The variation trend across
steps is shown in Figure 3. From the figure, we observe that all
the methods gain significant improvements at the first iteration,
and gradually reach the plateau values. The cross-modal training
setting (our IterWeGO) exhibits boosting for more steps and finally
outperforms the uni-modal version by a large margin, which veri-
fies the effectiveness of the iterative strategy during both training
and inference stages.

4.5 Impact of Cross-Modal Guidance
One important technical part in the proposed IterWeGO is to lever-
age the weak relative order guidance across modalities to enhance
the uni-modal ordering learning. Although the overall performance
of IterWeGO has been demonstrated superb, it is still not clear
whether the cross-modal order guidance contributes to the overall
performance and how does it contribute. To answer these questions,
we test variants of IterWeGO models and compare their perfor-
mance together with IterWeGO. The first variant is IterWeGO-FFE

Table 3: Performance of IterWeGO variants with different
cross-modal enhancement on SIND. FFE: Feature Fusion En-
hancement; ROE: Relative Order Enhancement.

Model Sentence Ordering Image Ordering
Acc PMR 𝜏 Acc PMR 𝜏

IterWeGO-FFE 44.49 11.85 0.4886 29.13 3.84 0.2211
IterWeGO-ROE 51.94 17.90 0.6154 34.13 6.09 0.3184

IterWeGO 54.45 20.91 0.6450 36.48 8.01 0.3512

Table 4: Performance of IterWeGO and LLMs (GPT) on two
ordering tasks based on 176 testing samples from SIND.

Model Sentence Ordering Image Ordering
Acc PMR 𝜏 Acc PMR 𝜏

GPT-UM 53.41 26.70 0.5784 25.34 3.41 0.0910
GPT-CM 43.75 17.05 0.4795 30.23 5.11 0.2250
IterWeGO 55.23 31.25 0.6625 37.39 8.52 0.3591

(Feature Fusion-Enhanced), which applies cross-modal enhance-
ment by leveraging semantic guidance through cross-modal fea-
ture fusion. The second variant is IterWeGO-ROE (Relative Order-
Enhanced), which leverages order guidance instead of semantic
guidance. Compared with IterWeGO, IterWeGO-ROE use the pre-
trained CLIP model to measure the cross-modal correlations, which
is the basis to apply cross-modal guidance, while IterWeGO applies
a fine-tuned CLIP model, whose semantic correlation measurement
has been adapted properly to the target datasets we use.

Corresponding experimental results have been illustrated in
Table 3, from which we have the following observations. First,
our IterWeGO outperforms two variants on both tasks across to
datasets, showing that our current design of cross-modal guid-
ance enhancement is generally better than the other two. We also
notice that IterWeGO-ROE consistently outperforms IterWeGO-
FFE, which demonstrates that applying cross-modal guidance with
relative order information is significantly more effective than se-
mantic enhancement via simple feature fusion. Furthermore, with
delicate fine-tuning for the cross-modal alignment module, our Iter-
WeGO achieves marked performance improvement compared to
IterWeGO-ROE. Since the cross-modal alignment module serves as
the bridge to pass the specific guidance across modalities, it partly
determine the quality of the leveraged guidance as well as the effec-
tiveness of the guidance enhancement, which thereby significantly
impact the overall performance of the whole model.

4.6 Case Study
To straightforwardly illustrate the effectiveness and mechanism of
our IterWeGO model, we exhibit three cases in Figure 4, two for the
comparison between different methods and one to show the itera-
tive updating for ordering during inference. From case (a), we can
observe that when the uni-modal ordering suffering from the lack
of coherence information, it cannot recover the order both for texts
and images. NACON [9] employs cross-modal positional attention
to leverage the gold order information from the other modality to
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S1: A courtyard had a well watered lawn. 

S2: The gym was stuffy but the spirits were high. 
S3: The graduates wore the shiniest gowns I had ever seen. 

S4: A historic speech was made by the president.
S5: Families gathered outside to reunite and take pictures.

i1 i2i3i4i5

s2 s1 s3 s4 s5

s1: The family all gathered around for dinner .
s2: We made some noodles .
s3: We also had tariyaki chicken .
s4: Female pulled out the organization .
s5: They joked around as she snapped some pictures .

s1: The baby was so happy to spend time with extended family .
s2: We all gathered around the local pool for some summer fun .
s3: The water was cold , and the kids stayed in the shallow end of the pool .
s4: After a long day of swimming , it was time to dry off and get ready to go home .
s5: We spotted this american flag at the entrance to the pool .

(c)
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Figure 4: Three case illustration. (a) and (b) show the image and sentence orders predicted by our IterWeGO and the key baseline
NACON and the variant IterWeGO-UM. (c) illustrates the iterative updating process for two ordering tasks with cross-modal
guidance during inference by our IterWeGO.

assist the target modality and achieves much better results, which
could play as an upper bound. While our IterWeGO only leverage
weak guidance from the other modality, it also recovers the gold
order with iterative boosting paradigm. Even IterWeGO cannot
totally recover the gold order, it still benefits from the guidance of
relative order hidden in the other modality, and partially recover
the order. With such partial recovering, the PMR will not improve
but Accuray and 𝜏 will gain improvements.

As discussed in Section 4.4, the iterative boosting strategy signif-
icantly improve the order recovering. To make the mechanism of
iterative boosting more straightforwardly, we illustrate an example
of iterative inference in case (c). From this case, we observe at step
0 (unimodal inference), the order is far from coherent, but based
on the weak cross-modal guidance at step 1, several sentences and
images can be placed at the right position. With the iteration going,
more elements, i.e., images and sentences, are placed at the ground-
truth positions, and results in recovering the gold order in the end.
In summary, these cases directly illustrate the effectiveness and
superiority of our proposed IterWeGO model.

4.7 Comparison with Large Foundation Models
As large foundation models, e.g., large language models (LLMs) and
large multimodal models (LMMs), have been demonstrating superb
capability in various areas and tasks. Here we take an attempt to
investigate the LMMs for ordering problem with weak cross-modal
guidance. We random sample 200 cases from the test set and prompt
GPT-4 (for pure text ordering) and GPT-4V (for image and cross-
modal ordering) to recover the order of a set of elements (images
or sentences). We note that GPT rejected 24 samples for ordering,

resulting in 176 valid sample for final comparison. As the results
shown in Table 4, to our surprise, GPT achieves inferior ordering
performance comparing with our IterWeGO. More interesting, with
the weak guidance from the other modality, GPT-CM yields worse
performance than the unimodal scenario (GPT-UM) for text or-
dering, but gains improvement for image ordering. Bin et al. [8]
pointed out that the reason of GPT fails in ordering problem may
come from the autoregressive nature of GPT. We go a step further
to hypothesize that the reason for the inferior performance in the
cross-modal scenario may be because GPT processes all content as
input, summarizing the common topics of images and sentences,
but fails to capture intra-modal coherence. Anyway, the prompting
engineering is also a reason of unexpected performance of GPT, we
will keep improving the prompts to yield better performance.

5 CONCLUSIONS
This paper presented a novel cross-modal coherence modeling
method that focuses on taking advantage of cross-modal unordered
guidance to enhance the order learning in single modality, named
as Weak Cross-modal Guided Ordering (WeGO). More specifically,
it selectively employs the predicted relative order information in
one modality to guide corresponding order modeling in another
based on proper semantic alignment. Furthermore, to facilitate the
ordering model learning in both modalities, an iterative learning
diagram was proposed. Extensive experiments done in two public
datasets demonstrated the effectiveness of the proposed method.
Two major technical components, namely weak cross-modal guid-
ance and iterative boosting in both training and learning, have been
evaluated to be effective with solid experiments and anslysis.



Leveraging Weak Cross-Modal Guidance for Coherence Modelling via Iterative Learning MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China under grant 62102070 and 62220106008, and Sichuan Sci-
ence and Technology Program under grant 2023NSFSC1392. This
research is supported by A*STAR, CISCO Systems (USA) Pte. Ltd
and National University of Singapore under its Cisco-NUS Acceler-
ated Digital Economy Corporate Laboratory (Award I21001E0002).

We also sincerely thank all the ACs and reviewers for their efforts
on our work and appreciate the useful comments for improving it.

REFERENCES
[1] Harsh Agrawal, Arjun Chandrasekaran, Dhruv Batra, Devi Parikh, and Mohit

Bansal. 2016. Sort story: Sorting jumbled images and captions into stories. arXiv
preprint arXiv:1606.07493 (2016).

[2] Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo Torresani, Bernard
Ghanem, and Du Tran. 2020. Self-supervised learning by cross-modal audio-
video clustering. Advances in Neural Information Processing Systems 33 (2020),
9758–9770.

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer vision. 2425–2433.

[4] Regina Barzilay and Mirella Lapata. 2008. Modeling local coherence: An entity-
based approach. Computational Linguistics 34, 1 (2008), 1–34.

[5] Yi Bin, Yujuan Ding, Bo Peng, Liang Peng, Yang Yang, and Tat-Seng Chua. 2021.
Entity slot filling for visual captioning. IEEE Transactions on Circuits and Systems
for Video Technology 32, 1 (2021), 52–62.

[6] Yi Bin, Haoxuan Li, Yahui Xu, Xing Xu, Yang Yang, and Heng Tao Shen. 2023.
Unifying two-stream encoders with transformers for cross-modal retrieval. In
Proceedings of the 31st ACM International Conference on Multimedia. 3041–3050.

[7] Yi Bin, Xindi Shang, Bo Peng, Yujuan Ding, and Tat-Seng Chua. 2021. Multi-
perspective video captioning. In Proceedings of the 29th ACM International Con-
ference on Multimedia. 5110–5118.

[8] Yi Bin, Wenhao Shi, Bin Ji, Jipeng Zhang, Yujuan Ding, and Yang Yang. 2023.
Non-Autoregressive Sentence Ordering. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023. 4198–4214.

[9] Yi Bin, Wenhao Shi, Jipeng Zhang, Yujuan Ding, Yang Yang, and Heng Tao Shen.
2022. Non-autoregressive cross-modal coherence modelling. In Proceedings of
the 30th ACM International Conference on Multimedia. 3253–3261.

[10] Gemma A Calvert, Edward T Bullmore, Michael J Brammer, Ruth Campbell,
Steven CRWilliams, Philip K McGuire, Peter WRWoodruff, Susan D Iversen, and
Anthony S David. 1997. Activation of auditory cortex during silent lipreading.
science 276, 5312 (1997), 593–596.

[11] Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin Jiang, Tianqing Fang, Xin Liu,
and Yangqiu Song. 2024. Exploring the Potential of ChatGPT on Sentence Level
Relations: A Focus on Temporal, Causal, and Discourse Relations. In Findings of
the Association for Computational Linguistics: EACL 2024. 684–721.

[12] Hong Chen, Yifei Huang, Hiroya Takamura, and Hideki Nakayama. 2021. Com-
monsense knowledge aware concept selection for diverse and informative visual
storytelling. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
999–1008.

[13] Somnath Basu Roy Chowdhury, Faeze Brahman, and Snigdha Chaturvedi. 2021.
Is everything in order? a simple way to order sentences. arXiv preprint
arXiv:2104.07064 (2021).

[14] Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei Zhang. 2018. Deep attentive
sentence ordering network. In EMNLP. 4340–4349.

[15] Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2020. BERT-enhanced relational
sentence ordering network. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6310–6320.

[16] Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron, and
David Osher. 2020. Implications for educational practice of the science of learning
and development. Applied developmental science 24, 2 (2020), 97–140.

[17] Yujuan Ding, PY Mok, Yi Bin, Xun Yang, and Zhiyong Cheng. 2023. Modeling
Multi-Relational Connectivity for Personalized Fashion Matching. In Proceedings
of the 31st ACM International Conference on Multimedia. 7047–7055.

[18] Yujuan Ding, PY Mok, Yunshan Ma, and Yi Bin. 2023. Personalized fashion outfit
generation with user coordination preference learning. Information Processing &
Management 60, 5 (2023), 103434.

[19] Micha Elsner and Eugene Charniak. 2011. Extending the entity grid with entity-
specific features. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies. 125–129.

[20] Junhao Feng, Guohua Wang, Changmeng Zheng, Yi Cai, Ze Fu, Yaowei Wang,
Xiao-YongWei, and Qing Li. 2023. Towards bridged vision and language: Learning
cross-modal knowledge representation for relation extraction. IEEE Transactions

on Circuits and Systems for Video Technology (2023).
[21] Lianli Gao, Yu Lei, Pengpeng Zeng, Jingkuan Song, Meng Wang, and Heng Tao

Shen. 2021. Hierarchical representation network with auxiliary tasks for video
captioning and video question answering. IEEE Transactions on Image Processing
31 (2021), 202–215.

[22] Yuting Gao, Jinfeng Liu, Zihan Xu, Tong Wu, Enwei Zhang, Ke Li, Jie Yang,
Wei Liu, and Xing Sun. 2024. Softclip: Softer cross-modal alignment makes clip
stronger. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
1860–1868.

[23] Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, Rongrong Ji, and Chunhua
Shen. 2022. Pyramidclip: Hierarchical feature alignment for vision-language
model pretraining. Advances in neural information processing systems 35 (2022),
35959–35970.

[24] Deepanway Ghosal, Md Shad Akhtar, Dushyant Chauhan, Soujanya Poria, Asif
Ekbal, and Pushpak Bhattacharyya. 2018. Contextual inter-modal attention for
multi-modal sentiment analysis. In proceedings of the 2018 conference on empirical
methods in natural language processing. 3454–3466.

[25] Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan Rossi, Vishwa Vinay, and
Aditya Grover. 2022. Cyclip: Cyclic contrastive language-image pretraining.
Advances in Neural Information Processing Systems 35 (2022), 6704–6719.

[26] Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. 2016. End-to-end
neural sentence ordering using pointer network. arXiv preprint arXiv:1611.04953
(2016).

[27] Camille Guinaudeau and Michael Strube. 2013. Graph-based local coherence
modeling. In Proceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). 93–103.

[28] Dan Guo, Kun Li, Bin Hu, Yan Zhang, and Meng Wang. 2024. Benchmarking
Micro-action Recognition: Dataset, Method, and Application. IEEE Transactions
on Circuits and Systems for Video Technology (2024).

[29] Ariel Han and Zhenyao Cai. 2023. Design implications of generative AI systems
for visual storytelling for young learners. In Proceedings of the 22nd Annual ACM
Interaction Design and Children Conference. 470–474.

[30] Ting-Hao Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya
Agrawal, Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli, Dhruv
Batra, et al. 2016. Visual storytelling. In Proceedings of the 2016 conference of the
North American chapter of the association for computational linguistics: Human
language technologies. 1233–1239.

[31] Peng Jin, Jinfa Huang, Pengfei Xiong, Shangxuan Tian, Chang Liu, Xiangyang Ji,
Li Yuan, and Jie Chen. 2023. Video-text as game players: Hierarchical banzhaf in-
teraction for cross-modal representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2472–2482.

[32] Xincheng Ju, Dong Zhang, Rong Xiao, Junhui Li, Shoushan Li, Min Zhang, and
Guodong Zhou. 2021. Joint multi-modal aspect-sentiment analysis with auxiliary
cross-modal relation detection. In Proceedings of the 2021 conference on empirical
methods in natural language processing. 4395–4405.

[33] Yunjae Jung, Dahun Kim, Sanghyun Woo, Kyungsu Kim, Sungjin Kim, and In So
Kweon. 2020. Hide-and-tell: Learning to bridge photo streams for visual story-
telling. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
11213–11220.

[34] Yeonjoon Jung, Minsoo Kim, Seungtaek Choi, Jihyuk Kim, Minji Seo, and Seung-
won Hwang. 2023. Retrieval-augmented Video Encoding for Instructional Cap-
tioning. In Findings of the Association for Computational Linguistics: ACL 2023.
8554–8568.

[35] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[36] Stephen M Kosslyn, Giorgio Ganis, and William L Thompson. 2010. Multimodal
images in the brain. The neurophysiological foundations of mental and motor
imagery (2010), 3–16.

[37] Zdzisław Kowalczuk and Michał Czubenko. 2023. Cognitive motivations and
foundations for building intelligent decision-making systems. Artificial Intelli-
gence Review 56, 4 (2023), 3445–3472.

[38] Pawan Kumar, Dhanajit Brahma, Harish Karnick, and Piyush Rai. 2020. Deep
Attentive Ranking Networks for Learning to Order Sentences.. In AAAI. 8115–
8122.

[39] Mirella Lapata, Regina Barzilay, et al. 2005. Automatic evaluation of text coher-
ence: Models and representations. In Ijcai, Vol. 5. 1085–1090.

[40] Haoxuan Li, Yi Bin, Junrong Liao, Yang Yang, and Heng Tao Shen. 2023. Your
negative may not be true negative: Boosting image-text matching with false
negative elimination. In Proceedings of the 31st ACM International Conference on
Multimedia. 924–934.

[41] Zhiqiu Lin, Samuel Yu, Zhiyi Kuang, Deepak Pathak, and Deva Ramanan. 2023.
Multimodality helps unimodality: Cross-modal few-shot learning with multi-
modal models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 19325–19337.

[42] Danyang Liu, Mirella Lapata, and Frank Keller. 2023. Visual Storytelling with
Question-Answer Plans. arXiv preprint arXiv:2310.05295 (2023).

[43] Lajanugen Logeswaran, Honglak Lee, and Dragomir Radev. 2018. Sentence
ordering and coherence modeling using recurrent neural networks. In Proceedings



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yi Bin, Junrong Liao, and Yujuan Ding, et al.

of the AAAI Conference on Artificial Intelligence, Vol. 32.
[44] Mary Ann Magee and Brian Sutton-Smith. 1983. The art of storytelling: How do

children learn it? Young Children 38, 4 (1983), 4–12.
[45] Jesse Mu, Percy Liang, and Noah Goodman. 2019. Shaping visual representations

with language for few-shot classification. arXiv preprint arXiv:1911.02683 (2019).
[46] Bence Nanay. 2018. Multimodal mental imagery. Cortex 105 (2018), 125–134.
[47] Byungkook Oh, Seungmin Seo, Cheolheon Shin, Eunju Jo, and Kyong-Ho Lee.

2019. Topic-guided coherence modeling for sentence ordering by preserving
global and local information. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 2273–2283.

[48] Liang Peng, Shuangji Yang, Yi Bin, and Guoqing Wang. 2021. Progressive graph
attention network for video question answering. In Proceedings of the 29th ACM
International Conference on Multimedia. 2871–2879.

[49] Shrimai Prabhumoye, Ruslan Salakhutdinov, and AlanWBlack. 2020. Topological
Sort for Sentence Ordering. In ACL. 2783–2792.

[50] YangQin, Yuan Sun, Dezhong Peng, Joey Tianyi Zhou, Xi Peng, and PengHu. 2024.
Cross-modal Active Complementary Learning with Self-refining Correspondence.
Advances in Neural Information Processing Systems 36 (2024).

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[52] Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang You, and Lidong Bing.
2023. Large language models are not yet human-level evaluators for abstrac-
tive summarization. In Findings of the Association for Computational Linguistics:
EMNLP 2023. 4215–4233.

[53] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks.
Advances in neural information processing systems 28 (2015).

[54] Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pedro O O Pinheiro. 2019.
Adaptive cross-modal few-shot learning. Advances in neural information process-
ing systems 32 (2019).

[55] Chunpu Xu, Min Yang, Chengming Li, Ying Shen, Xiang Ao, and Ruifeng Xu.
2021. Imagine, reason and write: Visual storytelling with graph knowledge
and relational reasoning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 3022–3029.

[56] Yahui Xu, Yi Bin, Jiwei Wei, Yang Yang, Guoqing Wang, and Heng Tao Shen.
2023. Multi-modal transformer with global-local alignment for composed query
image retrieval. IEEE Transactions on Multimedia 25 (2023), 8346–8357.

[57] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng
Liu, and Lijuan Wang. 2023. The dawn of lmms: Preliminary explorations with
gpt-4v (ision). arXiv preprint arXiv:2309.17421 9, 1 (2023), 1.

[58] Yongjing Yin, Fandong Meng, Jinsong Su, Yubin Ge, Lingeng Song, Jie Zhou,
and Jiebo Luo. 2020. Enhancing pointer network for sentence ordering with
pairwise ordering predictions. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 9482–9489.

[59] Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng, Chulun Zhou, and Jiebo Luo.
2019. Graph-based neural sentence ordering. arXiv preprint arXiv:1912.07225
(2019).

[60] Pengpeng Zeng, Haonan Zhang, Lianli Gao, Jingkuan Song, and Heng Tao Shen.
2022. Video question answering with prior knowledge and object-sensitive
learning. IEEE Transactions on Image Processing 31 (2022), 5936–5948.

[61] Haonan Zhang, Lianli Gao, Pengpeng Zeng, Alan Hanjalic, and Heng Tao Shen.
2023. Depth-aware sparse transformer for video-language learning. In Proceedings
of the 31st ACM International Conference on Multimedia. 4778–4787.

[62] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and
Tatsunori B Hashimoto. 2024. Benchmarking large language models for news
summarization. Transactions of the Association for Computational Linguistics 12
(2024), 39–57.

[63] Yutao Zhu, Kun Zhou, Jian-Yun Nie, Shengchao Liu, and Zhicheng Dou. 2021.
Neural sentence ordering based on constraint graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 14656–14664.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Coherence Modeling
	2.2 Cross-Modal Learning

	3 Method: IterWeGO
	3.1 Problem Formulation
	3.2 Intra-Modal Semantic & Contextual Encoding
	3.3 Semantic-Aligned Cross-Modal Order Guidance
	3.4 Cross-Modal Learning and Inference with Iterative Boosting

	4 Experiments and Results
	4.1 Experimental Settings
	4.2 Comparison with Baselines
	4.3 Overall Performance
	4.4 Impact of Iterative Boosting
	4.5 Impact of Cross-Modal Guidance
	4.6 Case Study
	4.7 Comparison with Large Foundation Models

	5 Conclusions
	Acknowledgments
	References

