
Federated, Fast, and Private Visualization of Decentralized Data

Debbrata K. Saha 1 2 Vince Calhoun 1 2 Soo Min Kwon 3 Anand Sarwate 4 Rekha Saha 2 Sergey Plis 2

Abstract

Data visualization is an important step in many
machine learning applications, as it allows for de-
tecting outliers and discovering latent structure
within data samples. In high-dimensional settings,
visualization can be performed by embedding the
samples into a low-dimensional space. There are
several existing methods that do this embedding
efficiently, but many of them rely on the assump-
tion that all the data are locally available. In
order to use such methods in a distributed set-
ting, one would have to pool all of the datasets
into a single site. However, in many domains,
communication overhead and privacy concerns of-
ten preclude aggregating data from different data
sources. To overcome this issue, we previously
proposed decentralized Stochastic Neighbouring
Embedding (dSNE), where one can embed high-
dimensional data to a low-dimensional space in a
decentralized manner. Yet, the dSNE algorithm
still presents a couple challenges. Since dSNE
communicates in an iterative manner, communi-
cation overhead may still be high. In addition,
privacy is not formally guaranteed. In this paper,
we introduce Faster AdaCliP dSNE (F-dSNE) that
reduces communication among sites while satisfy-
ing (ϵ, δ)-differential privacy. Our experiments on
two multi-site neuroimaging datasets demonstrate
that we can still obtain promising results while
addressing these remaining challenges.

1Georgia Institute of Technology 2Tri-institutional Center
for Translational Research in Neuroimaging and Data Science
(TReNDS), Georgia State University, Georgia Institute of Tech-
nology, and Emory University, Atlanta, GA 30303 3University of
Michigan 4Rutgers, The State University of New Jersey. Corre-
spondence to: Debbrata Saha <dsaha34@gatech.edu>.

Workshop of Federated Learning and Analytics in Practice, colo-
cated with 40 th International Conference on Machine Learning,
Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the
author(s).

1. Introduction
The rapid growth and availability of large scale datasets are
making machine learning (ML) algorithms more practical
and feasible(Halevy et al., 2009). Unfortunately, many of
these datasets may be “noisy” in the sense that data val-
ues may be missing or of low quality. Recent advances in
ML methods (e.g. deep learning (Goodfellow et al., 2016;
Schmidhuber, 2015)) can effectively average out problems
with individual samples, but in the medical domain, the
situation is drastically different. For example, consider a
magnetic resonance image (MRI) data sample that consists
of the entire brain, containing on the order of 100,000 volu-
metric pixels (voxels) (Huettel, 2014). Due to its size and
overhead, MRI data collection process is expensive, and
outliers in smaller datasets hinder statistical analysis. One
potential solution may be to scan each data sample for qual-
ity evaluation, but it’s impractical for larger datasets. A more
effective solution would be to project the high-dimensional
samples into a lower-dimensional space for visualization.
This visualization would allow us to actually see what data
samples may be outliers, and have been proven to be an
effective tool in a neuroimaging study(Panta et al., 2016).

There are many existing methods that embed (or project)
high-dimensional data to a lower-dimensional space. For
example, principal component analysis (PCA)(Hotelling,
1933) is a tool that can be used to extract the underly-
ing linear structure of data. However, PCA does not work
well for data samples that have inherently non-linear struc-
tures. There are other notable non-linear methods, such
as Sammon mapping(Sammon Jr, 1969), curvilinear com-
ponent analysis(Demartines & Hérault, 1997), stochastic
neighbor embedding(Hinton & Roweis, 2002), and max-
imum variance unfolding(Weinberger & Saul, 2006), but
many of them struggle to retain global and local structure in
high-dimensional settings. To resolve this issue, there are
methods such as t-SNE(van der Maaten & Hinton, 2008),
hierarchical stochastic neighbor embedding (HSNE)(van
Unen et al., 2017), and uniform manifold approximation
and projection (UMAP)(McInnes et al., 2018) that have
been proven to be effective. However, all of these methods
were developed under the assumption that all data samples
require locally accessible data for analysis. If data samples
were distributed across multiple sites, the sites would have
to pool all of the data to a single site for analysis. This is not

1

Federated, Fast, and Private visualization

possible for large, sensitive datasets, such as certain fMRI
data.

To address these remaining problems, we previously
proposed decentralized stochastic neighbor embedding
(dSNE)(Saha et al., 2017). dSNE is an iterative approach
that is able to embed high-dimensional distributed datasets
into a low-dimensional map for visualization and inspec-
tion. At each iteration, the local sites compute a “reference”
gradient that is shared between the central and local nodes.
However, since these gradients are passed at every itera-
tion, communication overhead may be high. In addition,
even though only reference gradients are passed, dSNE does
not provide any formal privacy guarantees. In this paper,
we propose a (ϵ, δ)-differentially private faster version of
dSNE, F-dSNE. F-dSNE runs more local iterations than
dSNE before passing the gradients to the central node. The
gradients are also perturbed using a differentially private
mechanism called AdaCliP(Pichapati et al., 2019). Since the
noise is added after a certain number of local iterations, this
method provides better utility than methods that add noise
at every iteration. We evaluate our F-dSNE algorithm using
the moments accountant(Abadi et al., 2016) to keep track
of the privacy loss per iteration. We compare our F-dSNE
algorithm to existing dSNE and DP-dSNE(Saha et al., 2022)
algorithms on three different datasets. Our results show that
reducing communication and adding privacy can still obtain
promising results even in high privacy regimes (ϵ < 1).

2. METHODS
The objective of centralized data embedding is to produce
a dataset of N samples Y = [y1 . . . ,yN], where yi ∈ Rm,
from a dataset X = [x1 . . . ,xN], where xi ∈ Rn, such
that m ≪ n. For the task of visualization, m is usually set
to m = 2. A very effective method that can perform this
embedding is t-SNE. In t-SNE, the nearby points in X of
high-dimensional space must be as close to the points in
Y of the low-dimensional space (van der Maaten & Hin-
ton, 2008). At the beginning, t-SNE computes the distance
between data points in high-dimensional space into condi-
tional probabilities, referred to as pairwise affinities. These
pairwise affinities represent the similarities between the data
points (see Algorithm 1). To compute similarity of a data-
point xj to datapoint xi, the algorithm computes the weight
of xj given by a Gaussian kernel centered at xi with band-
width (variance) σi(ρ)

2, where ρ is the perplexity parameter.
These values identify σi separately for each data point by
performing binary search across a range of values until it
can match the user-specified perplexity (ρ).

pj|i =

0 j = i

exp(−||xi − xj ||2/2σi(ρ)
2)∑

k ̸=i exp(−||xi − xk||2/2σi(ρ)2)
j ̸= i

(1)

Algorithm 1 PairwiseAffinities

Input: ρ (perplexity), X ∈ RN×n

Output: P ∈ RN×N

1. Eq. (1) to compute pj|i with perplexity ρ
2. Set pij = (pj|i + pi|j)/(2N) for all i, j.

For the low-dimensional representation Y, pairwise weights
are computed in a similar fashion (equation 2). The only
difference is that it uses the Student-t distribution with one
degree of freedom (or a Cauchy distribution) instead of a
Gaussian to compute joint distribution qij . The computation
of gradient is shown in Appendix A.

qij =

{
0 j = i

(1+||yi−yj ||2)−1∑
k ̸=l(1+||yk−yl||2)−1 j ̸= i.

(2)

Computing distances between data points is challenging
when the data are distributed. Without this distance metric
(see equation (1)), it is not possible to form a common
embedding. dSNE is an algorithm that can overcome these
challenges, performing t-SNE in a decentralized manner.
dSNE leverages a public dataset so that the local sites can
communicate without having to send their private data to
the other sites. Fortunately, public datasets are available
in many research fields such as neuroimaging (Hall et al.,
2012). We use these datasets to form a common overall
embedding from all of the sites.

We now formally describe the setting in which F-dSNE
is used. There are a total of L sites, where each site ℓ
has (local) data Xℓ = [xℓ

1,x
ℓ
2, . . .x

ℓ
Nℓ

] consisting of Nℓ

vectors with xℓ ∈ Rn. In addition, we have a shared (public)
dataset Xs = [xs

1,x
s
2, . . . ,x

s
Ns

]. The goal is to produce
embeddings {Yℓ} and Ys, where Yℓ = [yℓ

1,y
ℓ
2, . . .y

ℓ
Nℓ

]
for each site ℓ and Ys = [ys

1,y
s
2, . . .y

s
Ns

] contain vectors
in Rm, where m ≪ n. Here, we assume that each local site
has access to the shared data Xs and its embedding Ys, and
can modify it during the local computation.

For F-dSNE, the messages between the local and the central
site are passed after k iterations rather than at every iteration.
At time point t, the central site passes the reference embed-
ding Ys(t− 1) to each of the local sites. Now, each site ℓ
has Xℓ, past values of Yℓ(t− j) For j = 1, 2, . . . , t, the ref-
erence data set Xs, and the updated embedding Ys(t− 1).
Each local site computes the gradient update (Algorithm 2)
until a fixed number of iterations k. After k iterations, each
site adds Gaussian noise to the gradients by using a recently
proposed method called AdaCliP (Algorithm 4). Then, each
local site has updates Yℓ(t) and Ys,ℓ(t) for the local and
shared data embeddings, respectively. Each local site passes
the new embeddings of their local Ys,ℓ(t) to the central site.
Lastly, the central site sends back the average of Ŷs to all
of the local sites. The local sites update their shared and

2

Federated, Fast, and Private visualization

Algorithm 2 LocalGradStep

Input: Data embeddings: Yℓ(t− 1), Yℓ(t− 2) (local),
Ys(t− 1), Ys(t− 2) (shared), P ∈ R(Nℓ+Ns)×(Nℓ+Ns)

Optimization parameters: η, α
Output: Ŷℓ(t) (local), Ŷs(t) (shared)
1. Eq. (2) on [Yℓ(t),Ys(t)] to compute low-dimensional
affinities qij
2. Compute gradient: ∂J

∂yi
= 4

∑
j(pij−qij)(yi−yj)(1+

||yi − yj ||2)−1

3. ŷi(t) = η(∂J/∂yi(t− 1)) +α(yi(t− 1)− yi(t− 2)

4. Group {ŷi(t)} into Ŷℓ(t) (local) and Ŷs(t) (shared)

Algorithm 3 noiseAddition

Input: Gradient Matrix: G(t) = [gt1, . . . , g
t
N]⊤ (gradient

at iteration t for N samples)
Noise Parameters: mt

i, bti (vector parameter for each
gradient), σ (noise scale)
Output: G̃(t) (privacy-preserving approximation of
G(t))
for i = 1 to N do

Transform each gradient: wt
i =

gt
i−mt

i

bti

Clip transformed gradient: ŵt
i =

wt
i

max(1,||wt
i ||2)

Add noise to gradient: w̃t
i = ŵt

i +N (0, σ2I)
Rescale the gradient: g̃ti = btiw̃

t
i +mt

i

end for

Algorithm 4 AdaCliP

1: Input: Gradient matrix: G(t) ∈ Rn×N (gradient at
iteration t for N samples)

2: Parameters: h1, h2, β1, β2, M(t) = [mt
1, . . . ,m

t
N],

S(t) = [st1, . . . , s
t
N] (noise parameters for each gra-

dient)
3: Output: G̃(t) (noisy gradient matrix)
4: for i = 1 to N do
5: for j = 1 to n do
6: bti =

√
sti ·

√∑n
j=1 s

t
j

7: end for
8: Add noise to each gradient in matrix: g̃ti =

noiseAddition(gti ,m
t
i, b

t
i, σ)

9: Update mt
i: m

t+1
i = β1m

t
i + (1− β1)g̃

t
i

10: Compute variance vti : v
t
i = min(max((g̃ti −mt

i)
2 −

(bti)
2σ2, h1), h2)

11: Update sti: s
t+1
i = β2(s

t
i)

2 + (1− β2)v
t
i

12: end for

local embeddings and averages them for recentering.

They send this average to the coordinator (or central node),
who averages across the sites and sends back a global mean.
Each site uses the mean to center their local and shared
embeddings to get Y(ℓ)(t) and Y(s)(t) for the next itera-

tion. Each local site keeps track of the parameters from
AdaCliP to report the final (ϵ, δ) parameters. This process
then repeats for a total of T iterations. The pseudocode
and overall procedure for F-dSNE are shown in Appendix
C(Algorithm 5). Note that at each iteration, the embedding
vector for the shared dataset Y s should be same at the each
local site to ensure that the values at each local site will be
updated using the same reference data at each iteration.

3. DATA
For our experiments, we use three different datasets: (1)
MNIST1, (2) Pediatric Imaging, Neurocognition, and Genet-
ics (PING)2 and (3) A local structural magnetic resonance
imaging (sMRI) dataset. The data acquisition and prepro-
cessing information are described in Appendix B.

4. EXPERIMENTS
For each of the experiments listed below, we compare three
different algorithms: (1) dSNE, (2) DP-dSNE, and (3) F-
dSNE. For dSNE, we kept the same setup as described in
(Saha et al., 2017). For DP-dSNE, we added noise to the
reference gradients at every iteration, where for F-dSNE,
we added noise every k iterations. In addition, F-dSNE
runs k local iterations before passing the gradients to the
central node, whereas DP-dSNE sends them after every local
iteration. The objective of these experiments are to highlight
that F-dSNE can provide stronger privacy guarantees while
increasing utility compared to DP-dSNE.

For the MNIST dataset, We have designed two different
experiments: (1) MNIST 4 digits and (2) MNIST all digits.
For MNIST 4 digit experiment, we have created 3 local
sites and 1 remote site. The remote site consists of 800
reference samples, where each digit (0, 1, 8, and 9) contains
200 samples. Each local site contains 40 samples, where
site 1 contains 8 and 9, site 2 carries 0 and 9, and site 3
contains 0 and 1 digits, respectively. For the MNIST all
digits experiment, there are 3 local sites and 1 remote site.
The remote site contains all of the digits (0 to 9), where each
digit has 200 samples. The local site also contains all of the
digits but in a smaller amount. Here, all local sites consist
of 20 samples of each digit. We run dSNE, DP-dSNE, and
F-dSNE experiments on the same datasets and validate our
results.

We collected the PING dataset from five different data sites.
For the PING experiment, we consider each data source as
an individual local site (total of five local sites) and prepared
our reference samples by taking some small samples from
each local site.

1https://www.kaggle.com/c/digit-recognizer
2http://pingstudy.ucsd.edu/Data.php

3

Federated, Fast, and Private visualization

The sMRI dataset consists of subjects with four different
age groups: below 11, 11 to 17, 30 to 34, and above 64.
We used each age group as an individual site (total of four
local sites) and formed the reference samples by taking 100
samples from each age group.

5. RESULTS
The experimental results of the MNIST 4 digits experiment
are shown in Figure 1. In all of the experiments, we ob-
serve four distinct clusters, showing that all of the methods
work efficiently. Figure 2 presents the results of MNIST for
the all digits experiment. In Figure 2, we get ten distinct
clusters for all three experiments. We can see that all of the
decentralized methods obtain similar utility compared to
the centralized case, reported in (van der Maaten & Hinton,
2008). In this experiment, DP-dSNE satisfies (1.35, 10−5)-
DP, whereas F-dSNE satisfies (0.13, 10−5)-DP. Even with
the stronger privacy guarantee (hence more noise) and less
overhead, F-dSNE obtains good results.

(A) dSNE (B) DP-dSNE (C) F-dSNE

Digits
0
1
8
9

Figure 1. Experiment for the quality control (QC) metrics of the
MNIST 4 digits dataset. (A), (B) and (C) are the layouts of dSNE,
DP-dSNE and F-dSNE. In the layout, the samples are colored by
the digits, and we can see four distinct clusters.

(A) dSNE (B) DP-dSNE (C) F-dSNE

Digits
0
1
2
3
4
5
6
7
8
9

Figure 2. Experiment for the QC metrics of the MNIST all digits
dataset. (A), (B) and (C) presents the output of dSNE, DP-dSNE
and F-dSNE. In the layout, we can see 10 clusters, where each
digit is represented by a different color.

Figure 3 presents the results of the PING experiment. For
all of the algorithms, we get four distinct clusters. The pri-
vacy guarantee resulting from the DP-dSNE algorithm was
(1.39, 10−5)-DP, whereas F-dSNE satisfies (0.14, 10−5)-
DP. Similar to the MNIST experiment, the clusters from
F-dSNE are as close to the clusters formed in the centralized
setting (Saha et al., 2022), even with the increase in privacy.

Figure 4 depicts the experimental results from the sMRI
dataset. For all three algorithms, we identify four clusters,

Sites
1
2
3
4
5

(A) dSNE (B) DP-dSNE (C) F-dSNE

Figure 3. Experiment for QC metrics of the PING dataset. (A), (B)
and (C) represent the layouts of dSNE, DP-dSNE and F-dSNE.
In all of the experiments, we get four distinct clusters, similar to
the centralized case. Each point in the layout represents a single
individual from the dataset.

one for each age group. In the figure, we notice that children
less than 11 always form a separate distinct cluster. Mean-
while, the other age groups, although connected together
in a single contiguous cluster, are ordered according to age.
Again, the same type of behavior is reported when the data
is centralized (Saha et al., 2022).

(A) dSNE (B) DP-dSNE (C) F-dSNE

Age Groups
< 11
11-17
30-34
> 64

Figure 4. Experiment for the QC metrics of the sMRI dataset. (A),
(B) and (C) presents the dSNE, DP-dSNE, and F-dSNE layouts,
respectively. In the layout, we can see a continuous cluster of each
age group. Each age group is colored differently, and each point
represents a data sample.

6. DISCUSSION & CONCLUSION
In this paper, we proposed a faster, more private version of
dSNE, called F-dSNE. F-dSNE can effectively embed high-
dimensional distributed data to a low-dimensional space for
manual visualization. By performing this visualization, we
can measure the quality of the data across multiple sites.
Throughout the whole computation, the private local data
never leaves their respective sites, and minimal informa-
tion is exchanged between the central and local sites. As
a formal guarantee of privacy, we incorporated differential
privacy through an algorithm called AdaCliP. F-dSNE re-
duced the communication overhead by 10% and increased
privacy (in terms of ϵ). Our experiments showed that even
though we increased privacy and reduced overhead, we can
achieve the same results with F-dSNE compared to dSNE.
We hypothesize that this communication overhead can be
reduced more, but we leave this problem for the future work.
In conclusion, F-dSNE is a valuable quality control tool for
decentralized virtual consortia working with private data.

4

Federated, Fast, and Private visualization

7. Acknowledgements
This work was supported by NIH 1R01DA040487,
R01DA049238, R01MH121246, 2R01EB006841,
2RF1MH121885, and NSF 2112455.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learn-
ing with differential privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, pp. 308–318, New
York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450341394. doi: 10.1145/
2976749.2978318. URL https://doi.org/10.
1145/2976749.2978318.

Ashburner, J. and Friston, K. J. Unified segmentation. Neu-
roImage, 26(3):839 – 851, 2005. ISSN 1053-8119. doi:
10.1016/j.neuroimage.2005.02.018.

Demartines, P. and Hérault, J. Curvilinear component anal-
ysis: A self-organizing neural network for nonlinear map-
ping of data sets. IEEE Transactions on neural networks,
8(1):148–154, 1997.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT Press, 2016.

Halevy, A., Norvig, P., and Pereira, F. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24(2):
8–12, 2009.

Hall, D., Huerta, M. F., McAuliffe, M. J., and Farber, G. K.
Sharing heterogeneous data: the national database for
autism research. Neuroinformatics, 10(4):331–339, 2012.

Hinton, G. and Roweis, S. Stochastic neighbor embedding.
In NIPS, volume 15, pp. 833–840, 2002.

Hotelling, H. Analysis of a complex of statistical variables
into principal components. Journal of Educational Psy-
chology, 24:498–520, 1933.

Huettel, S. Functional magnetic resonance imaging. Sinauer
Associates, Inc., Publishers, Sunderland, Massachusetts,
U.S.A, 2014. ISBN 9780878936274.

McInnes, L., Healy, J., Saul, N., and Grossberger, L. Umap:
Uniform manifold approximation and projection. Journal
of Open Source Software, 3:861, 09 2018. doi: 10.21105/
joss.00861.

Panta, S. R., Wang, R., Fries, J., Kalyanam, R., Speer, N.,
Banich, M., Kiehl, K., King, M., Milham, M., Wager,
T. D., et al. A tool for interactive data visualization:
Application to over 10,000 brain imaging and phantom
mri data sets. Frontiers in neuroinformatics, 10, 2016.

Pichapati, V., Suresh, A., Yu, F. X., Reddi, S., and Kumar,
S. Adaclip: Adaptive clipping for private SGD. CoRR,
abs/1908.07643, 2019. URL http://arxiv.org/
abs/1908.07643.

Saha, D. K., Calhoun, V. D., Panta, S. R., and Plis, S. M. See
without looking: joint visualization of sensitive multi-site
datasets. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pp.
2672–2678, 2017.

Saha, D. K., Calhoun, V. D., Du, Y., Fu, Z., Kwon, S. M.,
Sarwate, A. D., Panta, S. R., and Plis, S. M. Privacy-
preserving quality control of neuroimaging datasets in
federated environments. Human Brain Mapping, 43(7):
2289–2310, 2022.

Sammon Jr, J. W. A nonlinear mapping for data structure
analysis. Computers, IEEE Transactions on, 100(5):401–
409, 1969.

Schmidhuber, J. Deep learning. Scholarpedia, 10(11):
32832, 2015. doi: 10.4249/scholarpedia.32832. URL
https://doi.org/10.4249/scholarpedia.
32832.

van der Maaten, L. and Hinton, G. Viualizing data using
t-sne. Journal of Machine Learning Research, 9:2579–
2605, 11 2008.

van Unen, V., Höllt, T., Pezzotti, N., Li, N., Reinders, M.,
Eisemann, E., Koning, F., Vilanova, A., and Lelieveldt,
B. Visual analysis of mass cytometry data by hier-
archical stochastic neighbour embedding reveals rare
cell types. Nature Communications, 8, 12 2017. doi:
10.1038/s41467-017-01689-9.

Weinberger, K. Q. and Saul, L. K. An introduction to non-
linear dimensionality reduction by maximum variance
unfolding. In AAAI, volume 6, pp. 1683–1686, 2006.

5

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/1908.07643
http://arxiv.org/abs/1908.07643
https://doi.org/10.4249/scholarpedia.32832
https://doi.org/10.4249/scholarpedia.32832

Federated, Fast, and Private visualization

A. Gradient Computation
We perform gradient descent on the Kullback-Leibler (KL) divergence (or relative entropy) between the joint distribution P
and the joint distribution Q:

J(Y) =
∑
i

∑
j ̸=i

pij ln
pij
qij

(3)

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint probability distribution Q is
expressed in equation (4):

∂J

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1 (4)

B. Data Acquisition and Preprocessing
MNIST was collected from the Kaggle competition and consists of 60000, 28× 28 grayscale images. This dataset consists
of 10 unique digits from 0 to 9. From the dataset, we randomly picked 2600 samples while maintaining class balance.

PING is a multi-site study consisting neural development histories, information about developing mental and emotional
functions, multimodal brain imaging data, and genotypes for well over 1000 adolescents between the ages of 3 to 20. We
acquired a total of 632 subjects and their fMRI data for our experiment. The software SPM (Ashburner & Friston, 2005) was
used to preprocess the data. Steps included slice time and motion correction and warping to the standard MNI brain template.
The obtained image is used for extracting the data for the experiment. In our experiment, a total of five different data sites
participated in the computations. Sites 1, 2, 3, 4, and 5 contained 59, 215, 79, 59, and 10 different subjects, respectively.

sMRI scans (3D T1-weighted pulse sequences) are pre-processed through the voxel based morphometry (VBM) pipeline
using SPM. For each scan, the voxel values at each location from all the brain slices are first added across slices, resulting in
a matrix size of 91× 109. All of the voxel values from each image scan are converted into a single row vector of size 9919
for each data point and passed as inputs to the dSNE, DP-dSNE and F-dSNE algorithms. This dataset consists of people
from four different age groups.

6

Federated, Fast, and Private visualization

C. Pseudocode

Algorithm 5 Faster-dSNE (F− dSNE)
1: Input:
2: Objective Parameters: ρ (perplexity)
3: Optimization Parameters: T , η, α
4: Shared Data: Xs = [xs

1,x
s
2 . . .x

s
Ns

],xs
i ∈ Rn

5: Local Data: Xℓ = [xℓ
1,x

ℓ
2 . . .x

ℓ
Nℓ

], xℓ
i ∈ Rn, ℓ = 1, 2, . . . , L}

6: Output: {Yℓ : ℓ = 1, 2, . . . , L},Ys

7: Sample Ys(0) i.i.d. from N (0, 10−4Im)

△

Initialize from Gaussian
8: Coordinator sends Xs,Ys(0) to all sites
9: for ℓ = 0 to L do

10: Pℓ = PairwiseAffinities(ρ, [Xp,Xs])
11: Sample Yℓ(0), Yℓ(−1) from N (0, 10−4I), I ∈ Rm×m

12: end for
13: for t = 1 to T do
14: Coordinator sends Yℓ(t− 1) to all sites
15: for ℓ = 1 to L do
16: for i = 1 to k do
17: Ŷℓ(t), Ŷs,ℓ(t) = LocalGradStep(Yℓ(t− 1),Yℓ(t− 2),Ys(t− 1),Yℓ(t− 2), η, α)
18: end for
19: Y̆ℓ(t) = AdaCliP(Ŷℓ(t),M(t), S(t), h1, h2, β1, β2)

20: Y̆s,ℓ(t) = AdaCliP(Ŷs,ℓ(t),M(t), S(t), h1, h2, β1, β2)

21: Site ℓ sends Y̆s,ℓ to Cooordinator and updates the local embeddings
22: end for
23: Y̆s = 1

LY̆
s,ℓ △

Average local shared embeddings
24: Coordinator sends Y̆s to all sites
25: for l = 0 to L do
26: Ỹℓ = Yℓ(t− 1) + Y̆ℓ

27: Ỹs = Ys(t− 1) + Y̆s

28: ȳℓ = 1
Nℓ+Ns

(∑Nℓ

i=1 ỹ
ℓ
i +

∑Ns

i=1 ỹ
s
i

) △

Mean embedding

29: Send ȳℓ to Coordinator
30: end for
31: ȳ = 1

L

∑L
ℓ=1 ȳ

ℓ

32: Coordinator sends ȳ to all sites
33: for ℓ = 1 to L do
34: Set yℓ

i (t) = ỹℓi − ȳ for all i
35: Set ys

i (t) = ỹsi − ȳ for all i
36: end for
37: end for

7

