Software Engineering Agents for Embodied Controller
Generation : A Study in Minigrid Environments

Timothé Boulet
Inria Center of Bordeaux University
Flowers Al & CogSci Lab, France
timothe.boulet@inria.fr

Xavier Hinaut
Inria Center of Bordeaux University - Mnemosyne, France
LaBRI, Bordeaux INP, CNRS UMR 5800, France
IMN, CNRS UMR 5293, Bordeaux, France

xavier.hinaut@inria.fr

Clément Moulin-Frier
Inria - Flowers Al & CogSci Lab - BioTiC, France
clement.moulin-frierQ@inria.fr

Abstract

Software Engineering Agents (SWE-Agents) have proven effective for traditional
software engineering tasks with accessible codebases, but their performance for
embodied tasks requiring well-designed information discovery remains unexplored.
We present the first extended evaluation of SWE-Agents on controller generation
for embodied tasks, adapting Mini-SWE-Agent (MSWEA) to solve 20 diverse
embodied tasks from the Minigrid environment. Our experiments compare agent
performance across different information access conditions: with and without
environment source code access, and with varying capabilities for interactive
exploration. We quantify how different information access levels affect SWE-
Agent performance for embodied tasks and analyze the relative importance of static
code analysis versus dynamic exploration for task solving. This work establishes
controller generation for embodied tasks as a crucial evaluation domain for SWE-
Agents and provides baseline results for future research in efficient reasoning
systems.

1 Introduction

1.1 Motivation

The problem of implementing artificial agents capable of solving complex tasks in simulated environ-
ments is central to modern Al. Traditional approaches have relied on explicit planning algorithms or
reinforcement learning [29]] to develop controllers through extensive environmental interaction. More
recently, large language models (LLMs) have emerged as a promising tool for this challenge [[7], with
two primary paradigms gaining attention: using LLMs as controllers that generate actions within
episodes, and using LLMs as programmers that generate complete controller code.

Software Engineering Agents (SWE-Agents) represent a significant advancement in the LLM-as-
programmer paradigm. Unlike simple prompt-to-code approaches, SWE-Agents can iteratively

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

interact with codebases to solve programming issues, much like human software engineers. Systems
like SWE-Agent [33] have demonstrated remarkable success on benchmarks such as SWE-Bench [19],
where agents resolve real GitHub issues by reading, editing, and testing code across multiple files.

However, SWE-Agents have primarily been evaluated on traditional software engineering tasks
where the agent’s knowledge is easily grounded in the task, and where the obtaining information
required only limited interaction with the code-environment. We question their performance when
the task to solve consists of creating a program (named controller) that will operate in a Markov
Decision Process [29] (MDP) environment, sequentially receiving observations and rewards and
returning actions. More specifically than the general MDP framework, we focus on embodied
MDP tasks, where the controller operates within a spatial, sensorimotor environment with physical
interactions. In these settings, the controller’s actions directly affect its spatial position and sensory
observations, requiring from the code-agent grounded understanding of environmental dynamics that
differs fundamentally from abstract decision-making coding tasks such as programming problems or
GitHub issues. Examples of such environments are Minigrid [9]], Minecraft [31]], or Crafter [13].

1.2 Framework

This work investigates a fundamental question: How do SWE-Agents perform in controller generation
for embodied tasks ? Our approach involves a code-agent (the SWE-Agent interacting with a code-
environment involving codebases and terminals) that generates controller-agents (Python programs)
to solve tasks in an embodied setup, creating a two-level agency structure that differs from direct
LLM-environment interaction approaches common in embodied Al Figure [T]illustrates this two-level
agency structure. The agent can evaluate its proposed solution by executing them in the environment
and receiving feedback in the form of success/failure and reward. Task terminates either when the
agent validates with a special command or when the maximum number of steps or cost is reached.

Coding agent
instructions

Mini SWE Agent \

Conversation

Embodied Environment
informations

Task description

Agent Thought and
Command #2

Task is selected for
the trial

N

Agent Thoughtand |
command output . Command#2 ‘

extract and execute
bash command

Figure 1: Two-level agency structure: a code-agent interacts with a code-environment to generates
controller-agents (Python programs) to solve the embodied task.

We evaluate the challenge of controller generation for embodied tasks by adapting Mini-SWE-Agent
(MSWEA) [35] to solve diverse Minigrid [9]] tasks under different information access conditions:

* Source Code Access: When the agent can read Minigrid environment code, it can analyze
environment mechanics, constraints, and object interactions to inform controller design.

* Interactive Exploration: When the agent can write and execute scripts to probe the
environment, where it can discover dynamics through exploration, observing outcomes of
actions in various states.

This experimental design allows us to isolate the impact of different information sources and quantify
how SWE-Agents adapt to varying levels of information availability for embodied tasks.

1.3 Contributions

Our contributions are as follows:

Controller Generation for Embodied Tasks Benchmark: We provide the first extended study of a
SWE-Agent on embodied tasks to our knowledge, establishing methodology for future research in
this domain.

Information Access Analysis: Through controlled experiments across 20 Minigrid tasks with 30
trials each, we quantify how different information access levels affect SWE-Agent performance.

This work bridges the gap between traditional SWE-Agent evaluation and embodied reasoning
challenges, providing essential baseline results and methodological frameworks for future research in
SWE Agents as efficient reasoning systems.

2 Related Work

2.1 Large Language Models for Code Generation

The evolution of LLM-based code generation has progressed from simple prompt-to-code approaches
to sophisticated iterative systems. Early foundation models like CodeBERT [12] and CodeT5 [33]]
demonstrated the potential for pre-trained models to understand programming languages. OpenAl’s
Codex [7] marked a significant breakthrough, showing that large-scale language models could gener-
ate functional code from natural language descriptions with impressive accuracy on programming
benchmarks.

Building on these foundations, the field has seen substantial advances across multiple directions.
Program synthesis approaches [4] have explored systematic methods for generating correct programs
from specifications. More recent models like Code Llama [25]], CodeGemma [30]], and DeepSeek-
Coder [14}[11] have achieved state-of-the-art performance through specialized training regimes and
architectural improvements.

However, single-shot code generation approaches, while impressive, lack the iterative refinement
capabilities essential for complex software engineering tasks. This limitation has motivated the
development of more sophisticated prompting techniques documented in [18] including chain-
of-thought reasoning [34]], self-debugging methods [8]], and reflexive improvement strategies [26]].
These approaches enable models to analyze their outputs, identify errors, and iteratively improve
solutions—capabilities that bridge simple code generation and full software engineering agent
functionality.

2.2 Agent-Environment Interaction Paradigms

The challenge of creating agents that can solve complex tasks in simulated environments has led to
three primary approaches. Traditional reinforcement learning methods [29, 21]] learn through reward
optimization over many episodes, developing policies through extensive environmental interaction.
More recently, LLM-based approaches have emerged along two distinct paradigms.

The first paradigm uses LLMs as controllers that generate actions or plans within episodes. Works
such as SayCan [1] demonstrate how language models can be grounded through pre-trained skills

and value functions, enabling robots to execute complex instructions. Embodied AI benchmarks
like ALFRED [27] and VLABench [38]] focus on this paradigm, typically involving household
environments where LLMs/VLMs generate actions based on visual or textual observations within
episodes. GLAM [6] leverages online RL to functionally ground the language model into a textual
environment.

The second paradigm, which our work focuses on, uses LLMs as programmers that generate complete
controller code. VOYAGER [31] exemplifies this approach in Minecraft, where the system generates
executable skills and composes them for open-ended exploration. ELM [20] and SOAR [23] applied
genetic algorithm principles to solve coding tasks. While those demonstrates iterative skill devel-
opment and curriculum learning, SWE-Agents bring more human-like complementary capabilities
in code analysis, debugging, and test-driven development that have not been explored in embodied
settings.

2.3 Software Engineering Agents

SWE-Agents represent a significant advancement over simple prompt-to-code generation, incor-
porating iterative development capabilities that mirror human software engineering practices. The
foundational development of interactive reasoning through ReAct [36] established the framework
for agents that can reason about their actions and adapt based on feedback. SWE-Agent [35] and
the SWE-Bench benchmark [[19] formalized this progression into systematic software engineering
capabilities. SWE-Agents can read codebases, execute tests, interpret failures, and iteratively re-
fine solutions—capabilities that mirror human software engineering practices. These systems have
achieved significant success on real GitHub issues, demonstrating the effectiveness of interactive
development approaches.

The field has rapidly expanded with numerous agent architectures and applications. Multi-agent
systems like AgentCoder [17] and MetaGPT [16] explore collaborative approaches to software
development. Specialized agents have emerged for specific domains, including AutoCodeRover [39]
for autonomous program improvement and RepairAgent [S]] for automated bug fixing. Recent work
like SWE-Search [3] incorporates Monte Carlo Tree Search for enhanced exploration strategies.

Commercial applications have also proliferated, with code assistance tools [24} 2| [10] that integrate
SWE-Agent capabilities into everyday programming workflows or open-source platforms such as
OpenDevin [22] and OpenHands [32] providing accessible development environments.

We argue that controller generation for embodied tasks, in comparison to static coding problems
such as GitHub issues or classical programming problems, requires high reasoning capabilities to
effectively extract information from the environment in order to understand the task components
(such as the observation and action structure, the environment model or the hierarchy and relation
between tasks) and becomes much more challenging. Under this positioning, we aim to evaluate
SWE-Agents on controller generation for embodied tasks.

3 Methodology

3.1 Minigrid Tasks

We selected 20 tasks from the 72 available Minigrid environment, ensuring a diverse representation
of embodied reasoning challenges. We chose the tasks in order to cover a range of complexities and
required skills, including navigation, object manipulation (such as obstacles to push, and key to find
and use on doors), hazard avoidance (lava or moving obstacles), and memory challenges. We show
some pictures of the tasks considered in Figure[2| Each task is composed of :

* MDP Environment: a Markovian Decision Process environment with discrete actions (e.g.,
move forward, turn left/right, pick up object), continuous observations (the visual field of
the controller on a grid, its current direction, and a textual short mission string that can vary
between episodes (e.g. "go to the red ball" vs "go to the green ball")), a success criteria,
and a sparse reward in case of success that depends on the time taken to complete the task:

rp =1 — wa with 7" the number of steps taken to complete the task, and T,,, the

maximum number of steps allowed.

?
=
==
e
==
<=
o
==
==

BlockedUnlockPickup LavaCrossing DoorKey
DynamicObstacles Empty FourRooms
. .
KeyCorridor LockedRoom Memory

Figure 2: Example MiniGrid tasks used in our experiments. Each frame shows a different environ-
ment category: navigation (Empty, FourRooms), manipulation (DoorKey, KeyCorridor, BlockedUn-
lockPickup, LockedRoom), hazard (DynamicObstacles, LavaCrossing), and memory (Memory).

* Description: a task description extracted from Minigrid documentation, describing the goal
of the task and any relevant constraints or requirements.

We ran the benchmark in both the Fully Observable (FO) setting, where the whole map is accessible
to the controller and doesn’t change with its orientation, and the Partially Observable (PO) Minigrid
setting, where the observation is the visual field of the controller oriented towards its direction. FO
Minigrid is easier for MSWEA to solve, but loses some embodied aspect that was our interest.

3.2 Mini-SWE-Agent Adaptation

We adapt Mini-SWE-Agent (MSWEA) [35]] to operate within the Minigrid environment, enabling
the evaluation of embodied reasoning capabilities. MSWEA is a streamlined version of SWE-Agent
designed for efficient experimentation while retaining core functionalities such as codebase navigation,
test execution, and iterative refinement.

MSWEA works as a chat-based agent that interacts with an isolated coding environment using an
LLM. We used GPT-5-mini with a temperature of 1.0 for all our experiments. For each task, the
agent is provided with an initial system prompt containing an explanation of the MSWEA framework
for the LLM, a description of the Minigrid environment in general, and the specific task description.
The agent sequentially generates answers from which a bash command is extracted and executed, and
receives the command output as feedback, which it can use to inform subsequent actions. An example
of a start of a conversation is shown in appendix [D] The final submission must be a python script

containing a controller class implementing an ‘act’ method that takes as input the current observation
and returns an action and possibly changes its internal state. For each task and each condition, we ran
30 independent trials to ensure statistical robustness.

3.3 Metrics

For a given task and a given solution produced, we measure the success rate over 20 episodes. We
then aggregate over the 30 independent trials to compute the best@k metric, i.e :

best@k = E| max (S, So,...,Sk)

Where S; is the success rate of the ‘" trial on the considered task, and % is a parameter (we used
k = 5 in our experiments).

3.4 Information Access Conditions

We compare MSWEA performance across different information access modalities in a 2x2 experi-
mental design:

* Code Access: Availability of MiniGrid environment source code, providing insights into
environment mechanics, constraints, and implementation details.

* Interactive Exploration Access: Ability to write and execute arbitrary test scripts for
dynamic exploration of environment behavior. In particular, the agent can execute scripts
running a controller in the Minigrid environment and log information.

Our 2 x 2 factorial design allows us to isolate the differential impact of code and interaction access
modalities on agent performance and quantify how agents adapt when transitioning from codebase-
mediated discovery to environment-mediated discovery paradigms.

All experimental conditions maintain Test Access—the ability to test controller implementations
through automated evaluation and receive performance feedback. In no-interaction conditions, agents
retain access to this testing capability while being restricted from executing other scripts. This design
choice reflects standard software engineering practices where solution validation is always available,
while exploratory execution capabilities may be constrained in deployment scenarios and code source
reading may not be available.

4 Results and Interpretation

4.1 Results

The best@5 success rates of MSWEA across different tasks and information access conditions are
summarized in Figure 3] for the FO setting, and in Figure] for the PO setting. We display standard
deviation as error bars in all our plots.

Minigrid PO was very hard to solve for MSWEA, with many tasks not being solved even with full
access. In Minigrid FO however, all tasks except 1 are solved by at least MSWEA with full access.
Partial Observability, as a component of embodied tasks, is thus a hard step for SWE Agents to solve.

Best@5 Success Rate per Task

T T T
m MSWEA

12 MSWEA w/o interaction

: MSWEA w/o code

[Emm MSWEA w/o code & no interaction

- | i]]I i |

Best@5 Success Rate

e I]‘]I]

© \
N 5 N Qo AR Qo
&0 27 9T T 9T o N O o P 8 N NS
FF N FE NSO S & & 2§ &
SR O O) & L @ E N &P @D
S > > & 0 < < SN, ORI & © O
N N S CHF & FF FP.EFNS L L
S ¥ FF S RS & & EE S
S Nl @@ S o & > S
Ry N & < $ &K
\© I @ & P o
S

Figure 3: Best@5 success rate of MSWEA across different tasks and information access conditions
in Fully Observable Minigrid.

Best@5 Success Rate per Task

14 T T
N MSWEA
MSWEA w/o interaction
12 MSWEA w/o code
8 EEm MSWEA w/o code & interaction
S0]I I’
%]
wn
go.s
>
m0.6 I
8] i 1
o i |
0 1 1
0.2 I I II I
0.0 - F m ixX =il i i -
OB O O B® L v AR IS “g > o D
C@Q G o o7 & & G & & oF s & & 7 & > L o C@)Q
NN FE NS LCFT TS SSS S PSS
SR O L7 F & & &P BB DS
XL LSS SN NN & & & O
(\\O S o}’b é”b ((\Q S N\ X 3 \0(' Q{\Q’ (;\, . ‘00 \)\x, Q,b & & &0
SN NS G @S
£ 4 S & © QRN SRS &
2 R N Y & NN
& & X ®) & & &
S & &8 N e
R
Task

Figure 4: Best@5 success rate of MSWEA across different tasks and information access conditions
in Partially Observable Minigrid.

To identify patterns in the influence of the type of the task to the performance of different information
access conditions, we grouped the average best@5 success rate metric into 4 categories : navigation,
manipulation, hazard, memory, as well as the overall average across all tasks. The results are shown
in Figures 5| and Figure[6]

Best@5 Success Rate by Category

° Navigation Manipulation Hazards Memory Overall
§ 1.0 I = 1.0 1.0 ~|' 1.0 L 1.0
ﬁ 0.8 08 0.8 I 0.8 0.8
8 0.6 0.6 0.6 0.6 0.6 I
>
u“: 0.4 0.4 I 0.4 0.4 0.4 I
@0.2 0.2 0.2 0.2 0.2
wn
,;qﬁ) 0.0 0.0 0.0 0.0 0.0
y & ¢ & y & ¢ & o] ¢ & O ¢ & LSRN e &
‘;Y\‘o @é\o & ,Oé\o ‘;‘\‘o ’o&o <,°6 ,oé\o {$\% @é\o <,°b @é\o ($\© @é\o (Job ’é}\o (7$© ’o&o (Pb K <}\o
¥ E S ¥ E &S ¥ &S ¥ & ® S ¥ & »® &
& & N Y & N Y & N d & N &
© & o © & o o & o o & o o & o
AR » $ @ » © @ W & @ W &
& ¥ e & © & © & @ & S
S & S & S 4 S 4 S 4
R © N © « © N © N ©
B B B B B
¥ ¥ ¥ ¥ ¥
o o o o o
W W W W t“
Figure 5: Mean-by-category best@5 success rate in Fully Observable Minigrid
Best@5 Success Rate by Category
° Navigation Manipulation Hazards Memory Overall
§ 1.0 1.0 1.0 1.0 1.0
Bos 0.8 0.8 0.8 0.8
[
8 0.6] 0.6 0.6 0.6 i’ 0.6
>
v 0.4 0.4 0.4 0.4 I 0.4
n
go‘z 0.2 0.2 I [0.2 0.2 I I
Loo 0.0 L mim] 0.0 0.0 0.0
2 2 2 (2 (2
¢§8’ &é\ ({06 &é\ ¢)$@V' &0(\ &b &é\ é@?' &0(\ &b &é\ 6?@?. &o"\ “ob &é\ é@? &o‘\ ‘Pb &0(\
¥ L L ¥ L L ¥ L L ¥ L L ¥ L L
S v S S v S < v S S v S S v S
© & o © & o © §¢ o © §¢ o © go <
) &) & N é‘(” & N e\o, & $ k“{’ &
{@‘?‘ A {\Q/‘? ¥ \&,‘? & \S"v & \gy &
¥ & ¥ & ¥ & ¥ &) &
& & & & &
& S O S S
N N & & «

Figure 6: Mean-by-category best@5 success rate in Partially Observable Minigrid

4.2 TImportance of the Interactive Exploration capability in Fully Observable Minigrid

In the Fully Observable benchmark, comparing MSWEA (blue bars) with its fully ablated version (red
bars) without neither source code read access nor interactive exploration, we observe performance
drop dramatically. An agent with only the Test-Access capability (i.e. being capable of testing its
solution to obtain the success rate of its controller solution on the task) obtain much worse result, but
surprisingly still manages to solve some tasks through iterated submissions.

If we try to get back to the MSWEA performance level by adding only the code access (cyan bars),
we see very limited improvement, which means reading only help partially the agent and that the
difficulty lies elsewhere. If we add only the interactive execution capability however (orange bars),
we observe the performance get back to a comparable level as MSWEA. This pattern is consistent
across all task categories and particularly for manipulation task, where the very exact knowledge of
how the environment operates is required to solve the task. This systematic pattern means that the
interactive access is an essential capacity of SWE-Agents that allows them to perform significantly
better in embodied tasks.

4.3 Difficulties in Partially Observable Minigrid

In the Partially Observable benchmark, performance is much lower than in Minigrid FO, in particular
for the complex manipulation tasks. We can note there are different patterns depending on the task
category, but we will not try to interpret them as these may arise either from statistical variability
given the relatively high standard errors, or from subtle hard to infer and task-specific factors that bias
the agent’s behavior in ways not observed in similar tasks. The overall performance does not vary
significantly with the information access conditions. We interpret this as the PO tasks being inherently
too hard for MSWEA, such that the agent only solve the simplest tasks such as the easiest navigation
tasks, and can make little use of different information access to increase performances. This leads us
to believe that strongly embodied tasks such as Minigrid PO tasks represent a good benchmark for

SWE Agents : they perform decently on some tasks, but on others, even with good LLMs and access
to source code and execution access, they still have significant room for improvement regarding the
understanding of the functioning of the environment. These results encourages the use of embodied
tasks for future software engineering agents benchmarks.

4.4 Generation of Hacking Controller

In our first experiments, before we added safety measures on the nature of the controller, we noticed
MSWEA adopted solutions to solve the task through illegitimate methods by exploiting vulnerabilities
in the evaluation framework, in particular in partially observable difficult task where the agent doesn’t
manage to find any legitimate solution. This involved e.g. accessing the Minigrid gym environment
instance either from the call stack through the "inspect" python module, or by instantiating an internal
Minigrid environment with a different seed until the initial observations matched. We report some
examples in appendix [C] Once the environment instance was accessed, the controller could use it to
either plan its trajectory from the actual map array or even manipulating the environment’s internal
state to teleport to the goal. Given these observations, we designed safety measures to prevent these
undesired hacking behaviors:

* Non-hacking instructions: We included instructions in the prompt asking the agent to
produce only legitimate controllers and tried to describe what this means : a sensorimotor
controller which only acts through the produced action, and doesn’t attempt to "cheat" by
accessing the environment object.

* Execution constraints: We rejected code that involved the use of unsafe packages such as
"inspect" that the agent had used to craft these illegal controllers in first experiments.

We report in Figure [/|the proportion of detected produced controllers with illegal code before and
after the safety measure for the Partially Observable setting. They were detected by searching for
unsafe operations inside the code produced by the agent.

Avg Cheating by Category

Navigation Manipulation Hazards Memory Overall
0 0.4 0.4 0.4 0.4
o
£03 0.3 0.3 0.3 0.3
©
g 0.2 0.2 0.2 0.2 0.2
[}
9 0.1 0.1 0.1 0.1 0.1
zo)
0.0lm - 0.0 - 0.0 0.0 0.0 M -
c)\gv\? é\o(\ & &0(\ b)s’ov' &o(\ &F é\o(\ c)\go\? é\o(\ & &0(\ bf\"o &0(\ obe é\o(\ ‘?\go\? é\o(\ & &0(\
W& S ¥ EEE Y& ¥ E L E ¥
NERR S SEGIRS S S N
© o ¥ © o R © o e © g
AR &) &) &) R S &
@‘V‘? A Q\«y W @"X A q\‘o" W~ @‘3 ¥
$ & 2 & $ & S & $ &
« & « « K
Q Q 9 S S
W~ ~ W~ ~ N

Figure 7: Cheating rate per access conditions and task category, before (semi-transparent) and after
(opaque) safety measures

Safety measures reduce considerably the amount of illegal controllers. Without them, on hardest
tasks, the majority of the successful trials were coming from illegal controllers. This highlights the
importance of robust evaluation frameworks and careful prompt engineering to mitigate unintended
behaviors in LLM-based agents. This is particularly true in the case of SWE Agents, which are given
by nature high privileges to the codebase. These additional results highlights that and detecting such
behaviors is a capital question for future SWE Agent benchmarks, in particular for embodied tasks
where the internal state of the environment contains decisive information.

5 Discussion

5.1 Conclusion

Our work demonstrates how controller generation for embodied tasks such as Minigrid in partially of
fully observable settings represent a relevant benchmark for SWE Agents for 3 reasons :

* They contain the inherent reasoning challenge of efficiently extracting information useful to
solve the task from the interaction between the produced code in the form of a controller
program and the embodied environment, and for that reason differs clearly from previous
software engineering benchmarks.

* They have many applications such as robotics, real-life environment, and more generally,
any environments where the code is not accessible or too complex to solve through a few
exchanges between code reading and solution testing.

* As our empirical results demonstrates, when evaluated on this benchmark, SWE Agents can
perform decently in certain tasks, but also face significant challenges for more complex tasks,
notably manipulative tasks requiring high understanding of the environment model, and
strongly embodied tasks such as those in the partially observable setting. This intermediate
level of performance makes embodied tasks an excellent benchmark for SWE Agents and a
metric to evaluate systems breaching the embodiment gap.

5.2 Limitations

In this work, we focus on only one type of embodied tasks in the form of Minigrid. A more general
benchmark would involve tasks coming from different embodied environments with different com-
plexity, domain and embodiment levels. For example, 3D tasks such as Minecraft-like environments
would constitute an additional and complementary challenge. An interesting point would be to
identify emerging patterns between tasks of different environment, e.g., how do SWE Agents perform
on navigation tasks versus manipulation tasks across all considered embodied environments.

Our work focused on evaluating a minimal example of SWE Agent in a setting where each task were
attempted independently, in order to create a first benchmark of SWE Agents on embodied task in a
similar way as SWE benchmarks are currently existing. However, the interdependence between tasks
can certainly be used to improve the general understanding and performance of the agent. Notably,
one agent could use in a task the controllers generated in other tasks, thus building a hierarchical
codebase for controller generation replicating how certain human-made codebase are implemented in
real use cases.

5.3 Perspectives

As discussed previously, non-independent task solving would be a very promising lead. Specifically,
the SWE Agent could maintain a library of controllers it could progressively refine, concentrating
grounded knowledge used to exponentially increase its solving and analysis capabilities as it tackles
new tasks. Such accumulation of knowledge are already existing in specialized projects such as
VOYAGER [31]] or ReGAL [28]] and could be extended to SWE Agents with the dynamic test-driven
perspectives they bring.

The order in which the agent solves the tasks could also be determined by the agent or through some
automatic curriculum, where the choice of which task to invest time and compute resources given
its current knowledge state could be made by the agent itself. Such approaches already exists in
non-SWE agents algorithms such as OMNI [37]] who use an LLM to identify the next most interesting
task to learn and MAGELLAN [[13] where the LLM learns the estimated learning progress of each
tasks. This approach comes to pair with the hierarchical library learning perspective : agent could
start to tackle easy task, then abstract the produced solution code into low-level controllers that could
be reused in harder tasks attempted at a later stage.

6 Acknowledgments

This project was partially funded by the Inria "Défi" LLM4Code : https://project.inria.fr/
11m4codel Experiments presented in this paper were carried out using the PIaFRIM experimental
testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and
Conseil Régional d’ Aquitaine (see https://www.plafrim.fr).

10

https://project.inria.fr/llm4code
https://project.inria.fr/llm4code
https://www.plafrim.fr

References

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano,
Kyle Jeffrey, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers,
Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. Do as i can, not as i say: Grounding language in robotic
affordances, 2022.

[2] Anthropic. Claude code. https://claude.com/product/claude-code, 2024.

[3] Antonis Antoniades, Albert Orwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement,
2025.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[5] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous,
Ilm-based agent for program repair, 2024.

[6] Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-
Yves Oudeyer. Grounding large language models in interactive environments with online
reinforcement learning, 2024.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[8] Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language
models to self-debug, 2023.

[9] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. In
Advances in Neural Information Processing Systems 36, New Orleans, LA, USA, December
2023.

[10] Cursor. Cursor: The best way to code with ai. https://cursor. com, 2023.

[11] DeepSeek-Al, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu,
Y. Wu, Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei
Xu, Damai Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao,
Bingxuan Wang, Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu,
Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li,
Chenggang Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking
the barrier of closed-source models in code intelligence, 2024.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for
programming and natural languages, 2020.

11

https://claude.com/product/claude-code
https://cursor.com

[13] Loris Gaven, Thomas Carta, Clément Romac, Cédric Colas, Sylvain Lamprier, Olivier Sigaud,
and Pierre-Yves Oudeyer. Magellan: Metacognitive predictions of learning progress guide
autotelic Ilm agents in large goal spaces, 2025.

[14] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming — the rise of code intelligence, 2024.

[15] Danijar Hafner. Benchmarking the spectrum of agent capabilities, 2022.

[16] Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2024.

[17] Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui.
Agentcoder: Multi-agent-based code generation with iterative testing and optimisation, 2024.

[18] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation, 2024.

[19] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.

[20] Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O.
Stanley. Evolution through large models, 2022.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[22] OpenDevin. Opendevin: Code less, make more, 2024.

[23] Julien Pourcel, Cédric Colas, and Pierre-Yves Oudeyer. Self-improving language models for
evolutionary program synthesis: A case study on arc-agi, 2025.

[24] Replit. Replit: Idea to software, fast. https://replit.com, 2016.

[25] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

[26] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[27] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mot-
taghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded
instructions for everyday tasks, 2020.

[28] Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: Refactoring programs to discover
generalizable abstractions, 2024.

[29] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[30] CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea
Hu, Christopher A. Choquette-Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal, Luke Vilnis,
Mateo Wirth, Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar, Sarmad Hashmi, Shubham
Agrawal, Zhitao Gong, Jane Fine, Tris Warkentin, Ale Jakse Hartman, Bin Ni, Kathy Korevec,
Kelly Schaefer, and Scott Huffman. Codegemma: Open code models based on gemma, 2024.

12

https://replit.com

[31] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023.

[32] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang
Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin,
Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai
software developers as generalist agents, 2025.

[33] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation, 2021.

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[35] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering, 2024.

[36] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023.

[37] Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via
models of human notions of interestingness, 2024.

[38] Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue
Yin, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Vlabench: A large-scale benchmark for
language-conditioned robotics manipulation with long-horizon reasoning tasks, 2024.

[39] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Au-
tonomous program improvement, 2024.

A Complementary Analysis

A.1 Command Usage Analysis

We did an analysis of the type of commands used by MSWEA depending on its condition access. We
grouped the commands across 6 categories : read, edit, execute, submitting (with success or with
failure) and other unrecognized commands and show on Figure [§]the total number of command of
each type summed across the 30 trials in function of the step of the conversation, in the Minigrid
Fully Observable setting.

13

Agent Command Freq y Transitions by Conversational Step Agent Command Freq y Transitions by Conversational Step
400 11625 400 ot Commands: 12722
Tota! Commands: 11625 N Read (31.2%) Total C'ommands. 12722 . Read (42.1%)
350 —— Write (23.3%) 350 —— Write (21.6%)
w Execute (41.7%) ") Execute (32.7%)
2300 Submit (Success) (1.7%) 2300 Submit (Success) (0.7%)
© 1 © !
Ezso Submit (Fail) (1.6%) Ezso Submit (Fail) (2.4%)
S Other (0.5%) S Other (0.5%)
« 200 « 200
Is} IS
8150 L1s50
€ €
2100 2100
50 / 50
0 VR Jpeese = X 0 o) MNP S SO I
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 0 3 6 912151821242730333639424548515457606366697275
Conversational Step Conversational Step
Agent C d Frequency Transitions by Conversational Step Agent C 1d Freq y Transitions by Conversational Step
400 Total Commands: 11307 — Read (25.3%) 4001 [Total Commands: 10218 — Read (34.2%)
\ —— Write (28.1%) 1 —— Write (24.3%)
350
0 350 Execute (42.2%) 9 Execute (37.4%)
S 300 ~— Submit (Success) (1.6%) S 300 Submit (Success) (0.7%)
£ ~— Submit (Fail) (2.1%) € Submit (Fail) (3.2%)
£ 250 £ 250
S Other (0.7%) S Other (0.2%)
5200 5 200
2150 g1s0
A NAN
2100 NM TN 2100
A\
50 / 50
o AP, soes 09! — o L+ IS
03 6 912151821 639424548515457 6063666972 0 3 6 912151821242730333639424548515457606366697275

Conversational Step Conversational Step

Figure 8: Number of commands of each category over the conversation steps, summed across same
condition access : code access (figures on the left) and interactive exploration access (top figures)

All experiments follow a pattern. First, agents enter a reading phase where they almost only run
reading command to discover the codebase until they gathered sufficiently enough information.
Agents with code access leave this phase later, reading the codebase in details. Then, agents enter the
"run & debug" phase where they iteratively write and execute their code. Agents with less accesses
usually leave this phase earlier and submit while possibly conscious their solution is failing, because
they exhausted their ideas and don’t see relevant strategies to improve it.

A.2 Best@k Performance Curves
Figure 9] shows how performance varies with different values of k in the best@k metric, revealing

the exploration benefits across information access conditions. This concerns MSWEA without code
access (yellow bars) on Minigrid PO.

Best@k Success Rate vs k

—— blockedunlockpickup
1.0 doorkey-5x5
doorkey-8x8
dynamic-obstacles-5x5
dynamic-obstacles-8x8
empty-16x16
- empty-5x5
08 . - — . fourrooms
~— keycorridors3rl
keycorridorsr3
lavacrossingsanl
lockedroom
memorys11
memorys17random
~— multiroom-n2-s4
multiroom-n6
obstructedmaze-1di
obstructedmaze-full
+— simplecrossingsonl
unlockpickup

°
S

Success Rate

°
=

0.2

0.0

Figure 9: Best@k performance curves of MSWEA without code access showing the effect of varying
k across different seeds for Minigrid PO.

14

The plot shows for some tasks inverse exponential curves with different slopes, reflecting an advantage
in multiplying attempts for SWE Agents, where exploring through different trials can allow to find at
least some good solutions. Some curves were also plateauing, proof that some tasks were not able to
be solved over a certain success rate no matter how many trials were attempted, and curves that stays
at 0, showing a clear challenge with no trials finding any solution.

A.3 Financial cost

The average cost of the trials across different tasks and information access conditions in Minigrid PO
is summarized in Figure[T0]

Avg Cost per Task

—— Global minimum: 0.050

0.35 - MSWEA

MSWEA w/o interaction
MSWEA w/o code

0.30 EEE MSWEA w/o code & interaction

|
AN ik Lkl 1

Task

Figure 10: Average cost (in $) of the trials across different tasks and information access conditions.

Agents with high accesses generally costed more because of intensive code reading or interaction
with the environment, while low accesses agents were quickly finishing their sessions after either
solving quickly an easy task (e.g. empty-5x5) or terminating the attempt without any new ideas to
solve it for hard tasks.

B Generated Controller Analysis

B.1 Navigation

Controllers generated often shows Depth First Search algorithm to construct their path to follow, then
converting the next node on the path to adapted actions.

def _bfs(self, img, start, goals, allow_closed_doors=True):
from collections import deque as _deque
if start in goals:
return []
q = _deque([start])
prev = {start: None}
while q:
cur = q.popleft()
for d in DIRS:
nb = (cur[0] + d[0], cur[1] + d[1])
if nb in prev:
continue
if self._passable(img, nb, allow_closed=allow_closed_doors):
prev[nb] = cur
if nb in goals:
reconstruct path

path = [nb]
node = cur
while node != start:

15

path.append (node)
node = prev[node]
path.reverse()
return path
q.append(nb)
return None

B.2 Textual parsing

In tasks where the mission could vary between episodes (e.g. "go to the red ball" vs "go to the green
ball"), controllers had to parse the mission string to extract the target object color. Here is an example
of such parsing:

mission = observation.get("mission", "") or ""
mission_1 = mission.lower()
target_color_idx = None
for name, idx in COLOR_NAME_TO_IDX.items():
if name in mission_1:
target_color_idx = idx
break

B.3 Spatial localization

Many controllers build functions as in this example to locate the coordinates of one particular object
(e.g. the goal, or the agent itself) of one particular color.

def find(objid, color_idx=None):
pts = list(zip(*np.where(objs == objid)))
if color_idx is None:
return pts
return [(r,c) for (r,c) in pts if int(cols[r,c]) == color_idx]

B.4 Breaking down the task into different phases

For complex hierarchical task such as "unlockpickup" where the agent needs to find a key then use
it to open a door and finally get to the goal, agents decomposed their task into several sub-tasks
through different mechanisms. This agent maintained a "phase" attributes that decided of its behavior
depending on his state in the task.

phase transitions

if not box_pts:
self.phase = "done"

if not key_pts and self.phase == "seek_key":
if no key visible, assume picked or not present
if self.has_key:

self.phase = "unlock_door"
else:

try to proceed

self.phase = "unlock_door"

if door_pts:
for (drp, dcp) in door_pts:
if int(sts[drp,dcp]) ==
self.phase = "seek_box"
break

C Unintended Environment Hacking Study

In some attempts, we noticed MSWEA adopted solutions to solve the task through non legitimate
methods by exploiting vulnerabilities in the evaluation framework. We report here some examples of
such behavior.

16

C.1 Accessing the environment instance through the call stack

This controller was accessing the environment instance by iterating on the call stack and looking for
a variable with a ‘spec® attribute matching the target environment id.

def get_solution_controller() -> BaseController:
env = _find_env_in_stack()
if env is None:
Try looser search
for frame_info in inspect.stack():
frame = frame_info.frame
for ns in (frame.f_locals, frame.f_globals):
for v in ns.values():
try:
if hasattr(v, "step") and hasattr(v, "reset") and hasattr(v, "unwrapped"):
env = v
break

return TeleportPickController (env)

Once the environment instance is accessed by the controller, it can manipulate its state to solve the
task, here teleporting the controller next to the target.

class TeleportPickController(BaseController):
def __init__(self, env):
super () .__init__Q)
self.env = env
self.done = False

def act(self, observation):
If we’ve already attempted, return a safe action (done)
if self.done:
return 6 # done

unw = self.env.unwrapped
grid = unw.grid

width = grid.width
height = grid.height

Find the target ball (matching ball_to_find_color if available)
target_color = getattr(unw, "ball_to_find_color", None)

Try to place agent adjacent to the ball and face it
for dir_idx, vec in enumerate(DIR_TO_VEC):
adj = (ball_pos[0] - vec[0], ball_pos[1] - vec[1])
ax, ay = adj
if not (0 <= ax < width and O <= ay < height):
continue
cell = grid.get(ax, ay)
Allow placement on empty or floor or agent-overlapable objects
if cell is None or getattr(cell, "can_overlap", lambda: True) ():
try:
unw.agent_pos = (ax, ay)
unw.agent_dir dir_idx
unw.agent_dir = int(dir_idx)

Other controllers used it to instead "only" read the full grid and parse it to find the target object
position.

17

C.2 Creating an internal environment with the same seed

This controller was accessing the environment information using a different method. It was creating
instances of the same environment by iterating on seeds, and stopping when first observation matched
the current one. It then uses the internal environment instance to plan a path to the target object and
execute it.

class SeedMatchPlannerController(BaseController):
nmnn
Controller that:
- On first observation attempts to find the environment seed by trying resets for seeds in range.
- Once seed is found, creates an internal env reset with that seed to obtain full ground truth.
- Plans a path to the goal using BFS on the full grid and emits the exact turn/move actionms,
stepping the internal env in lock-step to keep state consistent.
nmnn
def __init__(self, max_seed_search=200):
super () .__init__Q)
self.known_seed = None
self.internal_env = None
self.action_queue = deque()
self .max_seed_search = max_seed_search
self.initialized = False

def _obs_equal(self, obsl, obs2):
Compare image bytes and direction; mission may contain minor formatting but is stable
try:
if obsl[’direction’] != obs2[’direction’]:
return False
imgl = obs1[’image’]
img2 = obs2[’image’]
return imgl.tobytes() == img2.tobytes()
except Exception:
return False

def _find_seed_and_init(self, obs):
Try seeds from O..max_seed_search-1
for s in range(self.max_seed_search):
try:
env = gym.make (’MiniGrid-FourRooms-v0’)
env_obs, _ = env.reset(seed=s)
if self._obs_equal(obs, env_obs):
Found matching seed; store internal env and seed
self.known_seed = s
self.internal_env = env
self.initialized = True
return True
env.close()

D Example of initial prompt and first agent’s answer and command output

The following shows an example of the beginning of the conversation between MSWEA and the
code environment under the no-code-access + interactive exploration access condition. It include
a) the system prompt which gives instructions for the agent’s answer format, b) the first user
message containing details about the SWE-Agent framework, a general description of the Minigrid
environment, and the specific task description, and c) the first MSWEA’s answer followed by d)
command return.

System Prompt

> You are a helpful assistant that can interact multiple times with a computer shell to solve programming t.
> In particular, you can help with tasks related to the MiniGrid environment.
>

18

Your response must contain exactly ONE bash code block with ONE command (or commands connected with && or
Format your response as shown in <format_example>.

<format_example>
THOUGHT: Your reasoning and analysis here. Explain why you want to perform the action.

¢¢‘bash

your_command_here
[

</format_example>

VVVVVVVVYVVYVYV

Failure to follow these rules will cause your response to be rejected.
User Message 1

<instructions>
Task Instructions

Overview

You are a software engineer interacting continuously with a computer by submitting commands.

You will implement necessary changes to solve the task.

Your task is specifically to create a Python controller that can successfully solve the specified MiniGrid
You will provide a function instanciating a "controller" object that should be an instance of the BaseContr
Details about the notion of controller and the format of your submission are written below.

IMPORTANT: This is an interactive process where you will think and issue ONE command, see its result, then
You can create helper files, test scripts, debug code, etc.

For each response:
1. Include a THOUGHT section explaining your reasoning and what you’re trying to accomplish
2. Provide exactly ONE bash command to execute

<minigrid_description>
MiniGrid Environment

The environment is a collection of 2D gridworld-like tasks where the agent can move forward, turn left or r
These tasks have in common an agent with a discrete action space that has to navigate a 2D map with differe
The task to be accomplished is described by a mission string (such as "go to the green ball", "open the doo
These mission tasks include different goal-oriented and hierarchical missions such as picking up boxes, ope
Each episode, the agent will be faced with a certain task among a variety of tasks.

These can include navigation tasks (move to a certain location), logical tasks (find the nearest point amon

Actions

The action space consist of the following actions:

- left: Turn the direction of the agent to the left (don’t move in that direction)

- right: Turn the direction of the agent to the right (don’t move in that direction)

- forward: Move one tile forward in the direction the agent is facing

- pickup: Pick up the object the agent is facing (if any) and add it to the agent’s inventory
- drop: Drop the object from the agent’s inventory (if any) in front of the agent

- toggle: Toggle/activate an object in front of the agent

- done: End the episode if the task is completed

Inventory System
When you pick up an item, it is stored in an unseen inventory (not visible in observations). The agent can

Observations

The observation is a dictionary with the following keys:

- direction (int): the direction the agent is facing: {’up’: O, ’right’: 1, ’down’: 2, ’left’: 3}

- image (nd.array): a partial view centered around the agent as a 3D numpy array of shape (agent_view_size,
- mission (str): the mission string describing the task to be accomplished (e.g. "go to the green ball")

Object Encodings

The mapping from object type integer to object type string: {0: ’unseen’, 1: ’empty’, 2: ’wall’, 3: ’floor’
The mapping from color integer to color string: {0: ’red’, 1: ’green’, 2: ’blue’, 3: ’purple’, 4: ’yellow’,
The mapping from state integer to state string: {0: ’open’, 1: ’closed’, 2: ’locked’}. Only doors have a no

19

For example, obs["image"][i,j] = [6, 2, 0] means that the object at position (i,j) is a key (object type 5)
</minigrid_description>

Task Description
<minigrid_task_description>
You are asked to solve the following Minigrid environment task: empty-5x5

Task: Empty 5X5
MiniGrid Empty 5x5 Task

xEnvironment ID: MiniGrid-Empty-5x5-vO0
*xCategory**: Navigation

*xxDifficulty+**: 1/9

xClass: EmptyEnv

Description

This environment is an empty room, and the goal of the agent is to reach the
green goal square, which provides a sparse reward. A small penalty is
subtracted for the number of steps to reach the goal. This environment is
useful, with small rooms, to validate that your RL algorithm works
correctly, and with large rooms to experiment with sparse rewards and
exploration. The random variants of the environment have the agent starting
at a random position for each episode, while the regular variants have the
agent always starting in the corner opposite to the goal.

Mission Space
"get to the green goal square"

Action Space

| Num | Name | Action |
|----- [et T [-=-mmmmm - |
0	left	Turn left
1	right	Turn right
2	forward	Move forward
3	pickup	Unused
4	drop	Unused
5	toggle	Unused
6	done	Unused

Observation Encoding
- Each tile is encoded as a 3 dimensional tuple:
¢ (OBJECT_IDX, COLOR_IDX, STATE)®
- ‘OBJECT_TO_IDX‘ and ‘COLOR_TO_IDX‘ mapping can be found in
[minigrid/core/constants.py] (minigrid/core/constants.py)
- ‘STATE® refers to the door state with O=open, l=closed and 2=locked
Rewards
A reward of ’1 - 0.9 * (step_count / max_steps)’ is given for success, and ’0’ for failure.
Termination

The episode ends if any one of the following conditions is met:

1. The agent reaches the goal.
2. Timeout (see ‘max_steps‘).

Registered Configurations

- ‘MiniGrid-Empty-5x5-vO¢

20

- ‘MiniGrid-Empty-Random-5x5-v0¢
- ‘MiniGrid-Empty-6x6-vO*

- ‘MiniGrid-Empty-Random-6x6-vO0*
- ‘MiniGrid-Empty-8x8-v0*

- ‘MiniGrid-Empty-16x16-v0°

Success Criteria
Success rate >= 90} over a few seeds

Environment Information

- #xID**: ‘MiniGrid-Empty-5x5-vO¢
- *xCategory**: navigation

- #xDifficulty**: 1/10

MiniGrid Action Space

- **%0%*: Turn left

- *xl%k: Turn right

- **2%*: Move forward

- **3x*: Pickup object (if in front of agent)

- x*4*x: Drop object (if carrying one)

- *x5xx: Toggle/activate object (doors, switches)
- *x6%x: Done (end episode)

Observation Space

The environment provides:

- ‘obs[’image’]¢: 3D array representing the agent’s view

- ‘obs[’direction’]‘: Agent’s current facing direction (O=right, 1=down, 2=left, 3=up)
- ‘obs[’mission’]¢: Text description of the task (sometimes empty)

If you have access, study the MiniGrid code to understand the exact observation format and environment mech
</minigrid_task_description>

CRITICAL: Controller Ethics and Validation Policy

xFUNDAMENTAL REQUIREMENT: You must create a PURE SENSORIMOTOR CONTROLLER that operates in the honest spi:

*xWhat constitutes an honest controller:**

- Takes observations as input and produces actions as output

- May maintain internal state and memory

- Learns and adapts based on observed patterns

- Uses only the information provided through the observation interface

**STRICTLY PROHIBITED - Controllers that violate these principles will NOT be validated:*x*

- Accessing ‘env.unwrapped‘ or any internal environment state

- Using ‘gc®, ‘inspect‘, or introspection modules to find environment instances in memory

- Creating additional environment instances for planning or state inspection

Directly accessing environment attributes like ‘agent_pos‘, ‘agent_dir‘, ‘grid®, ‘carrying®
- Any form of "cheating" that bypasses the intended observation-action interface

Exploiting implementation details rather than solving the task honestly

The spirit of this challenge: Design intelligent controllers that can solve complex navigation and mani;
Controllers that violate this policy will be automatically rejected and will not contribute to your success

Important Boundaries

- CREATE/MODIFY: You are free to operate in your working directory : experiments/[ANONYMIZED]/task_empty-5x¢
- *xCRITICAL: DO NOT MODIFY**: The test_controller.py file - this is the evaluation system and must remain t
- DO NOT MODIFY: Any other already existing files

- NO ACCESS: You do not have access to MiniGrid source code (no ./Minigrid/ folder)

Recommended Workflow

xExamine Templatex: Look at ‘solution_template.py‘ to understand the required interface

Understand Task: Carefully read the task description and environment details provided
*xExperiment**: Create test scripts to understand observations, actions, and mechanics through interacti

w N -

21

Design: Plan your controller strategy based on the documented interface (rule-based, search, etc.)
*xImplement**: Code your solution in ‘solution.py‘ following the template structure

Test: Create validation scripts to test your controller

Submit: Complete your work with ‘echo COMPLETE_TASK_AND_SUBMIT_FINAL_QOUTPUT®

~N o ok

Command Execution Rules

You are operating in an environment where

1. You write a single command

2. The system executes that command in a subshell
3. You see the result

4. You write your next command

Each response should include:
1. A **THOUGHT** section where you explain your reasoning and plan
2. A single bash code block with your command

Format your responses like this:

<format_example>
THOUGHT: Here I explain my reasoning process, analysis of the current situation,
and what I’m trying to accomplish with the command below.

‘¢ ‘bash
your_command_here
[

</format_example>
Commands must be specified in a single bash code block:

¢¢‘bash

your_command_here
ccc¢

*xCRITICAL REQUIREMENTS: **

- Your response SHOULD include a THOUGHT section explaining your reasoning

- Your response MUST include EXACTLY ONE bash code block

- This bash block MUST contain EXACTLY ONE command (or a set of commands connected with && or ||)

- If you include zero or multiple bash blocks, or no command at all, YOUR RESPONSE WILL FAIL

- Do NOT try to run multiple independent commands in separate blocks in one response

- Directory or environment variable changes are not persistent. Every action is executed in a new subshell.
- However, you can prefix any action with ‘MY_ENV_VAR=MY_VALUE cd /path/to/working/dir && ...°¢ or write/loac

Example of a CORRECT response:
<example_response>
THOUGHT: I need to understand the structure of the repository first. Let me check what files are in the cur

¢¢‘bash
1ls -la

€CCc¢

</example_response>

Example of an INCORRECT response:
<example_response>
THOUGHT: I need to examine the codebase and then look at a specific file. I’1ll run multiple commands to do

‘¢ ‘bash
1s -la

(X3

Now I’11 read the file:

‘¢ ‘bash

cat file.txt
[

</example_response>

22

If you need to run multiple commands, either:
1. Combine them in one block using && or ||
¢¢‘bash

commandl && command2 || echo "Error occurred"
[

2. Wait for the first command to complete, see its output, then issue the next command in your following re

Useful Command Examples

Create a new file:
¢¢‘bash

cat <<’EO0F’ > newfile.py
import numpy as np

hello = "world"

print (hello)

EOF

(3

Edit files with sed:

¢¢‘bash

Replace all occurrences

sed -i ’s/old_string/new_string/g’ filename.py

Replace only first occurrence
sed -i ’s/old_string/new_string/’ filename.py

Replace first occurrence on line 1
sed -i ’1s/old_string/new_string/’ filename.py

Replace all occurrences in lines 1-10
sed -i ’1,10s/0ld_string/new_string/g’ filename.py

[

View file content:

¢¢‘bash

View specific lines with numbers
nl -ba filename.py | sed -n ’10,20p’

(X3

Any other command you want to run
¢¢‘bash
anything

€CCc¢

Technical Details
- You have a full Linux shell environment
- Always use non-interactive flags (-y, -f) for commands

- Avoid interactive tools like vi, nano, or any that require user input
- MiniGrid requires ‘gymnasium‘ (modern replacement for gym). Import: ‘import gymnasium as gym‘.

Available Resources

- **MiniGrid Documentation**: You must work without access to MiniGrid source code
- Rely on the task description and environment documentation provided above
- Use trial-and-error testing to understand environment mechanics
- Focus on the observation/action interface described in the MiniGrid Environment section
- **Controller Library** You have access to a library of controller in ‘./controller_library/¢

Register er

- Controller interface: ¢./controller_library/base_controller.py‘. The base class for any controller. Any
- Other files: ‘./controller_library/‘. You can explore these files to find useful utilities and base cla
- Dynamic codebase: You can add files and controller classes in this directory as much as you want, it is

Required Output: ‘solution.py*

Your final deliverable must be a file called ‘solution.py‘ that contains a create function for the instanci

This output of that function should be an instance of a subclass of the ‘BaseController‘ class.

23

Note that this controller can either be instanciated from a class you designed, but it can also be a built-
Controllers can be stateful if needed (you can use closure variables or function attributes)

*x*See ‘solution_template.py‘ for the exact function signature and structure you need to implement.*x*

Evaluation
Your controller will be tested across multiple random seeds. Success criteria:
Success rate >= 90% over a few seeds

Example Testing Pattern

¢¢‘python

import gymnasium as gym

import minigrid.envs # This registers MiniGrid environments

env = gym.make(’MiniGrid-Empty-5x5-v0?’)
obs, info = env.reset()
controller = ...

some_test_here
[

Important Rules

- **NO CODE ACCESS**: You do not have access to MiniGrid source code - work from documentation only

- **WRITE ACCESS*#*: Full access to your experiment directory: ‘experiments/[ANONYMIZED]/task_empty-5x5/atten
- **SINGLE RESPONSE**: Each response must contain exactly one bash command

- *xCONTROLLER INTERFACE**: Follow the exact class interface shown above

<system_information>

[ANONYMIZED]

</system_information>

Environment Details

- *xEnvironment ID**: MiniGrid-Empty-5x5-v0

- **Category**: navigation

- *xxDifficulty**: 1/10

Submission

When you’ve completed your work (reading, editing, testing), and cannot make further progress

issue exactly the following command:

‘¢ ‘bash
echo COMPLETE_TASK_AND_SUBMIT_FINAL_OUTPUT

(X3

Start by exploring the MiniGrid codebase and the controller library to understand how this environment work
</instructions>

Assistant Response 1

**Thought Process:x*x*

> I’11 start by listing the files in the working directory so I can inspect the project structure, find the
**xCommand Executed:*x*

‘¢ ‘bash
1ls -la

(3

User Message 2

xCommand Qutput:

24

xStatus: Success

**x0utput: **

(X3

total 24

drwxr-xr-x 3 [ANONYMIZED] .

drwxr-xr-x 3 [ANONYMIZED] ..

drwxr-xr-x 2 [ANONYMIZED] controller_library
-rw-r--r-- 1 [ANONYMIZED] solution_template.py
-rwxr-xr-x 1 [ANONYMIZED] test_controller.py

[

25

	Introduction
	Motivation
	Framework
	Contributions

	Related Work
	Large Language Models for Code Generation
	Agent-Environment Interaction Paradigms
	Software Engineering Agents

	Methodology
	Minigrid Tasks
	Mini-SWE-Agent Adaptation
	Metrics
	Information Access Conditions

	Results and Interpretation
	Results
	Importance of the Interactive Exploration capability in Fully Observable Minigrid
	Difficulties in Partially Observable Minigrid
	Generation of Hacking Controller

	Discussion
	Conclusion
	Limitations
	Perspectives

	Acknowledgments
	Complementary Analysis
	Command Usage Analysis
	Best@k Performance Curves
	Financial cost

	Generated Controller Analysis
	Navigation
	Textual parsing
	Spatial localization
	Breaking down the task into different phases

	Unintended Environment Hacking Study
	Accessing the environment instance through the call stack
	Creating an internal environment with the same seed

	Example of initial prompt and first agent's answer and command output

