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Abstract

Understanding the 3D world from 2D monocular videos is a crucial ability for Al
Recently, to tackle this underdetermined task, end-to-end 3D geometry priors have
been sought after, such as pre-trained point map models at scale. These models
enable robust 3D understanding from casually taken videos, providing accurate
object shapes disentangled from uncertain camera parameters. However, they still
struggle when affected by object deformation and dynamics, failing to establish
consistent correspondence over the frames. Furthermore, their architectures are
typically limited to pairwise frame processing, which is insufficient for capturing
complex motion dynamics over extended sequences. To address these limitations,
we introduce Track3R, a novel framework that integrates a new architecture and
task to jointly predict point map and motion trajectories across multiple frames from
video input. Specifically, our key idea is modeling two disentangled trajectories
for each point: one representing object motion and the other camera poses. This
design not only can enable understanding of the 3D object dynamics, but also
facilitates the learning of more robust priors for 3D shapes in dynamic scenes.
In our experiments, Track3R demonstrates significant improvements in a joint
point mapping and 3D motion estimation task for dynamic scenes, such as 25.8%
improvements in the motion estimation, and 15.7% in the point mapping accuracy.

1 Introduction

The recent advance of 3D prior models by the point mapping frameworks has enabled robust
and accurate 3D understanding in casually taken video frames. Unlike the 3D reconstruction
methods that rely on external matching, depth, and pose estimation priors [1], these models directly
learn 3D shape priors via end-to-end designs predicting dense 3D points directly from 2D frames.
Notably, DUSt3R [2] has introduced the pair-wise point mapping, which, given a pair of two image
frames with unknown camera parameters, maps every pixel in one frame to 3D points in the other
frame’s view. This design allows robust 3D representation disentangling the 3D shapes and the
camera motion, providing a strong prior trained at scale.

However, current methods are often challenged when given videos capturing dynamic scenes, affected
by moving and deforming objects. For example, the point map task accounts for only variable
camera poses, but cannot establish a consistent motion trajectory of the 3D points over the frames.
Furthermore, the typical model architectures suffer from the constrained temporal window size of 2
frames, which hinders modeling complex dynamics spanning over wider windows. Although there
have been approaches to mitigate the problem, such as injecting motion estimation priors [3], memory
bank architecture [4], they cannot generalize well to various tasks in dynamic scenes and fail to learn
holistic priors that can disentangle the object dynamics.

To tackle this problem, we propose a new framework which can jointly predict the point map and
their motion trajectory from a multiple number of frames in the end-to-end manner, coined Track3R.
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Figure 1: The joint point mapping and trajectory prediction. The outputs of a pair-wise point
mapping [3] and our method are compared, processing 6 distant frames of a video [5] capturing
dynamic scenes. With the first frame as the reference, the 3D points are predicted for other frames.

Specifically, our key idea is modeling two disentangled trajectories for each point: one representing
the 3D motion and the other representing camera views. We enable this task via generalizing a
well-adopted point mapping framework, the Siamese transformer architecture with two parallel
decoders [6, 7] for the pair-wise point mapping, where the first and the second decoders process
distinct frames.

To be specific, assuming W input frames, we introduce a factorized temporal attention over the tokens
in the same spatial locations of the frames [8], which enables predicting point maps beyond the 2-
frame constraint. For instance, while the vanilla architecture would perform Permutation(W, 2) pair-
wise iterations, our enhanced architecture would produce an equivalent set of point map sequences
in a single forward pass,' as depicted in Figure 1. Then, we modify the semantics represented by
these sequences: the output by the first decoder represents the 3D motion trajectory in a fixed camera
coordinate system, and the other by the second decoder to be 3D points in the variable camera views.

Our model can readily utilize 3D shape priors pre-trained on static scenes at scale, which enables a
training focused on fine-tuning the model in dynamic scenes for learning motion priors. For example,
we employ 3D trajectory annotations from human motion datasets [9] as the ground truth for training,
and synthesize the input frames via a dedicated 3D rendering framework for the human bodies [10].
While the dynamic video data in prior art, such as Kubric [11] and Point Odyssey [12], are with a
sparse set of trajectory annotations, human motion datasets provide a denser set of point trajectories,
which can facilitate learning stronger priors for joint 3D geometry and motion in dynamic scenes.

Track3R not only can provide more accurate outputs for the tasks involving 3D motion estimation,
but also enables the learning of more robust priors for 3D geometry in dynamic scenes. For example,
it achieves significantly improved experimental results compared to strong baselines, e.g., relative
25.8% on 3D motion estimation and 15.7% on point mapping tasks.

'We note that the vanilla architecture and the enhanced architecture are essentially identical if W = 2.



2 Related Work

2.1 3D prior learning

The traditional approaches have focused on learning priors for matching and depth features, which
only partially describe the 3D configuration in images and prone to the error accumulation in the
independent prior models. Since the introduction of end-to-end architectures, such as the image-based
neural fields [13] and the feed-forward Gaussian splatting [14], the direct 3D prior learning from
image inputs has gained research interest. However, their main focus is typically on reconstructing
photometric colors of the image pixels, assuming the camera parameters should be known a priori,
which hinders learning robust 3D representation from casually-taken videos [15].

Recently, the point mapping task [2] has been introduced, which choose to directly regress the 3D
point coordinates without requiring known camera configurations. The point map can effectively
disentangle the influence of camera motion in the 3D geometry, which has been shown to enable
learning robust 3D shape priors trained at scale. Our goal is to further generalizing the point mapping
3D prior learning for dynamic scenes, which we further discuss as follows.

2.2 3D tracking models

Recently, the conventional 2D video point tracking tasks [16] have evolved towards understanding
motion in 3D space [17]. Since the goal of the 3D tracking is predicting the motion trajectory and
detecting the occlusions of a query point in video frames, assuming that the camera poses are known
a priori, the state-of-the-art methods in this field often propose unifying the 2D video point tracking
models, depth estimation, and camera pose estimation methods, e.g., DELTA [18], TAPIP3D [19],
and SpatialTracker [20]. We note that these models focus on motion estimation in videos rather than
learning holistic prior for 3D shapes, and further discuss the 3D point mapping methods and their
extension to dynamic scenes in the follwing subsection.

2.3 3D point mapping models

Since the seminal work in DUSt3R [2], which introduced the Siamese decoding architecture for
the pair-wise point mapping, numerous contributions have been made to enhance the generalization
performance to various 3D modeling scenarios, namely the application to dynamic scenes, and the
extended temporal window size for processing multiple frames.

For example, the approaches for fine-tuning from synthetic data is found effective for enhancing
the 3D reconstruction in dynamic scenes [3, 21], although they require an external prior models
for motion estimation or metric depth estimation. Later, the extended task definitions have been
introduced to directly learn priors for the temporal correspondence, or tracking between a fair of
input frames [22, 23]. However, these methods are still constrained to the pair-wise architecture and
often rely on heavy test-time optimization for processing multiple frames. Although the technique
for expediting the optimization is a concurrent area of research [24], the time cost persists to be high.

In order to achieve the multi-frame modeling without relying on the optimization, new architectures
have been proposed, such as the memory bank [4, 25], the multi-view cross attention [26], non-
Siamese decoders [27], and employing DINO [28] features as additional inputs [29]. However, the
task considered by these models cannot explicitly handle motion in video frames, which hinders
generalization to dynamic videos. While our framework also considers an enhanced architecture with
the modified attention, we additionally generalize the task for a joint point mapping and trajectory
prediction, which has significant effect for understanding dynamic scenes.

It is also worth noting concurrent works such as GFlow [30], POMATO [31], St4RTrack [32], which
have been devoted to tackle handling dynamic videos in point mapping architectures. For example,
GFlow [30] employs the Gaussian Splatting [33] for better optimization, POMATO [31] proposes
a new temporal prediction head for motion estimation, and St4RTrack [32] employs a pair-wise
tracking task and architecture.



(a) The joint point mapping and trajectory prediction

Tokenization

X1
Cross Point
Attention Trajectory of I*

vt
Point maps
in the view of I*

w

Input Frames I, ...,1

(b) Pair-wise point mapping architecture (c¢) Track3R architecture (ours)

===

ij ik iw Jjli
X2 X1 Xl—ll X -1 ..
jli i Jjli kli wii ilj ilk
-1 Yl—l Yl_1 Yl*l Yl—l Yl—l

Figure 2: Illustration of the prediction pipeline in Track3R. The top figure (a) depeicts the overall
pipeline, with the first decoder (Decoder 1) and the second decoder (Decoder 2), shared by both the
point mapping frameworks. The bottom-left figure (b) illustrates the design of the decoder blocks in
the pair-wise point mapping, using the self-attention (SA) and the cross-attention (CA) mechanisms.
The bottom-right figure (c) illustrates our architecture for joint point mapping and trajectory, equipped
with the proposed trajectory encoder.

3 Method

In this section, we provide the details of our architecture design for point mapping and trajectory
prediction given a video sequence. We denote scalars using normal letters, and tensors using
bold letters with a superscript denoting frame indices. For example, an input RGB video frame is
I' € RUXV*3 where U x V is the resolution, and a frame tokenization is F* € RY*P  where

N = % X % with the patch size P and the embedding dimension D. Tensors can be indexed, such

as Fi(n) € RP, where F? = [F?(1), ..., F?(V)]. Finally, to highlight that a feature or data for frame
1 is conditioned on the frame j, we use the superscript %|j, such as the point map Xili ¢ RUXV 3,

3.1 Pair-wise point mapping

Given a pair of frames (I¢, 1), the point mapping model aims to predict 2 different 3D points: the first
decoder predicting X% which represents the 3D coordinate of I’, and the second decoder predicting

Y7! which represents the 3D coordinate of I7 in the camera view of I’. Specifically, the vanilla
Siamese architecture [2] employs transformer blocks with cross-attention. To describe the operations

within a block, we denote the tokens in the first decoder as Xf'j , and the second decoder as Ylilj s
where I € {0, ..., L} is the block index, with the initialization X\’ := Fi and Y7’ := FJ.

In each transformer block (Figure 2b), the cross-attention CA(+; -), placed next to the self-attention
SA(-), conveys information between the two decoders, followed by the MLP(+) layer, producing the
parallel outputs,

X = ca(saX)¥));Y7",) and Y7 = ca(sa(y]"): XiY)) (1)
X7 = mep(X}7) and Y] :=wmp(Y]"), @)

assuming the skip-connections [34, 35] existing in the layers. To produce the final outputs, the DPT
head layer [36] is employed, which takes these parallel block-wise tokens as the input,

Xl = Head(Xé‘j; Xilj; ,XZLU) and Y7 .= Head(Yé‘i;Yili; ...;Yili). 3)



Although we abuse the same notations SA, CA, MLP, and Head for the two decoders and for all block
indices [ € {1, ..., L}, we note that their weight parameters are all different.

This pair-wise point mapping model is typically executed twice, for the permutation of the in-
put frames, which enables downstream tasks, such as 2-view geometry, estimating camera poses,
etc. When processing a larger number of frames, e.g., W > 2, the inference is performed over
Permutation(W,2) foralli € {1,...,W}andj € {1,...,W}.

3.2 Generalized point trajectory prediction

As discussed in the previous section, the point mapping on W frames would essentially produce two
sets of point map sequences per frame X"V € R(W=1xUxVx3 anq YW ¢ RIW-1xUxVx3 For
example, assuming W = 3 input frames, {I', 12, I3}, I would be associated with the set of point
maps from the first and second decoders, respectively:

X3 = [X3‘1’X3|2] and Y3 = [Y1|37Y2|3]. (4)

Given these sequences, one can quickly notice that the outputs from the first decoder, X3! and X312,
represent the same semantics: the 3D coordinate of I in the camera view of I?. Our key idea is to
resolve this duplication, by considering a modified definition, X3/* and X?I? representing the 3D
coordinate of I? in the frame index of I' and I2, respectively, in the fixed camera view of I3. That is,
we predict the 3D motion trajectory of the frame I°.

In order to learn this new task, we employ the confidence-aware regression loss from the original
point mapping literature [2], yet provide the 3D trajectory annotations as the true targets for X’s,
which have been relatively sparse in datasets considered by prior art. Therefore, we further facilitate
the learning by utilizing human motion dataset, which provide a denser motion trajectory and human
body models [9], where the corresponding video frames can be readily rendered via a dedicated
framework [10]. We note that the task definition of Y’s remain unchanged, representing the 3D
coordinate of a frame pixels mapped to the views of other frames.

3.3 Trajectory encoder

Despite the generalized task, the pair-wise architecture is still constrained to process the complex
dynamics spanning W > 2. To tackle this problem, we describe our method to jointly process
multiple frames (i.e., W > 2). Specifically, we enable it with the trajectory encoder module. This
module is based on the factorized temporal attention, which collects the tokens in the same spatial
index over the frames to encode the inter-frame dynamics back to each token.

Let us consider the frame I, paired with others {I',...,I" =1} and their corresponding tokens
within the intermediate cross-attention stage of the decoder blocks in Equation (1),

XMW VXYY and VIR VI YR (5)

Intuitively, gathering from a same spatial index, e.g., a stack of tokens [YlW|1 (n)y .y YlW|W—1 (n)]
by indexing each element in Equation (5), can represent the spatio-temporal dynamics of the patch
region represented by F" (n). Therefore, projecting this feature onto each token can encode the
dynamics. Specifically, we apply a factorized attention” with causal masks to implement the function,
coined trajectory attention TA(-; -),

X=X g )Y = gy sy, ©
where
X" () = ca (X} (m); (X} (), XV (), @
¥, ) = (0 0 9 ), YV (). ®

*We adjust the relative position embedding to encode a spatial index with the size D/2, and a time index with
the size D /2.



However, naively inserting this layer to each decoder block of a pre-trained Siamese model results
in sub-optimal performance after training on dynamic scenes. In fact, prior art finds that retaining
strong 3D prior learned from static datasets is crucial for dynamic scenes [3]. Since the trajectory
attention deviates the computation graph of a pair-wise model, the model can lose the pre-trained
3D prior. We note that it is also non-trivial to pre-train a multi-frame model from scratch, since the
training data for 3D geometry is often a pair of images [2], rather than a video stream data.

To address the problem, we aim to minimize the effect of modification in the initial state of the model.
Specifically, inspired by model inflation techniques in video transformers [8, 37], which maintain
image prior by attenuating the activation of the temporal attentions, we introduce the layerscale LS(-)
initialized to a very small scalar [38] to the module, referring to the whole layer as the trajectory
encoder TE(; -),

_ XW\J 4L ( W‘J X;/V|{k<W}))7
YlW“ = T1E(Y,"; YW'{’KW}) (10)
_YW\J +L ( W|J YZWI{k<W}))_

This design ensures that the model is equivalent to the pair-wise architecture in the initial state,
retaining the pre-trained 3D prior.

To summarize, we enhance the model architecture for multi-frame, and generalize the task definition
(in Section 3.2) of the corresponding outputs. Throughout the training on dynamic scenes, our model
initialize from a strong 3D shape prior, and gradually learn to model complex multi-frame dynamics
and predict 3D motion estimation, achieving the joint point mapping and trajectory prior.

4 Experiment

In this section, we present the experimental details and compare Track3R to state-of-the-art base-
lines. In Section 4.1, we provide the training details, such as the training dataset, schedules, and
hyperparameters. In Section 4.2, we discuss the experimental details, such as the baselines, check-
points, and the inference configurations. Next, we provide the results on the joint point mapping
and trajectory prediction in Section 4.3, which aims to evaluate the quality of the motion and shape
prior learned by Track3R in dynamic scenes. Then, we further study the downstream task, e.g., the
feed-forward camera pose estimation in Section 4.4, which aims to compare the ability to disentangle
the camera motion in dynamic scenes. Finally, we present the ablation study of the proposed method
in Section 4.5.

4.1 Training details

We initialize the Track3R with the pre-trained weight published by MonST3R [3], a pair-wise point
mapping architecture trained on dynamic scenes covered by synthetic datasets [12, 39, 40], starting
from the pre-trained DUSt3R [2], which is trained on 8M images that capture the real-world static
scenes at scale, such as ScanNet [41] and StaticThings3D [42].

For the fine-tuning, we employ the 3D trajectories and video frames, the combination of SMPL-X
human motion trajectory [9] and the associated video frames rendered with BEDLAM [10], along
with the publicly available Waymo [43] dataset. Specifically, we supervise the output X from the
first decoder with the 3D trajectory annotation, and supervise the output Y from the second decoder
with the ground truth depth maps, registered to the world coordinate system based on the annotated
camera poses. We employ the confidence-aware and scale-invariant regression loss, following the
baselines [2, 3].

We train Track3R for 25 epochs using the AdamW optimizer [44] with 25k clips of length W = 6
per epoch, the mini-batch size 16, and the learning rate 1 x 10~%. The training takes approximately
36 hours on the system equipped with 8 nVidia A100 GPUs.



Table 1: Joint 3D motion and shape performance. The quality of 3D motion estimation (EPE;3p)
and the point mapping (Abs-rel) are compared among Track3R (ours) and the baselines. The baselines
that perform additional test-time optimizations are grouped in the top block, and the baselines for
feed-forward prediction are grouped in the bottom block. The best scores are highlighted with bold
numbers, and the best scores within a model category are highlighted with underlines.

iPhone Sintel Point Odyssey
Method FPS EPEs;p Abs-rel EPE;p Abs-rel EPEs;p  Abs-rel

DUSt3R (2024) 0.62 0973 1212 0.565 0.422 0933 0.184
MonST3R (2025) 041  0.619 0310 0.401 0.335 0.481 0.090
MegaSaM (2025)  0.97  0.598 0.211 0372  0.231 0.455 0.091
Align3R (2025) 0.17  0.581 0290 0487  0.263 0.670  0.075

Fast3R(2025) 91.81 0.692 0.419 0.667 0.517 0.771 0.214
Spann3R(2025) 20.77  0.658 0.431 0.523 0.622  0.591 0.231
CUT3R(2025) 2743 0.701 0.408 0.681 0.428 0.609 0.177
Track3R (ours) 23.81 0431 0.344 0312 0374  0.399 0.165

Table 2: Feed-forward camera pose estimation. The quality of estimating camera translation (ATE
and RPE-t) and rotation (RPE-r) are comapred among the feed-forward prediction baselines. The best
scores are highlighted with bold numbers, and the second-best scores are highlighted with underlines.

iPhone Sintel TUM-dynamic
Method ATE RPE-t RPE-r ATE RPE-t RPEr ATE RPE-t RPE-r

Fast3R (2025) 0413 0294 1561 0377 0.150 3233 0.129 0.111 2.794
Spann3R (2025) 0.552 0310 2301 0329 0.110 4471 0.056 0.021 0.591
CUT3R (2025) 0.291 0.184 0.848 0.213 0.064 0.596 0.046 0.015 0473
Track3R (ours) 0.233 0.150 0.694 0.201 0.066 0.621 0.051 0.020 0.517

4.2 Experimental details

We consider 7 different baseline point mapping models, DUSt3R [2], MonST3R [3], MegaSaM [24],
Align3R [21], Fast3R [27], Spann3R [25], and CUT3R [4]. We experiment with the checkpoint
provided in the official open-source repository hosted by their authors, following the default image
processing in each model, e.g., , the input dimensions are, the longer side length of 512 in DUSt3R [2],
MonST3R [3], Align3R [21], and Fast3R [27], the longer side length of 672, in MegaSaM [24], and,
the square 256 x 256 in Spann3R [25].

Unless otherwise specified, we always choose the temporal window size of the inference W = 6
for evaluating our method and the baselines. We note that the pair-wise processing baselines are
iteratively executed to match the required window size.

To evaluate the feed-forward camera pose estimation in Section 4.4, we employ the weighted Pro-
crustes solver to derive the relative rotation and translation between the frames, and the weighted least
squares solver to estimate the camera intrinsic parameters, similar to the experimental configuration
in CUT3R [4].

4.3 Joint point mapping and 3D motion estimation.

In this section, we evaluate the joint point mapping and 3D motion estimation quality. We employ
3 different test datasets covering dynamic scenes: iPhone dataset [45], Point Odyssey [12], and
Sintel [46]. iPhone dataset covers the real-world scene, which originally provides monocular video
frames, depth, and camera poses collected with the Lidar and IMU sensors [45]. To obtain the 3D
motion trajectory annotation, we utilize the track optimization part of the sophisticated stereo video
optimization framework [22]. Point Odyssey and Sintel are synthetic datasets rendered with the 3D
engine, which provides the ground truth depth and 3D motion trajectories. We note that the validation
sets are utilized for these datasets.



Table 3: Ablation study. The effect of trajectory encoder, the joint training objective, and the training
with human motion dataset are studied in terms of the quality of 3D motion estimation (EPE3p) and
the point mapping (Abs-rel).

iPhone Sintel Point Odyssey
Modules EPE;p Abs-rel EPE;p Abs-rel EPE;p  Abs-rel
Base Model 0.803 0.879 0.695 0.737 0.980 0.281
+ Trajectory Encoder  0.682 0.593 0.576 0.531 0.704 0.239
+ Joint Objective 0.445 0.357 0.429 0.396 0.463 0.181
+ Human Motion 0.431 0.344 0.312 0.374 0.399 0.165

To provide a holistic view over both 3D motion and shape qualities, we borrow metrics from literature
for each task: the 3D end-point-error (EPE;3p; a regression quality of 3D motion trajectory) [47]
and the absolute relative error (Abs-rel; the accuracy of point mapping to be within a 1.25-factor
of the ground truth) [4]. We compare Track3R and the baselines: DUSt3R [2], MonST3R [3],
MegaSaM [24], Align3R [21], Spann3R [25], Fast3R [27], CUT3R [4] in Table 1.

To begin with, Track3R demonstrates the strongest results in terms of the quality of 3D motion
estimation (ECEsp), e.g., relative 25.8% improvement compared to Align3R [21] in iPhone dataset
(0.581 — 0.431). We observe the baselines employing test-time optimizations (upper block in Table 1)
can demonstrate overall improved motion estimation performance than the feed-forward prediction
methods (lower block in Table 1), except Track3R (ours).

Although the test-time optimization can reinforce overall consistency in point mapping along the
frames, and inject external motion prior (e.g., MonST3R [3]), it significantly deteriorates inference
speed (FPS). Since our Track3R can directly learn the 3D motion prior during training, instead of the
test-time, it can achieve a better motion estimation performance and provides a reasonable inference
speed as well, e.g., 23.81 (FPS).

In terms of the point mapping accuracy (Abs-rel), Track3R consistently demonstrates the strongest
results among the feed-forward prediction methods, e.g., relative 15.7% improvement compared
to CUT3R [4] in iPhone dataset (0.408 — 0.344). Although there is a gap between the test-time
optimizations and ours, the significant improvement compared to the strongest feed-forward baseline
(CUT3R [4]) supports the effect of the joint prior learning by our method.

4.4 Downstream tasks

In this section, as the downstream application, we evaluate the feed-forward camera pose estimation
in dynamic scenes, and provide visualization of the point maps in the world coordinate system.

First, in the feed-forward camera pose estimation, we consider the benchmark with respect to Sintel
[46] and TUM-dynamics [48], following the configuration in CUT3R [4] for dynamic scenes, and
also the customized iPhone dataset [45] evaluated with the sensory camera poses. In Table 2, we
compare Track3R (ours) and the feed-forward prediction baselines: Fast3R [27], Spann3R [25],
and CUT3R [4]. Our method achieves the strongest results in iPhone dataset, and a performance
comparable to CUT3R [4] on in Sintel and TUM-dynamics datasets. For example, Track3R can
demonstrate significant improvements in iPhone dataset, which supports that the 3D prior learn by
our method can provide a robust prior that better generalize to the real-world dynamic scenes. We
observe that CUT3R [4] particularly performs well on synthetic datasets, which is possible by the
pose prediction head trained with the ground truth poses in synthetic datasets. In the extension of our
goal to learn joint 3D priors, employing such an idea into Track3R can be interesting future work.

Next, for a qualitative demonstration, we provide the visualization of the 3D points in Figure 3,
executed on DAVIS video frames [5]. We find our method tends to demonstrate more consistent
point maps over the frames, e.g., the background objects and the scene are consistently depicted,
comparing the pair-wise point mapping baseline [3] (with red boxes) and our method performing
joint point mapping and trajectory prediction (with blue boxes). This supports the significance of our
method, which facilitates learning useful representation for predicting accurate point maps as well,
even if affected by complex dynamic scenes.



Video Frames Pair-wise point mapping Track3R (ours)

Figure 3: Qualitative comparison of 3D points in dynamic scenes. The 3D points predicted the
pair-wise point mapping baseline [3] and Track3R (ours) are compared, using DAVIS video samples
[5]. Dynamic regions are highlited with the red and blue boxes.

4.5 Ablation study

In this section, we conduct ablation study of the proposed techniques, namely the trajectory encoder,
the joint point mapping and trajectory prediction, and the training with human motion data, comparing
EPE;p (3D motion estimation) and Abs-rel (point mapping) in Table 3. Overall, we find employing
each module is significant to the performance of Track3R, where the flexibility to process multi-frame
dynamics is enabled by the trajectory encoder, a robust prior learning is achieved via the joint point
mapping and motion estimation objective, and additional performance boosts are observed when
trained on human motion.



Although the pair-wise architecture [2, 3] can produce pointmaps for more than 2 frames by executing
multiple pair-wise inferences, its design inevitably enforces the assumption that the distributions of
consecutive pointmaps are independent. For example, given {I*, 17, T¥}, a pair-wise model assumes
that a joint density Pr(Y®V, Y*I¥ 'Y7I¥) is proportional to Pr(YV) . Pr(Y*¥) . Pr(Y7!*). However,
in practice, including the scenarios represented by our evaluation, there exists an extreme case
where I and I* are completely non-overlapping, so that the pair-wise model assigns an erroneous
estimate of Pr(Y*/¥), which can induce significant failure modes of estimating the joint density.
Since Track3R can relax this constraint for multiple frames, it can learn the joint point mapping and
trajectory prior that is more close to the true nature of the dynamic scenes.

5 Discussion

In this section, we discuss the limitation of Track3R and the future research directions in Section 5.1.
We also discuss the potential negative societal impact in Section 5.2.

5.1 Limitation

Despite the promising results demonstrated by Track3R, the scarcity of dynamic scenes for training
can hinder the generalization performance. To mitigate the problem, we employ the human motion
dataset for training. However, the synthesized video inputs can make a distribution shift in the visual
texture learned in a pre-trained model. Therefore, designing new training datasets, self-supervised
learning with unlabeled data, or an objective functions robust to the distribution shift can be interesting
future directions. It is also worth noting that we focus on the realistic scenarios where the observation
is captured by a monocular video camera, rather than multiple synchronized cameras capturing
one scene. Although it would be straightforward to apply Track3R for the synchronized cameras,
we believe that there is a room to exploit useful properties, such as epipolar geometry [49] of the
synchronized cameras, which is another interesting future direction.

5.2 Potential negative societal impact

While the joint point mapping and motion estimation by Track3R can be beneficial for various video
understanding applications, such as novel-view synthesis, depth estimation, and action recognition,
the emergence of unexpected behavior within Track3R can lead to misrepresentations of the real video
data. For those applications that require extremely accurate models for safety-related judgments, such
as depth estimation for autonomous driving, the unexpected behaviors must be carefully managed.
To ensure the reliability of systems using point tracking predictions, we recommend to conduct
thorough investigations and implement robust mitigation strategies to minimize potential risks,
thereby increasing the overall safety and effectiveness of these applications.

6 Conclusion

In this paper, we propose Track3R, a joint point mapping and motion estimation framework for
learning holistic 3D priors dynamic scenes. We tackle the limitations in existing point mapping
baselines, sub-optimal under complex dynamic scenes. For example, we propose to encode the
dynamics of the 3D points over multiple frames beyond the pairs, and generalize the task definition
to predict the 3D motion trajectories, as well as the static point maps. Our method significantly
improves the expressiveness of the model architecture for dynamic scenes, and enables predicting the
disentangled representation of the 3D motion and shapes. In the experiments, we find our method
can outperform the baselines, for both the 3D motion estimation task and the point mapping task.
Overall, our work highlights the effectiveness of jointly solving 3D geometry and motion tasks, and
we believe our work could inspire researchers to further leverage it in the future.

Acknowledgements. This work was supported by Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.RS-2019-11190075
Artificial Intelligence Graduate School Program(KAIST); No. RS2024-00509279, Global Al Frontier
Lab), the National Supercomputing Center with supercomputing resources including technical support
KSC-2025-CRE-0435, and RLWRLD, Inc.

10



References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1611-1621, 2021.
|

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric
3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20697-20709, 2024. 1, 3,4, 5,6, 7, 8, 10

Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun,
and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion.
In International Conference on Learning Representations, 2025. 1,2,3,6,7,8,9, 10

Qiangian Wang, Yifei Zhang, Aleksander Holynski, Alexei A. Efros, and Angjoo Kanazawa. Continuous
3d perception model with persistent state. In CVPR, 2025. 1, 3,7, 8

F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A benchmark
dataset and evaluation methodology for video object segmentation. In Computer Vision and Pattern
Recognition, 2016. 2, 8, 9

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora,
Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérome Revaud. Croco: Self-supervised pre-
training for 3d vision tasks by cross-view completion. Advances in Neural Information Processing Systems,
35:3502-3516, 2022. 2

Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy, Yohann Cabon, Vaibhav Arora, Romain Brégier,
Gabriela Csurka, Leonid Antsfeld, Boris Chidlovskii, and Jérome Revaud. CroCo v2: Improved Cross-view
Completion Pre-training for Stereo Matching and Optical Flow. In ICCV, 2023. 2

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, page 4, 2021. 2, 6

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a single image. In
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 10975-10985, 2019.
2,5,6

Michael J. Black, Priyanka Patel, Joachim Tesch, and Jinlong Yang. BEDLAM: A synthetic dataset of
bodies exhibiting detailed lifelike animated motion. In Proceedings IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 8726-8737, June 2023. 2, 5, 6

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet,
Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset generator. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3749-3761,
2022. 2

Yang Zheng, Adam W. Harley, Bokui Shen, Gordon Wetzstein, and Leonidas J. Guibas. Pointodyssey: A
large-scale synthetic dataset for long-term point tracking. In ICCV, 2023. 2, 6, 7

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
4690-4699, 2021. 3

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian
splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 19457-19467, 2024. 3

Qiangian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of motion:
4d reconstruction from a single video. arXiv preprint arXiv:2407.13764,2024. 3

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf Aytar, Joao Carreira,
Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a video. Advances in
Neural Information Processing Systems, 35:13610-13626, 2022. 3

Skanda Koppula, Ignacio Rocco, Yi Yang, Joe Heyward, Joao Carreira, Andrew Zisserman, Gabriel

Brostow, and Carl Doersch. Tapvid-3d: A benchmark for tracking any point in 3d, 2024. URL https://arxiv.
org/abs/2407.05921, 2(8):17. 3

11



(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

Tuan Duc Ngo, Peiye Zhuang, Evangelos Kalogerakis, Chuang Gan, Sergey Tulyakov, Hsin-Ying Lee,
and Chaoyang Wang. Delta: Dense efficient long-range 3d tracking for any video. In The Thirteenth
International Conference on Learning Representations. 3

Bowei Zhang, Lei Ke, Adam W Harley, and Katerina Fragkiadaki. Tapip3d: Tracking any point in
persistent 3d geometry. arXiv preprint arXiv:2504.14717,2025. 3

Yuxi Xiao, Qianqian Wang, Shangzhan Zhang, Nan Xue, Sida Peng, Yujun Shen, and Xiaowei Zhou.
Spatialtracker: Tracking any 2d pixels in 3d space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 20406-20417, 2024. 3

Jiahao Lu, Tianyu Huang, Peng Li, Zhiyang Dou, Cheng Lin, Zhiming Cui, Zhen Dong, Sai-Kit Yeung,
Wenping Wang, and Yuan Liu. Align3r: Aligned monocular depth estimation for dynamic videos. arXiv
preprint arXiv:2412.03079, 2025. 3,7, 8

Linyi Jin, Richard Tucker, Zhengqi Li, David Fouhey, Noah Snavely, and Aleksander Holynski. Stereo4d:
Learning how things move in 3d from internet stereo videos. arXiv preprint, 2024. 3,7

Edgar Sucar, Zihang Lai, Eldar Insafutdinov, and Andrea Vedaldi. Dynamic point maps: A versatile
representation for dynamic 3d reconstruction. arXiv preprint arXiv:2503.16318, 2025. 3

Zhengqi Li, Richard Tucker, Forrester Cole, Qianqgian Wang, Linyi Jin, Vickie Ye, Angjoo Kanazawa,
Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast, and robust structure and motion from
casual dynamic videos. arXiv preprint arXiv:2412.04463, 2025. 3,7, 8

Hengyi Wang and Lourdes Agapito. 3d reconstruction with spatial memory. arXiv preprint
arXiv:2408.16061, 2025. 3,7, 8

Yuzheng Liu, Siyan Dong, Shuzhe Wang, Yingda Yin, Yanchao Yang, Qingnan Fan, and Baoquan
Chen. Slam3r: Real-time dense scene reconstruction from monocular rgb videos. arXiv preprint
arXiv:2412.09401, 2024. 3

Jianing Yang, Alexander Sax, Kevin J. Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai, Franziska
Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one forward pass. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2025.3,7,8

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech
Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel
Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.
Dinov2: Learning robust visual features without supervision. Trans. Mach. Learn. Res., 2024, 2024. URL
https://openreview.net/forum?id=a68SUt6zFt. 3

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny.
Vggt: Visual geometry grounded transformer. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 5294-5306, 2025. 3

Shizun Wang, Xingyi Yang, Qiuhong Shen, Zhenxiang Jiang, and Xinchao Wang. Gflow: Recovering 4d
world from monocular video. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pages 7862-7870, 2025. 3

Songyan Zhang, Yongtao Ge, Jinyuan Tian, Guangkai Xu, Hao Chen, Chen Lv, and Chunhua Shen.
Pomato: Marrying pointmap matching with temporal motion for dynamic 3d reconstruction. arXiv preprint
arXiv:2504.05692,2025. 3

Haiwen Feng, Junyi Zhang, Qianqgian Wang, Yufei Ye, Pengcheng Yu, Michael J Black, Trevor Darrell,
and Angjoo Kanazawa. Stdrtrack: Simultaneous 4d reconstruction and tracking in the world. 2025. 3

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30,2017. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.
4

12


https://openreview.net/forum?id=a68SUt6zFt

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. I[EEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2020. 4

Mandela Patrick, Dylan Campbell, Yuki M. Asano, Ishan Misra Florian Metze, Christoph Feichtenhofer,
Andrea Vedaldi, and Joao F. Henriques. Keeping your eye on the ball: Trajectory attention in video
transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2021. 6

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper
with image transformers. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 32-42,2021. 6

Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nalivayko, and Andrés Bruhn. Spring: A high-
resolution high-detail dataset and benchmark for scene flow, optical flow and stereo. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023. 6

Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish
Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2020. 6

Chandan Yeshwanth, Yueh-Cheng Liu, Matthias NieBner, and Angela Dai. Scannet++: A high-fidelity
dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 12-22,2023. 6

Philipp Schroppel, Jan Bechtold, Artemij Amiranashvili, and Thomas Brox. A benchmark and a baseline
for robust multi-view depth estimation. In 2022 International Conference on 3D Vision (3DV), pages
637-645. IEEE, 2022. 6

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo
open dataset. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 2446-2454, 2020. 6

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCq¥7. 6

Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dynamic
view synthesis: A reality check. Advances in Neural Information Processing Systems, 35:33768-33780,
2022. 7,8

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow
evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer Vision (ECCV), Part 1V,
LNCS 7577, pages 611-625. Springer-Verlag, October 2012. 7, 8

Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-motion embeddings. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 8375-8384, 2021. 8

Jiirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A benchmark for
the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ international conference on intelligent robots and
systems, pages 573-580. IEEE, 2012. 8

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university
press, 2003. 10

13


https://openreview.net/forum?id=Bkg6RiCqY7

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the introduction and abstract accurately reflect the contribution
and scope, which are then verified in Section 4.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Section 5 discusses it.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not have a theory in this paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have included the implementation details in Section 4.1 and Section 4.2.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release workspaces related to data generation and learning to the
public. We also utilize open source models for training.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detail of the training/evaluation setup, dataset, and hyperpa-
rameters in Section 4.1 and Section 4.2.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All experiments are conducted with the same and commonly used random
seed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computer resources for training Section 4.2.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do not have any ethical concerns regarding the paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact in Section 5
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method does not introduce risks for misuse.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all papers and datasets used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We will release the Pytorch implementation after the acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]

Justification: We use existing benchmark datasets and do not have any crowdsourcing
datasets or experiments in the paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not have human subject in the research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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