
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT GUIDED SAMPLING FOR COMBINATORIAL
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization problems are widespread in domains such as logis-
tics, manufacturing, and drug discovery, yet their NP-hard nature makes them
computationally challenging. Recent Neural Combinatorial Optimization (NCO)
methods leverage deep learning to learn solution strategies, trained via Supervised
or Reinforcement Learning. While promising, these approaches often rely on task-
specific augmentations, perform poorly on out-of-distribution instances, and lack
robust inference mechanisms. Moreover, existing latent space models either require
labeled data or rely on pre-trained policies. In this work, we propose LGS-Net,
a novel latent space model that conditions on problem instances, and introduce
an efficient inference method, Latent Guided Sampling (LGS), based on Markov
Chain Monte Carlo and Stochastic Approximation. We show that the iterations
of our method form a time-inhomogeneous Markov Chain and provide rigorous
theoretical convergence guarantees. Empirical results on benchmark routing tasks
show that our method achieves state-of-the-art performance among learning-based
NCO baselines.

1 INTRODUCTION

Combinatorial Optimization (CO) consists of finding the best solution from a discrete set of possibili-
ties by optimizing a given objective function subject to constraints. It has widespread applications
across various domains, including vehicle routing (Veres & Moussa, 2019), production planning
(Dolgui et al., 2019), and drug discovery (Liu et al., 2017). However, its NP-hard nature and the
complexity of many problem variants make solving CO problems highly challenging. Traditional
heuristic methods (e.g., (Kirkpatrick et al., 1983; Glover, 1989; Mladenović & Hansen, 1997)) rely
on hand-crafted rules to guide the search, providing near-optimal solutions with significantly lower
computational costs. Inspired by the success of deep learning in computer vision (Krizhevsky et al.,
2012; He et al., 2016) and natural language processing (Vaswani et al., 2017; Devlin et al., 2019), re-
cent years have seen a surge in learning-based Neural Combinatorial Optimization (NCO) approaches
for solving CO problems, including the Travelling Salesman Problem (TSP) and the Capacitated
Vehicle Routing Problem (CVRP).

These methods leverage neural networks to learn a policy that generates solutions, trained via either
Supervised Learning (SL) (Vinyals et al., 2015; Joshi et al., 2019; Hottung et al., 2021; Fu et al.,
2021; Joshi et al., 2022; Kool et al., 2022) or Reinforcement Learning (RL) (Bello et al., 2017;
Nazari et al., 2018; Kool et al., 2019; Chen & Tian, 2019; Kwon et al., 2020; Hottung & Tierney,
2020; Grinsztajn et al., 2023; Chalumeau et al., 2023). SL-based methods often struggle to obtain
sufficient high-quality labeled data, whereas RL-based approaches can surpass them by exploring
solutions autonomously. Despite their success on in-distribution problem instances, these methods
often generalize poorly to out-of-distribution cases, limiting their applicability in real-world scenarios.
Moreover, once a policy is trained, inference typically relies on relatively simple strategies such
as stochastic sampling (Kool et al., 2019; Kwon et al., 2020), beam search (Steinbiss et al., 1994),
or Monte Carlo Tree Search (Browne et al., 2012). A more powerful alternative, representing the
current state-of-the-art in search-based RL (Bello et al., 2017; Hottung et al., 2022), is to actively
fine-tune the policy for each new problem instance. However, this approach introduces significant
computational and practical challenges.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Meanwhile, latent space models have proven effective across diverse tasks, including image generation
(Rombach et al., 2022), text generation (Bowman et al., 2016), anomaly detection (An & Cho,
2015), and molecule design (Gómez-Bombarelli et al., 2018). More recently, Hottung et al. (2021);
Chalumeau et al. (2023) have explored learning a continuous latent space for discrete routing problems.
However, the method proposed by Hottung et al. (2021) is limited by its reliance on a labeled training
set for SL, whereas Chalumeau et al. (2023) enforce independence between the problem instance
and the latent space structure. In contrast, we introduce a latent space model that conditions the
latent representation on problem instances trained with RL, addressing the limitations of previous
approaches and enabling more effective latent space optimization. In addition, most prior inference
methods, including those not based on latent spaces, rely on the augmentation trick (Kwon et al.,
2020) which enhances performance by generating variations of the same problem, such as rotating the
coordinates, a task-specific technique that is only applicable to certain routing problems in a Euclidean
space. While augmentation can improve performance, achieving competitive results without it is
equally crucial for certain problems. To address this, we propose a novel guided inference method
designed for latent-based models, based on Markov Chain Monte Carlo (MCMC) and Stochastic
Approximation (SA). Our method provides theoretical convergence guarantees and outperforms most
state-of-the-art NCO methods.

More precisely, our contributions are summarized as follows.

• We introduce LGS-Net, a novel latent space model for Neural Combinatorial Optimization
that requires neither labeled data nor a pretrained policy, learns a structured, instance-
conditioned latent representation, and is supported by a rigorous mathematical framework.

• We propose LGS, a new inference scheme based on interacting MCMC, which jointly sam-
ples from the learned distribution while updating parameters via Stochastic Approximation.
Moreover, we establish that its iterates form a joint time-inhomogeneous Markov Chain
over the latent and solution spaces, converging to the desired target distribution.

• We empirically show that our inference method is effective in low-budget regimes, where
gradient-based approaches tend to slow down. Furthermore, we establish that it achieves
state-of-the-art performance among NCO methods, consistently outperforming existing
techniques across diverse problem types, both with and without the augmentation trick.

2 RELATED WORK

Neural Combinatorial Optimization. The application of neural networks to CO problems dates
back to Hopfield & Tank (1985), who used a Hopfield network for small TSP instances. With
advancements in deep learning, a major breakthrough came with Pointer Networks (Vinyals et al.,
2015), inspired by sequence-to-sequence models (Sutskever et al., 2014). Pointer Networks enabled
variable-length outputs but relied on supervised training and thus could not surpass the quality of the
provided solutions. To address this limitation, Bello et al. (2017) adapted the model for RL. For the
CVRP, Nazari et al. (2018) extended Pointer Networks with element-wise projections, followed by
the Attention Model (AM) of Kool et al. (2019), based on transformers (Vaswani et al., 2017). Since
then, numerous AM variants have been proposed (Kwon et al., 2020; Xin et al., 2020; Kim et al.,
2021; Xin et al., 2021; Kwon et al., 2021; Hottung et al., 2025). For instance, Kwon et al. (2020)
introduced POMO, an attention-based model that incorporates a more robust learning and inference
strategy grounded in multiple optimal policies. In addition, graph neural network approaches have
been explored, notably graph embeddings (Khalil et al., 2017), attention networks (Deudon et al.,
2018), and convolutional networks (Joshi et al., 2019) for the TSP.

Several approaches combine heuristic algorithms, such as local search (Papadimitriou & Steiglitz,
1998; De Moura & Bjørner, 2008), with machine learning techniques to tackle routing problems.
For example, Chen & Tian (2019); Lu et al. (2019) propose an RL-based improvement method that
iteratively selects a region of the solution and applies a local heuristic determined by a trainable policy.
To improve the generalization ability of constructive methods during inference, various strategies have
been introduced, such as Efficient Active Search (EAS) (Hottung et al., 2022) and Simulation-guided
Beam Search (SGBS) (Choo et al., 2022). Notably, EAS builds on POMO by fine-tuning a subset of
model parameters at inference time using Gradient Descent, in contrast to Active Search (Bello et al.,
2017), which updates all model parameters. More recently, generalization-boosting methods have
also been explored (Gao et al., 2024; Zhou et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Among the latent space models designed to map discrete routing problems to continuous spaces,
Hottung et al. (2021) used a conditional variational autoencoder (CVAE) (Sohn et al., 2015) that
maps solutions to a continuous latent space. However, their approach relies on supervised training,
which is hindered by the significant cost of acquiring high-quality labeled data. To overcome this
limitation, Chalumeau et al. (2023) proposed COMPASS, an RL-based approach that adapts a pre-
trained policy by learning the latent space. However, the latent space in COMPASS is independent
of the problem instances, similar to a GAN (Goodfellow et al., 2014) without a discriminator. In
contrast, we introduce a latent space model that conditions the latent space on problem instances
and removes the need for a pre-trained policy. This approach can be interpreted as a VAE with a
modified encoder that conditions only on problem instances, rather than on both problem instances
and solutions. Furthermore, we propose an inference method based on MCMC and SA, rather than
using Differential Evolution (DE) (Storn & Price, 1997) or Covariance Matrix Adaptation (CMA)
(Hansen & Ostermeier, 2001), which were used in previous works on latent space models.

Markov Chain Monte Carlo. The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,
1970) is one of the most widely used MCMC methods. Since its introduction, numerous variants
have been developed, including the Gibbs sampler (Geman & Geman, 1984) and Hamiltonian Monte
Carlo (Duane et al., 1987). These methods have been theoretically studied, particularly in terms of
geometric ergodicity, under well-established drift and minorization conditions (Meyn & Tweedie,
1994; Baxendale, 2005). A crucial factor influencing the performance of MCMC methods is the
choice of the proposal distribution, which significantly affects the convergence rate (Gelman et al.,
1997). Traditionally, tuning the proposal distribution relies on heuristics and manual adjustments.
To address this limitation, adaptive MCMC methods have been developed, where the proposal
distribution is adjusted dynamically based on previous samples (Haario et al., 2001). The ergodicity
of adaptive MCMC methods incorporating Stochastic Approximation (Robbins & Monro, 1951) has
been studied by Andrieu & Atchadé (2007); Andrieu & Moulines (2006). Beyond adaptive MCMC,
time-inhomogeneous MCMC methods, which extend adaptive MCMC, have also been explored
(Andrieu et al., 2001; Douc et al., 2004). In our setting, both the proposal and target distributions
evolve dynamically, and existing results are therefore insufficient to establish convergence guarantees.
Indeed, prior analyses (Andrieu et al., 2001; Douc et al., 2004) focus on continuous spaces and rely
heavily on regularity assumptions, such as strict convexity and coercivity of the objective function,
which do not hold in our case. To address this gap, we introduce new results for time-inhomogeneous
MCMC methods, enabling us to derive convergence guarantees.

3 NOTATION AND BACKGROUND

3.1 NOTATION

In the following, for all distribution µ (resp. probability density p) we write Eµ (resp. Ep) the
expectation under µ (resp. under p). We may also write Ex∼µ for the expectation under µ. Given
a measurable space (X,X), where X is a countably generated σ-algebra, let F(X) denote the set of
all measurable functions defined on (X,X). Let M(X) be the set of σ-finite measures on (X,X),
and M1(X) ⊂ M(X) the probability measures. For all f ∈ F(X) and µ ∈ M(X), we write µ(f) =∫
f(x)µ(dx). For a Markov kernel P on (X,X) and µ ∈ M1(X), the composition µP is defined

as µP : X ∋ A 7→
∫
µ(dx)P (x, dy)1A(y). For probability measures µ and ν defined on the same

measurable space, the Total Variation (TV) is defined as ∥µ− ν∥TV := supA∈X |µ(A)− ν(A)|. The

L2-norm of a random variable X is defined as ∥X∥L2
:=

(
E[∥X∥2]

)1/2
. The Hadamard product

of two vectors u and v is denoted by u ⊙ v. For a sequence (am)m∈N, and all u ≤ v, we write
au:v = {au, . . . , av}. Table 3 provides a summary of the notations used throughout the paper for
ease of reference.

3.2 PROBLEM SETTING

In a Combinatorial Optimization problem, the objective is to determine the best assignment of discrete
variables that satisfies the constraints of the problem. Let x represent a given problem instance and
y denote a solution. An instance x = {xi}ni=1 ∈ X ⊂ Rn×dx consists of a set of n nodes, each
represented by a feature vector xi ∈ Rdx , which encodes relevant information about the node. For a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

given instance x, we aim to find a solution y∗ that minimizes the associated cost function C:

y∗ ∈ argmin
y∈Y

C(y, x) , (1)

where Y denotes the discrete set of all feasible solutions for the given problem x. This setting covers
problems such as the TSP, CVRP, Knapsack, and Job Scheduling. For instance, in TSP, x represents
the coordinates of all nodes and Y consists of all possible node permutations. In CVRP, x additionally
includes demands, and Y comprises all feasible routes satisfying the capacity constraints. In both
cases, the cost corresponds to the cumulative distance of the route. Further details on both problems
are provided in Appendix A.1.

3.3 CONSTRUCTIVE NCO METHODS

Constructive NCO methods (Vinyals et al., 2015; Bello et al., 2017; Nazari et al., 2018; Kool
et al., 2019; Kwon et al., 2020) generate solutions sequentially using a stochastic policy pθ(y|x),
which defines the probability of selecting a solution y given a problem instance x. This policy is
parameterized by θ ∈ Θ, where Θ is a parameter space, and factorized as:

pθ(y|x) =
T∏

t=1

pθ(yt|x, y1:t−1) ,

with the convention pθ(y1|x, y1:0) = pθ(y1|x), where yt ∈ {0, . . . , n} is the selected node at step t,
y1:t−1 denotes the sequence of nodes selected up to step t− 1, and T is the total number of decoding
steps. Following Bello et al. (2017), writing Px the distribution of the problem instances, the policy
is trained via RL by minimizing an empirical estimate of the expected cost:

J(θ) = Ex∼Px,y∼pθ(.|x) [C(y, x)] .

where C(y, x) denotes the tour cost. This objective is optimized using RL techniques, such as
REINFORCE (Williams, 1992) or Actor-Critic methods (Konda & Tsitsiklis, 1999).

4 LATENT GUIDED SAMPLING

4.1 MODEL

The proposed model introduces a continuous latent search space for routing problems similar to
Hottung et al. (2021); Chalumeau et al. (2023), which can be efficiently explored by any continuous
optimization method at inference time. To achieve this, we model the target distribution that generates
a solution y given a problem instance x as a latent-variable model:

pθ,ϕ(y|x) =
∫

pϕ(z|x)pθ(y|x, z) dz .

The encoder pϕ(z|x) maps the problem instance x to a continuous dz-dimensional latent represen-
tation z. The decoder pθ(y|x, z) then generates a solution y conditioned on both z and x. Both the
encoder and decoder are parameterized by neural networks with learnable parameters ϕ ∈ Φ and
θ ∈ Θ, respectively. The probability of the decoder generating a solution y is then factorized as:

pθ(y|x, z) =
T∏

t=1

pθ(yt|y1:t−1, z, x) ,

where yt ∈ {0, . . . , n} is the selected node at step t, and y1:t−1 denotes the sequence of nodes selected
up to step t − 1. It is important to note that the encoder differs from the variational distribution
qϕ(z|x, y) (Kingma & Welling, 2014); it corresponds to a CVAE-Opt (Hottung et al., 2021), which
requires labeled data for training.

Our encoder architecture follows the general structure of Kool et al. (2019) but includes additional
layers to compute the parameters of the encoder distribution. To compute output probabilities, we use
a single decoder layer with multi-head attention to enable efficient inference. At step 0 ≤ t ≤ T , for
all i ∈ {0, . . . , n}, this layer computes the probability pθ(yt = i|y1:t−1, x, z) while masking nodes
that lead to infeasible solutions. Details on the encoder and decoder are provided in Appendix A.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Instance x

Encoder

pϕ(z|x)

µϕ(x)

σϕ(x)

z = µ+ σ ⊙ ε

Decoder

pθ(y|x, z) Solution y

Figure 1: Our Latent Model Architecture with the Gaussian Reparameterization Trick

4.2 TRAINING

During training, our objective is to minimize the cost C while encouraging diversity in the generated
solutions to improve inference efficiency. To achieve this, we introduce an entropic regularization
term (Ziebart et al., 2008; Haarnoja et al., 2018) controlled by a parameter β. The training loss is
given by:

L(θ, ϕ;x) =
K∑

k=1

Ezk∼pϕ(·|x)
[
Eyk∼pθ(·|x,zk)

[
wkC(yk, x)

]
+ βH(pθ(· | x, zk))

]
. (2)

where H(pθ(·|x, z)) denotes the entropy of the conditional decoder distribution pθ(y|x, z). The
loss in (2) can be interpreted as a cost-weighted extension of Maximum Entropy RL (Ziebart et al.,
2008), with weights wk = exp(−C(yk, x)/τ) acting as importance factors that emphasize low-cost
solutions. This formulation is inspired by IWAE (Burda et al., 2016) and the “best-of-many” objective
(Bhattacharyya et al., 2018), interpolating between uniform weighting (large τ) that encourages
exploration and near-greedy weighting (small τ) that prioritizes exploitation. In practice, τ is
gradually decreased to encourage broad exploration early on, followed by concentration on promising
regions of the latent space. A more detailed derivation and the complete training procedure are
provided in Appendix A.3.

4.3 INFERENCE

Any search procedure strategy can be used at inference time to find the best solution while keeping the
computational cost manageable. Possible approaches include evolutionary algorithms such as DE and
CMA-ES, as well as learnable methods like Active Search (Bello et al., 2017) and Efficient Active
Search (Hottung et al., 2022). We formulate inference as a sampling problem: given an instance x,
and the learned encoder and decoder parameters θ and ϕ, our goal is to sample from the distribution:

πθ(y|x) ∝
∫

πθ(z, y|x)dz , where πθ(z, y|x) ∝ pϕ(z|x)pθ(y|z, x)e−λC(y,x) . (3)

We omit the explicit dependence on ϕ since pϕ serves as a prior over latent variables. To favor lower-
cost solutions, we introduce the reweighting factor exp(−λC(y, x)), where λ controls the trade-off
between likelihood and cost. However, incorporating this reweighting renders the distribution in (3)
intractable to sample from directly. While methods such as MCMC (Hastings, 1970) can be used to
approximate it, they are often inefficient in practice. To address this challenge, we propose Latent
Guided Sampling (LGS), a novel inference method designed for latent space models. LGS constructs
sequences of latent samples and corresponding solutions by running multiple interacting Markov
Chains to encourage better exploration, while simultaneously updating the model parameters θ via
Stochastic Approximation to minimize the following test objective:

Ltest(θ;x) = Eπθ(·|x) [C(y, x)] . (4)

Since the solution quality depends on the trained parameters, it is natural to iteratively update θ. In
contrast, the encoder parameters ϕ are kept fixed to avoid the high computational cost associated with
backpropagating through them. The gradient is estimated using previously sampled latent variables:

Hθ

(
x, {

(
zk, yk

)
}Kk=1

)
=

1

K

K∑
k=1

(
C(yk, x)− b(x)

)
∇θ log pθ(y

k|x, zk) , (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where b(x), defined in (9), serves as a baseline to reduce the variance. The proposed method is
detailed in Algorithm 1. The value of K should be selected to balance stability (reducing variance in
gradient estimates), effective exploration of the latent space, and computational efficiency. Although
standard gradient updates are used in Algorithm 1, any other optimizer such as Adam (Kingma & Ba,
2015) could be used. In the next section, we establish that the sequence generated by our algorithm
forms a Markov Chain and converges to the target distribution, depending on the optimality of θ.

Algorithm 1 Latent Guided Sampling

1: Input: Problem instance x, pretrained encoder pϕ, pretrained decoder pθ0 , proposal distribution
q, number of particles K, number of iterations M , cost function C, and temperature λ.

2: Initialize:
3: Sample initial particles: zk0 ∼ pϕ(·|x) for all k = 1, . . . ,K.
4: for m = 0, 1, . . . ,M − 1 do
5: Propagate new particles: z̃km+1 ∼ q(·|zm) for all k = 1, . . . ,K.
6: Generate candidate solutions: ykm+1 ∼ pθm(·|z̃km+1, x) for all k = 1, . . . ,K.
7: Compute acceptance probabilities:

αk
m+1 = min

(
1,

pϕ(z̃
k
m+1|x)

pϕ(zkm|x)
× e−λ(C(yk

m+1,x)−C(yk
m,x))

)
.

8: Accept zkm+1 = z̃km+1 with probability αk
m+1, otherwise zkm+1 = zkm for all k = 1, . . . ,K.

9: Compute the gradient estimate Hθm

(
x, {

(
zkm+1, y

k
m+1

)
}Kk=1

)
using (5).

10: Update parameters: θm+1 = θm − γm+1Hθm

(
x, {

(
zkm+1, y

k
m+1

)
}Kk=1

)
.

11: end for

5 THEORETICAL RESULTS

Let Z ⊂ Rdz be the latent space and Y the solution space. In this section, we present theoretical
results on our inference method described in Algorithm 1.

5.1 CONVERGENCE ANALYSIS FOR FIXED θ

We first analyze convergence in the absence of the Stochastic Approximation step, that is, without
updating the parameter θ (line 10 in Algorithm 1). Specifically, we show that the sequences gener-
ated by our algorithm form a Markov Chain and exhibit geometric convergence to the joint target
distribution defined in (3).
Proposition 5.1. The sequence {(Zm, Ym) : m ∈ N} generated by Algorithm 1 for a fixed parameter
θ forms a Markov Chain with transition kernel Pθ.

The explicit expression for Pθ is provided in Proposition C.1. Consider the following assumptions.
Assumption 1. The cost function C is bounded. For all ϕ ∈ Φ, the encoder distribution pϕ is
positive. Furthermore, the decoder probability satisfies for all 1 ≤ t ≤ T , and all (y1:t−1, x, z),
pθ(yt = i|y1:t−1, x, z) > 0 for all feasible nodes i ∈ {0, . . . , n}.

Since Y is discrete, the boundedness of C is a natural assumption, analogous to bounded rewards
in RL (Fallah et al., 2021). A Gaussian choice for pϕ is standard, enabling the reparameterization
trick (Kingma & Welling, 2014) for efficient gradient backpropagation. To ensure positivity of the
decoder, a common approach is to use a softmax function in the final layer of the neural network,
which is a standard practice in most architectures.
Assumption 2. The proposal density q is positive and symmetric.

Assumption 2 on the proposal density q is commonly used in various sampling-based methods, such
as Importance Sampling and MCMC (Douc et al., 2004). It holds for a wide range of distributions,
including Gaussian, Laplace, and Uniform.
Theorem 5.2. Let Assumptions 1 and 2 hold. Then, the Markov kernel Pθ admits a unique invariant
probability measure πθ, defined in (3). There exist constants ρ1, ρ2 ∈ (0, 1) and κ1, κ2 ∈ R+ such

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

that for all µ ∈ M1(Z× Y), θ ∈ Θ, and m ∈ N,

∥µPm
θ − πθ∥TV ≤ κ1ρ

m
1 and ∥µPm

θ − πθ∥L2
≤ κ2ρ

m
2 ∥µ− πθ∥L2

.

Theorem 5.2 shows that the Markov Chain generated by our algorithm with a fixed θ converges
geometrically to the joint target distribution in both Total Variation and L2-distance. Specifically,
when the initial distribution is µ = pϕpθ, the theorem guarantees rapid mixing of the Markov Chain,
provided that the model is well-trained.

5.2 CONVERGENCE ANALYSIS FOR ADAPTIVE θ

Incorporating SA steps introduce a time-inhomogeneous Markov Chain, where both the Markov
kernel and the target distribution evolve dynamically. While only a few results are available in this
setting (Douc et al., 2004), we establish new convergence results for time-inhomogeneous Markov
Chains under assumptions adapted to our setting, without relying on strict convexity or coercivity
of the cost function C. For simplicity, we only present the results relating to our setting here; more
general results are provided in Appendix D.1. To analyze the convergence, we introduce the following
additional assumptions.

Assumption 3. There exists L ∈ F(X× Z× Y) such that for all x ∈ X, y ∈ Y, z ∈ Z and θ ∈ Θ,

∥∇θ log pθ(y|z, x)∥ ≤ L(x, y, z) .

Assumption 3 is commonly used in the analysis of convergence rates of policies (Papini et al., 2018;
Surendran et al., 2025). In Adaptive MCMC, the Lipschitz condition is often applied to the Markov
kernel rather than the target distribution (Andrieu & Atchadé, 2007; Andrieu & Moulines, 2006).
However, since here both the kernel and the target distribution evolve dynamically, this Lipschitz
condition with respect to the target distribution is more appropriate.

Assumption 4. There exists θ∞ ∈ Θ and a positive sequence (am)m∈N, with am → 0 as m→∞
such that

∥θm − θ∞∥2L2
= O(am) .

Notably, we do not require θ∞ to be a unique minimizer; it can simply be a critical point, which is
often the case when the objective function in inference is non-convex. With additional regularity
assumptions on the objective, this condition can be verified (see Appendix D.3).

Theorem 5.3. Let Assumptions 1 - 4 hold. Then, there exist a constant ρ ∈ (0, 1) and a positive
sequence (bm)m∈N such that for all µ ∈ M1(Z× Y), and m ∈ N,

E
[
∥µPθ1 · · ·Pθm − πθ∞∥TV

]
= O

(
ρbm +

m−1∑
j=m−bm

γj+1 + am

)
.

Furthermore, if lim supm→∞
(
b−1
m + bm/m+ bmγm

)
= 0, then:

E [∥µPθ1 · · ·Pθm − πθ∞∥TV] −−−−→m→∞
0 .

Theorem 5.3 establishes that the time-inhomogeneous Markov Chain generated by our algorithm
converges to the joint target distribution πθ∞ . The bound in Theorem 5.3 has three key components:
(i) the mixing error, which reflects how well the Markov Chain mixes from an arbitrary initial
distribution; (ii) the tracking error, which quantifies how much the stationary distribution shifts over
time due to changes in the parameters; and (iii) the optimization error, which measures the difference
between the current parameters and their limiting value θ∞. These terms are interdependent: choosing
a larger bm accelerates the convergence of the mixing error but may slow the convergence of the
parameters, while the step size sequence γm affects the convergence rate of the parameters am. If
lim supm→∞

(
b−1
m + bm/m+ bmγm

)
= 0, the expected total variation distance between the Markov

Chain and the target distribution tends to zero as m → ∞, ensuring convergence. If γm = m−γ ,
then choosing bm = ⌊−γ log(m)/ log(ρ)⌋ yields a convergence rate of O (m−γ logm+ am).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

In this section, we illustrate our method using two classic CO problems: the TSP and the CVRP. We
evaluate performance using benchmark datasets from the literature (Hottung et al., 2021), consisting
of 1,000 instances drawn from a training distribution—100 nodes uniformly sampled within the unit
square. To evaluate generalization, we also test on two out-of-distribution datasets with larger sizes
of 125 and 150 nodes. All experiments were conducted on a GPU cluster using a single NVIDIA
RTX 6000 GPU. Details of the training and inference setup are provided in Appendix F. In our
experiments, we perform SA steps at selected intervals, rather than at every iteration, to reduce the
computational cost and enable more extensive exploration of the latent space (see Appendix F.2).

Baselines. We compare our model to a range of state-of-the-art learning-based NCO methods and
industrial solvers. These include Concorde (Applegate et al., 2006), an exact solver specialized for
the TSP, LKH3 (Helsgaun, 2017), a leading solver for CO problems, and Google OR-Tools (Perron &
Furnon, 2019), a widely used suite of optimization tools. Among the NCO methods, we evaluate our
approach against POMO (Kwon et al., 2020), CVAE-Opt (Hottung et al., 2021), EAS (Hottung et al.,
2022), COMPASS (Chalumeau et al., 2023), ELG (Gao et al., 2024), and CNF (Zhou et al., 2024).

Table 1: Experimental results on TSP and CVRP without the augmentation trick. “Obj.” denotes the
average total travel distance, and “Time” indicates the total runtime for solving 1000 instances.

Training distribution Generalization

n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

T
SP

Concorde 7.752 0.00% 8M 8.583 0.00% 12M 9.346 0.00% 17M
LKH3 7.752 0.00% 47M 8.583 0.00% 73M 9.346 0.00% 99M

POMO (greedy) 7.785 0.429% <1M 8.640 0.664% <1M 9.442 1.022% <1M
POMO (sampling) 7.772 0.261% 10M 8.595 0.140% 50M 9.377 0.327% 1H30
CVAE-Opt 7.779 0.348% 15H 8.646 0.736% 21H 9.482 1.454% 30H
EAS 7.767 0.197% 20M 8.607 0.280% 30M 9.387 0.434% 40M
COMPASS 7.753 0.014% 20M 8.586 0.035% 30M 9.358 0.128% 40M
ELG 7.783 0.399% 20M 8.634 0.594% 30M 9.427 0.867% 40M
CNF 7.766 0.181% 20M 8.607 0.279% 30M 9.394 0.514% 40M
LGS-Net (ours) 7.752 0.002% 20M 8.584 0.012% 30M 9.354 0.081% 40M

C
V

R
P

LKH3 15.54 0.00% 17H 17.50 0.00% 19H 19.22 0.00% 20H
OR Tools 17.084 9.936% 38M 18.036 3.063% 64M 21.209 10.349% 73M

POMO (greedy) 15.740 1.287% <1M 17.905 2.314% <1M 19.882 3.444% <1M
POMO (sampling) 15.633 0.598% 10M 17.687 1.069% 12M 19.597 1.961% 17M
CVAE-Opt 15.752 1.364% 32H 17.864 2.080% 36H 19.843 3.240% 46H
EAS 15.563 0.148% 40M 17.541 0.234% 1H 19.319 0.515% 1H30
COMPASS 15.561 0.135% 40M 17.546 0.263% 1H 19.358 0.718% 1H30
ELG 15.736 1.261% 40M 17.729 1.308% 1H 19.516 1.540% 1H30
CNF 15.591 0.328% 40M 17.682 1.040% 1H 19.998 4.047% 1H30
LGS-Net (ours) 15.524 -0.102% 40M 17.496 -0.022% 1H 19.286 0.343% 1H30

The average performance of each method on TSP and CVRP, where the gap to the best known
solution is defined in (16), is reported in Table 1, while the results with the augmentation trick of
Kwon et al. (2020) are presented in Tables 4 and 5. Overall, our approach achieves state-of-the-
art performance across most settings. For the TSP, our method produces near-optimal solutions
and consistently reaches optimality when the augmentation trick is applied (Table 4), while also
outperforming other methods on out-of-distribution instances. Latent-space models trained via RL
(ours and COMPASS) outperform other baselines, highlighting the effectiveness of learned latent
representations for capturing solution diversity. Importantly, our method surpasses COMPASS in all
TSP settings. Although EAS achieves reasonable performance, it is considerably more expensive due
to gradient computations at each iteration. For the CVRP, our model again outperforms all baselines,
including both COMPASS and EAS. Furthermore, our method also surpasses LKH3 on instances
with n = 100 and n = 125, and remains the only learning-based model that outperforms LKH3.

Our method also consistently outperforms both generalization-boosting methods (ELG, CNF) on TSP
and CVRP. While each improves upon POMO, both still fall short of our approach. Their benefits are
more pronounced under the stricter inference budgets of their original works; with our slightly larger
budget, their advantage diminishes. In summary, our method achieves the best results across all TSP
and CVRP settings and remains the top performer. While COMPASS is the closest competitor for
TSP, EAS performs more strongly than COMPASS on CVRP, but still falls short of our method.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of different inference meth-
ods with our model on CVRP with n = 100

Method Obj. Gap

Sampling 15.652 0.721%
DE 15.561 0.135%
CMA-ES 15.582 0.271%
EAS 15.685 0.933%
Adam 15.632 0.592%
SGLD 15.607 0.431%
Single MCMC 15.649 0.701%
Parallel MCMC (ours) 15.557 0.109%
Interacting MCMC (ours) 15.535 -0.032%
LGS (ours) 15.524 -0.102%

0 20 40 60 80 100
Relative computational budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ga
p

to
 o

pt
im

al
ity

 (%
)

Sampling
Parallel MCMC
Interacting MCMC
LGS

Figure 2: Performance of sampling-based meth-
ods on CVRP with n = 100, with bold lines
indicating the mean over 10 inference runs

Table 2 and Figure 2 present the results of ablation studies, focusing on the comparison of different
inference methods with our model on CVRP instances with n = 100 for a fixed time. Among
the methods evaluated, Parallel MCMC, Interacting MCMC, and LGS consistently outperform
other techniques, particularly DE and CMA-ES, which are commonly used inference methods in
continuous spaces. In contrast, Single MCMC struggles due to limited exploration, leading to poor
performance. Surprisingly, even gradient-based approaches such as Stochastic Gradient Langevin
Dynamics (SGLD) and Adam perform poorly, as the high cost of gradient computations limits
their effectiveness. EAS also underperforms, as the initial particles are insufficiently effective, and
adjusting the parameters does not significantly improve the solution. This highlights the critical
importance of particle propagation and parameter learning in improving solution quality. Notably,
our method is the only one with negative gaps, yielding lower-cost solutions than LKH3 on CVRP.

0 5 10 15 20

Latent Dimension 1

8

6

4

2

0

2

4

6

La
te

nt
 D

im
en

si
on

 2

15.5

15.6

15.7

15.8

15.9

C
os

t
Figure 3: Visualization of the 2-dimensional latent
space (dz = 2) learned by our model on a problem
instance. The plotted path illustrates the search
trajectory leading to the best-found solution.

Additionally, the “Sampling” method corre-
sponds to direct sampling from the distribution
defined in (3), without the reweighting factor
exp(−λC(y, x)). Figure 2 highlights the advan-
tage of incorporating this reweighting factor: the
blue curve shows sampling without this factor,
whereas the green curve shows sampling with
this factor using parallel MCMC but with no
learning or interaction between chains. Adding
interaction and learning yields notable further
improvements. Figure 3 further illustrates how
our method explores the continuous latent space
to discover high-quality solutions. While in-
teracting MCMC benefits from faster mixing
(Theorem 5.2), it is nevertheless outperformed
by LGS, which achieves better cost convergence
despite potentially slower mixing (Theorem 5.3).
This contrast highlights the importance of updating θ during inference: without the SA step, interact-
ing MCMC may converge to samples from a possibly inaccurate distribution, resulting in suboptimal
solutions. Nonetheless, interacting MCMC remains competitive due to the mitigating effect of the
reweighting factor.

7 CONCLUSION

This paper introduces LGS-Net, a novel latent space model for Neural Combinatorial Optimization
that conditions directly on problem instances, thereby removing the need for labeled data and
pretrained policies. We further propose a guided inference method that generates sequences of latent
samples and corresponding solutions based on MCMC and SA. We establish that the iterates of our
method form a time-inhomogeneous Markov Chain, with theoretical convergence guarantees. We
evaluate our approach on TSP and CVRP, setting a new benchmark for learning-based NCO methods,
both with and without domain-specific augmentations. A promising direction for future work is to
explore how frequently the parameters of the target distribution should be updated to balance between
optimal convergence rate and computational efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction
probability. Special lecture on IE, 2(1):1–18, 2015.

Christophe Andrieu and Yves F. Atchadé. On the efficiency of adaptive mcmc algorithms. Electronic
Communications in Probability, 12:336–349, 2007.

Christophe Andrieu and Éric Moulines. On the ergodicity properties of some adaptive mcmc
algorithms. The Annals of Applied Probability, 16(3):1462–1505, 2006.

Christophe Andrieu, Laird A Breyer, and Arnaud Doucet. Convergence of simulated annealing using
foster-lyapunov criteria. Journal of Applied Probability, 38(4):975–994, 2001.

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver, 2006.

Peter H. Baxendale. Renewal theory and computable convergence rates for geometrically ergodic
markov chains. The Annals of Applied Probability, 15:700–738, 2005.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. In International Conference on Learning
Representations, Workshop Track, 2017.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Accurate and diverse sampling of sequences
based on a “best of many” sample objective. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8485–8493, 2018.

Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL conference on
computational natural language learning, pp. 10–21, 2016.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In
International Conference on Learning Representations, 2016.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. In Advances in Neural Information Processing Systems, volume 36, pp. 7947–7959, 2023.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
In Advances in Neural Information Processing Systems, volume 32, 2019.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. In
Advances in Neural Information Processing Systems, volume 35, pp. 8760–8772, 2022.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference on
Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, 2008.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In International conference on the integration of
constraint programming, artificial intelligence, and operations research, pp. 170–181. Springer,
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexandre Dolgui, Dmitry Ivanov, Suresh P Sethi, and Boris Sokolov. Scheduling in production,
supply chain and industry 4.0 systems by optimal control: fundamentals, state-of-the-art and
applications. International journal of production research, 57(2):411–432, 2019.

Randal Douc, Eric Moulines, and Jeffrey S Rosenthal. Quantitative bounds on convergence of
time-inhomogeneous markov chains. The Annals of Applied Probability, pp. 1643–1665, 2004.

Randal Douc, Eric Moulines, Pierre Priouret, Philippe Soulier, Randal Douc, Eric Moulines, Pierre
Priouret, and Philippe Soulier. Markov chains: Basic definitions. Springer, 2018.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo.
Physics letters B, 195(2):216–222, 1987.

Alireza Fallah, Kristian Georgiev, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory
of debiased model-agnostic meta-reinforcement learning. In Advances in Neural Information
Processing Systems, volume 34, pp. 3096–3107, 2021.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. In Advances in Neural Information Processing Systems,
volume 36, pp. 79858–79885, 2023.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers
for vehicle routing problems via ensemble with transferrable local policy. In International Joint
Conference on Artificial Intelligence, 2024.

Andrew Gelman, Walter R Gilks, and Gareth O Roberts. Weak convergence and optimal scaling of
random walk metropolis algorithms. The Annals of Applied Probability, 7(1):110–120, 1997.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):
721–741, 1984.

Fred Glover. Tabu search—part I. ORSA Journal on computing, 1(3):190–206, 1989.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, 2014.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Winner
takes it all: Training performant rl populations for combinatorial optimization. In Advances in
Neural Information Processing Systems, volume 36, pp. 48485–48509, 2023.

Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm. Bernoulli,
7(2):223–242, 2001.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870. PMLR, 2018.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 1970.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. In ECAI 2020, pp. 443–450. IOS Press, 2020.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2022.

André Hottung, Mridul Mahajan, and Kevin Tierney. Polynet: Learning diverse solution strategies
for neural combinatorial optimization. In International Conference on Learning Representations,
2025.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510,
2017.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 27(1):70–98, 2022.

Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic analysis of
biased stochastic approximation scheme. In Conference on Learning Theory, pp. 1944–1974.
PMLR, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
In Advances in Neural Information Processing Systems, volume 34, pp. 10418–10430, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, volume 12, 1999.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 190–213. Springer, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems, volume 25,
2012.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. In Advances in Neural Information
Processing Systems, volume 34, pp. 5138–5149, 2021.

Ruiwu Liu, Xiaocen Li, and Kit S Lam. Combinatorial chemistry in drug discovery. Current opinion
in chemical biology, 38:117–126, 2017.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International Conference on Learning Representations, 2019.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical physics,
21(6):1087–1092, 1953.

Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

Sean P Meyn and Robert L Tweedie. Computable bounds for geometric convergence rates of markov
chains. The Annals of Applied Probability, pp. 981–1011, 1994.

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097–1100, 1997.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochas-
tic variance-reduced policy gradient. In International Conference on Machine Learning, pp.
4026–4035. PMLR, 2018.

Laurent Perron and Vincent Furnon. OR-Tools. https://developers.google.com/
optimization/, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pp. 400–407, 1951.

Gareth Roberts and Jeffrey Rosenthal. Geometric ergodicity and hybrid markov chains. Electronic
Communications in Probability, 2(2):13–25, 1997.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In Advances in Neural Information Processing Systems, volume 28,
2015.

Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. Improvements in beam search. In ICSLP,
volume 94, pp. 2143–2146, 1994.

Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11:341–359, 1997.

13

https://developers.google.com/optimization/
https://developers.google.com/optimization/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sobihan Surendran, Adeline Fermanian, Antoine Godichon-Baggioni, and Sylvain Le Corff. Non-
asymptotic analysis of biased adaptive stochastic approximation. In Advances in Neural Information
Processing Systems, volume 37, pp. 12897–12943, 2024.

Sobihan Surendran, Antoine Godichon-Baggioni, and Sylvain Le Corff. Theoretical convergence
guarantees for variational autoencoders. In The 28th International Conference on Artificial
Intelligence and Statistics, 2025.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, volume 27, 2014.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke
Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable inference in
diffusion models for vision, language, and control. In Advances in Neural Information Processing
Systems, volume 37, pp. 76080–76114, 2024.

Matthew Veres and Medhat Moussa. Deep learning for intelligent transportation systems: A survey
of emerging trends. IEEE Transactions on Intelligent transportation systems, 21(8):3152–3168,
2019.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving
routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Ni Zhang, Jingfeng Yang, Zhiguang Cao, and Xu Chi. Adversarial generative flow network for
solving vehicle routing problems. In International Conference on Learning Representations, 2025.

Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, and Zhiqi Shen. Collaboration!
towards robust neural methods for routing problems. In Advances in Neural Information Processing
Systems, volume 37, pp. 121731–121764, 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Supplementary Material for “Latent Guided
Sampling for Combinatorial Optimization”

Table of Contents
A Problem and Model Description 16

A.1 Problem Setting . 16
A.2 Model Architecture details . 17
A.3 Training . 18
A.4 Inference . 20

B Preliminaries on Markov Chains 21

C Convergence Analysis for Fixed θ 22
C.1 Proof of Proposition 5.1 . 22
C.2 Proof of Theorem 5.2 for K = 1 . 23
C.3 Extension to K > 1 . 25

D Convergence Analysis for Adaptive θ 27
D.1 Convergence Analysis of Time-Inhomogeneous MCMC algorithm with Stochastic

Approximation Update . 27
D.2 Proof of Theorem 5.3 . 31
D.3 Convergence Rate in Stochastic Approximation 31

E Extensive Related Work 32

F Additional Experiments 33
F.1 Training Details . 33
F.2 Inference Details and Additional Experiments 33

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

NOTATION

Table 3: Summary of notation used throughout the paper.

Object Description

x = {xi}ni=1 ∈ X ⊂ Rn×dx Problem instance
y = (y1, · · · , yT) ∈ Y ⊂ {0, · · · , n}T Solution
z ∈ Z ⊂ Rdz Latent variable
(X,X) Problem instance space X with Borel σ-algebra X = B(X)
(Y,Y) Discrete solution space Y with the power set Y = P(Y)
(Z,Z) Latent space Z with Borel σ-algebra Z = B(Z)
Px Distribution over problem instances
pϕ(z|x) Encoder distribution
pθ(y|x, z) Decoder distribution
C Cost function
n Number of nodes in the instance
t, T Decoding step index and horizon
m, M Inference step index and total iterations
k, K Particle index and total number of particles
B Batch size used during training

For a given batch of problem instances, we denote by x(i) the i-th input in a training batch. The
corresponding solution and latent variable samples are denoted by yk(i) and zk(i) respectively, where k

indexes multiple samples drawn for the same input x(i). During inference, we denote by ykm and zkm
the solution and latent variable of the k-th particle at the m-th inference iteration.

A PROBLEM AND MODEL DESCRIPTION

A.1 PROBLEM SETTING

Traveling Salesman Problem (TSP). A TSP instance x = {xi}ni=1 consists of a set of n nodes,
where the feature xi corresponds to its coordinates ci ∈ R2. The objective is to find a permutation
y = (y1, . . . , yn) of the nodes, where yt ∈ {1, . . . , n} and yt ̸= yt′ for all t ̸= t′, that minimizes the
total tour length:

C(y, x) =

n−1∑
i=1

∥xyi+1 − xyi∥+ ∥xyn − xy1∥ , (6)

where ∥ · ∥ denotes the Euclidean norm. Note that the number of decoder steps T equals the number
of nodes n, i.e., T = n.

Capacitated Vehicle Routing Problem (CVRP). CVRP generalizes TSP by introducing a depot
(indexed as 0) and multiple routes, each starting and ending at the depot. Each customer i ∈
{1, . . . , n} has a demand di > 0 and a location ci ∈ R2, while the depot has d0 = 0. A fleet of
vehicles, each with a capacity D > 0, serves the customers. The goal is to determine the minimum
number of vehicles and the corresponding routes, ensuring that each customer is visited exactly once
and that the total demand in each route does not exceed D: for any route j,∑

i∈Rj

di ≤ D ,

where Rj denotes the set of customers assigned to route j.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 MODEL ARCHITECTURE DETAILS

A.2.1 ENCODER

Given dx-dimensional input features xi, the encoder initially computes dh-dimensional node embed-
dings h(0)

i through a learned linear projection using parameters W0 and b0:

h
(0)
i = W0xi + b0 .

The embeddings are updated using L attention layers, each consisting of two sublayers: a multi-head
attention (MHA) layer followed by a node-wise fully connected feed-forward (FF) layer. Each
sublayer adds a skip connection (He et al., 2016) and instance normalization (InstanceNorm) (Huang
& Belongie, 2017). Denoting h

(l)
i as the node embeddings produced by layer l ∈ {1, . . . , L}, the

updates are defined as follows:

ĥ
(l+1)
i = InstanceNorm

(
h
(l)
i +MHA

(
h
(l)
1 , . . . , h(l)

n

))
,

h
(l+1)
i = InstanceNorm

(
ĥ
(l+1)
i + FF(ĥ

(l+1)
i)

)
.

Then, it computes an aggregated embedding h̄(L) of the input graph as the mean of the final node
embeddings h(L)

i . Finally, the encoder generates a latent space vector using a reparameterization
trick:

z = µϕ(x) + σϕ(x)⊙ ε, ε ∼ N (0, Idz) ,

where the mean µϕ(x) and log-variance log σϕ(x)
2 of the conditional distribution pϕ(z|x) are given

by:
µϕ(x) = FF

(
h̄(L)

)
and log σϕ(x)

2 = FF
(
h̄(L)

)
.

A.2.2 TSP DECODER

The context ct for the TSP decoder at time t is derived by combining the latent vector z and the
output up to time t− 1. Specifically, the context is defined as:

ct =
[
z, h(L)

yt−1
, h(L)

y0

]
,

where h(L)
y0 and h

(L)
yt−1 represent the embeddings of the starting node and the previously selected node,

respectively.

Computation of Probabilities. The output probabilities for the TSP decoder are computed using a
single decoder layer with multi-head attention. This layer computes probabilities while incorporating
a masking mechanism:

pθ(yt = i|y0:t−1, x, z) =

softmax
(
ω tanh

(
qT(ct)ki√

dk

))
if i ̸= ys ∀s < t ,

0 otherwise ,

where the query and key are given by q(ct) = MHA
(
ct, {h(L)

i }ni=1, {h
(L)
i }ni=1

)
and ki = WKh

(L)
i

respectively.

A.2.3 CVRP DECODER

Similar to the TSP decoder, the context ct for the CVRP decoder at time t is derived by combining
the latent vector z and the output up to time t− 1. Specifically, the context is defined as:

ct =
[
z, h(L)

yt−1
, D̂t

]
,

where we keep track of the remaining vehicle capacity D̂t at time t. At t = 1, this is initialized as
D̂t = D, after which it is updated as follows:

D̂t+1 =

{
max(D̂t − dyt,t, 0) if yt ̸= 0 ,

D if yt = 0 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Computation of Probabilities. The output probabilities for the CVRP decoder are computed using a
single decoder layer with multi-head attention. This layer computes probabilities while incorporating
a masking mechanism:

pθ(yt = i|y0:t−1, x, z) =

softmax
(
ω tanh

(
qT(ct)ki√

dk

))
if i ̸= ys ∀s < t and di,t ≤ D̂t ,

0 otherwise ,

where the query and key are given by q(ct) = MHA
(
ct, {h(L)

i }ni=1, {h
(L)
i }ni=1

)
and ki = WKh

(L)
i

respectively.

A.3 TRAINING

When setting wk = 1 and β = 0 in the training objective defined in (2), the loss reduces to minimizing
the expected cost over K latent samples, without weighting or entropy regularization. We introduce
the entropy term (controlled by β) to encourage diversity in the decoder’s outputs, inspired by
maximum entropy reinforcement learning (Ziebart et al., 2008; Haarnoja et al., 2018).

One could, in principle, also regularize the encoder pϕ via an entropy term. However, we found empir-
ically that this had negligible impact on performance. Our intuition is that the decoder already induces
sufficient stochasticity, and that exploration of the latent space is effectively handled during inference.
Moreover, including encoder regularization would require tuning additional hyperparameters, which
we deliberately avoided for the sake of simplicity.

Justification for the weights wk.
In Bhattacharyya et al. (2018), the authors motivate the ”Best-of-Many” sample objective by

observing that the standard multi-sample VAE (Kingma & Welling, 2014) loss averages the recon-
struction error across all latent samples, allowing even low-quality samples to influence learning.
To address this, they propose training on only the best sample. However, relying solely on the best
sample may overlook valuable learning signals from other informative samples.

The idea behind our introduction of weights wk = exp(−C(yk, x)/τ) serves to softly prioritize
lower-cost solutions among multiple latent samples drawn from pϕ(z|x). This design is inspired by
importance weighting techniques used in IWAE (Burda et al., 2016), where more promising samples
are assigned greater influence during training. In our setting, all samples contribute to the gradient
estimator, but poor-quality samples have reduced impact, while more promising ones are emphasized.

As discussed in Section 4.2, when wk = 1 (τ is large), the model treats all samples equally,
encouraging exploration. In contrast, when τ is small, the weighting scheme closely resembles
training on only the best sample, as in Bhattacharyya et al. (2018). In our experiments, we employ a
decreasing schedule for τ , which enables more stable learning in the early stages while progressively
concentrating on high-quality regions of the latent space.

Importance sampling view of the weighted objective.
Let qθ,ϕ(z, y | x) = pϕ(z | x)pθ(y | x, z) denote the joint distribution and

πθ,ϕ(z, y | x) ∝ qθ,ϕ(z, y | x)e−C(y,x)/τ

the cost-weighted joint distribution, with normalizing constant Z(x). The importance ratio w(z, y) =
πθ,ϕ/qθ,ϕ ∝ e−C(y,x)/τ satisfies

Eqθ,ϕ

[
w(z, y)C(y, x)

]
= Eπθ,ϕ

[C(y, x)].

Indeed, we have:

Eqθ,ϕ

[
w(z, y)C(y, x)

]
=

∫
C(y, x)

πθ,ϕ(z, y | x)
qθ,ϕ(z, y | x)

qθ,ϕ(z, y | x)dzdy

=
1

Z(x)

∫
C(y, x)e−C(y,x)/τqθ,ϕ(z, y | x)dzdy

= Eπθ,ϕ(·|x)
[
C(y, x)

]
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Drawing K i.i.d. pairs (zk, yk) ∼ qθ,ϕ(· | x), we obtain

Eq⊗K
θ,ϕ

[∑K
k=1w

kC
(
yk, x

)]
= Eπθ,ϕ

[C(y, x)].

Hence, the weighted multi-sample loss can be interpreted as an importance sampling estimator of the
expected cost under the cost-weighted target distribution πθ,ϕ.

Gradient computation.
The following proposition provides the gradient of the training objective defined in (2).

Proposition A.1. For all x ∈ X, θ ∈ Θ and ϕ ∈ Φ, we have:

∇θL(θ, ϕ;x) =
K∑

k=1

Ezk∼pϕ(·|x)
[
Eyk∼pθ(·|x,zk)

[
wkC(yk, x)∇θ log pθ(y

k|x, zk)
]]

− β

K∑
k=1

Ezk∼pϕ(·|x)
[
Eyk∼pθ(·|x,zk)

[
log pθ(y

k|x, zk)∇θ log pθ(y
k|x, zk)

]]
,

∇ϕL(θ, ϕ;x) =
K∑

k=1

Ezk∼pϕ(·|x)
[
Eyk∼pθ(·|x,zk)

[
wkC(yk, x)

]
∇ϕ log pϕ(z

k|x)
]

+ β

K∑
k=1

Ezk∼pϕ(·|x)
[
H(pθ(· | x, zk))∇ϕ log pϕ(z

k|x)
]
.

Proof. For the gradient with respect to θ, we have:

∇θL(θ, ϕ;x) =
K∑

k=1

Ezk∼pϕ(·|x)
[
∇θEyk∼pθ(·|x,zk)

[
wkC(yk, x)

]
+ β∇θH(pθ(· | x, zk))

]
.

For all x ∈ X and z ∈ Z, applying the score-function (log-derivative trick) identity gives
∇θ Ey∼pθ(·|x,z) [wC(y, x)] = Ey∼pθ(·|x,z) [wC(y, x)∇θ log pθ(y|x, z)]

Moreover, sinceH(pθ(· | x, z)) = −Ey∼pθ(·|x,z) [log pθ(y|x, z)], its gradient is
∇θH(pθ(· | x, z)) = −Ey∼pθ(·|x,z) [log pθ(y|x, z)∇θ log pθ(y|x, z)] .

Combining these two identities yields the desired expression for the gradient with respect to
θ. For the gradient with respect to ϕ, we apply the score-function identity to the function
z 7→ Ey∼pθ(·|x,z) [wC(y, x)] + βH(pθ(· | x, z)) which does not depend on ϕ.

The estimator of the gradient of the objective defined in (2) is computed using the Monte Carlo
method:

∇̂θL =
1

B

B∑
i=1

K∑
k=1

(
wk

(i)C(yk(i), x(i))− β log pθ(y
k
(i)|x(i), z

k
(i))− b(x(i))

)
∇θ log pθ(y

k
(i)|x(i), z

k
(i)) ,

(7)

∇̂ϕL =
1

B

B∑
i=1

K∑
k=1

(
wk

(i)C(yk(i), x(i))− β log pθ(y
k
(i)|x(i), z

k
(i))− b(x(i))

)
∇ϕ log pϕ(z

k
(i)|x(i)) ,

(8)

where b(x) denotes the baseline function, which is given by

b(x) =
1

K

K∑
k=1

(
wkC(yk, x)− β log pθ(y

k | x, zk)
)
.

This update rule has an intuitive interpretation: it adjusts the parameters θ and ϕ in directions that
favor solutions yielding the highest reward, while simultaneously constraining the latent space to
remain bounded and encouraging diversity in the sampled trajectories. The training procedure is
outlined in Algorithm 2. The update step ADAM for the parameters (θ, ϕ) corresponds to a single
Adam update step (Kingma & Ba, 2015).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 REINFORCE training
Input: Distribution over problem instances Px, number of training steps N , batch size B, and number
of latent samples K.

1: Initialize the model parameters θ and ϕ.
2: for epoch = 1 to N do
3: Sample problem instances x(i) ∼ Px for i ∈ {1, . . . , B}.
4: Generate latent samples z1(i), . . . , z

K
(i) ∼ p⊗K

ϕ (·|x(i)) using the reparameterization trick.

5: Sample solutions yk(i) ∼ pθ

(
· | x(i), z

k
(i)

)
for all k = 1, . . . ,K.

6: Compute the gradient estimates ∇̂θ,ϕL(θ, ϕ) using (7) and (8).

7: Update parameters: (θ, ϕ)← ADAM
(
(θ, ϕ), ∇̂θ,ϕL(θ, ϕ)

)
.

8: end for
Output: Optimized parameters θ and ϕ.

A.4 INFERENCE

The gradient of the inference objective is obtained using the log-derivative trick, in the same way as
in Proposition A.1:

∇θLtest(θ;x) = Eπθ(·|x) [C(y, x)∇θ log πθ(y | x)] .

This leads to the estimator in (5), with the baseline b(x) defined as the average cost over the K latent
samples for a given x:

b(x) =
1

K

K∑
k=1

C(yk, x) . (9)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B PRELIMINARIES ON MARKOV CHAINS

In this section, we use the following definitions.

• A sequence of random variables {Xn, n ∈ N} is a Markov Chain with respect to the filtration
(Fn)n≥0 with Markov kernel P : X × X → R+ if for any bounded measurable function
f : X→ R,

E [f (Xn+1) | Fn] = Pf (Xn) =

∫
f(x)P (Xn,dx) .

• Furthermore, the sequence {Xn, n ∈ N} is a state-dependent Markov Chain if for any
bounded measurable function f : X→ R,

E [f (Xn+1) | Fn] = Pθnf (Xn) =

∫
f(x)Pθn (Xn,dx) ,

where Pθn : X×X → R+ is a Markov kernel with controlled parameters θn ∈ Rd.
Definition B.1 (Invariant Probability Measure).
A probability measure π on (X,X) is called invariant for the Markov kernel P if it satisfies πP = π.

If {Xn : n ∈ N} is a Markov Chain with Markov kernel P and X0 is distributed according to an
invariant probability measure π, then for all n ≥ 1, we have Xn ∼ π.
Definition B.2 (Reversibility).
A Markov kernel P on (X,X) is said to be reversible with respect to a probability measure π if and
only if

π(dx)P (x,dy) = π(dy)P (y,dx).

Definition B.3 (Coupling of Probability Measures).
Let (X,X) be a measurable space and let µ, ν be two probability measures, i.e., µ, ν ∈ M1(X). We

define C(µ, ν), the coupling set associated with (µ, ν), as follows:

C(µ, ν) =
{
ζ ∈ M1(X

2) : ∀A ∈ X , ζ(A× X) = µ(A), ζ(X×A) = ν(A)
}

.

Definition B.4 (Total Variation Distance).
Let (X,X) be a measurable space and let µ, ν be two probability measures in M1(X). The total

variation norm between µ and ν, denoted by ∥µ− ν∥TV, is defined by

∥µ− ν∥TV = 2 sup {|µ(f)− ν(f)| : f ∈ F(X), 0 ≤ f ≤ 1}
= 2 inf {ζ(∆) : ζ ∈ C(µ, ν)} ,

where ∆(x, x′) = 1x ̸=x′ for all (x, x′) ∈ X2.
Assumption 5. Let P be a Markov transition kernel on (X,X). Suppose there exists a function
V : X→ [0,∞) satisfying supx∈X V (x) <∞, and the following conditions hold.

1. Minorization Condition. There exist K ∈ X , ε > 0 and a probability measure ν such that
ν(K) > 0 and, for all A ∈ X and x ∈ K,

P (x,A) ≥ εν(A) .

2. Drift Condition (Foster-Lyapunov Condition). There exist constants λ ∈ [0, 1), b ∈
(0,∞) satisfying

PV (x) ≤
{
λV (x), x /∈ K ,

b, x ∈ K .

Theorem B.5. (Meyn & Tweedie, 1994; Baxendale, 2005) Let Assumption 5 hold for a function
V : X→ [0,∞), where supx∈X V (x) <∞. Then, the Markov kernel P admits a unique invariant
probability measure π. Moreover, π(V) < ∞ and there exist constants (ρ, κ) ∈ (0, 1)× R+ such
that for all µ ∈ M1(X), and m ∈ N,

∥µPm − π∥TV ≤ κρmµ(V) .

This result was originally stated and proven in (Meyn & Tweedie, 1994, Theorem 2.3) with explicit
formulas for ρ and κ, and was later improved in (Baxendale, 2005, Section 2.1). Further details are
available in (Meyn & Tweedie, 2012, Chapter 15) and (Douc et al., 2018, Chapter 15).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C CONVERGENCE ANALYSIS FOR FIXED θ

In this section, we prove that the iterates of Algorithm 1 with K = 1 and fixed θ (the exact algorithm
is given in Algorithm 3) form a reversible Markov Chain (Proposition 5.1) and exhibit geometric
ergodicity toward the joint target distribution (Theorem 5.2). We then extend these results to the
general case of arbitrary K in Section C.3.

Algorithm 3 Latent Guided Sampling (K = 1)

1: Input: Problem instance x, pretrained encoder pϕ, pretrained decoder pθ, proposal distribution
q, number of iterations M , and cost function C.

2: Initialize:
3: Sample initial particle: z0 ∼ pϕ(·|x).
4: for m = 0, 1, . . . ,M − 1 do
5: Propagate new particle: z̃m+1 ∼ q(·|zm).
6: Generate new solution: ym+1 ∼ pθ(·|z̃m+1, x).
7: Compute the acceptance probability:

αm+1 = min

(
1, e−λ(C(ym+1,x)−C(ym,x)) pϕ(z̃m+1|x)

pϕ(zm|x)

)
.

8: Accept zm+1 = z̃m+1 with probability αm+1.
9: end for

C.1 PROOF OF PROPOSITION 5.1

Proposition C.1. The sequence {(Zm, Ym) : m ∈ N} generated by Algorithm 3 with K = 1 and
fixed θ forms a Markov Chain with transition kernel Pθ. Moreover, Pθ is πθ-reversible and for all
z ∈ Z, y ∈ Y, and A ∈ Z × Y ,

Pθ

(
(z, y), A

)
=

∫
A

q(dz′|z)pθ(dy′|z′, x)α(z, y, z′, y′) + ᾱθ(z, y)δ(z,y)(A) , (10)

where

α(z, y, z′, y′) = min

(
1, e−λ(C(y′,x)−C(y,x)) pϕ(z

′|x)
pϕ(z|x)

)
,

ᾱθ(z, y) = 1−
∫
Z×Y

q(dz′|z)pθ(dy′|z′, x)α(z, y, z′, y′) .

Proof. To compute the Markov kernel for the joint chain {(Zm, Ym) : m ∈ N}, we introduce the
filtration:

Fm = σ(Z0, Y0, U1:m) ,

where U1:m = (U1, · · · , Um) denotes the sequence of uniform random variables. For all bounded or
non-negative measurable function h on Z× Y and all m ∈ N,

E
[
h(Zm+1, Ym+1) | Fm

]
= E

[
1{Um+1<α(Zm,Ym,Z′

m+1,Y
′
m+1)}h(Z

′
m+1, Y

′
m+1) | Fm

]
+ E

[
1{Um+1≥α(Zm,Ym,Z′

m+1,Y
′
m+1)}h(Zm, Ym) | Fm

]
=

∫
Z×Y

q(dz′|Zm)pθ(dy
′|z′, x)α(Zm, Ym, z′, y′)h(z, y) + ᾱθ(Zm, Ym)h(Zm, Ym) ,

where

ᾱθ(Zm, Ym) = 1−
∫
Z×Y

q(dz′|Zm)pθ(dy
′|z′, x)α(Zm, Ym, z′, y′) .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus, {(Zm, Ym) : m ∈ N} forms a Markov Chain with the transition kernel given, for all z ∈ Z,
y ∈ Y, and A ∈ Z × Y , by

Pθ

(
(z, y), A

)
=

∫
A

q(dz′|z)pθ(dy′|z′, x)α(z, y, z′, y′) + ᾱθ(z, y)δ(z,y)(A) .

The reversibility of the Markov transition kernel Pθ follows directly from its construction as a
Metropolis–Hastings algorithm (Douc et al., 2018). Nonetheless, we include a proof specific to our
setting by verifying the detailed balance condition:

πθ(z, y)Pθ

(
(z, y), (z′, y′)

)
= πθ(z

′, y′)Pθ

(
(z′, y′), (z, y)

)
. (11)

Define the ratio in the acceptance probability α as r:

r(z, y, z′, y′) = e−λ
(
C(y′,x)−C(y,x)

)
pϕ(z

′|x)
pϕ(z|x)

.

We separate the analysis in two cases depending on the value of r(z, y, z′, y′).

Case 1. If r(z, y, z′, y′) ≤ 1, then α(z, y, z′, y′) = r(z, y, z′, y′) and α(z′, y′, z, y) = 1. Thus,

πθ(z, y)Pθ

(
(z, y), (z′, y′)

)
= pϕ(z|x)pθ(y|z, x)e−λC(y,x)Pθ

(
(z, y), (z′, y′)

)
= pϕ(z|x)pθ(y|z, x)e−λC(y,x)

× q(z′|z)pθ(y′|z′, x)e−λ(C(y′,x)−C(y,x)) pϕ(z
′|x)

pϕ(z|x)
= pϕ(z

′|x)pθ(y′|z′, x)e−λC(y′,x)q(z′|z)pθ(y|z, x)
= πθ(z

′, y′)Pθ

(
(z′, y′), (z, y)

)
.

Case 2.

If r(z, y, z′, y′) > 1, then α(z, y, z′, y′) = 1 and α(z′, y′, z, y) = r(z′, y′, z, y). Similarly,

πθ(z
′, y′)Pθ

(
(z′, y′), (z, y)

)
= pϕ(z

′|x)pθ(y′|z′, x)e−λC(y′,x)Pθ

(
(z′, y′), (z, y)

)
= pϕ(z

′|x)pθ(y′|z′, x)e−λC(y′,x)

× q(z|z′)pθ(y|z, x)e−λ(C(y,x)−C(y′,x)) pϕ(z|x)
pϕ(z′|x)

= pϕ(z|x)pθ(y|z, x)e−λC(y,x)q(z|z′)pθ(y′|z′, x)
= πθ(z, y)Pθ

(
(z, y), (z′, y′)

)
.

Since the detailed balance condition holds in both cases, we conclude that Pθ is πθ-reversible.

C.2 PROOF OF THEOREM 5.2 FOR K = 1

Proof. This follows from Theorem B.5, provided that we verify the minorization and drift conditions
of Assumption 5. We consider the set

K =

{
(z, y) ∈ Z× Y | ∥z∥2 ≤ R2, C(y) ̸= max

y′∈Y
C(y′)

}
which is compact since Y is finite. We denote by B(c,R) = {z ∈ Z | ∥z − c∥2 ≤ R2} the ball
centered at c with radius R.

Minorization Condition.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The Markov transition kernel is given by: for all A ∈ Z × Y ,

Pθ((z, y), A)

=

∫
A

q(dz′|z)pθ(dy′|z′, x)min

(
1, e−λ(C(y′,x)−C(y,x)) pϕ(z

′|x)
pϕ(z|x)

)
+ ᾱθ(z, y)δ(z,y)(A)

≥
∫
A∩K

q(dz′|z)pθ(dy′|z′, x)min

(
1, e−λ(C(y′,x)−C(y,x)) pϕ(z

′|x)
pϕ(z|x)

)
+ ᾱθ(z, y)δ(z,y)(A) .

We now establish a minorization by separately analyzing each term.

• Proposal Component: Since the proposal density q is assumed to be positive on the compact
set B(0, R), for all z, z′ ∈ B(0, R),

q(z′ | z) ≥ εq := inf
z,z′∈B(0,R)

q(z′ | z) > 0.

• Encoder Component: By Assumption 1, pϕ(·|x) is positive, so that by applying a similar
argument as above, we obtain the existence of εe > 0 such that

pϕ(z
′|x)

pϕ(z|x)
≥ εe .

• Decoder Component: By Assumption 1, the categorical transition probability satisfies:

inf
z′∈Z,y′∈Y

pθ(y
′|z′, x) ≥ εd > 0 .

• Exponential Weighting: Since e−λ(C(y′,x)−C(y,x)) is always positive and C is bounded
(Assumption 1), there exits εw > 0 such that:

e−λ(C(y′,x)−C(y,x)) ≥ εw . (12)

Combining these bounds, for all A ∈ Z × Y , we get:

Pθ((z, y), A)

=

∫
A

q(dz′|z)pθ(dy′|z′, x)min

(
1, e−λ(C(y′,x)−C(y,x)) pϕ(z

′|x)
pϕ(z|x)

)
+ ᾱθ(z, y)δ(z,y)(A)

≥ µLeb(B(0, R))|Y|εqεd min (1, εwεe)

∫
A

νq(dz
′)νd(dy

′) ,

where νC is the uniform probability measure over Y:

νd(dy
′) =

1

|Y|
∑
y∈Y

δy(dy
′)

and

νq(dz
′) :=

µLeb(dz′)

µLeb(B(0, R))
1B(0,R)(z

′),

where µLeb denotes the Lebesgue measure. Thus, the transition kernel satisfies the uniform minoriza-
tion condition:

Pθ((z, y), A) ≥ εν(A) , (13)

where ε = µLeb(B(0, R))|Y|εqεd min (1, εwεe) and ν(dz′,dy′) = νq(dz
′)νd(dy

′) is a probability
measure.

Drift condition.

For a fixed x ∈ X, we define the Lyapunov function for all 0 < s ≤ λ as

Vx(z, y) = esC(y,x) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

For all (z, y) ∈ K, applying Pθ to Vx, we have:

PθVx(z, y) =

∫
esC(y′,x)

(
q(dz′|z)pθ(dy′|z′, x)α(z, y, z′, y′) + ᾱθ(z, y)δ(z,y)(dz

′,dy′)
)

=

∫
esC(y′,x)q(dz′|z)pθ(dy′|z′, x)α(z, y, z′, y′) + ᾱθ(z, y)e

sC(y,x)

=

∫ (
esC(y′,x)α(z, y, z′, y′) + esC(y,x) − α(z, y, z′, y′)esC(y,x)

)
q(dz′|z)pθ(dy′|z′, x) .

Since C is bounded, we conclude that there exists a constant b <∞ such that:

PθVx(z, y) ≤ b .

For all (z, y) /∈ K,

PθVx(z, y)

Vx(z, y)

=

∫ (
es(C(y′,x)−C(y,x))α(z, y, z′, y′) + 1− α(z, y, z′, y′)

)
q(dz′|z)pθ(dy′|z′, x)

≤
∫
y′∈{C(y′,x)<C(y,x)}

(
es(C(y′,x)−C(y,x))α(z, y, z′, y′) + 1− α(z, y, z′, y′)

)
q(dz′|z)pθ(dy′|z′, x)

+

∫
y′∈{C(y′,x)=C(y,x)}

(
es(C(y′,x)−C(y,x))α(z, y, z′, y′) + 1− α(z, y, z′, y′)

)
q(dz′|z)pθ(dy′|z′, x) .

There exists η ∈ (0, 1) such that:∫
y′∈{C(y′,x)<C(y,x)}

(
es(C(y′,x)−C(y,x))α(z, y, z′, y′) + 1− α(z, y, z′, y′)

)
q(dz′|z)pθ(dy′|z′, x)

≤ η

∫
y′∈{C(y′,x)<C(y,x)}

q(dz′|z)pθ(dy′|z′, x) .

Thus,

I(z, y) ≤ η + (1− η)

∫
y′∈{C(y′,x)=C(y,x)}

q(dz′|z)pθ(dy′|z′, x) ,

which establishes the drift condition and completes the proof of geometric ergodicity in total variation
distance using Theorem B.5.

For L2-geometric ergodicity, note that the Markov Chain is reversible with respect to the probability
measure πθ (Proposition 5.1), so the Markov operator Pθ acts as a self-adjoint operator on L2.
The equivalence of geometric ergodicity and the existence of a spectral gap for Pθ acting on L2

was established in (Roberts & Rosenthal, 1997, Theorem 2.1). Specifically, it is shown that Pθ is
L2-geometrically ergodic if and only if it is πθ-TV geometrically ergodic. As a result, there exist
constants (ρ2, κ2) ∈ (0, 1)× R+ such that for all µ ∈ M1(Z× Y), θ ∈ Θ, and m ∈ N,

∥µPm
θ − πθ∥L2

≤ κ2ρ
m
2 ∥µ− πθ∥L2

.

C.3 EXTENSION TO K > 1

Here, we show how Theorem 5.2 can be extended to the general case of K > 1. Notably, at each
iteration, K chains are generated simultaneously and independently, with interactions occurring only
among the particles from the previous iteration.

Proof. The Markov kernel for general K ≥ 1 is defined, for all A ∈ ZK × YK , as

Pθ

(
(z1:K , y1:K),A

)
=

∫
A

K∏
k=1

q(dz̃k|z)pθ(dỹk|z̃k, x)α(zk, yk, z̃k, ỹk) + ᾱθ(z
k, yk)δ(zk,yk)(dz̃

k,dỹk) ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where α and ᾱθ are defined in (10).

Using the same arguments as in the case K = 1 (cf. Section C.2), we obtain the following
minorization condition:

Pθ

(
(z1:K , y1:K), A

)
≥ εKν⊗K(A) ,

where ε and ν are defined in (13). This completes the proof of the minorization condition. We now
turn to the drift condition: for a fixed x ∈ X, we define the Lyapunov function for all 0 < s ≤ λ as

V K
x (z1:K , y1:K) =

K∑
k=1

esC(yk,x) .

As in the case K = 1, for all
(
z1:K , y1:K

)
∈ KK , applying Pθ to V K

x yields:

PθV
K
x (z1:K , y1:K)

=

K∑
k=1

∫
esC(ỹk,x)

(
q(dz̃k|z)pθ(dỹk|z̃k, x)α(zk, yk, z̃k, ỹk) + ᾱθ(z

k, yk)δ(zk,yk)(dz̃
k,dỹk)

)
=

K∑
k=1

∫ (
α(zk, yk, z̃k, ỹk)

(
esC(ỹk,x) − esC(yk,x)

)
+ esC(yk,xk)

)
q(dz̃k|z)pθ(dỹk|z̃k, x) .

Using the same bounding argument as in the K = 1 case, we conclude that there exists a constant
b <∞ such that:

PθVx(z, y) ≤ bK .

The case where the particles (z1:K , y1:K) lie outside a compact set can be handled similarly, following
the same reasoning as in the proof for K = 1, thereby completing the extension to general K for
geometric ergodicity in total variation.

As in the case K = 1, the reversibility of the k-th chain can be verified. Since the Markov kernel
decomposes as a product, this structure ensures that reversibility holds component-wise, which in
turn implies L2-geometric ergodicity for K ≥ 1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D CONVERGENCE ANALYSIS FOR ADAPTIVE θ

D.1 CONVERGENCE ANALYSIS OF TIME-INHOMOGENEOUS MCMC ALGORITHM WITH
STOCHASTIC APPROXIMATION UPDATE

In this section, we present the general results of the time-inhomogeneous MCMC algorithm, where
the objective is to sample from πθ, which itself depends on the parameter θ updated via SA. This
setting corresponds to Algorithm 1 with K = 1, without imposing any assumptions on the proposal
density q, in particular without requiring symmetry. We then apply these results to our proposed
inference method. We consider the following time-inhomogeneous MCMC algorithm with Stochastic
Approximation update.

Algorithm 4 Time-Inhomogeneous MCMC with Stochastic Approximation Update

1: Input: Number of iterations M , initial parameter θ0, step sizes (γm)m≥1, initial distribution µ,
proposal distribution q, and target distribution πθ.

2: Initialize:
3: Sample initial particle: x0 ∼ µ.
4: for m = 0, 1, . . . ,M − 1 do
5: Propose a new sample: x̃m+1 ∼ q(·|xm)
6: Compute acceptance probability:

αm+1 = min

(
1,

πθm(x̃m+1)q(xm|x̃m+1)

πθm(xm)q(x̃m+1|xm)

)
.

7: Accept xm+1 = x̃m+1 with probability αm+1.
8: Compute the gradient estimate Hθm (xm+1) using previous samples.
9: Update parameters: θm+1 = θm − γm+1Hθm (xm+1).

10: end for

To analyze its convergence, we introduce the following assumptions.

Assumption 6. Let (Pk)k≥1 be a sequence of Markov transition kernels on (X,X). Suppose there
exists a function V : X→ [1,∞) satisfying supx∈X V (x) <∞, and the following conditions hold:

1. Minorization condition. There exist K ∈ X , ε > 0 and a probability measure ν such that
ν(K) > 0 and, for all A ∈ X and x ∈ K,

Pk(x,A) ≥ εν(A) .

2. Drift condition. There exist constants λ ∈ [0, 1), b ∈ (0,∞) satisfying

PkV (x) ≤
{
λV (x) x /∈ K ,

b x ∈ K .

Assumption 6 corresponds to a minorization and drift condition similar to those used in time-
homogeneous MCMC, but it holds uniformly for the sequence of kernels. While similar convergence
guarantees can be established under weaker, non-uniform conditions (e.g., allowing the constants to
depend on k), we focus on the uniform case as it aligns with our setting.

Assumption 7. There exists L ∈ F(X) such that for all x ∈ X and θ ∈ Θ,

∥∇θ log πθ(x)∥ ≤ L(x) .

Assumption 8. There exists θ∞ ∈ Θ and a positive sequence (am)m∈N, with am → 0 as m→∞
such that

∥θm − θ∞∥2L2
= O(am) .

Assumption 7 is similar to the assumptions considered in (Andrieu & Atchadé, 2007; Andrieu &
Moulines, 2006). Notably, Assumption 8 does not require θ∞ to be a unique minimizer; it can simply
be a critical point.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Theorem D.1. Let Assumptions 6 - 8 hold. Then, there exist a constant ρ ∈ (0, 1) and positive
sequences (bm)m∈N such that for all µ ∈ M1(X), and m ∈ N,

E
[
∥µPθ1 · · ·Pθm − πθ∞∥TV

]
= O

(
ρbm +

m−1∑
j=m−bm

γj+1 + am

)
.

Furthermore, if lim supm→∞
(
b−1
m + bm/m+ bmγm

)
= 0, then

E
[
∥µPθ1 · · ·Pθm − πθ∞∥TV

]
−−−−→
m→∞

0 .

Theorem D.1 establishes that the iterates of the time-inhomogeneous MCMC with Stochastic Ap-
proximation step converge to the target distribution πθ∞ . To establish this result, we first present a
decomposition of the error in total variation in D.1.1, followed by an upper bound on the mixing error
in D.1.2. The proof of the theorem is then provided in D.1.3.

D.1.1 ERROR DECOMPOSITION

Lemma D.2. For all 1 ≤ s ≤ m, we have:

∥µPθ1 · · ·Pθm − πθ∞∥TV ≤
∥∥µPθ1 · · ·Pθm − πθsPθs+1

· · ·Pθm

∥∥
TV

+

m−1∑
j=s

∥∥πθj+1
− πθj

∥∥
TV

+ ∥πθm − πθ∞∥TV .

Proof. For all m ∈ N, using the triangle inequality, we have:

∥µPθ1 · · ·Pθm − πθ∞∥TV ≤ ∥µPθ1 · · ·Pθm − πθm∥TV + ∥πθm − πθ∞∥TV . (14)

Using the fact that Pθm admits πθm as an invariant measure and applying the triangle inequality, for
all 1 ≤ s ≤ m, we have:

∥µPθ1 · · ·Pθm − πθm∥TV ≤
∥∥µPθ1 · · ·Pθm − πθsPθs+1

· · ·Pθm

∥∥
TV

+

m−1∑
j=s

∥∥πθjPθj+1
Pθj+2

· · ·Pθm − πθj+1
Pθj+1

Pθj+2
· · ·Pθm

∥∥
TV

≤
∥∥µPθ1 · · ·Pθm − πθsPθs+1

· · ·Pθm

∥∥
TV

+

m−1∑
j=s

∥∥πθj+1
− πθj

∥∥
TV

,

where the last inequality follows from the fact that, for all j, the Markov kernels Pθj are contractions.
Together with (14), this completes the proof.

This bound decomposes the total variation error into three components: (i) the mixing error (first
term), which measures how well the Markov chain mixes from an arbitrary initial distribution; (ii)
the tracking error (second term), which measures how much the stationary distributions shift over
time due to changes in the parameters; and (iii) the optimization error (last term), which measures
the difference between the current parameters and their limiting value θ∞.

D.1.2 UPPER BOUND ON THE MIXING ERROR

Proposition D.3. Let Assumption 6 hold for a function V : X→ [1,∞), where supx∈X V (x) <∞.
Let (Pk)k≥1 be a sequence of Markov transition kernels on (X,X). Then, there exists a constant
ρ ∈ (0, 1) such that for all ξ, ξ′ ∈ M1(X) and all m ∈ N,

∥ξP1 · · ·Pm − ξ′P1 · · ·Pm∥TV ≤
{
2ρm if ξ, ξ′ are supported on K ,

ρm
(
ξ(V) + ξ′(V)

)
otherwise .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Proposition D.3 corresponds to the mixing rate of a time-homogeneous Markov Chain and is anal-
ogous to (Douc et al., 2004, Theorem 2), though it differs in both statement and proof. In general,
there are various approaches to establish the geometric ergodicity of Markov Chains. Here, we follow
a coupling argument. Specifically, we adapt the proof of homogeneous Markov Chains from (Douc
et al., 2018, Theorem 19.4.1) to the time-homogeneous setting.

We construct a bivariate Markov Chain (Xk, X
′
k)k≥1 such that, marginally, (Xk)k≥1 and (X ′

k)k≥1

are Markov Chains starting from X1 = x and X ′
1 = x′, respectively, and each evolving according to

the transition kernels (Pk)k≥1.

To achieve this, for all k ≥ 1, we define the modified kernel Qk, defined for all A ⊂ X and xk ∈ X
as:

Qk (xk, A) =
Pk (xk, A)− εν (A)

1− ε
,

and introduce the coupling kernel P̄k on X2, defined for all A×A′ ⊂ X2 and all zk = (xk, x
′
k) ∈ X2

by

P̄k (zk, A×A′) = 1xk=x′
k
Pk (xk, A) δxk+1

(A′) + 1xk ̸=x′
k
1zk /∈K2Pk (xk, A)Pk (x

′
k, A

′)

+ 1xk ̸=x′
k
1zk∈K2

(
εν (A) δxk+1

(A′) + (1− ε)Qk (xk, A)Qk (x
′
k, A

′)
)
. (15)

Lemma D.4. Let
(
P̄k

)
k≥0

be the Markov kernels on
(
X2,X 2

)
defined by (15). Then, for all n ∈ N

and all (x, x′) ∈ X2, we have

P̄1 · · · P̄m ((x, x′) , ·) ∈ C (P1 · · ·Pm(x, ·), P1 · · ·Pm (x′, ·)) ,

where C denotes the set of couplings introduced in Definition B.3.

Proof. We proceed by induction on m. By the definition of P̄1, we have by construction

P̄1 ((x, x
′) , ·) ∈ C (P1(x, ·), P1(x

′, ·)) .

Suppose that for some m ≥ 1, we have

P̄1 · · · P̄m ((x, x′) , ·) ∈ C (P1 · · ·Pm(x, ·), P1 · · ·Pm (x′, ·)) .

Applying P̄m+1 to both sides and using the definition of composition of Markov kernels, we obtain,
by definition of P̄m+1,

P̄1 · · · P̄m+1 ((x, x
′) , A× X) =

∫
X×X

P̄1 · · · P̄m ((x, x′),dydy′) P̄m+1 ((y, y
′), A× X)

=

∫
X×X

P̄1 · · · P̄m ((x, x′),dydy′)Pm+1 (y,A)

=

∫
X×X

P1 · · ·Pm (x, dy)Pm+1 (y,A)

= P1 · · ·Pm+1 (x,A) ,

where the third equality follows from the inductive hypothesis. Similarly, we obtain

P̄1 · · · P̄m+1 ((x, x
′) ,X×A) = P1 · · ·Pm+1 (x

′, A) .

Thus, we conclude that

P̄1 · · · P̄m+1 ((x, x
′) , ·) ∈ C (P1 · · ·Pm+1(x, ·), P1 · · ·Pm+1 (x

′, ·)) .

This completes the induction and proof.

Lemma D.5. For all (x, x′) ∈ X2 define ∆(x, x′) = 1x ̸=x′ and V̄ (x, x′) = (V (x) + V (x′)) /2.
Then, for all k ∈ N:

• If (x, x′) ∈ K2, then

P̄k∆(x, x′) ≤ (1− ε)∆(x, x′), P̄kV̄ (x, x′) ≤ b .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• If (x, x′) /∈ K2, then

P̄k∆(x, x′) ≤ ∆(x, x′), P̄kV̄ (x, x′) ≤ λV̄ (x, x′) .

Proof. The inequality for P̄k∆ in both cases follows immediately from the definition of P̄k. For the
second inequality, we have:

P̄kV̄ (x, x′) =
PkV (x) + PkV (x′)

2
.

If (x, x′) ∈ K2, then since PkV (x) ≤ b and PkV (x′) ≤ b, it follows that:

PkV (x) + PkV (x′)

2
≤ b .

If (x, x′) /∈ K2, using PkV (x) ≤ λV (x) and PkV (x′) ≤ λV (x′), we obtain:

P̄kV̄ (x, x′) =
PkV (x) + PkV (x′)

2
≤ λV (x) + λV (x′)

2
= λV̄ (x, x′) .

This concludes the proof.

Proof of Proposition D.3. For any t ∈ (0, 1), we define

ϱt = max
(
(1− ε)

1−t
bt, λt

)
.

For chosen t, we introduce the function: W (x, x′) = ∆1−t1(x,x′)∈K2 +∆1−tV̄ t1(x,x′)/∈K2 . Then,
using Lemma D.4, we have:

∥P1 · · ·Pm(x, ·)− P1 · · ·Pm (x′, ·)∥TV = 2 inf {ζ(∆) : ζ ∈ C(P1 · · ·Pm(x, ·), P1 · · ·Pm (x′, ·))}
≤ 2P̄1 · · · P̄m∆(x, x′)

≤ 2P̄1 · · · P̄mW (x, x′) .

where we used V ≥ 1. Finally, applying Hölder’s inequality and using Lemma D.5, we obtain, for all
(x, x′) ∈ X2,

P̄kW (x, x′) = P̄k

(
∆1−tV̄ t

)
(x, x′) ≤

(
P̄k∆(x, x′)

)1−t (
P̄kV̄ (x, x′)

)t
≤ ∆1−t (x, x′)×

{
(1− ε)

1−t
bt if (x, x′) ∈ K2

λtV̄ t (x, x′) if (x, x′) /∈ K2

≤ ϱtW (x, x′) .

This implies by induction that for all m ∈ N and all (x, x′) ∈ X2,

P̄1 · · · P̄mW (x, x′) ≤ ϱmt W (x, x′) .

Then,

∥P1 · · ·Pm(x, ·)− P1 · · ·Pm (x′, ·)∥TV ≤ 2ϱmt W (x, x′)

≤
{
2ϱmt if x ∈ K ,

ϱmt (V (x) + V (x′)) if x /∈ K .

This concludes the proof.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D.1.3 PROOF OF THEOREM D.1

Proof. Using Lemma D.2, and taking s = m− bm, we have:
∥µPθ1 · · ·Pθm − πθ∞∥TV ≤

∥∥µPθ1 · · ·Pθm − πθm−bm
Pθm−bm

· · ·Pθm

∥∥
TV

+

m−1∑
j=m−bm

∥∥πθj+1
− πθj

∥∥
TV

+ ∥πθm − πθ∞∥TV

≤
∥∥µPθ1 · · ·Pθm − πθm−bm

Pθm−bm
· · ·Pθm

∥∥
TV

+ L(x)

m−1∑
j=m−bm

∥θj+1 − θj∥+ L(x) ∥θm − θ∞∥ ,

where we used the Lipschitz condition of πθ. For the first term, using Proposition D.3 with ξ =
µPθ1 · · ·Pθm−bm−1

and ξ′ = πθm−bm
, we have:∥∥µPθ1 · · ·Pθm − πθm−bm

Pθm−bm
· · ·Pθm

∥∥
TV
≤ κρbm .

For the second term, using the Lipschitz condition (Assumption 7) and the recursion of θj+1, we get:
m−1∑

j=m−bm

E [∥θj+1 − θj∥] =
m−1∑

j=m−bm

γj+1E [∥Hθm (xm+1)∥]

= E [L(x)]

m−1∑
j=m−bm

γj+1 .

For the last term, Using Jensen inequality and Assumption 8, we obtain:

E [∥θm − θ∞∥] ≤ ∥θm − θ∞∥2L2
= O (am) .

D.2 PROOF OF THEOREM 5.3

For a fixed x ∈ X, we define the Lyapunov function for all 0 < s ≤ λ as

Vx(z, y) = 1 + esC(y,x) .

Following the procedure outlined in the proof of Theorem 5.2, it is straightforward to verify Assump-
tion 6 (the minorization and drift condition) with V ≥ 1. Additionally, using Assumptions 3 and 4,
we can verify Assumptions 7 and 8. The proof is then concluded by applying Theorem D.1.

D.3 CONVERGENCE RATE IN STOCHASTIC APPROXIMATION

Stochastic Approximation can be traced back to Robbins & Monro (1951). Since then, numerous
variants have been proposed, including those using adaptive step sizes, such as Kingma & Ba
(2015). The non-asymptotic convergence of biased SA methods has been studied in various settings.
For instance, Karimi et al. (2019) analyzes the case without adaptive step sizes, while Surendran
et al. (2024) extends the analysis to include adaptive schemes for non-convex smooth objectives.
These works provide convergence guarantees in terms of the squared norm of the gradient of the
objective function. Specifically, they show that the iterates converge to a critical point at a rate of
O(logm/

√
m+ b), where b corresponds to the bias and m to the number of iterations. The analysis

typically relies on standard assumptions, including the smoothness of the objective function, an
assumption on the bias and variance of the gradient estimator (see Assumption H3 in Surendran et al.
(2024)), and a decreasing step size.

In our setting, given that the cost is bounded, the smoothness of the test objective Ltest hinges on
the smoothness of the policy pθ, an assumption also used in Papini et al. (2018); Surendran et al.
(2025). The stochastic update defined in (5) is bounded under Assumption 3, which allows us to
verify the necessary conditions on the bias and variance. In particular, the bias is of order O(1/K).
Therefore, with an additional smoothness assumption on pθ and a suitable choice of step sizes, such
as γm = 1/

√
m, Assumption 4 can be satisfied.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E EXTENSIVE RELATED WORK

Other Sampling Methods.

Besides MCMC methods, there exist works on Boltzmann sampling with non-differentiable reward
functions (Fan et al., 2023; Uehara et al., 2024; Venkatraman et al., 2024; Bengio et al., 2023), which
aligns well with our setting. In Fan et al. (2023); Uehara et al. (2024); Venkatraman et al. (2024), the
authors propose methods for fine-tuning diffusion models to maximize potentially non-differentiable
reward functions. These approaches remain applicable when adapting a generic pretrained policy.
This idea is closely related to Active Search (Bello et al., 2017), where policy parameters are fine-
tuned through Reinforcement Learning. Efficient Active Search (EAS) (Hottung et al., 2022) extends
this approach by fine-tuning only a subset of parameters—typically by adding new layers—and by
incorporating Imitation Learning (IL), which allows part of the generated samples to imitate the best
solutions found. Another promising direction is GFlowNets (Bengio et al., 2023), which have also
been applied to Vehicle Routing Problems (Zhang et al., 2025). In this setting, a GFlowNet generator
is trained jointly with an adversarial discriminator to tackle large-scale routing problems, handling
instances with up to 1,000 nodes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

F.1 TRAINING DETAILS

In this section, we provide the details of our model and training procedure. The encoder uses multi-
head attention with 8 heads and an embedding dimension of dh = 128, and consists of 6 layers. The
decoder includes a single multi-head attention layer with 8 heads and a key dimension of dk = 16.

For both the TSP and CVRP, node coordinates ci are sampled uniformly within the unit square. In
CVRP instances, customer demands di are drawn from a uniform distribution U([1, 10]). The vehicle
capacity D is set based on the number of nodes: D = 50 for n = 100, D = 55 for n = 125, and
D = 60 for n = 150, following the setup used in the literature (Hottung et al., 2021).

Training is conducted only for instances with n = 100 nodes, using K = 100 latent samples. The
latent space is defined as a compact space with diameter R = 40 and dimension dz = 100. We use
the Adam optimizer with a learning rate of 5× 10−4, a batch size of 128, and train for 2000 epochs.
The momentum parameters are fixed at β1 = 0.9 and β2 = 0.999, with a weight decay of 1× 10−6.
The entropic regularization parameter β is set to 0.01, and the weights τ in the loss (2) are chosen
according to an exponential decay schedule. The training loss and corresponding cost are shown in
Figure 4.

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

10

20

30

40

50

60

70

80

90

Tr
ai

ni
ng

 L
os

s

Training Loss
Training Score

16

17

18

19

20

21

22

Tr
ai

ni
ng

 S
co

re

Figure 4: Training loss and score for our model trained on CVRP instances with nodes n = 100

F.2 INFERENCE DETAILS AND ADDITIONAL EXPERIMENTS

F.2.1 INFERENCE DETAILS

The inference results typically include the objective value (cost), the optimality gap, and the computa-
tion time. For example, in Tables 4 and 5, Obj. denotes the value of the cost function defined in (6)
for the TSP and CVRP. The Gap indicates the percentage gap to optimality, computed as:

Gap(y, y∗) =

(
C(y, x)

C(y∗, x)
− 1

)
∗ 100% , (16)

where y∗ denotes the optimal solution for TSP and the near-optimal solution provided by LKH3 for
CVRP.

In our experiments, we use a batch size of 200 for TSP and 100 for CVRP with K = 600 latent
samples when the augmentation trick is not applied. When using the augmentation trick, we reduce
the batch size to 100 for TSP and 50 for CVRP, and K = 300 latent samples.

The proposal distribution is a Gaussian with density: for all m ∈ N and 1 ≤ k ≤ K,

q(zkm+1 | z1:Km) = N
(
zkm+1; z

k
m + γ

(
zI1m − zI2m

)
, σ2Idz

)
,

where I1, I2 ∼ U({1, . . . ,K}). The variance parameter is set to σ2 = 0.01 and the scaling factor is
γ = 0.319 for TSP and γ = 0.379 for CVRP. Instead of updating the parameters at every iteration,
updates are performed at fixed intervals. The update schedule is described in the next section and
illustrated in Figure 7.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F.2.2 ADDITIONAL EXPERIMENTS

Here, we present the experimental results for TSP and CVRP with the augmentation trick. “Obj.”
denotes the average total cost (travel distance) over all instances, while “Time” indicates the total
runtime for all 1,000 instances. “Gap” defined in (16), measures the difference from the best-known
solution (Concorde for TSP and LKH3 for CVRP). Concorde is an exact solver (optimal solutions),
whereas LKH3 is a heuristic (near-optimal solutions). Consequently, negative gaps indicate that the
corresponding method achieves lower-cost solutions than LKH3 on CVRP. For clarity and ease of
comparison, we also report the results without augmentation, as originally shown in the main paper.

Table 4: Experimental results on TSP without and with the augmentation trick

Training distribution Generalization

n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.752 0.00% 8M 8.583 0.00% 12M 9.346 0.00% 17M
LKH3 7.752 0.00% 47M 8.583 0.00% 73M 9.346 0.00% 99M

no
au

g.

POMO (greedy) 7.785 0.429% <1M 8.640 0.664% <1M 9.442 1.022% <1M
POMO (sampling) 7.772 0.261% 10M 8.595 0.140% 50M 9.377 0.327% 1H30
CVAE-Opt 7.779 0.348% 15H 8.646 0.736% 21H 9.482 1.454% 30H
EAS 7.767 0.197% 20M 8.607 0.280% 30M 9.387 0.434% 40M
COMPASS 7.753 0.014% 20M 8.586 0.035% 30M 9.358 0.128% 40M
ELG 7.783 0.399% 20M 8.634 0.594% 30M 9.427 0.867% 40M
CNF 7.766 0.181% 20M 8.607 0.279% 30M 9.394 0.514% 40M
LGS-Net (ours) 7.752 0.002% 20M 8.584 0.012% 30M 9.354 0.081% 40M

au
g.

POMO (greedy) 7.762 0.132% <1M 8.607 0.280% <1M 9.397 0.541% <1M
POMO (sampling) 7.757 0.068% 30M 8.596 0.151% 70M 9.378 0.338% 100M
EAS 7.755 0.042% 60M 8.591 0.093% 100M 9.363 0.177% 160M
COMPASS 7.752 0.002% 40M 8.585 0.024% 60M 9.352 0.059% 90M
ELG 7.761 0.116% 40M 8.606 0.268% 75M 9.391 0.481% 140M
CNF 7.756 0.052% 40M 8.595 0.139% 75M 9.377 0.332% 140M
LGS-Net (ours) 7.752 0.000% 40M 8.583 0.001% 60M 9.349 0.027% 90M

Table 5: Experimental results on CVRP without and with the augmentation trick

Training distribution Generalization

n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.54 0.00% 17H 17.50 0.00% 19H 19.22 0.00% 20H
OR Tools 17.084 9.936% 38M 18.036 3.063% 64M 21.209 10.349% 73M

no
au

g.

POMO (greedy) 15.740 1.287% <1M 17.905 2.314% <1M 19.882 3.444% <1M
POMO (sampling) 15.633 0.598% 10M 17.687 1.069% 12M 19.597 1.961% 17M
CVAE-Opt 15.752 1.364% 32H 17.864 2.080% 36H 19.843 3.240% 46H
EAS 15.563 0.148% 40M 17.541 0.234% 1H 19.319 0.515% 1H30
COMPASS 15.561 0.135% 40M 17.546 0.263% 1H 19.358 0.718% 1H30
ELG 15.736 1.261% 40M 17.729 1.308% 1H 19.516 1.540% 1H30
CNF 15.591 0.328% 40M 17.682 1.040% 1H 19.998 4.047% 1H30
LGS-Net (ours) 15.524 -0.102% 40M 17.496 -0.022% 1H 19.286 0.343% 1H30

au
g.

POMO (greedy) 15.652 0.721% 1M 17.756 1.463% 1M 19.701 2.503% 1M
POMO (sampling) 15.567 0.174% 40M 17.595 0.543% 1H15 19.476 1.332% 2H
EAS 15.508 -0.205% 80M 17.466 -0.194% 2H10 19.212 -0.041% 3H20
COMPASS 15.531 -0.057% 80M 17.512 0.068% 2H10 19.318 0.509% 3H20
ELG 15.635 0.611% 90M 17.623 0.703% 2H30 19.421 1.046% 4H15
CNF 15.553 0.084% 90M 17.607 0.611% 2H30 19.878 3.423% 4H15
LGS-Net (ours) 15.501 -0.251% 80M 17.461 -0.223% 2H10 19.229 0.046% 3H20

The average performance of each method is reported in Table 4 (TSP) and Table 5 (CVRP), both
with and without the augmentation trick of Kwon et al. (2020). Overall, our approach achieves
state-of-the-art performance across most settings. For the TSP, our method produces near-optimal
solutions even without augmentation, and consistently reaches optimality when the augmentation
trick is applied.

For the CVRP without augmentation, our model again outperforms all baselines, including both
COMPASS and EAS. It also surpasses the performance of LKH3 on the instances with n = 100
and n = 125. When augmentation is applied, performance improves further. However, for n = 150,
EAS outperforms our method, likely due to the reduced number of latent samples imposed by the

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

computational budget. In this case, exploring the latent space effectively may require a higher sample
count. We note that, when solving one instance at a time (thus relaxing the budget constraint), our
model can achieve even stronger performance under augmentation.

Comparison with other sampling methods. We now compare our method to the approaches
discussed in Section E: Active Search (Bello et al., 2017), which appears to be the most effective
existing approach related to sampling non-differentiable reward functions (Fan et al., 2023; Uehara
et al., 2024; Venkatraman et al., 2024), and the Adversarial Generative Flow Network (AGFN)
(Zhang et al., 2025), which builds on GFlowNet. We evaluate these methods on CVRP instances with
n = 100, under the same setup as in Table 2, and report the results in Table 6. The results show that
Active Search outperforms POMO (both greedy and sampling) but remains inferior to our method. In
contrast, AGFN performs surprisingly poorly compared to POMO-greedy, despite using the same
inference budget. Notably, the original AGFN paper also reports sub-par performance on instances
with n = 200. While the method shows improvements on extremely large-scale problems, such
settings are beyond the scope of our current study but represent a valuable direction for future work.

Table 6: Additional comparison of different inference methods on CVRP with n = 100

Method Obj. Gap

Active Search + IL 15.618 0.502%
AGFN (greedy) 15.873 2.142%
LGS (ours) 15.524 -0.102%

Comparison with gradient-based methods. Our initial motivation for using a continuous latent
space was to gain the flexibility of applying continuous inference methods, particularly gradient-based
techniques such as SGLD. The primary challenge in our setting is to obtain high-quality solutions
within a limited computational budget. However, we found that computing gradients—especially
backpropagating through the decoder in the latent space—is computationally expensive. This
observation motivated us to adopt a sampling-and-learning approach instead.

In our experiments, all methods (including ours) were evaluated on batches of 1,000 problem instances.
Gradient-based approaches, however, cannot process such large batches within GPU memory limits,
requiring much smaller batch sizes and thereby reducing their practical efficiency. In contrast, our
sampling-and-learning method updates only the decoder’s final layer during inference, avoiding costly
end-to-end backpropagation. This design reduces computation time while preserving solution quality,
underscoring the practical advantages of sampling-and-learning inference over fully gradient-based
alternatives.

Scalability of our method. While our experiments are limited to n ≤ 150, our method is in principle
applicable to larger instances. The main computational cost arises from (i) propagating multiple latent
particles during inference, and (ii) updating the final decoder layer via Stochastic Approximation.
Both steps parallelize efficiently on GPUs, with the number of particles K and the update frequency
remaining constant across scales. However, the decoding horizon T inevitably grows with instance
size, a limitation shared by all constructive NCO methods. An interesting direction for future work
is to design inference strategies that exploit problem structure by adapting the latent space at each
decoding step, though this would incur significant computational cost.

F.2.3 ILLUSTRATION OF HYPERPARAMETERS

Figure 5 illustrates solutions generated by our method, following a similar visualization style as in
Perron & Furnon (2019); Kool et al. (2019). Visually, the solutions appear to be optimal.

To highlight the impact of important hyperparameters, we first focus on the number of latent samples
K. We observe that increasing K improves the results, as stated in Theorem 5.3, particularly due
to the constant arising from the minorization condition. However, beyond a certain threshold, the
improvement becomes insignificant. Choosing an appropriate value of K is crucial to balance faster
mixing with computational cost.

Next, we discuss the SA step, focusing on how frequently the parameters should be updated. Our
initial motivation for not updating the parameters at every iteration is twofold: to reduce computational
cost and to better explore the latent space given the current parameter distribution. Consequently,
parameter updates can be performed at regular intervals rather than every iteration.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Longitude

0.0

0.2

0.4

0.6

0.8

1.0

La
tit

ud
e

Total Cost 5.86

0.0 0.2 0.4 0.6 0.8 1.0
Longitude

0.0

0.2

0.4

0.6

0.8

1.0

La
tit

ud
e

7 Routes, Total Cost 8.94

Figure 5: Solution representation produced by our model on the TSP (left) and CVRP (right) with
n = 50. In the TSP plot, the red point denotes the starting node, and arrows indicate the visiting order.
In the CVRP plot, the large square represents the depot, and each color corresponds to a distinct
vehicle route. The bar illustrates vehicle capacity usage: black segments show the portion used by
each customer, while white segments indicate unused capacity. The overall height of each bar reflects
the total load on the corresponding route.

100 200 300 400 500 600 700 800 900 1000
K

−1.0

−0.5

0.0

0.5

1.0

1.5

Ga
p

to
 o

pt
im

al
ity

 (%
)

Figure 6: Average gap to optimality for different values of K in the CVRP with n = 100

Since the initial parameters are typically far from optimal, allowing long exploration intervals early
in training is often unnecessary. Instead, we begin with short exploration intervals and gradually
increase them to enable more thorough exploration as learning progresses. Selecting these intervals is
non-trivial; we chose them manually without extensive hyperparameter tuning. The update schedule
used in our experiments is [1, 1, 5, 15, 25, 100, 150]. Optimizing this schedule remains an open
question and presents an interesting direction for future work.

Figure 7 illustrates the average gap to optimality for different choices of parameter update frequency,
including both regular intervals and the increasing schedule. Here, M0 denotes the update frequency,
with M0 = 50 indicating that parameters are updated every 50 iterations. We observe that while
regular intervals produce similar results overall, M0 = 75 yields slightly better performance. Notably,
the increasing update schedule achieves a clear improvement over the fixed schedules, highlighting
the potential benefits of adaptive strategies.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Relative computational budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ga
p

to
 o

pt
im

al
ity

 (%
)

LGS (M0 = 50)
LGS (M0 = 75)
LGS (M0 = 100)
LGS (M0 = 150)
Best

Figure 7: Performance comparison of various SA step update frequencies on CVRP with n = 100

37

	Introduction
	Related Work
	Notation and Background
	Notation
	Problem Setting
	Constructive NCO Methods

	Latent Guided Sampling
	Model
	Training
	Inference

	Theoretical Results
	Convergence Analysis for Fixed theta
	Convergence Analysis for Adaptive theta

	Experiments
	Conclusion
	
	 Supplementary Material for “Latent Guided Sampling for Combinatorial Optimization”
	Problem and Model Description
	Problem Setting
	Model Architecture details
	Encoder
	TSP Decoder
	CVRP Decoder

	Training
	Inference

	Preliminaries on Markov Chains
	Convergence Analysis for Fixed theta
	Proof of Proposition 5.1
	Proof of Theorem 5.2 for K=1
	Extension to K>1

	Convergence Analysis for Adaptive theta
	Convergence Analysis of Time-Inhomogeneous MCMC algorithm with Stochastic Approximation Update
	Error Decomposition
	Upper Bound on the Mixing Error
	Proof of Theorem D.1

	Proof of Theorem 5.3
	Convergence Rate in Stochastic Approximation

	Extensive Related Work
	Additional Experiments
	Training Details
	Inference Details and Additional Experiments
	Inference Details
	Additional Experiments
	Illustration of hyperparameters

