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Abstract

Recent breakthroughs in semi-supervised semantic segmen-
tation have been developed through contrastive learning. In
prevalent pixel-wise contrastive learning solutions, the model
maps pixels to deterministic representations and regularizes
them in the latent space. However, there exist inaccurate
pseudo-labels which map the ambiguous representations of
pixels to the wrong classes due to the limited cognitive abil-
ity of the model. In this paper, we define pixel-wise repre-
sentations from a new perspective of probability theory and
propose a Probabilistic Representation Contrastive Learning
(PRCL) framework that improves representation quality by
taking its probability into consideration. Through modelling
the mapping from pixels to representations as the probabil-
ity via multivariate Gaussian distributions, we can tune the
contribution of the ambiguous representations to tolerate the
risk of inaccurate pseudo-labels. Furthermore, we define pro-
totypes in the form of distributions, which indicates the con-
fidence of a class, while the point prototype cannot. More-
over, we propose to regularize the distribution variance to
enhance the reliability of representations. Taking advantage
of these benefits, high-quality feature representations can be
derived in the latent space, thereby the performance of se-
mantic segmentation can be further improved. We conduct
sufficient experiment to evaluate PRCL on Pascal VOC and
CityScapes to demonstrate its superiority. The code is avail-
able at https://github.com/Haoyu-Xie/PRCL.

Introduction
Semantic segmentation is a pixel-level classification task,
i.e. predicting the class of each pixel. Existing super-
vised methods rely on large-scale annotated data, which re-
quires high manual-labeling costs. Semi-supervised learn-
ing (Ouali, Hudelot, and Tami 2020; Ke et al. 2020b; Zou
et al. 2021; Sohn et al. 2020) takes advantage of unlabeled
data and relieves the labor of human annotation. Some meth-
ods use unlabeled data to improve segmentation models via
adversarial learning (Ke et al. 2020b), consistency regular-
ization (Peng et al. 2020), and self-training (Tarvainen and
Valpola 2017). Self-training is a typical solution that uses
the prediction generated by a model trained on labeled data
(called pseudo-label) as ground-truth to train unlabeled data.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Contradistinction between two types of represen-
tations and prototypes. Deterministic representations: left
triangle symbol, Probabilistic representations: right dotted
cross symbol, Point prototypes: left filled circle symbols,
Distribution prototypes: right radial circle symbols.

Recently, powerful methods based on self-training (Liu et al.
2021; Wang et al. 2022) additionally introduce a pixel-wise
contrastive learning as an auxiliary task to further explore
unlabeled data. Contrastive learning benefits from not only
the local context of neighbouring pixels, but also global se-
mantic class relations across the mini-batch even the en-
tire dataset. They map pixels to representations and reg-
ularize them in the latent space in a supervised way, i.e.
gather representations belonging to the same class and scat-
ter representations belonging to different classes, where the
semantic class information comes from both ground truths
and pseudo-labels. Most of contrastive learning methods is
guided by pseudo-labels in semi-supervised settings. There-
fore, the quality of pseudo-labels is critical since inaccu-
rate pseudo-labels lead to assigning representations to wrong
classes and cause a disorder in latent space. Existing efforts
try to polish pseudo-labels via either confidence (Liu et al.
2021) or entropy (Feng et al. 2022). These techniques can
improve the quality of pseudo-labels and eliminate inaccu-
rate ones to some extent. However, the inherent noise as well
as essential incorrectness in pseudo-labels are rather difficult
to be perfectly tackled by existing work. Thus, we propose to
alleviate this risk in an opposite way. Specifically, instead of
paying more attention to polishing pseudo-labels for inaccu-
racy elimination, we propose to improve the quality of rep-
resentations from data via modelling probability, and allow
them to perform better under the inaccurate pseudo labels.

Comparing with existing conventional deterministic rep-
resentation modelling, we model representations as a ran-
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dom variable with learnable parameters and represent proto-
types in the form of distributions. We take the form of mul-
tivariate Gaussian distribution for both representations and
prototypes. An illustration of proposed probabilistic repre-
sentations and distribution prototypes is shown in Figure 1.
The involvement of probability is shown in z ∼ p(z|x). The
pixel of the fuzzy train carriage xi is mapped to zi in the la-
tent space which contains two parts including the most like
representation µ and the probability σ2 which correspond
to the mean and variance of distribution respectively. Simi-
larly, the pixels of the car xj1 and xj2 are mapped to zj1 and
zj2 respectively. For comparison, deterministic mapping is
shown in z = h(f(x)). Considering the scenario where the
distance from representation zi to prototype ρi is same as the
distance from zi to ρj , there exist an ambiguity of the map-
ping from zi to ρi and ρj in deterministic representation.
On the contrary, zi is mapped to ρi in probabilistic repre-
sentation since ρi has a smaller σ2 than ρj . Note that σ2 is
inversely proportional to the probability, which implies that
the mapping from zi to ρi is more reliable. Furthermore, zj1
and zj2 contribute to the car prototype ρj to different de-
grees. Through taking the probability of representations into
consideration, the prototypes can be estimated more accu-
rately. Meanwhile, the variance σ2 is constrained during the
training procedure, which further improves the reliability of
the representations and prototypes.

In this paper, we define pixel-wise representations and
prototypes from a new perspective of probability theory
and design a new framework for pixel-wise Probabilistic
Representation Contrastive Learning, named PRCL. Our
key insight is to: (i) involve modelling probability into the
representations and prototypes, and (ii) explore a more ac-
curate similarity measurement between probabilistic repre-
sentations and prototypes. For the first objective (i), we con-
catenate an Probability head (Multilayer Perceptron, MLP)
to encoder to predict the probabilities of representations and
construct a distribution prototype with probabilistic repre-
sentations as observations based on Bayesian Estimation
(Vaseghi 2008). In the latent space, each prototype is rep-
resented as a distribution rather than a point, which enables
them to explore the uncertainty. For objective (ii), we lever-
age mutual likelihood score (MLS) (Shi and Jain 2019) to di-
rectly compute the similarity among probabilistic represen-
tations and distribution prototypes. MLS can naturally adjust
the weight of distance based on the uncertainty, i.e. penalize
ambiguous representations and vice versa. Taking the advan-
tage of the confidence information contained in probabilis-
tic representations, model robustness to inaccurate pseudo-
labels is significantly enhaned for stable training. In addi-
tion, we propose a soft freezing strategy to optimize prob-
ability head free from probability converging sharply to ∞
during training without constraint.

In summary, we propose to alleviate the negative effects
from inaccurate pseudo-labels by introducing probabilistic
representation with PRCL framework, which reduces the
contribution of representations with high uncertainty and
concentrates on more reliable ones in contrastive learning.
To the best of our knowledge, we are the first to simulta-
neously train the representation and probability. Extensive

evaluation on Pascal VOC (Everingham et al. 2010) and
CityScapes (Cordts et al. 2016) to demonstrate the superior
performances than the SOTA baselines.

Related Work
Semi-supervised Semantic Segmentation
The goal of semantic segmentation is to classify each pixel
in an entire image by class. The training of such dense pre-
diction tasks relies on large amounts of data and tedious
manual annotations. Semi-supervised learning is a label-
efficient task that needs to take advantage of a large amount
of unlabeled data to improve model performance. Entropy
minimization (Hung et al. 2018; Ke et al. 2020a) and consis-
tency regularization (Ouali, Hudelot, and Tami 2020; Peng
et al. 2020; Fan et al. 2022) are two main branches. Recently,
self-training methods benefit from strong data augmenta-
tion (French et al. 2019; Olsson et al. 2021; Hu et al. 2021)
and well-refined pseudo-labels (Sohn et al. 2020; Feng et al.
2022). Besides, some methods (Guan et al. 2022) balancing
the distributions of subclass are competitive in some scenar-
ios. Recent works based on self-training (Liu et al. 2021;
Wang et al. 2022; Xie et al. 2022) attempt to regularize rep-
resentations in latent space for better embedding space dis-
tribution. This improves the quality of features and leads to
better model performance, which is also our goal.

Contrastive Learning
As a major branch of metric learning, the key idea of con-
trastive learning is to pull positive pairs close and push neg-
ative pairs apart in the latent feature space through a con-
trastive loss. At the instance level, it treats each image as
a single class and distinguishes the image from others in
multiple views (Wu et al. 2018; Ye et al. 2019; Chen et al.
2020; He et al. 2020; Grill et al. 2020). To alleviate the neg-
ative impact of sampling bias, some works (Chuang et al.
2020) try to correct for the sampling of same-label data, even
without the information of true labels. Furthermore, in some
supervised or semi-supervised settings, some works (Zhao
et al. 2022) introduce class information to train models to
distinguish between classes. At the pixel level, pixel-wise
representations are distinguished by labels or pseudo-labels
(Lai et al. 2021; Wang et al. 2021). However, in the semi-
supervised setting, only a small amount of labeled data is
available. Most pixel divisions are based on pseudo-labels,
and inaccurate pseudo-labels lead to a disorder in the latent
space. To address these issues, previous methods (Liu et al.
2021; Alonso et al. 2021) try to polish pseudo-labels. In our
approach, we focus on tolerating inaccurate pseudo-labels
rather than filtering them.

Probabilistic Embedding
Probabilistic Embeddings (PE) is an extension of conven-
tional embeddings. Methods of PE usually predict the over-
all distribution of the embeddings, e.g. , Gaussian (Shi and
Jain 2019) and von Mises-Fisher (Li et al. 2021), rather
than a single vector. The ability of neural networks to pre-
dict distributions stems from the work of Mixture Den-
sity Networks (MDN) (Bishop 1994). Later, Variable Auto-
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Figure 2: Overview of PRCL applied to MT framework.

Encoders (VAE) (Kingma and Welling 2013) first proposed
the use of MLP to predict the mean and variance of a dis-
tribution. Most of works on probabilistic embeddings (Shi
and Jain 2019; Scott, Ridgeway, and Mozer 2019; Scott,
Gallagher, and Mozer 2021; Park et al. 2022) are based on
this architecture. Hedged Instance emBeddings (HIB) (Oh
et al. 2019) is the first attempt to apply PE to image re-
trieval and verifications. Further, PE is applied to face veri-
fication tasks. In Probabilistic Face Embeddings (PFE) (Shi
and Jain 2019), each image is mapped to a Gaussian dis-
tribution in the latent space, with the mean produced by a
pre-trained model and variance predicted via an MLP (some
works call it uncertainty head, we name it probability head
in our work). And Sphere Confidence Face (SCF) (Li et al.
2021) maps image to a von Mises-Fisher distribution with
mean and concentration parameter. We borrow the same ar-
chitecture, but it is worth noting that PFE and SCF optimize
mean and variance (concentration parameter) in two stages,
i.e. pre-train a deterministic model to predict the mean and
freeze it to optimize the variance. But in our work, the mean
and variance are optimized simultaneously, which allows
them to interact with each other.

Although the conventional distance metric can measure
the similarity of distribution using their mean, it is insuf-
ficient to represent the probabilistic similarity due to vari-
ance. To address this issue, HIB uses the reparameter trick
(Kingma and Welling 2013) to obtain two sets of samples
from two distributions through Monte-Carlo sampling, and
accumulates the similarity of samples to represent the distri-
bution similarity. PFE and SCF directly compute distribution
similarity using mutual likelihood score, but they can not si-
multaneously optimize mean and variance. This is because
uncertainty/probability (variance) is only valuable if repre-
sentation (mean) is reasonable. PFE and SCF achieve this by
training the mean and variance in two stages, and we address
this by training them separately with different learning rates.

Methodology
Preliminaries
The objective of semi-supervised semantic segmentation is
to train a model with only a limited amount of labeled
data Dl = {(xl

i,y
l
i)}

Nl
i=1 and substantial unlabeled data

Du = {xu
i }

Nu
i=1. An illustration of our framework is shown

in Figure 2. Following the typical self-training frameworks,
our framework consists of two networks with the same ar-
chitecture, named student network and teacher network re-
spectively. Each model contains an encoder f(·) and a pre-
dictor g(·). We denote f(·), g(·) as the encoder and predic-
tor of student network and f ′(·), g′(·) as those of teacher
network. The student network parameters are optimized via
stochastic gradient descent (SGD) to minimize the loss func-
tion L while the teacher network parameters are updated
by Exponential Moving Average (EMA) of the student net-
work parameters. In addition, in contrastive learning-based
semi-supervised methods, a representation head h(·) is in-
troduced to student network to map pixels to representa-
tions and a contrastive loss Lc is computed between them.
For simplicity, we denote the one hot coding format of the
pseudo-label from teacher network g′(f ′(xu)) as ŷu′ and
the projection result h(f(x)) as z. A supervised cross en-
tropy loss Ls is calculated between the prediction of student
network f(g(xl)) and ground truth yl. And an unsupervised
cross entropy loss Lu is calculated between the prediction of
the student network g(f(xu)) and the pseudo-label ŷu′ from
teacher network. The overall loss L for contrastive learning-
based semi-supervised segmentation is formulated as

L = Ls + λuLu + λcLc, (1)

Ls =
1

|Bl|
∑

(xl
i,y

l
i)∈Bl

ℓce(g(f(x
l
i)),y

l
i),

Lu =
1

|Bu|
∑

xu
i ∈Bu

ℓce(g(f(x
u
i )), ŷ

u′
i ),

where λu and λc are two hyper-parameters to adjust the con-
tributions of Lu and Lc respectively, and Bl and Bu denote
labeled images and unlabeled images in a mini-batch respec-
tively. The contrastve learning loss Lc is computed by in-
foNCE (Van den Oord, Li, and Vinyals 2018) as follows:

Lc =− 1

|C| × |Zc|
∑
c∈C

∑
zci∈Zc

log[
es(zci,ρc)/τ

es(zci,ρc))/τ +
∑

c̃∈C̃

∑
zc̃i∈Zc̃

es(zci,zc̃i)/τ
],

(2)

where C denotes the set including all available classes in
a mini-batch, Zc denotes the set including sampled anchor
representations belonging to anchor class c, C̃ denotes the
set of classes other than c, Zc̃ denotes the set including sam-
pled negative representations belonging to class c̃, τ denotes
the temperature control of the softness of the distribution,
and s denotes similarity measurement, e.g., cosine similarity
and ℓ2 distance, in our work, mutual likelihood score (MLS)
(Shi and Jain 2019) is leveraged. In addition, zc are rep-
resentations mapped from the pixels belonging to the same
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class c, and the class information is obtained from labels yl

of labeled data and pseudo-labels ŷu′ of unlabeled data. The
goal of contrastive learning is to improve the representation
capability of the encoder f(·) by regularizing the represen-
tations for the better performance in the downstream seman-
tic segmentation tasks. Considering an ideal representation
space Z for downstream tasks, the similar representations z
of the same class c are concentrated around the correspond-
ing prototype ρc, while the prototypes of different classes
should be separated from each other. However, due to in-
accurate pseudo-labels, there is a mismatch between zc and
c. Our goal is to further improve the representation perfor-
mance for the robustness under this case.

Probabilistic Representation
The representations in conventional contrastive learning are
deterministic. However, there exist inaccurate pseudo-labels
which map the ambiguous representations of pixels to the
wrong classes due to the limited cognitive ability of the
model. Concretely, some pixels from the class C will be
treated as one of another classes C̃, leading to a perturba-
tion in Lc calculating. Although it is difficult to perform
complete elimination of inaccurate pseudo-labels, we can
model the mapping probability to measure its confidence,
thereby reducing low confidence mapping caused by inac-
curate pseudo-labels. We denote the probability of mapping
a pixel xi to a representation zi as p(zi|xi) and define the
representation as a random variable following it. For sim-
plicity, we take the form of multivariate Gaussian distribu-
tion N (µ,σ2I) as

p(zi|xi) = N (z;µi,σ
2
i I), (3)

where I represents the unit diagonal matrix. In this form, µ
can be viewed as most like representation values, and σ2 can
show the probability in the representation values. It is worth
noting that σ2 is inversely proportional to probability, i.e.
the greater the σ2, the lower the probability, which is con-
sistent with the form in MLS. Both dimensions of µ and σ2

are the same. The mean µ is predicted by the representation
head h(·). Meanwhile, we introduce a probability head p(·)
in parallel to predict the variance σ2, as shown in Figure 2.
To achieve the better representation learning for downstream
semantic segmentation tasks, the same class representations
should concentrate on their prototypes in the latent space.
The prototype can be calculated with the mean of the same
class representations in deterministic representation meth-
ods as

ρ =
1

n

n∑
i=1

zi, (4)

where n is the number of representations sampled. This
method has a limitation that all representations contribute
the same to the prototype. In our method, instead, we esti-
mate it using Bayesian Estimation incorporating new prob-
abilistic representations as observations. With probabilistic
representations, a conjugate formula can be derived for pro-
totype estimation. The prototype is the posterior distribu-
tion after the nth observations {z1, z2, ..., zn}. Under the

assumption that all the observations are conditionally inde-
pendent, the distribution prototype can be derived as

p(ρ|z1, z2, ..., zn+1) = α
p(ρ|zn+1)

p(ρ)
p(ρ|z1, z2, ..., zn), (5)

where α is a normalization factor. In addition to Equation 3,
we can rewrite the prototype as

ρ ∼ N (µ̂, σ̂2I), (6)

where

µ̂ =
n∑

i=1

σ̂2

σ2
i

µi (7)

1

σ̂2
=

n∑
i=1

1

σ2
i

. (8)

From the Equation 7, we can know that the representations
with different probabilities contribute differently to the pro-
totype. The smaller σ2

i (higher probability) corresponds to
more contribution, and vice versa. And the negative impact
of high-risk false representations will be reduced, so the pro-
totypes can be estimated reliably. And with the σ̂2, the dis-
tribution prototype act as a radius region in the latent space,
which can express the potential location of the exact pro-
totype with probability. As Equation 8 shows, during the
training, with more representations accumulation, the σ2 of
prototype decreases. The region of distribution prototype be-
comes smaller. In other words, the estimated prototype be-
comes clearer. Proof details refer to (Shi and Jain 2019).

Probabilistic Representation Contrastive Learning
According to the previous section, we redefine z and ρ in
Equation 2. However, conventional ℓ2 distance does not have
the ability to measure the similarity between two distribu-
tions. To solve this problem, we leverage the Mutual like-
lihood Score (MLS) to measure the similarity between two
distributions zi and zj , as follows:

MLS(zi, zj) =log(p(zi = zj))

=− 1

2

D∑
l=1

(
(µ

(l)
i − µ

(l)
j )2

σ
2(l)
i + σ

2(l)
j

+ log(σ
2(l)
i + σ

2(l)
j ))

− D

2
log2π,

(9)
where µ(l)

i refers to the lth dimension of µi and the same for
σ
(l)
i . MLS is a combination of a weighted ℓ2 distance and a

log regularization term, essentially. Conventional ℓ2 distance
only consider the similarity between representations mapped
in the latent space by the pseudo-labels without consider-
ing their reliability. The inaccurate pseudo-labels leads to a
wrong optimizing direction, which destructs the latent space.
We argue that inaccurate pseudo-labels often come with the
low probabilities. With probabilities of zi and zj , MLS re-
sponds to inaccurate pseudo-labels from two perspectives.
(i): In the first term, the weight of ℓ2 distance is small when
the σ2 is large, which indicates that the similarity between
zi and zj becomes lower due to the low probabilities, even
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if they are very similar in the view of ℓ2 distance. The prob-
ability has been taken into consideration besides the simple
similarity measure for representations learning. (ii): In the
second term, σ2 is penalized for the low probability repre-
sentations, which makes all the representations more reli-
able. Besides, σ2 and µ can interact with each other. The
learnable σ2 is associated with ℓ2 distance. This means that
σ2 can be learned via the relations among representations.
On the other hand, the µ can also be optimized via the σ2.
This is consistent with intuitive cognition.

We introduce Equation 9 into Equation 2 and rewrite it as

Lc =− 1

|C| × |Zc|
∑
c∈C

∑
zci∈Zc

log[
eMLS(zci,ρc)/τ

eMLS(zci,ρc))/τ +
∑

c̃∈C̃

∑
zc̃i∈Zc̃

eMLS(zci,zc̃i)/τ
],

(10)

and name it PRCL loss LPRCL, whose pseudo-code is
shown in Appendix A. Like conventional contrastive learn-
ing, the negatives push each other away, while the posi-
tives converge toward the prototype. In addition, optimized
with the PRCL loss, the σ2 of probabilistic representations
on a downward trend, i.e. the representations get more and
more certain. With the accumulation of representations, the
σ2 of prototypes are decreasing, i.e. the prototype becomes
clearer, which is verified in our empirical evaluation of their
tendency during training in Experiment Section. And we ap-
ply PRCL loss to both labeled and unlabeled data. Cooper-
ated with supervised cross-entropy loss Ls and unsupervised
cross-entropy loss Lu, the overall loss L for semi-supervised
segmentation is rewrited as

L = Ls + λu · Lu + λc(t) · LPRCL. (11)

In Lu, we only consider the pixels whose predicted con-
fidence ŷq (the maximum of prediction after SoftMax op-
eration) are greater than δu, and λu is defined as the per-
centage of them, following the prior method (Olsson et al.
2021). λc(t) is a time-variant scaling parameter to control
the weight of LPRCL. We refer more details to the Experi-
ment Section.

Soft Freezing
We find optimization instability where σ2 would converge to
∞ if left unbounded. At the beginning of training, the proba-
bility head output increases substantially, causing training to
crash. We mainly attribute it to the fact that the representa-
tions is unreasonable at the beginning of the training. At this
stage, optimizing probability with unreasonable representa-
tions is meaningless. It is crucial to use some empirical tricks
to avoid it. Some works (Shi and Jain 2019; Li et al. 2021)
freeze the trained representation head when training prob-
ability head. Some works pre-train the representations and
freeze it when training probability head freezing the trained
representations later. In addition, an additional KL regular-
ization term between the distribution and the unit Gaussian
prior N (0, I) is employed to prevent the σ2 from converg-
ing to ∞. However, intuitively, this trick will hinder the in-
teraction between probability and representation, thus lim-
iting the performance of the probability. To address this is-
sue, we separate the training of the probability head from

the ensemble and train it with a much smaller learning rate
in our work. This makes probability head training keep pace
with others for stable optimization and enables simultaneous
training of the probability and the representation to interact
with each other. We name this empirical trick Soft Freezing.

Experiments
Dataset. We conduct experiments on Pascal VOC 2012 (Ev-
eringham et al. 2010) dataset and CityScapes (Cordts et al.
2016) dataset to test the effectiveness of PRCL. The Pascal
VOC 2012 contains 1464 well-annotated images for training
and 1449 images for validation originally. Following (Liu
et al. 2021; Wang et al. 2022; Yang et al. 2022), we intro-
duce SBD (Hariharan et al. 2011) as additional training data
into training set. CityScapes is an urban scene dataset which
includes 2975 training images and 500 validation images.
Network structure. We use DeepLabv3+ (Chen
et al. 2018) with ResNet-101 (He et al. 2016) pre-
trained on ImageNet (Deng et al. 2009). The predic-
tion head and representation head are composed of
Conv-BN-ReLU-Conv. The probability head is com-
posed of Linear-BN-ReLU-Linear-BN.
Sampling strategy. Due to limited computation and mem-
ory, it would be unachievable for us to sample all pix-
els in the training set. In our method, we follow the prior
work (Liu et al. 2021) and adopt some sampling strategies.
(a) Valid samples sampling strategy: In order to artificially
avoid some noise and refine more meaningful representa-
tions, we set a threshold δw for sampling valid representa-
tions. Representations will be valid only if its corresponding
ŷq is higher than δw. (b) Anchor sampling strategy: For the
purpose of paying more attention to relatively ambiguous
representations, we set a threshold δs for ŷq and randomly
sample a suitable number of hard anchors whose ŷq are be-
low δs, which makes our training focus on the ambiguous
representations. (c) Negative samples sampling strategy: We
non-uniformly sample a suitable number of negative repre-
sentations zc̃ for each anchor. The sampling ratio is based on
the similarity between prototype for negative representation
classes ρc̃ and that for current anchor class ρc.
Experimental details. We adjust PRCL contribution with
a loss scheduler. Mathematically, given the total training
epochs Ttotal and the initial weight λc(0), the weight λc at
the t-th epoch can be calculated as,

λc(t) = λc(0) · exp(α · ( t

Ttotal
)2) (12)

where α is a negative constant, which determines the rate of
weight descent.
Evaluation. We adopt the mean of Intersection over Union
(mIoU) as the metric to evaluate the performance of our
work. All results are measured on the val set in both Pascal
VOC and CityScapes.

Probability Behavior
Figure 3 shows the behavior of the probability (The ℓ1 norm
of σ2) and reflects the relationship between probability and
inaccurate pseudo-labels. In Figure 3(a), first row represents
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Figure 3: (a) Value of representation probability. (b) Visual-
ization of representation probability.

the mean and standard deviation of σ2 in representation dur-
ing training, and second row represents the same statistics
of µ. At the beginning of training process, representations
are unreasonable, which lead to a large σ2. When represen-
tations are more and more certain, σ2 is decreasing and is
more meaningful. In Figure 3(b), columns from left to right
represent input image, ground-truth, pseudo-label, and prob-
ability, respectively. For the fourth column, the red color rep-
resents the large σ2 (low probability). The green boxes mark
the mismatches caused by inaccurate pseudo-labels (e.g.,
person and bottle) and the red boxes mark the fuzzy pixels
(e.g., furry edge of the bird). These two cases are highlighted
by σ2 and make low contribution in training process.

Comparison with Existing Methods
In this subsection, firstly, we reproduce two semi-supervised
segmentation baselines: Mean Teacher (MT) and ClassMix
(Olsson et al. 2021) on Pascal VOC and CityScapes. In addi-
tion, we also conduct the experiment only on labeled dataset
(Supervised) to demonstrate our effective use of abundant
unlabeled data. These methods are conducted with standard
DeepLabv3+ and ResNet-101 under the same settings. Be-
sides, for fair comparing, we use the modified ResNet-101
with the deep stem block as our backbone to compare with
state-of-the-art methods, following previous works (Chen
et al. 2021; Wang et al. 2022; Yang et al. 2022). In addition,
our labeled dataset splits are also derived from the previous
work (Wang et al. 2022; Yang et al. 2022; Liu et al. 2022).

Pascal VOC
Method 46 labels 60 labels 92 labels

Supervised 41.18 48.00 52.38
MT 39.04 44.97 49.11

ClassMix 41.55 53.21 63.26
PRCL(w/ClassMix) 43.00 58.10 68.52

Table 1: Results on Pascal VOC. All results are reproduced.

CityScapes
Method 20 labels 50 labels 150 labels

Supervised 50.60 53.90 63.95
MT 48.23 62.14 67.49

ClassMix 56.65 63.89 66.68
PRCL(w/ClassMix) 58.09 64.87 67.60

Table 2: Results on CityScapes. All results are reproduced.

Results on Pascal VOC. Table 1 shows the results of the
comparison among our work and baselines on Pascal VOC.
PRCL consistently outperforms other methods at all label
rates in our experiment setting. Notably, our PRCL frame-
work can improve the performance in very limited data situ-
ations, where the performance improvement is more mean-
ingful in a semi-supervised setting.
Results on CityScapes. Table 2 illustrates the results of
comparison among our work and baselines on CityScapes.
PRCL achieves a marginal out-performance over all base-
lines across a wide range of the number of labeled images.
Similar with the result on Pascal VOC, our framework can
unlock more potential in low label rate.
Comparison with SOTAs. We compare our work with fol-
lowing recent SOTAs with their own strong data augmen-
tations (CutOut, CutMix, and ClassMix): PseudoSeg (Zou
et al. 2021), CPS (Chen et al. 2021), PC2Seg (Zhong et al.
2021), PSMT (Liu et al. 2022), U2PL (Wang et al. 2022),
ST++ (Yang et al. 2022), and ReCo (Liu et al. 2021) on
Pascal VOC dataset. Table 3 shows the result. Our PRCL
performs better than other works, especially in the scenarios
with low label rates. Similar works based on pixel-wise con-
trastive learning (Liu et al. 2021; Wang et al. 2022) focus on
polishing pseudo-labels to pick the correct representation.
Instead, we focus on improving the quality of represetations
for robustness under inaccurate pseudo-labels. The results
are shown in Figure 4.

Ablation Study
We conduct the ablation studies based on DeepLabV3+ and
ResNet-101 on Pascal VOC. And all the labeled images are
the same as above experiments.
Impact of probabilistic representation and distribution
prototype. To examine the effectiveness of probabilistic
mechanism, we compare with deterministic representations
and point prototypes. And we choose ℓ2 distance as a simi-
larity measurement of them. In addition, to demonstrate the
robustness to high-risk false representations, we adjust the
strong threshold δs to vary the proportion of unconfident
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mIoU

label rate

Figure 4: Compare with similar works based on pixel-wise
contrastive learning

Pascal VOC
Method 92 183 366 662

Supervised 52.23 62.33 67.11 71.12
PseudoSeg(w/ CutOut) 57.60 65.50 69.14 -

CPS(w/ CutMix) 64.07 67.42 71.71 74.48
PC2Seg(w/ CutOut) 57.00 66.28 69.78 -
U2PL(w/ CutMix) 67.98 69.15 73.66 77.21
ST++(w/ CutOut) 65.20 71.00 74.60 74.70

PSMT 65.80 69.58 76.57 -
PRCL(w/ ClassMix) 69.91 74.42 76.69 77.88

Fully-supervised setting (10582 images): 78.20

Table 3: Results on Pascal VOC using a modified ResNet
with the deep stem block. The model is trained on the aug-
mented VOC train set, which consists of 10582 samples
in total and tested on VOC val set. And all the results from
the recent papers (Wang et al. 2022; Yang et al. 2022; Liu
et al. 2021).

samples. To amplify the effect of the PRCL loss, we con-
duct experiments without loss scheduler. Tabel 4 shows the
result on 2 label rates. We observe that under the same set-
tings, our algorithm with probabilistic mechanism performs
almost better in both two label rates. Especially, when lower
the strong threshold, our framework will achieve better per-
formance while that with deterministic representation and
point prototype is hurt visibly. We mainly attribute it to the
more sampled low-confident anchors with low strong thresh-
old. We argue that there are more critical samples in low-
confident predictions since the model does not fully grasp
the information of corresponding pixels. It will be more effi-
cient to concentrate on this part of pixels. However, low con-
fidence leads to introduce more inaccurate pseudo-labels.
The deterministic representations have no ability to handle
these inaccurate pseudo-labels, thus leading to disorder in
latent space. And this dramatically hurts the performance of
semantic segmentation. With our probabilistic mechanism,
the model is error-tolerant and reduces the damage to the
latent space from inaccurate pseudo-labels while taking full
advantage of high-risk but critical representations. In addi-
tion, we conduct the experiments without the sampling strat-
egy (δs = 1 and δw = 0) to demonstrate its necessity.
Impact of Loss scheduler. In Table 5, we evaluate the effec-
tiveness of Loss Scheduler λc(t) (LS). We can observe that
with a high label rate, the model with a loss scheduler per-

δs δw 60 labels 92 labels
0.97 0.70 61.83 66.23

w/o P 0.90 0.70 60.60 63.02
0.80 0.70 55.45 62.70
1.00 0.00 59.00 62.92
0.97 0.70 61.11 65.16

w/ P 0.90 0.70 61.74 66.19
0.80 0.70 64.27 67.91
1.00 0.00 56.78 64.33

Table 4: Ablation study on Probabilistic mechanism (P) with
different thresholds of sampling strategy.

Labels 46 60 92 183 336 662
w/o LS 43.31 64.27 67.91 69.40 72.96 75.35
w/ LS 43.00 58.10 68.52 72.14 75.05 76.12

Table 5: Ablation study on impact of Loss Scheduler (LS).

forms better than the one without a loss scheduler. However,
with low label rate, model with LS performs slightly worse
than model without LS. We argue that at low label rates, i.e.
with less guidance, there will be more inaccurate pseudo-
labels. This case will unlock the potential of probabilistic
representations. Increasing the proportion of contrastive loss
in total loss can promote a better distribution in latent space,
which will help the downstream task. When training with
a high label rate, pseudo-labels become more reliable. We
should pay more attention to downstream semantic segmen-
tation tasks and decrease the proportion of contrastive loss.
Impact of negative numbers. We evaluate the performance
of different number of negatives used in PRCL framework.
In Table 6, we can observe that performance is better when
sampling more negatives. This is because the distribution of
sampled negatives is more similar with the true distribution
when sample more negatives.

Number of negatives 64 128 256 512
mIoU 65.53 65.72 67.53 67.91

Table 6: Ablation study on impact of negative numbers.

Conclusion
In this work, we define pixel-wise representations and pro-
totypes from a new perspective of probability theory and de-
sign some tricks to optimize them. Probabilistic representa-
tions alleviate the negative effects from inaccurate pseudo-
labels for better performance in contrastive learning. Be-
sides, a more reliable distribution prototype can be estimated
with them. Based on probabilistic representations and distri-
bution prototypes, we propose a PRCL framework for better
representation distribution to improve the performance on
semi-supervised semantic segmentation tasks. As Socrates
said, The only true wisdom is in knowing you know nothing.
Models need not only what they know, but how much they
know. We hope that this simple but effective framework en-
ables the renaissance of Bayesian theory in computer vision.
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