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ABSTRACT

The rapid growth of AI-generated imagery has blurred the boundary between
real and synthetic content, raising critical concerns for digital integrity. Vision-
language models (VLMs) offer interpretability through explanations but often fail
to detect subtle artifacts in high-quality synthetic images. We propose ZoomIn,
a two-stage forensic framework that improves both accuracy and interpretability.
Mimicking human visual inspection, ZoomIn first scans an image to locate suspi-
cious regions and then performs a focused analysis on these zoomed-in areas to de-
liver a grounded verdict. To support training, we introduce MagniFake, a dataset
of 20,000 real and high-quality synthetic images annotated with bounding boxes
and forensic explanations, generated through an automated VLM-based pipeline.
Our approach achieves 96.39% accuracy with strong generalization across exter-
nal datasets, and providing human-understandable explanations grounded in vi-
sual evidence.

1 INTRODUCTION

The rapid advancement of image generation models (Wang et al., 2025b; Li et al., 2025; Chadebec
et al., 2025) has enabled the creation of AI-generated images with unprecedented photorealism,
increasingly blurring the boundary between authentic and synthetic content. There is a critical need
for platforms to deploy accurate and effective detection methods. However, the current landscape
of detection methods is dominated by classification-based approaches. While often effective on
specific datasets, these methods typically operate as “black- or gray-boxes”, offering little insight
into their decision-making process. This lack of explainability is coupled with poor generalizability,
as models trained to detect artifacts from one generative architecture often fail when confronted with
novel, unseen ones.

The emergence of Vision-Language Models (VLMs) (Fang et al., 2025; Chen et al., 2024; Man
et al., 2025; Wu et al., 2025c;b; Zhang et al., 2025) has opened a new frontier, offering a promising
path towards semantic-level analysis and greater interpretability. Many recent approaches re-frame
the detection task as a visual question answering (VQA) problem (Gao et al., 2025) or an image
captioning task (Keita et al., 2025). However, to reach high accuracy, these methods typically rely
on external modules such as segmentation networks or additional classification heads (Zhou et al.,
2025; Kang et al., 2025), which underutilize the intrinsic knowledge and common-sense reasoning
already embedded in VLMs and reduce them to passive feature extractors. More fundamentally,
most approaches perform a single global pass over the image: the visual encoder compresses the
scene into a limited set of tokens, attention is spread across the entire image, and fine-grained foren-
sic cues (e.g., tiny text artifacts, stitching seams, periodic textures, specular edges) are weakened
by downsampling and pooling (Park & Owens, 2024; Liu et al., 2023). Without revisiting localized
regions to test hypotheses, small but decisive artifacts are often overlooked, resulting in unreliable
judgments on high-quality synthetic images. As demonstrated in Figure 1(a), when the model cannot
clearly perceive all details, it may rely on prior knowledge to “guess”, producing flawed reasoning
and incorrect verdicts.

In this work, we propose a paradigm shift from passively classifying real and AI-generated images
to actively reasoning with them. Rather than training a model for a single, holistic classification task,
our approach emulates the process of a human expert, who first identifies suspicious regions and then
“zooms in” for a closer look. We bridged the reasoning and world knowledge of language models
with the vision modality, building a system that inspects an image, hypothesizes about potentially
synthetic regions, and then re-evaluates those specific regions to make a final, grounded decision.
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Vision Encoder

VLM Query 1 – Global Scan

Please analyze the image and:

1. Provide an initial verdict on 

whether the image is real or AI-

generated.

2. You will need to examine specific 

regions more closely. Output 

bounding boxes for areas that 

require closer inspection.Vision Encoder

… …

…Initially, your 

decision is … 

Observe these 

regions and give a 

final verdict.

VLM Query 2 – Local Evidence Check

… …

…
[485,350,505,375]

…
[…]

…A1:

Explanations

…A2:
Upon a closer look at the image, the text on the badge 
seems to be “referee”, and the face looks natural …
therefore, I think this image is a real photograph.

Crop

Initial Verdict

Final Verdict

VLM Query

Is this image real or 

AI-generated? Why? 

Please explain your 

justifications and 

then clearly state 

whether this image is 

more likely real or 

AI-generated.Vision Encoder

… …

A1: Explanation Verdict

… The yellow banner in the background has 
blurry, indecipherable text. AI models typically 
struggle to generate legible and context-
appropriate text…
This image also features blurry or “plastic - 
like” textures (e.g., the referee’s shirt lacks 
natural fabric details, and the grass looks 
overly smooth/generic), another telltale AI 
artifact.
Therefore, the image is likely AI-generated.

Focus on localized evidence & cues b) ZoomIn

Focus only on global cues a) One-Turn

Figure 1: (a) Without revisiting specific details, VLMs may overlook critical cues and produce false
reasoning with incorrect decisions. (b) Our two-stage ZoomIn pipeline. The VLM first performs a
global scan to query region(s) of interest (Query 1), then analyzes the cropped regions for a detailed,
final verdict with grounded explanations (Query 2, “Local Evidence Check”).

To support this objective, we construct a dataset that provides cropped regions and grounded expla-
nations for training. As illustrated in Figure 1(b), our model delivers reliable reasoning and correct
decisions under the zoom-in paradigm. Our experiments show that the proposed iterative, foveated
approach enables a more robust and interpretable analysis. Our major contributions are threefold:

1. A Paradigm Shift to “Think with Images” in Forensics: We introduce a two-stage framework
where a VLM first scans an image to hypothesize regions potentially indicating synthetic origin,
and then performs a second, focused analysis on cropped regions to refine the verdict. This
process grounds the final decision in explicit visual evidence.

2. A Novel Data Annotation Pipeline: Leveraging state-of-the-art VLMs (e.g., GPT-4o) with
detection-capable VLMs (e.g., Qwen-2.5-VL), we construct MagniFake, a dataset of 20,000 real
and generated images annotated with bounding boxes and fine-grained forensic explanations.

3. Robust Generalization with Interpretability: By directly linking the final verdict to visual
evidence within identified bounding boxes, our method provides clear, human-intelligible expla-
nations for its high accuracy robust to degradation and out-of-distribution data.

2 RELATED WORKS

Detection of AI-generated images. Image forgery detection has evolved from traditional feature
engineering to modern deep learning methods. Early detection methods rely on handcrafted fea-
tures and statistical anomalies (Li & Zhou, 2019; Chen et al., 2021; Frank et al., 2020) or perform
frequency-domain analysis for identifying GAN-specific artifacts (Jeong et al., 2022). The advent of
deep learning marked a paradigm shift, with CNN-based detectors such as CNNSpot (Wang et al.,
2020) demonstrating remarkable generalization capabilities across various GAN architectures when
trained on ProGAN-generated (Gao et al., 2019) images. As generative models evolved beyond
GANs to include diffusion models (Song et al., 2020; Ho et al., 2020; Le et al., 2025; Ye et al.,
2025), detection strategies adapted accordingly (Corvi et al., 2023; Tan et al., 2023; Park & Owens,

2
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You are an expert in classifying AI-generated images and real
images. Please carefully observe the image that the user provide,
decide whether the image is real or AI-generated. 
Justify your verdict by listing reasons that support your decision.

Is this image real or generated?

This image appears to be {label}. 
If you wish to understand my justifications, please let me know.

S

U

A

Yes, please provide your justifications in detail.U

Query 1: Explanation Generation

The user will show you a {label} image with explanations on why
this image looks {label}. Please annotate bounding boxes for key
regions mentioned in the justification. 
Your response should form several bullet points, each starts with
a bounding box, followed by a short caption of how this region can
help determine the authenticity of the image. Your annotated
bounding boxes must be completely based on the rationale.
Focus on regions that are most likely to be fake.

This image is {label} because:{previous_response}. 
Focus on regions that are likely to have generative artifacts or cues.

S

U

Query 2: Spatial Grounding

This image is likely AI-generated due
to the dog's unnatural, human-like
pose and the seamless integration of
text into the scene. 
Additional evidence includes
inconsistent details on the Jenga
blocks, overly uniform lighting, and
the synthetic appearance of the
background elements.

A Q1 - Response

Based on your detailed analysis, here
are some key regions...

A Q2 - Response

S System U User A AssistantRoles:

* Dog's Paw Interaction with
Blocks (270, 398, 485, 630)

* Jenga Blocks (   )

Figure 2: The proposed data annotation pipeline. We ask the forensics expert VLM in Query 1
“Explanation Generation” to identify key reasons that make this image look real or AI-generated,
followed by Query 2 “Spatial Grounding”, which uses the explanation to extract bounding boxes.

2024; Ricker et al., 2024). Notably, DIRE (Wang et al., 2023) pioneered the use of reconstruction
error metrics specifically tailored for diffusion-generated content. NPR (Tan et al., 2023) leveraged
frozen CLIP encoders to maintain domain invariance.

Despite these advances, explainability and robust generalization remain major challenges. The emer-
gence of VLMs offers a new frontier by enabling semantic-level analysis and natural language rea-
soning. Many approaches re-formulate this classification problem to visual question answering
(VQA) questions (Chang et al., 2023; Zhang et al., 2024b) or image captioning tasks (Keita et al.,
2025). Several forensics datasets (Li et al., 2024; Zhang et al., 2024b; Gao et al., 2025) are curated
using VLMs, creating training corpora that combine visual analysis with natural language reason-
ing. Specifically, Zhou et al. (2025) combines NPR (Tan et al., 2023) with LLM, achieving high
detection accuracy with good interpretability. In terms of localization, FakeShield (Xu et al., 2024)
introduces the Segment Anything (Kirillov et al., 2023) module to acquire the tampered mask for
the manipulated image. LEGION (Kang et al., 2025) postfixes the vision encoder with an MLP to
identify the authenticity of the input image. Our work builds on this direction by introducing spatial
grounding and iterative refinement, transforming VLMs from passive analyzers into active visual
investigators that fully leverage their inherent common-sense reasoning.

Training and Fine-Tuning Reasoning-Capable VLMs. Improving the reasoning abilities of
VLMs is essential for tasks demanding sophisticated comprehension (Wu et al., 2025a;c; Yang
et al., 2025a). Early approaches focused on transforming images into structured textual repre-
sentations to facilitate language-based reasoning (Yang et al., 2025b). More recent studies have
emphasized cultivating advanced cognitive skills, such as self-verification, self-correction, foster-
ing “slow thinking” capabilities (Wang et al., 2025a), and regulating reasoning depth to mitigate
issues like “overthinking” (Xiao et al., 2025). Additionally, efforts have concentrated on devel-
oping high-quality multi-modal Chain-of-Thought (CoT) datasets (Huang et al., 2025) to steer the
reasoning process effectively. DeepSeek-Math (Shao et al., 2024) provides a solid foundation and
methodology for fine-tuning large language models. For reward design, in addition to the outcome
reward used in DeepSeek-Math, expert LLMs are also widely used as an online training reward
provider (Lambert et al., 2024). Researchers are also experimenting with using IoU (Pan et al.,
2025) and BLEU (Chang et al., 2025) metrics as rewards. Building on these advances, we train
our VLM with spatially grounded supervision and iterative reasoning objectives, where cropped re-
gions and fine-grained explanations guide the model to link decisions with explicit visual evidence,
thereby enhancing both accuracy and interpretability.

3
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3 METHODOLOGY

3.1 SCAN, CHECK AND VERDICT WITH THE “MAGNIFYING GLASS”

Recently, thinking with image methods equip VLMs with visual tools to enable structured inter-
action with images, allowing step-wise reasoning and improved interpretability (Su et al., 2025c;
Shen et al., 2025; Fan et al., 2025; Su et al., 2025a; Cheng et al., 2025). Motivated by this idea,
we design a detector that explicitly “zooms-in”, encouraging the model to take an additional step of
focused reasoning. Given an input image I , our goal is to build a VLM that outputs a final verdict
v ∈ {real, generated} along with interpretable evidence, including bounding boxes and explana-
tions, by mimicking the human forensic process of scanning, localizing suspicious regions, and then
re-examining them under a magnifying glass. To achieve this, we propose a two-stage inference
pipeline inspired by how humans handle uncertainty: when uncertain about the whole image, they
re-examine and focus more closely on regions that are most likely to be fake in order to increase
confidence. Figure 1 shows the two-stage inference workflow. The setup is detailed below:

Query 1: Global Scan. Given an input image I , we prompt a grounding-capable VLM to perform
comprehensive visual analysis. The model generates:

• Initial verdict v1 ∈ {real, generated}.

• Suspicious regions B = {b1, ..., bn} where bi = (x1, y1, x2, y2) represents bounding box.

• Preliminary explanation E1 articulating the reasoning.

Since VLMs may overlook such regions due to resolution or encoding limitations, magnified and
focused inspection enables refined predictions and more reliable explanations. This stage leverages
the VLM’s ability to process global context while identifying locally anomalous regions, encourag-
ing the model to “think with images” (Su et al., 2025b). Figures 1 and 2 show examples for real and
fake cases, respectively, illustrating the types of regions that warrant closer inspection. We focus on
two types: (i) regions inherently challenging for generative models, such as human faces or hands
(Fig. 1), and fine-grained animal attributes like paws or poses (Fig. 2); and (ii) image-specific details
that are difficult to reproduce, including logos on a referee’s shirt (Fig. 1) or small texts (Fig. 2). By
zooming into these regions, the model reduces global uncertainty, strengthens prediction accuracy,
and provides more reliable explanations.

Query 2: Local Evidence Check. For each identified region bi, we first extract crops Ci =
Crop(I, bi), and then provide the VLM with both the original image I and the crop collection
{Ci}ni=1, enabling comparative analysis between global context and local details. This dual-input
mechanism produces:

• Final verdict v2 ∈ {real, generated}.

• Refined explanation E2 grounded in specific visual evidence.

By providing these image crops Ci, we enrich the input with fine-grained visual tokens, allowing
the model to correct earlier misjudgments through magnified analysis, much like a forensic expert
using a “magnifying glass”. This two-stage verification significantly enhances the accuracy and
interpretability of the prediction. Enabling such reasoning requires training data with fine-grained
annotations and supervision, which motivates the construction of our MagniFake dataset and the
training of ZoomIn.

3.2 MAGNIFAKE DATASET CONSTRUCTION

Our two-stage pipeline requires localization information for both real and AI-generated images. As
discussed earlier, such information should highlight (i) regions inherently challenging for generative
models and (ii) image-specific regions that are difficult to reproduce. While the zoom-in process
mimics the intuition of human forensic experts, VLMs do not naturally possess this capability. To
enable this behavior and improve both grounding accuracy and detection performance, we design a
targeted training strategy based on (I, E,B,C) tuples, providing supervision for classification and
grounding tasks within the pipeline. To acquire grounding-aware training data, we create the Mag-
niFake dataset by leveraging different VLM experts to generate textual explanations and bounding
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boxes. Previous works (Gao et al., 2025; Ji et al., 2025) and our preliminary tests have confirmed
that the OpenAI GPT-4o can produce detailed forensic explanations describing why an image is
real or AI-generated. Additionally, the Qwen-2.5-VL series of VLMs (Qwen Team, 2025) acan ex-
tract spatial regions from these explanations and output bounding boxes, making them well-suited
for generating spatially grounded annotations. We address the lack of spatially grounded forensic
annotations through an automated pipeline as follows:

1. Explanation Generation. For images with known labels, GPT-4o generates forensic explana-
tions focusing on specific visual evidence. The prompt used at this stage is designed to elicit
detailed reasoning about the depicted objects, arrangement, perspective, and other relevant as-
pects of the given images.

2. Spatial Grounding. Qwen-2.5-VL extracts bounding boxes from these explanations, creating
(I, E,B,C) tuples.

An overview of the pipeline is provided in Figure 2, showing the prompts used in the automated
annotation process.

Data Purification. During the spatial grounding phase, the Qwen-2.5-VL model occasionally gen-
erates bounding boxes that cover more than 50% of the image, associating them with over-saturated
global image imperfections. In certain instances, these bounding boxes may revert to object detec-
tion when the primary object is clearly flawed but occupies a limited portion of the image. To ensure
only high-quality fake regions with logical captions are included in MagniFake, we further leverage
a VLM to filter out redundant or excessively large regions from the dataset. This filtration process
evaluates whether the bounding box fully encapsulates the primary object (indicating a regression to
object detection) or is disproportionately large, covering over 50% of the image, effectively remov-
ing them from the MagniFake dataset.

Image Distribution. MagniFake consists of 10,000 real images and 10,000 AI-generated images.
All of which are annotated with explanations and spatial grounding information, among which
99.5% of the images have at least one bounding box, with an average of 3.24 bounding boxes
per image after filtering. The real images are sourced equally from ImageNet (Deng et al., 2009)
and COCO (Chen et al., 2015), and the AI-generated images are equally sourced from GPT-Image-
1 (OpenAI, 2025a) and Gemini 2.5 Flash Image (Google, 2025).

3.3 TRAINING PROCEDURE OF ZOOMIN

With (I, E,B,C) tuples from MagniFake, we fine-tune VLMs to serve as the ZoomIn detector.
Inspired by DeepSeek-Math (Shao et al., 2024), our fine-tuning approach employs a two-phase
training paradigm that combines supervised fine-tuning (SFT) with reinforcement learning (RL)
implemented through Group Relative Policy Optimization (GRPO).

Supervised Fine-tuning Phase. The training begins with SFT to establish foundational capabili-
ties and ensure stable model behavior. During this phase, all trainable parameters across the model’s
vision encoder, projection layers, and language modeling components undergo optimization using
supervised signals from the dataset. This initial phase serves two critical purposes: (1) teaching
the model to generate outputs that conform to our specified structured format, and (2) establishing
baseline performance before applying reinforcement learning techniques.

Reinforcement Learning with Enhanced Rewards. Following SFT, we implement RL through
two GRPO stages. Our reward design extends beyond traditional classification and localization
metrics by incorporating linguistic quality assessment through BLEU scores (Chang et al., 2025).
We define reward functions tailored to two distinct query stages, each addressing specific aspects of
the model’s performance. In the first query, the model generates an initial hypothesis, focusing on
format compliance and localization precision. The reward structure is defined as follows:

• Format Compliance: The reward for correct output formatting is given by:

RF = 1 if output contains valid <verdict> tags. (1)

5
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Symmetrical structure 

with intricate details

The gates are too far 

away from each other

Peanuts not cracked and 

poorly-textured

Precise metallic keyrings; 

consistent shadows
Natural fog and scenery

Branding consistent, 

correct geometry

The CAD diagram is clean 

with identifiable text

Clear blueberry contour, 

natural camera blur
Extra claw; missing eye

Title mismatch; the towel 

should not reflect

from Fake to Realfrom Real to Fake

ZoomIn Refined ZoomIn 
Unchanged

Figure 3: Examples from the test set of MagniFake, captions are summarized from the Query 2
response, generated by ZoomIn-32B.

• Localization Precision: Grounding accuracy is measured by IoU, rewarding precise spatial align-
ment. With bi denoting model-predicted boxes and b̂j annotated boxes, we compute:

RIoU =
1

|B|
∑
i

max
j

IoU(bi, b̂j). (2)

This reward structure ensures the model prioritizes accurate spatial localization and adherence to the
expected output format during the hypothesis generation phase.

In the second query, the model refines its hypothesis, emphasizing correct verdict prediction and
high-quality explanation generation. The reward structure comprises:

• Classification Accuracy: The binary reward for correct verdict prediction is defined as:

RC = 1[v2 = y]. (3)

• Explanation Quality: To encourage contextually appropriate explanations, we compute BLEU
scores between generated explanations and reference texts:

RBLEU = BLEU2(E
′, Eref). (4)

where E′ is the explanation text from the model’s output, and Eref represents the reference expla-
nation from our annotated dataset.

This reward structure drives the model to produce accurate verdicts and coherent, high-quality ex-
planations during the refinement phase. Section 4.3 shows the model performance when BLEU
reward is ablated from the GRPO procedure, or when a correct verdict counts as a reward in the first
query.

4 EXPERIMENTS

4.1 SETUP

We use Qwen-2.5-VL (7B- and 32B-Instruct variants) (Qwen Team, 2025) trained on 8x NVIDIA
A100 GPUs. The learning rates are set to 2× 10−5 (SFT) and 10−5 (GRPO). For ablation, we eval-
uate single-turn variants of Qwen-2.5-VL-Instruct: the untrained base model (Base), a version using
only explanations (E-), explanations with grounding but without refinement (E+G-), and zoom-in
variants trained with SFT only, without GRPO. For baselines, we compare our models against tra-
ditional classification methods, including Community Forensics (Park & Owens, 2024), Antifake

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Detection accuracy and reasoning quality metrics on the MagniFake test set. E- stands for
explanation-only, and E+G- stands for explanation and grounding-only.

Method Acc. I-Acc. C-Acc. C-Cases (%) BLEU-1 BLEU-2 ROUGE-L IoU

ZoomIn-7B 0.942 0.866 0.915 9.2 0.314 0.209 0.291 0.316
ZoomIn-32B 0.972 0.873 0.956 10.9 0.346 0.211 0.327 0.359

E-7B (one-turn) 0.855 - - - 0.280 0.146 0.301 -
E-32B (one-turn) 0.869 - - - 0.294 0.153 0.315 -
E+G-7B (one-turn) 0.906 - - - 0.275 0.136 0.269 0.245
E+G-32B (one-turn) 0.914 - - - 0.282 0.149 0.295 0.254

Base-7B 0.553 - - - 0.110 0.032 0.073 -
Base-32B 0.587 - - - 0.102 0.043 0.079 -
SFT-7B 0.719 0.724 0.447 4.8 0.156 0.042 0.129 0.094
SFT-32B 0.715 0.706 0.584 5.3 0.159 0.076 0.130 0.105

No BLEU Reward-32B 0.929 0.868 0.871 8.2 0.187 0.095 0.153 0.296
Verdict Only-32B (one-turn) 0.897 0.897 - - - - - -
Dual Verdict Reward-32B 0.944 0.948 0.473 7.4 0.276 0.164 0.252 0.260
Random Cropping-32B 0.842 0.873 0.421 19.6 0.105 0.043 0.109 -
Largest 4 Bboxes-32B 0.934 0.873 0.938 7.0 0.303 0.182 0.158 -
Largest 3 Bboxes-32B 0.924 0.873 0.919 6.1 0.299 0.183 0.147 -

FakeShield (Xu et al., 2024) 0.801 - - - 0.097 0.056 0.067 0.096
LEGION (Kang et al., 2025) 0.654 - - - 0.102 0.058 0.054 0.061

Prompt (Chang et al., 2023), DIRE (Wang et al., 2023), CNNSpot (Wang et al., 2020) and NPR (Tan
et al., 2023). For fair comparison, all baselines are retrained on MagniFake’s training split. Due
to their specific design, FakeShield (Xu et al., 2024) and LEGION (Kang et al., 2025) cannot be
directly trained or fine-tuned on MagniFake because of incompatible dataset formats. Instead, we
adopt the released pre-trained weights from FakeShield, and train LEGION on SynthScars (Kang
et al., 2025) to reproduce their results.

4.2 EXPERIMENTAL RESULTS

MagniFake Results. In Table 1, we report MagniFake results for all VLM-based methods, includ-
ing all ZoomIn variants and the baselines LEGION (Kang et al., 2025) and FakeShield (Xu et al.,
2024). Accuracy is reported on the test split of the MagniFake dataset. The results show that our
method’s accuracy surpasses all existing detection methods, even with the smaller 7B variant. No-
tably, compared to the original, untrained VLM baselines, our full pipeline with zoom-in reasoning
yields an accuracy improvement of over 30%. Furthermore, when compared to single-turn variants,
the zoom-in mechanism consistently contributes an additional 3.6% accuracy gain for the 32B and
5.8% for the 7B models, validating our core hypothesis that progressive visual reasoning enhances
detection, reaffirming the paradigm shift to reason and think with images.

OoD Results. In addition to our own dataset, we also evaluate our models on out-of-distribution
(OoD) datasets, including GenImage (Zhu et al., 2023), MMFR-Dataset (Gao et al., 2025) and
SynthScars (Kang et al., 2025). For GenImage, we uniformly sample 10,000 images from the dataset
and ensure that there is no image overlap with MagniFake as we also source some of the real images
from ImageNet. Note that LEGION is trained on SynthScars, so its results on this dataset are not
considered OoD. The scores are reported in Table 2. Our ZoomIn-32B model has an outstanding
OoD performance, surpassing most baseline models and the 7B variant.

Reasoning Quality. The generated reasoning is assessed for similarity to the MagniFake dataset
using BLEU-1, BLEU-2, and ROUGE-L (Lin, 2004) metrics. The grounding capability is evaluated
by the IoU, which represents the grounding accuracy of our models. Table 1 shows that the explana-
tion quality improves for all model variants when introducing the zoom-in mechanism, consistently
improving the responses’ alignment with the ground truth.

Discussions on refinement corrections. Figure 4 demonstrates the correlation of accuracy and
the number of zoom-in regions. We found that after training, the ZoomIn-32B and 7B models
exhibit different tendencies in Query 1. In Query 1, the ZoomIn-32B model outputs an average
of 3.58 bounding boxes per image, while ZoomIn-7B gives 1.95. The 32B model tends to ask for
two to four close-ups per image, summing up to 83.15% among all input samples; meanwhile, the
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Figure 4: The number of bounding boxes in
Query 1 for ZoomIn-32B/7B models.
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Figure 5: The relation of accuracy with regard
to the number of detected bounding boxes.

Table 2: Accuracy (%) of ZoomIn and other comparing methods on MagniFake, GenImage (Zhu
et al., 2023), MMFR-Dataset (Gao et al., 2025) and SynthScars (Kang et al., 2025).

Datasets GenImage MMFR SynthScars MagniFake Average

ZoomIn-32B 0.915 0.893 0.852 0.972 0.908
ZoomIn-7B 0.878 0.892 0.826 0.942 0.885

CommunityForensics (Park & Owens, 2024) 0.854 0.838 0.760 0.876 0.832
Antifake Prompt (Chang et al., 2023) 0.916 0.862 0.819 0.927 0.881

DIRE (Wang et al., 2023) 0.872 0.889 0.815 0.922 0.874
CNNSpot (Wang et al., 2020) 0.853 0.846 0.807 0.855 0.840

NPR (Tan et al., 2023) 0.859 0.816 0.823 0.880 0.844

LEGION (Kang et al., 2025) 0.230 0.193 0.861 0.654 0.485
FakeShield (Xu et al., 2024) 0.864 0.710 0.765 0.801 0.785

7B model provides one or two bounding boxes for 86.34% of the cases. To further investigate the
model performance with regard to the number of bounding boxes, Figure 5 shows that as the number
of bounding boxes grows, the accuracy of ZoomIn-7B slightly lowers, while ZoomIn-32B has its
accuracy spike at two bounding boxes, and performs consistently better than 7B on cases with more
than two bounding boxes. This phenomenon aligns with the fact that most training samples have an
average of 3.24 bounding boxes.

4.3 ABLATION STUDIES

We conducted several ablation studies on the 32B model variant to validate our design choices.
Table 1 shows the experimental results. We report three metrics: the initial accuracy of the first
turn (I-Acc.), the proportion of images forwarded to the second turn (C-Cases), and the corrected
accuracy after refinement in the second turn (C-Acc.).

Contribution of the Zoom-In Mechanism. For ZoomIn-7B and 32B models, 9.2% and 10.9%
of the inputs will have a different verdict in Query 1 and Query 2 (i.e. v1 ̸= v2). Among these
corrected cases, the accuracy is 91.5% and 95.6%, respectively, proving that models can refine their
initial verdict with accurate grounding prior.

Impact of BLEU Rewards. Removing linguistic quality rewards RB (“No BLEU Reward”) lowers
the BLEU-n and ROUGE-L metrics as expected. In addition to these reasoning quality metrics, we
also note a 4.3% accuracy drop and a 6.3% IoU drop. This demonstrates that encouraging the model
to generate coherent explanations improves not just text quality, but also its underlying forensic
reasoning capabilities.

Stage-Specific Rewards. We experimented with applying the classification accuracy reward (RC)
during Query 1, in addition to Query 2. The result in row “Dual Verdict Reward” shows a slight
performance degradation. The model became overly cautious, often failing to propose suspicious
regions unless it was already highly confident in its initial verdict, thus undermining the purpose
of the second-stage refinement. Specifically, with this reward setting, the zoom-in process will no
longer benefit the performance, and the IoU was also lower than the original reward setup. This con-
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firms that focusing Stage 1 rewards on localization is the optimal strategy in exploiting the VLM’s
intrinsic and learned capabilities in image forgery detection. We also attempt to use the verdict as
the only reward and remove the entire zoom-in process (“Verdict Only”). This results in slightly
lower accuracy when compared to the E+G group and is more likely to overfit on the MagniFake
dataset.

Random Cropping. Our two-stage inference pipeline is dependent on both the original image and
cropped images (“Random Cropping”). Therefore, we further ablate the bounding box selection
stage and use random cropping instead. While the model remains as ZoomIn-32B, the bounding
boxes given by the first query are no longer passed on to the second query. Evaluation shows that
when zooming in on random regions, the accuracy can drop to 84.2%, 13.0% lower than the initial
verdict. BLEU-n and ROUGE-L metrics also drop to a level similar to the base model. This indicates
that without intelligent region proposal, the zoom-in mechanism is ineffective and the explanation
quality is low.

Limiting Bounding Box Count. Since Figure 5 indicates that more bounding boxes may negatively
impact model performance, we analyzed the impact of limiting the maximum number of proposed
regions in Query 1 by selectively using the largest n bounding boxes from the response. As shown
in Table 1, using the largest three or four bounding boxes can cause reduced overall performance,
with a 1.8% and 3.7% drop in correction accuracy, respectively.

4.4 QUALITATIVE ANALYSIS

A1: The image appears to be AI-generated due to the 
unnatural lighting and color saturation, which gives it a 
surreal quality. The sky has an unusual gradient and the 
clouds seem too uniform and lack natural texture, …
observe the following regions:

Crop1: [148, 297, 200, 380] The window area seems to 
have an unnatural glow and lacks detail, suggesting 
potential AI generation.
Crop2: [235, 284, 287, 370] Similar to the window above, 
this area also seems to lack natural texture.

Global Scan: FakeQuery 1

Local Evidence Check: RealQuery 2

A2: The building's bricks and windows also appear to be 
genuine. There are no signs of AI generation.
As AI-generated images often struggles to depict 
detailed regions, this image is likely a real photograph.

Figure 6: An example of where ZoomIn-32B corrects its initial
mistake upon zooming-in, finalizing with the correct conclu-
sion that this image is real.

Figure 3 illustrates representative
examples of successful outcomes,
while Figure 6 presents a specific
“corrected case”. In this instance,
ZoomIn-32B determines that the
highly realistic and detailed ren-
dering of window regions effec-
tively refutes its initial assessment,
thereby confirming that the im-
age is likely a genuine photograph
rather than an AI-generated pic-
ture. Certain images with small
text that are not clearly identifi-
able at first sight, minor anatom-
ical issues (e.g., extra finger), or
texture problems are highly likely
to be corrected during the refine-
ment query.

We observe the following common explanation patterns across successful predictions:

Lighting inconsistencies (12.4%): Unnatural reflections, impossible shadows.
Anatomical anomalies (8.6%): Distorted fingers, impossible joint positions.
Texture artifacts & blurry text (8.1%): Unnatural skin textures, clothing patterns.
Perspective errors (4.7%): Impossible spatial relationships, such as overlapping object parts.

Failure cases often involve highly realistic AI-generated images, especially human or animal faces,
where visual artifacts are subtle or imperceptible, even under magnification. Conversely, some real
images with too complex textures or patterns are occasionally misidentified as synthetic.

5 CONCLUSION

We present the MagniFake dataset and the zoom-in mechanism in image forensics, mimicking
human visual examination patterns. Our method achieves both high accuracy (97.2%) and inter-
pretability through spatially grounded explanations. The success of this two-stage approach sug-
gests that complex problems may benefit from decomposition into interpretable sub-tasks rather
than end-to-end black-box solutions.
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A DATASET APPENDIX FOR MAGNIFAKE

The MagniFake dataset comprises 10,000 images (5,000 real and 5,000 AI-generated) annotated
with forensic explanations and spatially grounded bounding boxes through an automated pipeline
combining GPT-4o and Qwen-2.5-VL. This dataset addresses the critical need for grounding-aware
training data in AI-generated image detection, particularly providing spatial localization capabilities
alongside textual reasoning.

A.1 SOURCE OF IMAGES

To ensure comprehensive coverage across different image categories and generation techniques, we
sourced images from established datasets and state-of-the-art generation models.

Real Images. The authentic images are sourced from two widely used computer vision datasets:
ImageNet (Deng et al., 2009) and COCO (Chen et al., 2015). These datasets provide diverse natural
images spanning various object categories, ensuring broad coverage of real-world visual content.
The selection from these datasets guarantees high-quality, authentic photographs that serve as reli-
able negative examples for training.

AI-Generated Images. All synthetic images are created using the OpenAI GPT-Image-1 model
(OpenAI, 2025b), representing state-of-the-art text-to-image generation capabilities. This choice
ensures that our dataset captures contemporary AI generation artifacts and challenges, providing
relevant training examples for current detection scenarios.

A.2 ANNOTATION PROCESS

We developed a completely automated pipeline leveraging the complementary strengths of different
VLMs to generate comprehensive annotations without requiring extensive human labeling.

0% 2% 4% 6% 8% 10% 12%
Percentage (%)

Facial Features

Coloring

Natural Imperfections

Reflections

Lighting & Shadow

Consistency

Texture

3.98%

4.20%

4.42%

6.56%

8.58%

9.35%

11.02%

Figure 7: A statistical analysis of keywords in MagniFake explanations.

Explanation Generation. For images with known ground truth labels, GPT-4o generates detailed
forensic explanations focusing on specific visual evidence that indicates whether an image is real or
AI-generated. The prompts are designed to elicit detailed reasoning about depicted objects, spatial
arrangements, perspective consistency, lighting patterns, and other forensic indicators. GPT-4o’s
strong reasoning capabilities and knowledge of image forensics make it well-suited for generating
high-quality explanatory text that identifies key visual cues.
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The top shelf contains milk 

with different serving sizes 

(1 PINT and 1 QUART), but 

they look identical.

Unpeeled orange slices are 

rarely used as a sandwich 

ingredient.

There’s nothing between 

this candle and the shadow 

on the wall.

More Real Samples:

More AI-Generated Samples:

Figure 8: A collection of images from MagniFake with rendered bounding boxes. The first row
shows three AI-generated images with bounding boxes and corresponding explanations. The second
row presents additional AI-generated samples, while the third row illustrates real images, all anno-
tated with bounding boxes.

Spatial Grounding. Qwen-2.5-VL extracts bounding boxes from the GPT-4o generated explana-
tions, creating spatially grounded annotations in the form of (I, E,B,C) tuples, where I represents
the image, E the explanation, B the bounding boxes, and C the cropped regions. The Qwen-2.5-VL
model demonstrates strong capabilities in extracting spatial regions based on textual descriptions,
making it suitable for converting explanatory text into precise spatial coordinates.
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The trees in the background looks realistic… a closer look at the small wooden structure in the perch …

I I I I I I O… … O O O O O O O O… … 

INPUT

Figure 9: A visualization of the attention mechanisms of the VLM in Query 1.

Quality Control and Filtering. During the spatial grounding phase, we observed that Qwen-2.5-
VL occasionally generates bounding boxes encompassing over 50% of the image area, often asso-
ciated with global image characteristics such as over-saturation mentioned in the explanations. In
some instances, the model reverts to object detection behavior when the primary flawed object occu-
pies only a small portion of the image. To address these issues, we implement a filtering mechanism
that leverages Qwen-2.5-VL to evaluate and remove bounding boxes that either fully encapsulate
the primary object (indicating object detection regression) or cover an excessive portion of the im-
age area. This filtration process ensures that the final annotations focus on specific forensic regions
rather than global characteristics or entire objects.

Word Frequency Analysis. Figure 7 displays the most frequently occurring keywords in the an-
notations. Texture and object consistency emerge as the primary concerns, followed by unnatural
lighting, shadows, and reflections, indicating that these are the features most commonly leveraged
by the model for detecting synthetic content.

A.3 MORE SAMPLES FROM MAGNIFAKE

Figure 8 presents additional examples from the MagniFake dataset, demonstrating the diversity of
forensic indicators captured by our automated annotation pipeline. The first row shows three AI-
generated images with a brief summary of the explanation. We can see that the explanations cover
both fine-grained and general semantic reasoning of why this image should be considered real or
AI-generated. MagniFake features both real and AI-generated images. Four real image samples are
provided at the bottom row. This dataset covers a wide range of reasons, fostering explainability
for fine-tuned models, and also demonstrating the complexity and variability inherent in synthetic
imagery.

A.4 ETHICAL CONSIDERATIONS

All AI-generated images in the dataset are created specifically for this research and do not depict
real individuals. The real images sourced from ImageNet and COCO are used in accordance with
their respective licensing terms and ethical guidelines.

A.5 KNOWN LIMITATIONS

Automated Annotation Bias. While our automated pipeline reduces human annotation costs, it
may inherit biases from the underlying VLMs used for annotation. The quality of explanations
and spatial grounding depends on the capabilities and training data of GPT-4o and Qwen-2.5-VL,
potentially limiting the coverage of subtle or novel forensic indicators.

Language Limitation. All explanations are generated in English, limiting the applicability of the
dataset for multilingual forensic applications. Translation of the nuanced forensic explanations to
other languages would require careful validation to maintain technical accuracy.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10

# Bounding Boxes

100

101

102

103

104

S
am

p
le

s

Models

ZoomIn-32B

ZoomIn-7B

Figure 10: Number of samples grouped by the
bounding boxes on OoD datasets.
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Figure 11: The relation of accuracy with regard
to the number of detected bounding boxes on
OoD datasets.

B VLM ATTENTION VISUALIZATION

In our multi-stage reasoning pipeline, we aim to enable the model to actively “look” for suspicious
or diagnostically relevant regions within images, thereby facilitating deeper, more focused analysis
in the second step. A natural question arises: can the VLM truly identify image regions that are
semantically aligned with the generated text and relevant to the real/fake detection task?

To verify whether our VLM, Qwen-2.5-VL-32B-Instruct, is indeed attending to specific, meaningful
patches of the input image, rather than relying solely on global context or textual priors, we con-
ducted a visualization study using gradient-based attention mapping on a representative sample from
Query 1. Specifically, we generated LLaVA-CAM (Zhang et al., 2024a) heatmaps to highlight the
regions of the image that most strongly influence the model’s output predictions. As shown in Fig-
ure 9, there is a clear and compelling correspondence between the highlighted areas in the heatmap
and the content of the model’s generated textual explanation, confirming that the model can localize
and focus on relevant regions, which lays a solid foundation for the zoom-in process. Moreover,
we observe that attention often centers around keywords (e.g., “realistic”) in the textual explanation,
reinforcing the connection between visual grounding and real/fake decision-critical semantics. This
confirms that the model can meaningfully propose zoom-in regions that support reliable second-
stage analysis.

C MORE EXPERIMENTAL DETAILS

Since real and AI-generated images are not of the same resolution or aspect ratio, we performed
center-cropping and resizing to ensure all input images have a resolution of 512×512 during training.

We use ms-swift to fine-tune VLMs. During the GRPO stage, the number of generations is set to 2.
For ZoomIn-32B, the full training pipeline took 42.6 hours on 8x NVIDIA A100 GPUs. We found
that at least 600 GB of VRAM is required to perform GRPO. For ZoomIn-7B, the training took
35.3 hours on 4x NVIDIA A100 GPUs. The training process is generally stable. A few loss spikes
are observed during the first 1,000 steps of training, but the model quickly converges after that and
recovers from the spike.

Details of Baseline Methods A range of methodologies has been proposed for detecting synthetic
content, each grounded in distinct theoretical assumptions and detection paradigms.

CNNSpot (Wang et al., 2020) hypothesizes that CNN-based generative models leave consistent, de-
tectable artifacts and achieve cross-generator generalization through data augmentation. We trained
CNNSpot from scratch on the training set of MagniFake. The training settings are the same as
described in the original work.
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Table 3: Performance on MagniFake with degradation, including JPEG compression artifacts, ran-
dom cropping and image down-sampling.

Degradation Metric ZoomIn FakeShield LEGION ComFor. AfPr. DIRE CNNSpot NPR

JPEG Compression
(80% Quality)

Acc. 0.970 0.781 0.518 0.832 0.873 0.913 0.849 0.869
IoU 0.355 0.089 0.067 - - - - -

JPEG Compression
(30% Quality)

Acc. 0.964 0.768 0.505 0.791 0.852 0.896 0.837 0.835
IoU 0.347 0.086 0.066 - - - - -

Random Cropping Acc. 0.965 0.756 0.513 0.835 0.877 0.909 0.848 0.866
IoU 0.306 0.061 0.063 - - - - -

Downsampling
(0.5x)

Acc. 0.969 0.759 0.514 0.890 0.886 0.912 0.851 0.874
IoU 0.346 0.075 0.070 - - - - -

Community Forensics (Park & Owens, 2024) adopts a data-centric approach, positing that detection
performance scales with the diversity and quantity of training generators, and introduces a large-
scale dataset comprising thousands of generators to train robust classifiers.

DIRE (Wang et al., 2023) takes a process-centric perspective, exploiting the asymmetric reconstruc-
tion behavior of diffusion models: real and generated images exhibit differing error patterns when
reverse-denoised, forming a discriminative signal known as the DIRE map.

Antifake Prompt (Chang et al., 2023) leverages VLMs and reformulates detection as a visual
question-answering task, employing parameter-efficient soft prompt tuning on a frozen VLM to
enable generalization.

NPR (Tan et al., 2023) utilizes neighboring pixel relationships to identify AI-generated images with
good accuracy and generalizability, as CNN-based generative methods exhibit patterns in neighbor-
ing pixels.

Collectively, these methods represent diverse strategies from artifact analysis to semantic reasoning,
advancing the state of synthetic content detection. During evaluation, all models are trained on the
training set of MagniFake with the same setup as the original work.

D ANALYSIS OF BOUNDING BOXES ON OOD DATASETS

We collected the responses from ZoomIn models when evaluating on OoD datasets, GenImage (Zhu
et al., 2023), MMFR-Dataset (Gao et al., 2025) and SynthScars (Kang et al., 2025). On these OoD
datasets, Figure 10 and 11 display the relation of bounding boxes with regard to model performance,
and the number of detected bounding boxes for each ZoomIn model variant (7B and 32B). The trend
of Figure 10 highly resembles Figure 5 in the main paper, while Figure 11 is slightly different than
Figure 6, where 32B performs better than 7B for cases with more regions selected. This proves
that knowledge from the MagniFake dataset can be adapted beyond the dataset, and 32B generalizes
better than 7B on OoD datasets.

E ROBUSTNESS AGAINST DEGRADATIONS

We evaluate the robustness on MagniFake under four common degradations: JPEG compression at
80% and 30% quality, random cropping, and 0.5× downsampling (Table 3). All methods exhibit
performance drops relative to clean images, with the extent varying across perturbations and models.

ZoomIn attains the highest accuracy in every setting and the best IoU among methods that pro-
duce localization, with modest declines across degradations (IoU: 0.355 at JPEG 80%, 0.347 at
JPEG 30%, 0.346 under downsampling, and 0.306 with random cropping). Random cropping is
most detrimental to localization quality, while heavy JPEG compression tends to reduce classifi-
cation accuracy the most for several baselines. Among the baselines, DIRE consistently produces
the best results, followed by AntifakePrompt and CommunityForensics, whereas all VLM-based
methods show good robustness against JPEG compression. Downsampling by 50% affects the per-
formance across the models nonuniformly.
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These results indicate that, despite relatively strong robustness, current detectors remain sensitive to
common real-world degradations, while VLM-based methods have a lower rate, suggesting oppor-
tunities for improvement via degradation-aware training, stronger invariances, and reduced reliance
on dataset-specific biases.

F COMPUTATIONAL EFFICIENCY

Table 4: Mean and standard deviation of inference
time per image.

Method Seconds / Image

ZoomIn-32B 24.0±3.0
E-32B (one-turn) 10.9±2.2

ZoomIn-7B 8.94±1.21
Base-7B (one-turn) 4.38±0.71

LEGION 11.3±2.61
FakeShield 60.4±5.33

NPR 0.105±0.02
AntifakePrompt 0.182±0.05

Table 4 lists the end-to-end inference time
for our trained VLMs. We use vllm (Kwon
et al., 2023) to accelerate the inference pro-
cess. The deployment of ZoomIn-32B takes
4x NVIDIA A100-40G GPUs connected with
PCI-E. ZoomIn-7B, however, is deployed on
one NVIDIA A100-40G GPU. While our two-
stage approach increases inference time from
traditional classification methods, this overhead
is justified by accuracy improvements and in-
terpretability gains. For high-stakes forensic
applications, the trade-off favors thoroughness
over speed.

G LIMITATIONS & FUTURE WORK

The generalization capability of our method has not yet been thoroughly evaluated. In future work,
we aim to conduct more comprehensive assessments using a broader range of datasets and image
sources to better understand the model’s detection accuracy across diverse scenarios.

While our current approach equips the model with a cropping tool to facilitate image-based rea-
soning, this represents only a preliminary step toward enabling true visual thinking. Despite its
effectiveness, there remains significant potential for further exploration in this direction, particularly
in developing more sophisticated interactive mechanisms that empower the model to dynamically
analyze and reason over visual content.

H THE USE OF LARGE LANGUAGE MODELS

For this submission, we used large language models solely as writing assistants to improve grammar
and fluency. They were not used for research ideation, methodological design, or generation of
experimental results. The research itself studies vision-language models as part of the proposed
forensic framework, including their use in dataset annotation, which is integral to the contribution
of this work. All ideas, experiments, and analyses were conceived, designed, and verified by the
authors, who take full responsibility for the content of the paper.
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