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ABSTRACT

Differentiable Search Indices (DSIs) encode a corpus of documents in the pa-
rameters of a model and use the same model to map queries directly to relevant
document identifiers. Despite the solid performance of DSI models, successfully
deploying them in scenarios where document corpora change with time is an open
problem. In this work, we introduce DSI++, a continual learning challenge for DSI
with the goal of continuously indexing new documents while being able to answer
queries related to both previously and newly indexed documents. Across different
model scales and document identifier representations, we show that continual in-
dexing of new documents leads to considerable forgetting of previously indexed
documents. We also hypothesize and verify that the model experiences forgetting
events during training, leading to unstable learning. To mitigate these issues, we
investigate two approaches. The first focuses on modifying the training dynamics.
Flatter minima implicitly alleviates forgetting, so we explicitly optimize for flatter
loss basins and show that the model stably memorizes more documents (+12%).
Next, we introduce a parametric memory to generate pseudo-queries for docu-
ments and supplement them during incremental indexing to prevent forgetting for
the retrieval task. Extensive experiments on a novel continual indexing bench-
marks based on Natural Questions (NQ) and MS MARCO demonstrate that our
proposed solution mitigates the forgetting in DSI++ by a significant margin and
improves the average Hits@10 by +21.1% over competitive baselines for NQ.

1 INTRODUCTION

Differentiable Search Indices (DSIs; Tay et al. (2022)) represent a new modeling paradigm for infor-
mation retrieval tasks using sequence-to-sequence learning. Specifically, DSIs leverage Transformer
memory (Vaswani et al., 2017) to encode all of the information in a corpus of documents and then
use that memory to answer user queries directly, thereby simplifying the retrieval process. DSIs
achieve this functionality by jointly optimizing for indexing (or memorization) and retrieval tasks.
The indexing task requires learning a mapping from document content to its identifier, typically rep-
resented by integers or short strings (document identifiers, abbreviated docids). Then, the retrieval
task necessitates mapping user queries to relevant docids. Apart from its simplicity and end-to-end
differentiable nature, DSI significantly outperforms state-of-the-art “retrieve-and-rank” methods,
based on dual-encoders (Ni et al., 2022).

Despite the remarkable performance of DSI models, there remain open questions about their ap-
plicability in the practical setting of dynamic corpora. Consider the realistic scenario wherein new
documents are continually added to the indexed corpus. Updating the index in dual-encoder based
methods requires computing embeddings for new documents, followed by re-indexing all document
embeddings (Karpukhin et al., 2020). In contrast, index construction using a DSI involves training
a Transformer model. Therefore, the model must be re-trained from scratch every time the underly-
ing corpus is updated, thus incurring prohibitively high computational cost in comparison to dual-
encoders. In this work, we aim to address this issue by devising methods for effective incremental
indexing using Transformer memory, without re-training the DSI model from scratch.

Continual (or incremental) learning (Thrun, 1995; Parisi et al., 2019) is a biologically-inspired ma-
chine learning paradigm that deals with continuous learning of new tasks by preserving past knowl-
edge and using it to efficiently learn new concepts. Based on this paradigm, we propose DSI++ (DSI
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Figure 1: (a) Indexing accuracy ofD0, D1, andD2 document corpora visualized as we continuously
index new documents (averaged over 3 runs). We observe that continual indexing of new documents
leads to severe forgetting of the previously memorized documents. (b) Cumulative histogram of
forgetting events, i.e., events when individual documents go from being classified correctly to incor-
rectly, over the course of memorization of the initial D0 corpus (T5-Base w/ Adafactor optimizer).

+ new documents), a continual learning challenge for DSI to incrementally index new documents
while maintaining the ability to answer user queries related to both previously and newly indexed
documents. To enable DSI++, we introduce a novel benchmark constructed from the existing Natu-
ral Questions (Kwiatkowski et al., 2019) dataset, simulating continual addition of documents to the
system. To the best of our knowledge, there is no prior work studying incremental learning for DSI.

A naive solution for DSI++ is to continuously fine-tune the model with an indexing objective over
new documents. However, Figure 1a shows that continual indexing of new documents leads to
catastrophic forgetting of the previously memorized documents (more details in §2.1), a common
phenomenon in connectionist networks wherein learning of the new concepts interferes with the
previously acquired knowledge (McCloskey & Cohen, 1989; French, 1999). Furthermore, when we
investigate the learning dynamics of the DSI model during memorization (Figure 1b, we observe a
significant number of documents (approx. 88%) experience forgetting events after they have been
memorized. Concretely, a forgetting event (Toneva et al., 2019) is defined as when an individual
document goes from being classified correctly to incorrectly over the course of learning. Therefore,
implicit forgetting during memorization and explicit forgetting from continual indexing of new doc-
uments are two key challenges that must be overcome to successfully implement a DSI++ system.

Mirzadeh et al. (2020) show that geometrical properties of the minima play a role in forgetting.
In particular, models in flatter minima tend to undergo less forgetting. Further, Mehta et al. (2021)
showed that explicitly optimizing for flatter loss basins using Sharpness-Aware Minimization (SAM;
Foret et al. (2021)) reduces forgetting. Building on these works, we show that flatter minima induced
by SAM reduce implicit forgetting during memorization, thereby leading to more stable memoriza-
tion. Next, to alleviate explicit forgetting from continual indexing of new documents, we investigate
how to effectively index both old and new documents. We propose leveraging a parametric memory
to generate pseudo-queries for old and new documents and use them during continual indexing to
mitigate retrieval task forgetting. Our main contributions can be summarized as follows:

• We introduce DSI++, a continual learning challenge for Differentiable Search Indexes. To
enable DSI++ evaluations, we create a benchmark based on the existing Natural Ques-
tions (Kwiatkowski et al., 2019) dataset. To understand the severity of the forgetting phe-
nomenon across multiple scenarios, we analyze a suite of pre-trained models (T5-Base,
T5-Large, T5-XL) and different document identifier representations.

• We hypothesize and verify that the DSI model experiences forgetting events throughout
memorization. To alleviate these, we propose modifying training dynamics to promote
flatter minima using SAM and show that the model stably memorizes +12% documents.

• We propose generative memory-based experience rehearsal approach to alleviate explicit
forgetting during continual indexing and improve the average Hits@10 by +21.1% over
considered baselines.
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2 DSI++: CONTINUAL LEARNING CHALLENGE FOR DSI

2.1 PROBLEM SETUP

We focus on a setup where we receive an initial corpus of documents, D0 = {d1, · · · , dn}, and user
queries corresponding to a subset of them, R0 = {< qj , j >,∀j ∈ YD}, where D ⊂ D0. DSI
paradigm involves two tasks: (i) memorization task where the goal is to learn an indexer fθ : X →
Y , a text-to-text model like T5 (Raffel et al., 2020) parameterized by θ ∈ RP , that takes document
tokens (x ∈ X ) as input and maps it to a document identifier (docid) j ∈ Y , and (ii) retrieval task
where the goal is to use the same indexer fθ to directly map a user query q to a relevant docid j ∈ Y .
Following Tay et al. (2022), two different prompts are used to differentiate between these tasks.

Tay et al. (2022) discuss several variants for representing docids – unstructured atomic and struc-
tured string docids, where each document is assigned a unique token and tokenized string, respec-
tively. Under the unified text-to-text format, both of the above tasks are cast as generation tasks, i.e.,
decoding one unique token (unstructured atomic) or decoding a tokenized string sequentially, one
token at a time (naively/ semantically structured).

For DSI evaluation, we report indexing accuracy for memorization task and Hits@N (N ∈ {1, 10})
metric for retrieval task. Indexing accuracy and Hits@N are defined as the proportion of documents
correctly memorized and the proportion of correct documents ranked in the top N predictions, re-
spectively. To simulate a dynamic corpus scenario, we sequentially update the D0 corpus with
batches of documents D1, D2, ... where D1 arrives first followed by D2, and so on. Moreover, with
the new Di corpus, we do not assume any queries corresponding to documents.

Goal: Learn a DSI++ system that incrementally indexes D1, D2, · · · in fθ while being able to
answer queries related to previously as well as additionally indexed documents.

2.2 BENCHMARK FOR DSI++.

To enable research on DSI++, we introduce a new benchmark constructed from the Natural Ques-
tions dataset (NQ; Kwiatkowski et al. (2019)). The NQ dataset consists of Wikipedia articles and
corresponding natural language questions. Similar to Tay et al. (2022), we consider Wikipedia ar-
ticles for memorization and the retrieval task as identifying the Wikipedia article that answers the
given question. We use the original NQ train split to construct train(80%)/ validation(20%) splits
and use NQ validation as a test split for our setup. We randomly sample 50K unique articles to con-
stitute the initial D0 corpus. Next, we construct five corpora (D1, · · · , D5), each containing 10K
unique articles, to sequentially add them to the DSI model. Corresponding to articles in each of these
corpora, we filter queries from original NQ train/ validation splits to construct Rtraini , Rvali , Rtesti
(∀i ∈ {0, · · · , 5}) splits. Except for R0, one only requires Rtesti to evaluate for retrieval on previ-
ously and newly indexed articles. Table 2 (in Appendix A.1) reports exact dataset statistics. Simi-
larly, we construct another benchmark from the MS MARCO dataset (Nguyen et al., 2016).

2.3 EVALUATION METRICS

In this subsection, we formally define metrics to summarize the model performance as we incremen-
tally index new documents. Let Pn,o denote the performance (e.g., indexing accuracy) on corpus
o after training on corpus n. Following prior works (Lopez-Paz & Ranzato, 2017; Riemer et al.,
2019), we compute the average performance (An), forgetting (Fn) and learning performance
(LAn) metrics after indexing the corpus n.

Fn (or backward transfer) measures the influence of continual indexing the corpus n on the perfor-
mance of all previously indexed documents o, (0 ≤ o < n). LAn measures the learning capability
when the model sees a new corpus n (or forward transfer) and is defined to be average over new
corpora (1, · · · , n). Say we incrementally index nth corpus, then An, Fn and LAn are defined as
follows:

An =
1

n+ 1

n∑
o=0

Pn,o; Fn =
1

n

n−1∑
o=0

max
o′∈{0,··· ,n−1}

(Po′,o − Pn,o); LAn =
1

n

n∑
o=1

Po,o (1)
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Figure 2: Systematic study about forgetting and forward transfer when incrementally indexing new
corpus of documents across different model sizes (T5-Base, T5-Large, T5-XL) and docid represen-
tations. We use atomic docids by default and denote (N)/(S) for naively/ semantically structured
docids. ↑ indicates higher is better, ↓ indicates lower is better. We observe that by increasing the
model scale, the average An and learning LAn performance improves. However, forgetting Fn is
severe across all model scales. Moreover, we observe that naively structured docids, T5-Base(N),
underperform unstructured atomic docids, T5-Base, across all metrics - indexing accuracy, Hits@1,
(see Figure 5 in Appendix A.3 for Hits@10 results). Imbuing the docid space with semantic (S)
structure alleviates the forgetting compared to an arbitrary/ naive (N) structure.

2.4 CASE STUDY: CATASTROPHIC FORGETTING AND FORWARD TRANSFER

After introducing the DSI++ problem setup, benchmark, and evaluation metrics, we study the be-
havior of the DSI model as new documents are continuously added to the system. Concretely, we
are interested in investigating the following for continual training of the DSI model with indexing
objective on new documents – (Q1) How severe is the forgetting for the originally indexed docu-
ments?, (Q2) How does continual updating of the DSI model over a sequence of corpora affect the
forgetting?, (Q3) How does the updated DSI model perform on newly indexed documents, especially
the retrieval task?, (Q4) How do different docid representation strategies affect forgetting?, and (Q5)
How does the DSI model scale affect forgetting? Figure 2 visualizes results (averaged over 3 runs)
on the validation split of DSI++ and help us convincingly answer these questions.

Forgetting (or negative backward transfer). From Figure 2, we see that T5-Base model with
atomic docid representation (blue line plots), undergo significant forgetting and this trend holds
across all DSI evaluation metrics - indexing accuracy, Hits@1, and Hits@10 (see 5 in Appendix
A.3). For the originally indexed D0 corpus, indexing accuracy and Hits@1 drop by approx. 25 and
20 points, respectively. Further, as we continue indexing the sequence of D1, · · · , D5 corpora, we
see that forgetting becomes even more severe. For example after continual indexing the D5 corpus,
F5 (forgetting) for indexing accuracy increases to 75. These results provide evidence to answer (Q1)
& (Q2) that the DSI model undergoes severe forgetting under continual indexing of new documents.

Forward transfer. To answer (Q3), we visualize the learning performance (LAn) for all DSI met-
rics for sequential indexing. From Figure 2, we see LAn increases for indexing accuracy, suggesting
that the DSI model is plastic enough to index new documents. However, from Figure 2, we see a de-
clining trend for Hits@1. Due to the continuous indexing updates, the underlying DSI model drifts
and becomes less effective for the retrieval task. These findings hint at an approach that replays
indexing and retrieval tasks during continual learning (hence our proposed method in Section 4).

Docid representations. For studying (Q4), we consider unstructured atomic, naively(N) structured,
and semantically(S) structured docid representations. From Figure 2, we see that T5-Base(N) un-
derperforms T5-Base by a significant margin. For example, average performance A0 for Hits@1
metric is approx. 30 and 39 for naive and atomic docids, respectively. Furthermore, as the naively
structured approach treats unstructured docids as tokenizable strings as opposed to dedicated unique
tokens in the case of atomic docids, they are relatively more prone to interference from new docids
(see Fn subplot for indexing accuracy). Imbuing semantic structure to the naive docid space helps
to reduce forgetting however still underperforms unstructured atomic docids.
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(b) Cumulative histogram of forgetting events

Figure 3: Investigating the effectiveness of SAM for alleviating implicit forgetting in the T5-Base
model. (a) We observe serious fluctuations in the indexing accuracy in the case of the Adafactor op-
timizer, thereby, suggesting unstable memorization. SAM leads to relatively stable memorization of
the documents. (b) A forgetting event (Toneva et al., 2019) is defined when an individual document
goes from being classified correctly to incorrectly over the course of memorization. SAM increases
the percentage of examples experiencing zero forgetting events by absolute 12% over Adafactor.

Model scale. As atomic docids are superior to naive docids, we only consider atomic docids for an-
swering (Q5). From Figure 2, we observe that larger models outperform their smaller counterparts in
terms of the average performanceAn and the learning performance LAn (T5-XL> T5-Large> T5-
Base). However, empirically we report that forgetting Fn is severe across all model scales, without
any clear best performer, and therefore, we focus on T5-Base for the rest of our experimentation.

3 IMPLICIT FORGETTING DURING MEMORIZATION: SAM

Memorization (or indexing) is a primary task in the DSI paradigm (Tay et al., 2022) where the goal
is to learn a neural corpus indexer that takes document content as input and maps it to a document
identifier (docid). Under unstructured atomic docid representation strategy, each docid is assigned a
unique token / class label. Now given the large number of documents in the corpus (even more than a
million), memorization constitutes an instance of challenging extreme classification setting (Bengio
et al., 2019). Furthermore, for every class, we have only one labeled example (i.e., document and its
identifier), making this task setup rare. Motivated by this largely unexplored setup, we investigate
the learning dynamics for the memorization task over the course of training.

Forgetting events. In Figure 3a, we visualize the indexing accuracy for T5-Base model, optimized
with Adafactor (Shazeer & Stern, 2018), and note that the model performance fluctuates a lot over
the course of training, thereby suggesting unstable memorization. We hypothesize that the model
continuously undergoes the forgetting phenomenon wherein subsequent mini-batch updates interfere
with the previously memorized documents. To differentiate this phenomenon from forgetting due
to adding new documents, we refer to earlier one as implicit forgetting and the latter as explicit
forgetting. To quantify instability during memorization, we compute forgetting event (Toneva et al.,
2019) statistics. Forgetting event is defined when an individual document goes from being classified
correctly to incorrectly over the course of memorization. In Figure 3b, we plot the cumulative
histogram of forgetting events and see that almost 88% of the documents undergo forgetting at least
once, thus, validating our hypothesis about implicit forgetting.

Flatter minima and forgetting. Mirzadeh et al. (2020) shows that during sequential learning of
tasks, geometric properties of the minima for each task affect forgetting. Specifically, Mirzadeh
et al. (2020) derives an upper bound for forgetting in terms of the maximum eigenvalue λmax1 of
the Hessian for task loss at minima. Therefore, by lowering λmax1 (or alternatively promoting flat-
ter minima), one can mitigate forgetting of previous tasks. Further, Mehta et al. (2021) shows
that pre-trained initialization implicitly alleviate forgetting as they prefer flatter minima and explic-
itly optimizing for the flatter loss basins using Sharpness-Aware Minimization (Foret et al., 2021)
(SAM) further lessens forgetting. Based upon these observations, we hypothesize that modifying
the training dynamics of memorization task using SAM should alleviate implicit forgetting.
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Sharpness-Aware Minimization. For the loss function f , SAM seeks to find the parameters w
that lie in the neighborhood with uniformly low loss regions by optimizing the following minimax
objective: minwmax||ε||2≤ρ f(w+ ε), where the maximization region is defined to be a `p ball with
radius ρ for p = 2. Foret et al. (2021) estimates the gradient of the inner maximization by employing
first-order approximation as follows: ∇wmax||ε||2≤ρ f(w + ε) ≈ ∇wf(w)

∣∣
w+ε̂(w)

, where ε̂(w) =

ρ∇wf(w)/||∇wf(w)||2. For complete details about this derivation, we defer readers to (Foret et al.,
2021). Building on this work, Bahri et al. (2022) demonstrates successful applicability of SAM for
language model generalization, especially in pre-trained T5 models. We mainly follow (Bahri et al.,
2022) to set our hyper-parameters: ρ = 0.15, batch size=32 for inner maximization step.

SAM alleviates Implicit forgetting. We investigate the applicability of SAM for alleviating implicit
forgetting phenomenon. Concretely, we use pre-trained T5-Base model to memorize D0 corpus,
containing 50K unique documents. We compare the performance of the SAM optimizer with the
vanilla Adafactor optimizer. In Figure 3a, we see that SAM outperforms Adafactor in terms of the
overall indexing accuracy. Further, we note that SAM undergoes less severe fluctuations during the
course of training, thus, hinting at lesser forgetting. To bolster this claim, in Figure 3b, we see that
SAM has significant more percentage of documents corresponding to lower cumulative number of
forgetting events. For example, SAM stably (with zero forgetting events) memorizes +12% more
documents compared to Adafactor. We also note that SAM (35.9 ± 2.2) outperforms Adafactor
(32.5± 6.4) when evaluated on the retrieval task (Hits@1) corresponding to D0. Therefore, we set
SAM to be our default optimizer for rest of the experiments.

4 EXPLICIT FORGETTING: GENERATIVE MEMORY

DSI paradigm consists of two tasks – memorization and retrieval. In the previous section, we show-
case that SAM alleviates implicit forgetting by stably memorizing documents. In this section, we
focus on the forgetting phenomenon that arises from the continual indexing of new documents,
specifically in the context of the retrieval task. Through our systematic study (in Section 2.4), we
show that irrespective of the model scale and docid representations, DSI models undergo severe for-
getting. Moreover, we observe that the learning performance LAn keeps declining for the retrieval
task (see Figures 2 and 5 for Hits@1 and Hits@10, respectively). This observation suggests that as
we continuously update the DSI model with the indexing objective, the model starts to forget the
retrieval task. In DSI, both memorization and retrieval tasks return docid for the given input, so by
setup, we can assume access to the contents of the previous documents and continue indexing both
old and new documents with the hope to reduce forgetting of the retrieval task. However, in Figure
4, we see that the model still undergoes forgetting (more discussion in Section 5.3).

Episodic memory. According to the Complementary Learning Systems (CLS) (McClelland et al.,
1995) theory, humans rely on an episodic memory – a module that stores past experiences to re-
hearse/ revisit them and thereby retain previously learned knowledge. Based on this motivation,
memory-based approaches (Sodhani et al., 2022) for continual learning use a subset of previous task
data to regularize the future task learning while minimizing forgetting. Experience Replay (ER)
(Chaudhry et al., 2019) is one such approach that samples previous task data (from episodic mem-
ory) to co-train with the current task. Based upon this line of work, one approach for DSI++ is to
retain ground-truth queries for the retrieval task in an episodic memory and use them to co-train
with incremental indexing task. However, in DSI++, we do not have access to ground-truth queries
for an incoming stream of new documents. Even if one retains queries for the initial D0 corpus, we
show in Table 1 that such a method suffers from forward transfer to newly indexed documents.

Generative memory. Recent years have seen significant progress in the capabilities of the gen-
erative language models (Raffel et al., 2020; Brown et al., 2020). Motivated by the success of
these models and in-applicability of the episodic memory for DSI++, we pose a questions – instead
of retaining the ground-truth queries, can we learn a parametric model to generate such queries
given a document? Concretely, we propose to train a query generator model to sample queries for
previously seen documents, and supplement them during incremental indexing. Since we use the
generator model to sample queries for sparse experience replay, hence our proposed method – gen-
erative memory. Moreover, generative memory is also used to generate pseudo-queries for incoming
batch of new documents, thus, enabling semi-supervised learning of the retrieval task.
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Added Method Eval corpus = D0 Eval corpus = D1

corpus (Catastrophic forgetting) (Forward transfer)
Index acc. Hits@1 Hits@10 Index acc. Hits@1 Hits@10

D0 - 81.81.2 35.92.2 66.90.9 - - -

D1
cl(D1) 52.43.5 19.23.9 43.65.7 96.50.0 31.76.4 55.64.9
cl(U1 = D0 ∪D1) 78.20.5 28.98.9 59.07.9 91.80.4 34.02.4 60.21.9

D1
cl(U1)+epsmem(D0) 77.80.5 22.91.5 51.40.5 93.10.0 13.12.1 39.63.1
cl(U1)+genmem(D0) 77.80.3 26.06.9 54.98.3 93.00.5 8.64.8 31.611.8

D1
cl(U1)+epsmem(D1) 53.23.1 7.72.1 26.02.0 96.50.0 48.32.3 70.71.9
cl(U1)+genmem(D1) 50.10.8 7.01.2 23.12.2 96.50.0 57.71.5 76.70.9

D1 cl(U1)+genmem(U1) 78.20.3 18.42.8 47.53.9 92.10.3 48.56.1 73.82.9

Table 1: Comparing performance on incremental indexing of D1 corpus across different methods
- cl(D1): continue fine-tuning with indexing task on D1, cl(U1): continue fine-tuning on the up-
dated corpus U1, cl(U1)+epsmem(D): continual indexing of U1 along with ER of queries for D,
cl(U1)+genmem(D): continual indexing of U1 along with ER of pseudo-queries for D. We observe
that continual indexing on the updated corpus cl(U1) reduces forgetting in comparison with just
indexing new corpus cl(D1). Next ER with either D0 or D1 hurts forward transfer or forgetting,
respectively. Our proposed approach of augmenting pseudo-queries for all documents along with
continual indexing, cl(U1)+genmem(U1), alleviates forgetting and improves forward transfer.

5 EXPERIMENTATION

5.1 IMPLEMENTATION DETAILS

We utilize the pre-trained T5-Base (Raffel et al., 2020) model to initialize all models and randomly
initialize the additional parameters for atomic docid tokens. While indexing D0 corpus, we train all
the models for a maximum of 1M steps with a warmup of 100K steps. During continual indexing
of other corpora, we train for a maximum of 100K steps with a warmup of 100 steps. For the
rest of hyper-parameters, we follow Tay et al. (2022) – set a learning rate to 0.001, batch size to
128, and input sequence length to 32. We evaluate models after every 5K steps and retain the
checkpoint yielding the best performance. For the initial training with D0 corpus, we co-train on
indexing and retrieval tasks, therefore we use the average of all DSI metrics (indexing accuracy,
Hits@1, and Hits@10) for model selection. For the continual learning experiments, we have access
to only indexing accuracy for all involved corpora and so we use it for model selection. For training
generative memory, we use retrieval dataset R0 (corresponding to D0 corpus). We set the maximum
sequence length for document contents to 1024, target length for generated queries to 32, batch
size to 128, train for a maximum of 100K steps, and use BLUE for model selection. We use beam
decoding to generate pseudo-queries. We tune the learning rate amongst {0.001, 0.0005} and linear
warmup amongst {1K, 10K}. For all our experiments, we use T5X (Roberts et al., 2022) framework
along with 4-8 TPUv4 chips for training the models.

5.2 METHODS

We compare our proposed generative memory with following methods:

• continual indexing, cl(Dn). The DSI model is sequentially fine-tuned with the indexing objective
on the incoming corpus of documents Dn.
• continual indexing with all seen documents, cl(Un). The DSI model is continuously fine-tuned
with the indexing objective on the updated corpus Un (=

⋃n
i=0Di). Also, we sample documents

from old (
⋃n−1
i=0 Di) and new (Dn) corpora in equal proportion.

• experience replay using generative memory, genmem(Dn). In this method, the proposed gen-
erative memory model is used to generate pseudo-queries corresponding to the corpus Dn. Next,
these pseudo-queries are used for experience replay of the retrieval task samples.
• experience replay using episodic memory, epsmem(Dn). In this method, ground-truth queries
corresponding to the Dth

n corpus are used for experience replay of the retrieval task.
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Figure 4: Investigating the effectiveness of generative memory in mitigating forgetting when con-
tinuously indexing new corpus Dn (T5-Base model and atomic docids representation). ↑ indi-
cates higher is better, ↓ indicates lower is better. We observe that continual indexing of old
and new documents cl(Un) help to alleviate forgetting of older documents when evaluated on re-
trieval tasks. However, average Hits@10 (An) still undergo 23 points drop after sequential updates
(D0 → D1 · · · → D5). Generative memory enables sparse replaying of old and new documents
pseudo-queries. We observe that by augmenting generative memory during continual indexing not
only reduces the forgetting (Fn) but also improves average Hits@10 (An) by +21.1% over consid-
ered baselines (see Figure 6 in Appendix A.3 for Hits@1 results).

5.3 RESULTS

In this section, we revisit some of the questions, (Q1)-(Q3), raised in our case study (see Section 2.4)
to investigate effectiveness of our proposed generative memory-based approach. Towards answer
these questions, in Table 1, we report the performance of the DSI model on D0 (to study forgetting
phenomenon) and D1 corpora (to answer forward transfer question) after continual indexing on D1.
In Figure 4, we report overall performance across DSI metrics as we continuously update the model
with the sequence of five corpora (D1, · · · , D5). See Table 3 for results on MS MARCO dataset.

Does generative memory alleviate forgetting of old documents? In Table 1, we report Hits@1
to be 35.9 for the model after training on D0. We see that continually indexing both D0 and D1

corpora (cl(U1) - 28.9), significantly reduce forgetting the retrieval task (Hits@1) over just index-
ing the new corpora D1 (cl(D1) - 19.2). Next, we look at the performance of the ER approaches
when augmented with the continual indexing of all documents. We see that both episodic memory
(cl(U1)+epsmem(D0) - 22.9), and generative memory (cl(U1)+genmem(D0) - 26.0) reduce forget-
ting compared to cl(D1) when we replay (pseudo-)queries corresponding to D0 corpus. Moreover,
generative memory outperforms episodic memory, without retaining original queries. Although
from Table 1, we see generative memory underperforms cl(U1), from Figures 4 and 6, we see that
generative memory outperforms cl(U5) both in terms of average performance An and forgetting Fn
over five sequential updates. These results convincingly show that the ER with generative memory
significantly alleviate forgetting the retrieval task compared to considered baselines.

Does generative memory enable forward transfer to new documents? One of the goals of DSI++
is to enable answering queries related to newly indexed documents. Towards this goal, in Table 1, we
look at the retrieval task performance (Hits@1 metric) for D1 after incrementally indexing D1. To
compare different methods, we consider a baseline in the form of ER with ground-truth queries for
D1 (cl(U1)+epsmem(D1) - 48.3). We see that without any fine-tuning on the retrieval task for D1,
incremental learning with indexing objective shows impressive forward transfer (or zero-shot gains,
cl(D1) - 31.7 and cl(U1) - 34.0). Moreover, ER with generative memory outperforms supervised
baseline (cl(U1)+genmem(D1) - 57.7). However, we notice that replaying queries corresponding to
either D0 or D1 hurt forward transfer to D1 (cl(U1)+genmem(D0) - 8.6) or amplify forgetting of
D0 (cl(U1)+genmem(D1) - 7.0), respectively. These results suggest that memory module should
include (pseudo-)queries corresponding to both old and new documents. From Figure 4, we see that
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continual indexing method cl(Un) has a downward trend for LAn (Hits@10), therefore, eventually
forgetting the retrieval task. On the other hand, ER with generative memory is relatively constant,
providing evidence against forgetting. In summary, we show that ER with the generative memory
improves the overall performance for the retrieval task, reducing forgetting of previously indexed
documents and enabling forward transfer to newly indexed documents.

Investigating sparsity of experience replay (ER) on forgetting. ER with generative memory co-
trains the indexing and pseudo-labeled retrieval tasks. Tay et al. (2022) introduces a mixing ratio
r to define the ratio of indexing to retrieval samples. The mixing ratio is inversely related to the
sparsity of ER, i.e., higher r (more indexing samples) corresponds to sparse updates from pseudo-
labeled retrieval samples. Following (Tay et al., 2022), we consider r = {2, 32} for our analysis.
From Figure 4, we see that r = 32 (sparse replay) slightly outperforms r = 2 in terms of average
performance, forgetting and learning accuracy. These results suggest that even sparse regularization
updates from ER positively influence the backward and forward transfer in DSI++.

Analyzing index construction time for DSI++. Index construction using DSI involves training a
Transformer model. DSI++ setup enables incremental updating of the indexer. We require 350K
training steps to index D0 corpus of 50K documents. If we index an additional D1 to D5 corpora
(10K each) by re-training the DSI model every time, the total number of steps would be around
1.75M. On the other hand, our proposed approach requires just above 300K additional updates to
incrementally index all five corpora, almost 6 times fewer updates.

6 RELATED WORK

We review relevant prior works along two dimensions – application setups related to DSI++, and
approaches to alleviate forgetting during continual learning. Petroni et al. (2019) views pre-trained
language models as knowledge bases. Based on this Zhu et al. (2020) introduces an experimentation
setup where task is to update facts stored within the pre-trained models. Next, De Cao et al. (2021)
introduces, KnowledgeEditor, a hyper-network based method to efficiently update the facts. Al-
though interesting line of works around fact updation, it is challenging to know whether pre-trained
models have actually learned the fact or our probing mechanism is unable to extract the relevant
facts. On the other hand, we explicitly focus on the memorization task in DSI++. This helps us to
answer questions related to catastrophic forgetting more convincingly rather than bounded by the
mechanism how we probe these models.

For a fixed capacity model – (1) Regularization-based approaches constrain the model updates by
adding a penalty term to the original objective. However, these approaches are too stable and pre-
vent learning new tasks, (2) Optimization-based approaches encode the necessary inductive biases
required to enable continual learning by modifying the training dynamics. Flatter minima are shown
to alleviate forgetting (Mirzadeh et al., 2020; Mehta et al., 2021). Our work extends on this line
of research and showcases applicability of SAM for minimizing implicit forgetting during memo-
rization (see Section 3). (3) Memory-based (aka data-based regularization) approaches constrain the
parameter updates based upon the previous task examples sampled from memory. Sparse experience
replay using episodic memory (Chaudhry et al., 2019) is a prominent approach and in Section 4, we
discuss limitations of it for DSI++. Shin et al. (2017); Sun et al. (2020) learns a parametric model
to reconstruct the examples from previous tasks. However, (Sun et al., 2020) shows that such ap-
proach still underperforms episodic memory. In our work, we do not generate example pairs (x, y)
but rather generate pseudo-queries (y), similar to concurrent works (Zhuang et al., 2022; Bonifacio
et al., 2022). We show that our approach outperforms episodic memory.

7 CONCLUSION

DSI++ presents a novel direction for exploration of DSI models to solve one of the critical require-
ments for them to be usable in most production setups where new documents are added to the corpus
continuously. Though DSI models are prone to catastrophic forgetting while we index new docu-
ments, we have shown through extensive experiments that our two proposed solutions to optimize
for the flatter loss basins using SAM and using generative memory alleviate forgetting to a signifi-
cant extent. With this work, we lay down foundations for further research in this space, so that the
strategies here do not just benefit DSI, but the continual learning community in general.
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ETHICS STATEMENT

Training large models is expensive, and has a detrimental impact on the environment. Continual
learning on top of existing models is cheaper and better compared to retraining from scratch since
it requires a much smaller number of steps. With DSI++, we aim to reduce the need to retrain DSI
models from scratch whenever a new set of documents is added to the corpus thereby making it
cheaper and better for the environment.

REPRODUCIBILITY STATEMENT

We introduce a novel benchmark constructed from the existing and publicly available Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and MS MARCO (Nguyen et al., 2016) datasets. In our
benchmark, we split the NQ and MS MARCO datasets into different subsets to enable development
of continual learning systems. We plan to release these splits so that they can act as a standard
benchmark for future works in this space. Further, in Section 3 and Section 5.1, we detail all hyper-
parameters to enable reproducibility of all our experiments. We also plan to release our code on
publication.

REFERENCES

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 7360–7371, 2022.

Samy Bengio, Krzysztof Dembczynski, Thorsten Joachims, Marius Kloft, and Manik Varma. Ex-
treme classification (dagstuhl seminar 18291). In Dagstuhl Reports, volume 8. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars: Data augmentation
for information retrieval using large language models. arXiv preprint arXiv:2202.05144, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
6491–6506, 2021.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

10



Under review as a conference paper at ICLR 2023

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investiga-
tion of the role of pre-training in lifelong learning. arXiv preprint arXiv:2112.09153, 2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. Advances in Neural Information Pro-
cessing Systems, 33:7308–7320, 2020.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human generated machine reading comprehension dataset. In CoCo@
NIPs, 2016.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In Findings
of the Association for Computational Linguistics: ACL 2022, pp. 1864–1874, 2022.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.
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A APPENDIX

A.1 DATASET

Dataset #D #Train #Validation #Test

R0 50K 53.8K 13.5K 3.9K
R1 10K 10.7K 2.7K 809
R2 10K 10.6K 2.7K 787
R3 10K 10.7K 2.7K 727
R4 10K 10.9K 2.7K 772
R5 10K 10.7K 2.7K 847

Table 2: Dataset statistics for DSI++: memorization and retrieval tasks.

A.2 MS MARCO

In Table 3, we report Hits@1 to be 78.0 for the DSI model after training on D0 (constructed from
MS MARCO dataset). We see that continually indexing both D0 and D1 corpora (cl(U1) - 75.9
and cl(U1)+genmem(U1) - 73.0), significantly reduce forgetting the retrieval task (Hits@1) over
just indexing the new corpora D1 (cl(D1) - 65.5). Next, we look at the retrieval task performance
(Hits@1 metric) for D1 after incrementally indexing D1. We see that without any fine-tuning on
the retrieval task for D1, incremental learning with indexing objective shows impressive forward
transfer (or zero-shot gains, cl(D1) - 47.6 and cl(U1) - 43.6). Moreover, ER with generative memory,
cl(U1)+genmem(U1) - 80.6, performs far superior to just incremental indexing objective.

In summary, we show that ER with the generative memory improves the overall performance for the
retrieval task, reducing forgetting of previously indexed documents and enabling forward transfer to
newly indexed documents. We show that our results hold across two datasets – Natural Questions
and MS MARCO, thus, showcasing the generalizability of our approach.
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Added Method Eval corpus = D0 Eval corpus = D1

corpus (Catastrophic forgetting) (Forward transfer)
Index acc. Hits@1 Hits@10 Index acc. Hits@1 Hits@10

D0 - 99.6 78.0 95.4 - - -

D1
cl(D1) 46.2 65.5 86.8 99.8 47.6 75.1
cl(U1 = D0 ∪D1) 99.4 75.9 94.2 99.8 43.6 70.9

D1 cl(U1)+genmem(U1) 99.4 73.0 94.6 99.8 80.6 94.6

Table 3: MS MARCO: Comparing performance on incremental indexing of D1 corpus across
different methods - cl(D1): continue fine-tuning with indexing task on D1, cl(U1): continue fine-
tuning on the updated corpus U1, cl(U1)+genmem(D): continual indexing of U1 along with ER of
pseudo-queries for D. We observe that continual indexing on the updated corpus cl(U1) reduces
forgetting in comparison with just indexing new corpus cl(D1). Our proposed generative memory-
based approach i.e., augmenting pseudo-queries for all documents along with continual indexing,
cl(U1)+genmem(U1), alleviates forgetting (on D0 corpus) and improves forward transfer (on D1

corpus).

A.3 ADDITIONAL RESULTS
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Figure 5: Systematic study about forgetting and forward transfer when incrementally indexing new
corpus of documents across different model sizes (T5-Base, T5-Large, T5-XL) and docid repre-
sentations. We use atomic docids by default and denote (N)/(S) for naively/semantically structured
string docids. ↑ indicates higher is better, ↓ indicates lower is better. We observe that by increasing
the model scale, the average An and learning LAn performance improves. However, forgetting Fn
is severe across all model scales. Moreover, we observe that naive string docids (N) underperforms
atomic docids across Hits@10 metric. Similar to Figure 2, imbuing the docid space with semantic
(S) structure alleviates the forgetting compared to an arbitrary/ naive (N) structure.
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Figure 6: Investigating the effectiveness of generative memory in mitigating forgetting when con-
tinuously indexing new corpus Dn (T5-Base model and atomic docids representation). ↑ indi-
cates higher is better, ↓ indicates lower is better. We observe that continual indexing of old
and new documents cl(Un) help to alleviate forgetting of older documents when evaluated on re-
trieval tasks. However, average Hits@1 (An) still undergo 19 points drop after sequential updates
(D0 → D1 · · · → D5). Generative memory enables sparse replaying of old and new documents
pseudo-queries. We observe that by augmenting generative memory during continual indexing not
only reduces the forgetting (Fn) but also improves average Hits@1 (An) by +17.3% over considered
baselines
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