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Abstract
Understanding the world and explaining it with scientific theories is a central aspi-1

ration of artificial intelligence research. Proposing theories, designing experiments2

to test them, and then revising them based on data are key to scientific discovery.3

Despite the promise of LLM-based scientific agents, no benchmarks systematically4

test their ability to propose scientific models, collect experimental data, and revise5

them in light of new data. We introduce BoxingGym , a benchmark with 10 envi-6

ronments for evaluating experimental design (e.g., collecting data to test a scientific7

theory) and model discovery (e.g., proposing and revising scientific theories). To8

enable quantitative and principled evaluation, we implement each environment as a9

generative probabilistic model with which a scientific agent can run interactive ex-10

periments. These probabilistic models are drawn from various real-world scientific11

domains ranging from psychology to ecology. To evaluate a scientific agent’s ability12

to collect informative experimental data, we compute the expected information gain13

(EIG), an information-theoretic quantity which measures how much an experiment14

reduces uncertainty about the parameters of a generative model. A good scientific15

theory is a concise and predictive explanation. To quantitatively evaluate model16

discovery, we ask a scientific agent to explain their model and evaluate whether17

this explanation helps another scientific agent make more accurate predictions. We18

evaluate several open and closed-source language models of varying sizes. We find19

that larger models (32B) consistently outperform smaller variants (7B), and that20

closed-source models generally achieve better results than open-source alternatives.21

However, all current approaches struggle with both experimental design and model22

discovery, highlighting these as promising directions for future research. 223

“To understand a system, you must perturb it.”24

– George Box (ad sensum)25

1 Introduction26

Helping humans understand the world (and themselves) by discovering scientific theories is a founda-27

tional goal of artificial intelligence research [30]. Proposing theories about the world, conducting28

experiments to test them, and revising them based on data is central to this process [9]. Recent29

advances in large language models (LLMs), have shown promising potential for accelerating scientific30

discovery. LLMs have extensive scientific knowledge [2], strong inductive reasoning capabilities31

[52, 42], and the ability to propose models of data [26, 27, 11]. These promising results suggest that32

LLMs, functioning as autonomous agents, could be well-suited for experimental design (i.e., col-33

lecting informative experiments to test scientific theories) and model discovery (i.e., developing34

interpretable models based on experimental data).35
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Figure 1: Overview of BoxingGym. The BoxingGym Framework is designed to holistically evaluate
experimental design and model discovery capabilities in the spirit of George Box [9]. 1) The process
starts with a user defining a goal for the scientist agent. 2) The scientist formulates a theory. 3) This
theory guides the experimental design, where the scientist interacts with a simulated world to gather
new data. 4) The scientist then analyzes the new and old data to propose and refine theories. This
iterative process continues for several iterations. 5) The scientist is then asked to explain the findings
to a novice. 6) We evaluate the novice and the scientist by casting the goal as a prediction problem.

Previous work has evaluated automated experimental design and model discovery in isolation [16,36

17, 15, 26]. However, they are fundamentally coupled in real-world settings: scientists collect37

experimental data to build better models and better models inform better experiments. While38

scientific agents are promising, there is currently no systematic way to evaluate an agent’s ability39

to propose scientific models, collect experimental data, and revise them in light of new data. This40

motivates the need for a benchmark that evaluates an agent’s capabilities holistically in an integrated41

scientific discovery pipeline.42

We outline the key desiderata for a framework that evaluates experimental design and model discovery:43

(1) The framework should enable the agent to actively experiment with the environment without44

requiring the agent to perform time-consuming and resource-intensive real-world lab experiments.45

(2) Since scientific theories come in different forms, the framework should flexibly accommodate46

different representations of scientific theories. (3) The framework should evaluate experimental47

design and model discovery in an integrated way. (4) Science is often goal-directed or driven by an48

inquiry. For example, a biologist might perform experiments with the goal of identifying cellular49

mechanisms underlying circadian rhythm in mammals. Our framework should allow users to specify50

high-level goals to guide the agent’s discovery process. Our desiderata are inspired by the framework51

for scientific modeling introduced by George Box [7, 8], which emphasizes an iterative process of52

building models, designing experiments to test them, and revising them accordingly.53

To achieve these desiderata, we introduce BoxingGym (Fig. 1) a flexible framework for evaluating54

experimental design and model discovery with autonomous agents. Our benchmark consists of 1055

environments grounded in real-world scientific models. To enable agents to actively experiment, we56

implement each environment as a generative model. This key design choice makes simulating active57

experimentation tractable because it corresponds to sampling from the underlying generative model,58

conditioned on the experimental interventions. To accommodate various representations of scientific59

theories, all environments are designed with a flexible language based interface (Fig. 2). Finally,60

our environments can be instantiated with different goals, or intents for inquiry, that encourage the61

agent to adapt their experimentation towards accomplishing the goal (e.g., understand the parameters62

underlying participant behavior in a psychology study) by specifying the goal in language.63

We introduce principled evaluation metrics that measure the quality of experiments and discovered64

models. To evaluate experimental design, we draw from Bayesian optimal experimental (BOED)65
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class Goal:
  def init(env):
  def get_query:
  def eval(pred, truth):
  def info_gain(design):

class WorldEnv:
  def build_model:
  def reset:
  def step:

class Agent:
  def set_goal:
  def act:
  def predict:
  def explain:

env = WorldEnv()
goal = Goal(env)
desc = goal.describe_goal()
scientist = Agent()
scientist.set_goal(desc)

for n in range(num_exp):
  act = scientist.act(obs)
  eig = goal.info_gain(act)
  obs = env.step(act)

query, answer = goal.get_query()
pred = scientist.predict(query)
error = goal.eval(pred, answer)

explanation = agent.explain()
novice = Agent()
pred = novice.predict(query)
error = goal.eval(pred, answer)

Hyperbolic Temporal Discounting
Understand how value of money for a 
participant decreases with time

Agent that can interact with a language 
interface

Will the participant choose $10 today of 
$100 in 50 days?
EIG: 0.01
Response: $100 in 50 days

Q: Predict if the participant will choose $10 
today or $20 in 5 days?
A: $10 today
Prediction: $10 today

Explanation: The value is hyperbolically 
discounted with a factor of 0.05, so the 
value of $d in D days is 1/1+0.05d.
Prediction: $10 today

BoxingGym Construction Pseudocode Example

Figure 2: Python pseudocode examples. (left) BoxingGym is instantiated as modular classes and
methods for the environment (WorldEnv), goals (Goal), and agents (Agent). (center) Pseudocode
illustrating the workflow of setting goals, performing experiments, predicting outcomes, and providing
explanations. (right) An example, hyperbolic temporal discounting, where the agent predicts a
participant’s choice between immediate and delayed rewards and explains the concept to a novice.

design [43] and use expected information gain (EIG) to measure the informativeness of an experiment.66

EIG captures how much an experiment reduces uncertainty in the parameters of a generative model67

and, importantly, this measure complements our decision to implement environments as generative68

models. To evaluate model discovery, we take inspiration from the fact that science is a communicative69

endeavor. We propose a communication-based evaluation strategy: we ask a scientist agent to distill70

their experiments into a natural language explanation and evaluate how much that explanation71

empowers a novice agent, who does not have access to the experiments conducted by the scientist, to72

make accurate predictions about the environment.73

We evaluate several open and closed-source language models ranging from 7B to 32B parameters. We74

find that larger models consistently outperform smaller variants, and closed-source models generally75

achieve better results than open-source alternatives. We also evaluate Box’s Apprentice [26], which76

augments language models with statistical modeling capabilities, but find that this augmentation77

does not reliably improve performance. Notably, we observe substantial variation in difficulty across78

environments, which remaining challenging even for the strongest models. Promisingly, some79

environments show clear performance improvements with model scale. These results highlight80

significant opportunities for improving automated scientific reasoning.81

2 Related Works82

Optimal Experimental Design. Bayesian optimal experimental design (BOED) is a principled83

framework for designing maximally informative experiments across various disciplines [48, 12,84

34]. While theoretically appealing, BOED’s practical implementation is challenging due to the85

intractability of information gain metrics like expected information gain (EIG). Although several86

methods [43, 16, 17] exist to approximate EIG, they assume the data follows a fixed generative87

model—limiting their utility when model revision is needed as new data is collected.88

Automated Model Discovery. Automated model discovery from data has been a long-standing goal89

in AI, aiming to build interpretable models that capture underlying patterns in data—from physical90

laws [6, 31] to nonparametric regression [15]. Recent work [26, 27] has integrated language models91

into this process, leveraging their ability to both propose and critique candidate models, demonstrating92

their potential as tools for automated model discovery. This work highlights the potential of using93

language models as a powerful tool for model discovery.94

Reasoning and Exploration with LLMs. Language models have shown promising capabilities in95

both deductive reasoning (deriving consequences from hypotheses) Saparov et al. [46], Saparov and96

He [45], Poesia et al. [41] and inductive reasoning (inferring hypotheses from observations) [52, 42].97

While reinforcement learning has improved LLMs’ reasoning abilities [23, 21, 20, 22], these advances98

have primarily focused on deterministic, verfiable systems rather than the stochastic data typical in99

scientific discovery. Efficient exploration and information-seeking are crucial for experimental design100

and model building. Recent work [36, 32, 19, 18, 47, 25] has investigated in-context exploration101
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strategies and shown how language models can learn how to search and explore directly through102

sequence modeling, developing effective search strategies in language.103

Interactive Environments. Drawing inspiration from established reinforcement learning principles104

[10, 33], BoxingGym adopts the modularity and simplicity of classic environments like OpenAI Gym105

while shifting focus to evaluation rather than agent training. While recent work has expanded interac-106

tive benchmarks to language agents —spanning tasks from software debugging [24] to automated107

scientific research[35, 28], our work advances this direction by introducing a principled framework108

for evaluating language agents’ capabilities in iterative experimental design and model discovery.109

3 Boxing Gym110

3.1 Problem Formulation.111

We formalize experimental design and model discovery using probabilistic modeling and Bayesian112

optimal experimental design (BOED). In BoxingGym , each environment is implemented as a113

generative model defining a joint distribution over the experimental outcome y, experimental design114

d, and unobserved parameters θ. This joint distribution is defined in terms of a prior distribution115

over θ, p(θ) and a simulator p(y|θ, d) which is a model of the experimental outcome y given116

parameters θ and design d. For example, in a psychology experiment, θ could be the parameters117

of a behavioral model of participants, d could be the questions posed to participants, and y could118

be the participant’s response to d. Running an experiment corresponds to choosing a design d119

and observing a sample y from the marginal predictive distribution conditioned on that design,120

i.e., y ∼ p(y|d) = Ep(θ)[p(y|θ, d)]) 3.121

3.2 Evaluation122

3.2.1 Evaluating experimental design via Expected Information Gain123

To evaluate experimental design, we take inspiration from the Bayesian OED literature [16, 17].124

Crucially, our choice to implement environments as generative models enables us to leverage this125

literature. For each domain, we have an underlying predictive model p(y|θ, d). We quantify the126

informativeness of a design d through the expected information gain (EIG), that measures the127

reduction in posterior uncertainty about the model parameters θ after running an experiment d. Below,128

H is the Shannon entropy.129

EIG(d) = Ep(y|d) [H[p(θ)]−H[p(θ|y, d)]]

Since the EIG is typically not available in closed-form, we use a Nested Monte Carlo estimator130

µ̂NMC(d) =
1

N

N∑
n=1

log

(
p(yn|θn,0, d)

1
M

∑M
m=1 p(yn|θn,m, d)

)
where θn,m

i.i.d.∼ p(θ), yn ∼ p(y|θ = θn,0, d)131

We chose this estimator because it is a consistent estimator of the true EIG [43] and is straightforward132

to implement. EIG measures the value of an experiment under the assumption that the true distribution133

of experimental outcomes is modeled by p(y|d). In general, this assumption is not true, but EIG is134

still a useful measure since we generate data from an underlying model in our benchmarks.135

3.2.2 Evaluating model discovery via communication136

To evaluate the quality of a model, we use standard model evaluation metrics (e.g., prediction MSE)137

and a communication-based metric that takes advantage of the natural language interface. In particular,138

a scientist agent interacts with an environment through experiments. After these experiments, we ask139

the scientist agent to synthesize their findings through an explanation. We then evaluate how much140

that explanation enables a novice agent to make more accurate predictions about the environment141

without any additional experiments. Since a good explanation is both predictive and parsimonious,142

we set a token limit on the explanation. Crucially, this evaluation method can accommodate different143

forms of scientific theories. In our experiments, we ask the scientist agent to produce a statistical144

model and then distill the model into a natural language explanation to guide the novice agent.145

3In the sequential setting, we replace the prior p(θ) with the posterior p(θ|y, d).
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3.2.3 Evaluating goals via prediction146

To evaluate success at achieving a specific goal (e.g., how do the populations of predator and prey147

change with time) we employ a prediction target (e.g., predict the population of predators at a148

particular time) and calculate a standardized prediction error. First, we compute the error between the149

predicted and true values. Then, we standardize this error with respect to the prior predictive mean,150

which is obtained by assuming a uniform prior over the design space. Specifically, for each domain,151

we sample a design d uniformly from the design space and a parameter θ from the prior distribution152

p(θ). We then generate samples from the predictive model p(y|θ, d) and average over multiple d and153

θ to obtain the prior predictive mean µ0 and variance σ0. Let {yi}ni=1 be the ground truth outputs for154

inputs {xi}ni=1. and let {ŷi}ni=1 be the predictions of the agent. The standardized prediction error is155

then calculated using these quantities, providing a measure of the agent’s performance relative to156

the prior predictive mean. We use a domain-specific function f computing the discrepancy between157

a prediction ŷi and ground truth value yi (e.g., MSE). We compute the errors ϵi = f(ŷi, yi) and158

ϵµ0
= f(µ0, yi). Finally, we compute the standardized error as ϵi−ϵµ0

σ0
. Crucially, since this metric is159

computed with respect to the prior predictive, this metric can be negative.160

3.3 Design Decisions in Constructing BoxingGym161

We outline the key design decisions of BoxingGym that allow it to capture key aspects of scientific162

discovery within a flexible, simulated, and extensible environment.163

Discovery via active experimentation. The agent actively interacts with the environment by164

conducting experiments, reflecting the real-world coupling of experimentation and model discovery.165

This approach assesses the agent’s ability to gather relevant data and refine its models based on166

experimental results.167

Real-world scientific models. Our environments are grounded in real-world scientific models168

from several domains, ensuring the benchmark tests the agent’s ability to handle realistic scenarios.169

We implement these environment as pymc generative models to make active experimentation an170

automatic and tractable process.171

Goal-driven discovery. Each environment has a specific goal, mirroring the inquiry-driven nature172

of scientific research. This encourages the agent to engage in targeted experimentation.173

Language-based interface for experiments. We use a language-based interface for our experi-174

ments because it’s flexible (i.e., scientific domains can generally be described in language), easily175

integrates with LLMs, and interpretable to humans.176

Emphasis on Measuring Discovery with Explanations. BoxingGym places a strong emphasis177

on measuring the quality of the agent’s discoveries through the explanations it can provide after178

experimentation (§3.2.2). This design decision is motivated by two considerations. From a theoretical179

perspective, science is fundamentally about developing better theories, and scientific theories are180

explanations of observed phenomena. From a practical perspective, communicating findings to the181

broader scientific community is an essential aspect of scientific research. By using language, we do182

not have to commit to a particular representation of a scientific theory. We illustrate this flexibility,183

by showing how different representations can be easily integrated within our method for measuring184

natural language explanations.185

Extensible/modular environments for benchmarking agents. BoxingGym is easily extensible and186

modular, enabling researchers to integrate new environments and test different agents with minimal187

effort. We illustrate this in Fig. 2 which provides a pseudo-code example of how to implement a new188

environment and goal in BoxingGym .189

3.4 Domains190

BoxingGym consists of 10 environments (see App. D for full details) that cover a range of scientific191

domains and test different aspects of experimental design and model discovery. Some environments192

are designed to test optimal experiment design, while others focus on model discovery or involve193

simulated neuro-symbolic human participants.194
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Location finding. [17] In an n-dimensional space with k signal-emitting sources, the scientist195

measure signals at any grid location. Goals include predicting the signal at any point or locating the196

sources.197

Hyperbolic temporal discounting. [17] The scientist observes a participant’s choices for different198

immediate rewards (ir), delayed rewards (dr), and delay periods (D days) Fig. 2 (right). Goals199

include predicting choices of a participant or discount factors.200

Death process. [17] A disease spreads at an infection rate. The scientist can measure the number201

of infected individuals at different points of time to predict future infections or the infection rate.202

Item Response Theory (IRT). [44] In this environment, there is a set of students and a set of203

questions. The experimenter can observe the correctness of a student’s response to a particular204

question. The goal is to discover the underlying model that relates student ability and question205

difficulty to the probability of a correct response.206

Animal growth curves. [29] An experimenter can observe the length of a dugong at a particular207

age. The goal is to discover the underlying growth model of dugongs.208

Population growth dynamics. [29] An experimenter can observe the population of peregrines at a209

particular point in time. The goal is to discover the underlying population dynamics model. This is210

tested by asking the experimenter to predict population dynamics at a particular point in time.211

Mastectomy Survival analysis. [13] The experimenter can observe if a patient is alive after a212

mastectomy, including metastasis status and time since surgery. The goal is to predict survival213

probabilities for new patients.214

Predator-Prey dynamics. [51] This simulates predator-prey populations over time. The goal is to215

discover models like the Lotka-Volterra equations to predict future populations.216

Emotion from outcome. [37] Participants guess a player’s emotions after a gambling game’s outcome.217

The experimenter designs games with varied probabilities and prizes to model how participants judge218

the emotions of a player from outcomes. Human participants are simulated using a probabilistic219

model translated into natural language by a language model.220

Moral Machines. [5] Participants face moral dilemmas, choosing which group an autonomous car221

should save. Experimenters manipulate group compositions and required actions to model moral222

decision-making. Human participants are simulated with a probabilistic model, and their actions are223

translated into natural language by a language model.224

4 Experiments225

We conduct experiments to evaluate the performance of two baseline agents on BoxingGym . Our226

goal is to assess their ability to perform experimental design and theory building across a diverse set227

of environments. We benchmark two types of agents: a standard language model (GPT-4o, OpenAI228

[38]) and a language model augmented with symbolic reasoning capabilities (Box’s Apprentice).229

LLM Agent. We consider 6 LLMs, GPT-4o [38], Claude-3.7-sonnet [3], Qwen-2.5-32b-instruct,230

Qwen-2.5-7b-instruct [54], and reasoning variants OpenThinker-32b, and OpenThinker-7b [50]; the231

reasoning variants are finetuned on math and coding task. We prompt these models to interact with232

our environment, purely through natural language, without additional tools (see Fig. 2, see App. B233

for details).234

Box’s Apprentice. The apprentice agent augments language models by enabling them to implement235

generative models of observed data. For model discovery, the agent writes a pymc program [26] after236

10 experiments, which is then fit and provided to the scientist explaining findings to the novice. For237

experimental design, the agent creates and uses these models to guide subsequent experiments.238

Experiment Setup. For each environment, we run the agents for 5 independent trials. At each239

step, the agent chooses to perform an experiment, by specifying a design, and observes the outcome.240
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Figure 3: Normalized Error Compared across Models. (a) Comparison of the normalized errors
for different LLMs with or without prior information included in the prompt. (b) Comparison of
reasoning models (OpenThinker) and instruct models (Qwen) across environments. Error bars are the
standard error across 5 runs.
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Figure 4: Normalized Errors Over Number of Observations. Normalized errors for the LLM
agent with gpt-4o with prior information (solid blue) and without prior information (dotted yellow)
across three domains: Population Growth Dynamics (left), IRT (center) and Hyperbolic Discounting
(right). Error bars are the standard error across 5 runs.

After a fixed number of steps (0, 1, 3, 5, 7, 10), we evaluate the agent’s performance using the241

metrics described earlier §3.2. The performance of models is averaged across 5 runs and over 10242

evaluation points. We also explore a prior vs no prior condition to investigate whether domain243

knowledge helps or hinders scientific discovery. In the prior condition, we give the LM full context244

about the problem domain (e.g., “you are observing how participants balance delayed vs immediate245

rewards”), simulating scientists with background knowledge. In the no prior condition, we remove246

this context and describe the setting in a domain-agnostic way (e.g., “you receive a tuple of three247

values”), resembling reasoning from raw observations without preconceptions. This tests whether248

prior knowledge scaffolds discovery or creates biases that constrain exploration.249

4.1 Experimental Design Evaluation250

Setup. To evaluate the agents’ performance, we first assess their ability to gather valuable informa-251

tion through their experiment selection and then measure how effectively they use this information252

to predict the environment. The Expected Information Regret (EI Regret) compares the Expected253

Information Gain (EIG) (§3.2.1) of the agent’s chosen experiments to the maximum EIG achievable254

from 100 random experiments. Lower EI Regret indicates more informative experiment selection.255

Prior information does not improve performance. We find that models often perform better256

when given no prior information after 10 experiments (Fig. 3a). In some cases, this is because the257

LLM makes an overly strong assumption about the environment (e.g., the signal decay is symmetric258

around the origin) and does not revise the assumption after more experiments; this is consistent with259

findings reported by Li et al. [26]. In other cases, such as the hyperbolic discounting environment260

(Fig. 4, right), the model overfits to limited observations.261

More experiments generally lead to better predictions. We plot the learning trajectories for262

three environments in (Fig. 4). The agent’s average prediction error decreases as it performs more263
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Figure 5: (a) Comparison of the Box’s Apprentice with an LLM agent. (b) EIG Regret scores for six
large language models, with lower values indicating better performance.

experiments. The Hyperbolic Temporal Discounting environments shows an unexpected trends264

where more experiments actually increases error. This may again be related to how prior knowledge265

interferes with effective learning from data.266

Models Improve with Scale. Larger models consistently outperform their smaller counterparts267

within the same model family. Both OpenThinker-32B and Qwen2.5-32B demonstrate significantly268

better performance than their respective 7B variants across environments (Fig. 3a), highlighting the269

benefits of scale for experimental design tasks.270

Instruction-Tuned Models outperform Reasoning Models. Surprisingly, the instruction-tuned271

Qwen2.5 models outperform the reasoning-focused OpenThinker models (Fig. 3b). This may be272

because OpenThinker models are finetuned to perform well on a relatively narrow set of verifiable273

problems in math and code, while instruction-tuned models retain broader capabilities that could be274

useful for experimental design.275

Models performance varies substantially across environments. Models show varying perfor-276

mance across different environments (Fig. 3b). Performance is strongest on environments like277

population growth dynamics and death process, where the LM agent achieves negative standardized278

error, indicating that the LM successfully leveraged information gained through experimentation.279

However, in environments like hyperbolic discounting, performance is low even after experimentation,280

suggesting that some domains are inherently more challenging for current models.281

EIG Regret reveals relationship between experimental design and prediction. Our EIG regret282

analysis (Fig. 5b) provides insight into the relationship between two key components of scientific283

reasoning: designing informative experiments and making accurate predictions from collected284

data. GPT-4o achieves both the lowest EIG regret and strong predictive performance across several285

environments, suggesting these capabilities can be aligned. However, the varying performance of other286

models is informative — for instance, Qwen-32B shows higher EIG regret despite good predictive287

performance in some domains, indicating that while these abilities may be related, excellence in288

prediction doesn’t automatically translate to optimal experimental design.289

LLMs cannot always optimally leverage statistical models. While Box’s Apprentice can propose290

and fit explicit statistical models to observed data, it does not consistently improve over the non-291

augmented LLM (GPT-4o) (Fig. 5a) From qualitative analysis of the models, we find that Box’s292

Apprentice tends to favor overly simple functional forms due to limited data, such as using linear293

approximations for inherently nonlinear phenomena.294

4.2 Evaluating Model Discovery via Communication295

Setup. Next, we evaluate the agents’ ability to build and communicate models that capture the296

underlying phenomena in each environment. To test this, we have the agents interact with the297

environment for 10 steps (scientist phase) and then generate a natural language explanation of their298
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Figure 6: Evaluation of Model Discovery via Communication. (a) Comparison of the standardized
error of the Novice (gpt-4o) with different Scientist models. (b) Comparison of errors made by the
Novice and the Scientist (both models are gpt-4o). Error bars are standard error.

findings. We then provide this explanation to a novice agent, which must make predictions about the299

environment without any direct interaction (novice phase by using the explanation from the scientist;300

§3.2.2). The novice agent is always gpt-4o. The scientist’s prediction after 10 observations (Error301

After Experiments) acts as a weak positive control. Ideally, if the scientist’s explanation is effective,302

the novice’s error should approach the positive control.303

Explanations improve with scale. Larger models generally produce more effective explanations,304

as evidenced by better novice performance when using explanations from 32B variants compared to305

7B models (Fig. 6a). This suggests that increased model scale improves not just experimentation but306

also the ability to distill and communicate findings.307

Explanations are not as good as experiments As expected, novice agents perform worse than308

scientists who directly interacted with the environment (Fig. 6b). The gap suggests that current309

explanation methods do not fully capture the knowledge gained through experimentation.310

Explanations are more helpful for some environments. However, the effectiveness of explana-311

tions varies substantially across domains (Fig. 6b). For instance, explanations are helpful for animal312

growth, but struggle with complex domains like moral judgments. This variation likely reflects the313

complexity of different domains and the current limitations of language models in capturing and314

communicating certain types of patterns.315

5 Discussion316

We introduced BoxingGym , a benchmark measuring language-based agents’ capabilities in ex-317

perimental design and model discovery across 10 real-world-based environments. We evaluated318

experimental design using information gain metrics and developed a novel model discovery metric319

based on an agent’s ability to explain its model to a novice agent. Our evaluation across multiple320

model scales (7B-32B parameters) shows that while larger and closed-source models generally per-321

form better, fundamental challenges persist. Neither domain-specific prior knowledge nor statistical322

modeling capabilities consistently improved performance. Some environments yielded strong results323

with larger models, while others remained challenging for all approaches. BoxingGym has limitations:324

it uses pre-defined experimental paradigms rather than requiring design from scratch [14], ignores325

resource constraints, and covers limited scientific domains. Future work should address these limita-326

tions by incorporating experiment design from scratch, resource constraints, and more diverse fields.327

We could also expand the human behavior environments (Moral Machines, Emotions) with more328

sophisticated participant simulations [4, 1, 49, 39, 40]. While our experiments demonstrated potential329

for interfaces that augment language models’ scientific reasoning capabilities, future research should330

explore data visualization, strategic simulations [27], model validation, and web-based research331

strategies to enhance experimental guidance and discovery.332
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NeurIPS Paper Checklist491

1. Claims492

Question: Do the main claims made in the abstract and introduction accurately reflect the493

paper’s contributions and scope?494

Answer: [Yes]495

Justification: We describe the design of our benchmark accurately, summarize results with496

different models.497

Guidelines:498

• The answer NA means that the abstract and introduction do not include the claims499

made in the paper.500

• The abstract and/or introduction should clearly state the claims made, including the501

contributions made in the paper and important assumptions and limitations. A No or502

NA answer to this question will not be perceived well by the reviewers.503

• The claims made should match theoretical and experimental results, and reflect how504

much the results can be expected to generalize to other settings.505

• It is fine to include aspirational goals as motivation as long as it is clear that these goals506

are not attained by the paper.507

2. Limitations508

Question: Does the paper discuss the limitations of the work performed by the authors?509

Answer: [Yes]510

Justification: See discussion.511

Guidelines:512

• The answer NA means that the paper has no limitation while the answer No means that513

the paper has limitations, but those are not discussed in the paper.514

• The authors are encouraged to create a separate "Limitations" section in their paper.515

• The paper should point out any strong assumptions and how robust the results are to516

violations of these assumptions (e.g., independence assumptions, noiseless settings,517

model well-specification, asymptotic approximations only holding locally). The authors518

should reflect on how these assumptions might be violated in practice and what the519

implications would be.520

• The authors should reflect on the scope of the claims made, e.g., if the approach was521

only tested on a few datasets or with a few runs. In general, empirical results often522

depend on implicit assumptions, which should be articulated.523

• The authors should reflect on the factors that influence the performance of the approach.524

For example, a facial recognition algorithm may perform poorly when image resolution525

is low or images are taken in low lighting. Or a speech-to-text system might not be526

used reliably to provide closed captions for online lectures because it fails to handle527

technical jargon.528

• The authors should discuss the computational efficiency of the proposed algorithms529

and how they scale with dataset size.530

• If applicable, the authors should discuss possible limitations of their approach to531

address problems of privacy and fairness.532

• While the authors might fear that complete honesty about limitations might be used by533

reviewers as grounds for rejection, a worse outcome might be that reviewers discover534

limitations that aren’t acknowledged in the paper. The authors should use their best535

judgment and recognize that individual actions in favor of transparency play an impor-536

tant role in developing norms that preserve the integrity of the community. Reviewers537

will be specifically instructed to not penalize honesty concerning limitations.538

3. Theory assumptions and proofs539

Question: For each theoretical result, does the paper provide the full set of assumptions and540

a complete (and correct) proof?541

Answer: [NA]542
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Justification: No proofs or new theoretical result.543

Guidelines:544

• The answer NA means that the paper does not include theoretical results.545

• All the theorems, formulas, and proofs in the paper should be numbered and cross-546

referenced.547

• All assumptions should be clearly stated or referenced in the statement of any theorems.548

• The proofs can either appear in the main paper or the supplemental material, but if549

they appear in the supplemental material, the authors are encouraged to provide a short550

proof sketch to provide intuition.551

• Inversely, any informal proof provided in the core of the paper should be complemented552

by formal proofs provided in appendix or supplemental material.553

• Theorems and Lemmas that the proof relies upon should be properly referenced.554

4. Experimental result reproducibility555

Question: Does the paper fully disclose all the information needed to reproduce the main ex-556

perimental results of the paper to the extent that it affects the main claims and/or conclusions557

of the paper (regardless of whether the code and data are provided or not)?558

Answer: [Yes]559

Justification: Yes, further, all our code, results and scripts are available on github.560

Guidelines:561

• The answer NA means that the paper does not include experiments.562

• If the paper includes experiments, a No answer to this question will not be perceived563

well by the reviewers: Making the paper reproducible is important, regardless of564

whether the code and data are provided or not.565

• If the contribution is a dataset and/or model, the authors should describe the steps taken566

to make their results reproducible or verifiable.567

• Depending on the contribution, reproducibility can be accomplished in various ways.568

For example, if the contribution is a novel architecture, describing the architecture fully569

might suffice, or if the contribution is a specific model and empirical evaluation, it may570

be necessary to either make it possible for others to replicate the model with the same571

dataset, or provide access to the model. In general. releasing code and data is often572

one good way to accomplish this, but reproducibility can also be provided via detailed573

instructions for how to replicate the results, access to a hosted model (e.g., in the case574

of a large language model), releasing of a model checkpoint, or other means that are575

appropriate to the research performed.576

• While NeurIPS does not require releasing code, the conference does require all submis-577

sions to provide some reasonable avenue for reproducibility, which may depend on the578

nature of the contribution. For example579

(a) If the contribution is primarily a new algorithm, the paper should make it clear how580

to reproduce that algorithm.581

(b) If the contribution is primarily a new model architecture, the paper should describe582

the architecture clearly and fully.583

(c) If the contribution is a new model (e.g., a large language model), then there should584

either be a way to access this model for reproducing the results or a way to reproduce585

the model (e.g., with an open-source dataset or instructions for how to construct586

the dataset).587

(d) We recognize that reproducibility may be tricky in some cases, in which case588

authors are welcome to describe the particular way they provide for reproducibility.589

In the case of closed-source models, it may be that access to the model is limited in590

some way (e.g., to registered users), but it should be possible for other researchers591

to have some path to reproducing or verifying the results.592

5. Open access to data and code593

Question: Does the paper provide open access to the data and code, with sufficient instruc-594

tions to faithfully reproduce the main experimental results, as described in supplemental595

material?596
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Answer: [Yes]597

Justification: All the code is accessible on the github.598

Guidelines:599

• The answer NA means that paper does not include experiments requiring code.600

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/601

public/guides/CodeSubmissionPolicy) for more details.602

• While we encourage the release of code and data, we understand that this might not be603

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not604

including code, unless this is central to the contribution (e.g., for a new open-source605

benchmark).606

• The instructions should contain the exact command and environment needed to run to607

reproduce the results. See the NeurIPS code and data submission guidelines (https:608

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.609

• The authors should provide instructions on data access and preparation, including how610

to access the raw data, preprocessed data, intermediate data, and generated data, etc.611

• The authors should provide scripts to reproduce all experimental results for the new612

proposed method and baselines. If only a subset of experiments are reproducible, they613

should state which ones are omitted from the script and why.614

• At submission time, to preserve anonymity, the authors should release anonymized615

versions (if applicable).616

• Providing as much information as possible in supplemental material (appended to the617

paper) is recommended, but including URLs to data and code is permitted.618

6. Experimental setting/details619

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-620

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the621

results?622

Answer: [Yes]623

Justification: We describe this in detail in experimental setup and have the full specification624

in the appendix.625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• The experimental setting should be presented in the core of the paper to a level of detail628

that is necessary to appreciate the results and make sense of them.629

• The full details can be provided either with the code, in appendix, or as supplemental630

material.631

7. Experiment statistical significance632

Question: Does the paper report error bars suitably and correctly defined or other appropriate633

information about the statistical significance of the experiments?634

Answer: [Yes]635

Justification: We report statistical significance in all our results...636

Guidelines:637

• The answer NA means that the paper does not include experiments.638

• The authors should answer "Yes" if the results are accompanied by error bars, confi-639

dence intervals, or statistical significance tests, at least for the experiments that support640

the main claims of the paper.641

• The factors of variability that the error bars are capturing should be clearly stated (for642

example, train/test split, initialization, random drawing of some parameter, or overall643

run with given experimental conditions).644

• The method for calculating the error bars should be explained (closed form formula,645

call to a library function, bootstrap, etc.)646

• The assumptions made should be given (e.g., Normally distributed errors).647
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• It should be clear whether the error bar is the standard deviation or the standard error648

of the mean.649

• It is OK to report 1-sigma error bars, but one should state it. The authors should650

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis651

of Normality of errors is not verified.652

• For asymmetric distributions, the authors should be careful not to show in tables or653

figures symmetric error bars that would yield results that are out of range (e.g. negative654

error rates).655

• If error bars are reported in tables or plots, The authors should explain in the text how656

they were calculated and reference the corresponding figures or tables in the text.657

8. Experiments compute resources658

Question: For each experiment, does the paper provide sufficient information on the com-659

puter resources (type of compute workers, memory, time of execution) needed to reproduce660

the experiments?661

Answer: [Yes]662

Justification: See appendix section B.663

Guidelines:664

• The answer NA means that the paper does not include experiments.665

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,666

or cloud provider, including relevant memory and storage.667

• The paper should provide the amount of compute required for each of the individual668

experimental runs as well as estimate the total compute.669

• The paper should disclose whether the full research project required more compute670

than the experiments reported in the paper (e.g., preliminary or failed experiments that671

didn’t make it into the paper).672

9. Code of ethics673

Question: Does the research conducted in the paper conform, in every respect, with the674

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?675

Answer: [Yes]676

Justification: Single blind submission and we follow the code.677

Guidelines:678

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.679

• If the authors answer No, they should explain the special circumstances that require a680

deviation from the Code of Ethics.681

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-682

eration due to laws or regulations in their jurisdiction).683

10. Broader impacts684

Question: Does the paper discuss both potential positive societal impacts and negative685

societal impacts of the work performed?686

Answer: [No]687

Justification: We don’t discuss these as there are no direct negative societal impacts.688

Guidelines:689

• The answer NA means that there is no societal impact of the work performed.690

• If the authors answer NA or No, they should explain why their work has no societal691

impact or why the paper does not address societal impact.692

• Examples of negative societal impacts include potential malicious or unintended uses693

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations694

(e.g., deployment of technologies that could make decisions that unfairly impact specific695

groups), privacy considerations, and security considerations.696

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied697

to particular applications, let alone deployments. However, if there is a direct path to698

any negative applications, the authors should point it out. For example, it is legitimate699

to point out that an improvement in the quality of generative models could be used to700

generate deepfakes for disinformation. On the other hand, it is not needed to point out701

that a generic algorithm for optimizing neural networks could enable people to train702

models that generate Deepfakes faster.703

• The authors should consider possible harms that could arise when the technology is704

being used as intended and functioning correctly, harms that could arise when the705

technology is being used as intended but gives incorrect results, and harms following706

from (intentional or unintentional) misuse of the technology.707

• If there are negative societal impacts, the authors could also discuss possible mitigation708

strategies (e.g., gated release of models, providing defenses in addition to attacks,709

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from710

feedback over time, improving the efficiency and accessibility of ML).711

11. Safeguards712

Question: Does the paper describe safeguards that have been put in place for responsible713

release of data or models that have a high risk for misuse (e.g., pretrained language models,714

image generators, or scraped datasets)?715

Answer: [NA]716

Justification: Not relevant for the paper.717

Guidelines:718

• The answer NA means that the paper poses no such risks.719

• Released models that have a high risk for misuse or dual-use should be released with720

necessary safeguards to allow for controlled use of the model, for example by requiring721

that users adhere to usage guidelines or restrictions to access the model or implementing722

safety filters.723

• Datasets that have been scraped from the Internet could pose safety risks. The authors724

should describe how they avoided releasing unsafe images.725

• We recognize that providing effective safeguards is challenging, and many papers do726

not require this, but we encourage authors to take this into account and make a best727

faith effort.728

12. Licenses for existing assets729

Question: Are the creators or original owners of assets (e.g., code, data, models), used in730

the paper, properly credited and are the license and terms of use explicitly mentioned and731

properly respected?732

Answer: [Yes]733

Justification: All models have been cited appropriately. The papers that inspired the734

environments have been credited too.735

Guidelines:736

• The answer NA means that the paper does not use existing assets.737

• The authors should cite the original paper that produced the code package or dataset.738

• The authors should state which version of the asset is used and, if possible, include a739

URL.740

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.741

• For scraped data from a particular source (e.g., website), the copyright and terms of742

service of that source should be provided.743

• If assets are released, the license, copyright information, and terms of use in the744

package should be provided. For popular datasets, paperswithcode.com/datasets745

has curated licenses for some datasets. Their licensing guide can help determine the746

license of a dataset.747

• For existing datasets that are re-packaged, both the original license and the license of748

the derived asset (if it has changed) should be provided.749
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• If this information is not available online, the authors are encouraged to reach out to750

the asset’s creators.751

13. New assets752

Question: Are new assets introduced in the paper well documented and is the documentation753

provided alongside the assets?754

Answer: [Yes]755

Justification: We add documentation to the BoxingGym code.756

Guidelines:757

• The answer NA means that the paper does not release new assets.758

• Researchers should communicate the details of the dataset/code/model as part of their759

submissions via structured templates. This includes details about training, license,760

limitations, etc.761

• The paper should discuss whether and how consent was obtained from people whose762

asset is used.763

• At submission time, remember to anonymize your assets (if applicable). You can either764

create an anonymized URL or include an anonymized zip file.765

14. Crowdsourcing and research with human subjects766

Question: For crowdsourcing experiments and research with human subjects, does the paper767

include the full text of instructions given to participants and screenshots, if applicable, as768

well as details about compensation (if any)?769

Answer: [NA]770

Justification: No human participants were recruited.771

Guidelines:772

• The answer NA means that the paper does not involve crowdsourcing nor research with773

human subjects.774

• Including this information in the supplemental material is fine, but if the main contribu-775

tion of the paper involves human subjects, then as much detail as possible should be776

included in the main paper.777

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,778

or other labor should be paid at least the minimum wage in the country of the data779

collector.780

15. Institutional review board (IRB) approvals or equivalent for research with human781

subjects782

Question: Does the paper describe potential risks incurred by study participants, whether783

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)784

approvals (or an equivalent approval/review based on the requirements of your country or785

institution) were obtained?786

Answer: [NA]787

Justification: Paper does not use human participants.788

Guidelines:789

• The answer NA means that the paper does not involve crowdsourcing nor research with790

human subjects.791

• Depending on the country in which research is conducted, IRB approval (or equivalent)792

may be required for any human subjects research. If you obtained IRB approval, you793

should clearly state this in the paper.794

• We recognize that the procedures for this may vary significantly between institutions795

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the796

guidelines for their institution.797

• For initial submissions, do not include any information that would break anonymity (if798

applicable), such as the institution conducting the review.799

16. Declaration of LLM usage800
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Question: Does the paper describe the usage of LLMs if it is an important, original, or801

non-standard component of the core methods in this research? Note that if the LLM is used802

only for writing, editing, or formatting purposes and does not impact the core methodology,803

scientific rigorousness, or originality of the research, declaration is not required.804

Answer: [NA]805

Justification: None of the core methods used LLMs.806

Guidelines:807

• The answer NA means that the core method development in this research does not808

involve LLMs as any important, original, or non-standard components.809

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)810

for what should or should not be described.811
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