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Abstract

Understanding the world and explaining it with scientific theories is a central aspi-
ration of artificial intelligence research. Proposing theories, designing experiments
to test them, and then revising them based on data are key to scientific discovery.
Despite the promise of LLM-based scientific agents, no benchmarks systematically
test their ability to propose scientific models, collect experimental data, and revise
them in light of new data. We introduce BoxingGym , a benchmark with 10 envi-
ronments for evaluating experimental design (e.g., collecting data to test a scientific
theory) and model discovery (e.g., proposing and revising scientific theories). To
enable quantitative and principled evaluation, we implement each environment as a
generative probabilistic model with which a scientific agent can run interactive ex-
periments. These probabilistic models are drawn from various real-world scientific
domains ranging from psychology to ecology. To evaluate a scientific agent’s ability
to collect informative experimental data, we compute the expected information gain
(EIG), an information-theoretic quantity which measures how much an experiment
reduces uncertainty about the parameters of a generative model. A good scientific
theory is a concise and predictive explanation. To quantitatively evaluate model
discovery, we ask a scientific agent to explain their model and evaluate whether
this explanation helps another scientific agent make more accurate predictions. We
evaluate several open and closed-source language models of varying sizes. We find
that larger models (32B) consistently outperform smaller variants (7B), and that
closed-source models generally achieve better results than open-source alternatives.
However, all current approaches struggle with both experimental design and model
discovery, highlighting these as promising directions for future research.

tE)

“To understand a system, you must perturb it.
— George Box (ad sensum)

1 Introduction

Helping humans understand the world (and themselves) by discovering scientific theories is a founda-
tional goal of artificial intelligence research [30]. Proposing theories about the world, conducting
experiments to test them, and revising them based on data is central to this process [9]. Recent
advances in large language models (LLMs), have shown promising potential for accelerating scientific
discovery. LLMs have extensive scientific knowledge [2], strong inductive reasoning capabilities
[52, 42], and the ability to propose models of data [26, 27, | 1]. These promising results suggest that
LLMs, functioning as autonomous agents, could be well-suited for experimental design (i.e., col-
lecting informative experiments to test scientific theories) and model discovery (i.e., developing
interpretable models based on experimental data).
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Figure 1: Overview of BoxingGym. The BoxingGym Framework is designed to holistically evaluate
experimental design and model discovery capabilities in the spirit of George Box [9]. 1) The process
starts with a user defining a goal for the scientist agent. 2) The scientist formulates a theory. 3) This
theory guides the experimental design, where the scientist interacts with a simulated world to gather
new data. 4) The scientist then analyzes the new and old data to propose and refine theories. This
iterative process continues for several iterations. 5) The scientist is then asked to explain the findings
to a novice. 6) We evaluate the novice and the scientist by casting the goal as a prediction problem.

Previous work has evaluated automated experimental design and model discovery in isolation [ 16,

, 15, 26]. However, they are fundamentally coupled in real-world settings: scientists collect
experimental data to build better models and better models inform better experiments. While
scientific agents are promising, there is currently no systematic way to evaluate an agent’s ability
to propose scientific models, collect experimental data, and revise them in light of new data. This
motivates the need for a benchmark that evaluates an agent’s capabilities holistically in an integrated
scientific discovery pipeline.

We outline the key desiderata for a framework that evaluates experimental design and model discovery:
(1) The framework should enable the agent to actively experiment with the environment without
requiring the agent to perform time-consuming and resource-intensive real-world lab experiments.
(2) Since scientific theories come in different forms, the framework should flexibly accommodate
different representations of scientific theories. (3) The framework should evaluate experimental
design and model discovery in an integrated way. (4) Science is often goal-directed or driven by an
inquiry. For example, a biologist might perform experiments with the goal of identifying cellular
mechanisms underlying circadian rhythm in mammals. Our framework should allow users to specify
high-level goals to guide the agent’s discovery process. Our desiderata are inspired by the framework
for scientific modeling introduced by George Box [7, &], which emphasizes an iterative process of
building models, designing experiments to test them, and revising them accordingly.

To achieve these desiderata, we introduce BoxingGym ( ) a flexible framework for evaluating
experimental design and model discovery with autonomous agents. Our benchmark consists of 10
environments grounded in real-world scientific models. To enable agents to actively experiment, we
implement each environment as a generative model. This key design choice makes simulating active
experimentation tractable because it corresponds to sampling from the underlying generative model,
conditioned on the experimental interventions. To accommodate various representations of scientific
theories, all environments are designed with a flexible language based interface ( ). Finally,
our environments can be instantiated with different goals, or intents for inquiry, that encourage the
agent to adapt their experimentation towards accomplishing the goal (e.g., understand the parameters
underlying participant behavior in a psychology study) by specifying the goal in language.

We introduce principled evaluation metrics that measure the quality of experiments and discovered
models. To evaluate experimental design, we draw from Bayesian optimal experimental (BOED)



66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82

83
84
85
86
87
88

89
90
91
92
93
94

95
96
97
98
99
100
101

class WorldEnv:
def build model:
def reset:
def step:

Pseudocode

env = WorldEnv ()

goal = Goal (env)

desc = goal.describe_goal ()
scientist = Agent()
scientist.set_goal (desc)

Example

Hyperbolic Temporal Discounting
Understand how value of money for a
participant decreases with time

Agent that can interact with a language

interface
for n in range (num_exp) :
act = scientist.act (obs)
eig = goal.info_gain (act)
obs = env.step(act)

Will the participant choose $10 today of
$100 in 50 days?

EIG: 0.01

Response: $100 in 50 days

class Goal:
def init(env):
def get_query:
def eval (pred, truth):

def info gain (design) : query, answer = goal.get_query()

pred = scientist.predict (query)
error = goal.eval(pred, answer)

Q: Predict if the participant will choose $10
today or $20 in 5 days?
A: $10 today

. . Prediction: $10 today
explanation = agent.explain()

novice = Agent()
pred = novice.predict (query)
error = goal.eval (pred, answer)

class Agent:
def set_goal:
def act:
def predict:
def explain:

Explanation: The value is hyperbolically
discounted with a factor of 0.05, so the
value of $d in D days is 1/1+0.05d.
Prediction: $10 today

Figure 2: Python pseudocode examples. (left) BoxingGym is instantiated as modular classes and
methods for the environment (WorldEnv), goals (Goal), and agents (Agent). (center) Pseudocode
illustrating the workflow of setting goals, performing experiments, predicting outcomes, and providing
explanations. (right) An example, hyperbolic temporal discounting, where the agent predicts a
participant’s choice between immediate and delayed rewards and explains the concept to a novice.

design [43] and use expected information gain (EIG) to measure the informativeness of an experiment.
EIG captures how much an experiment reduces uncertainty in the parameters of a generative model
and, importantly, this measure complements our decision to implement environments as generative
models. To evaluate model discovery, we take inspiration from the fact that science is a communicative
endeavor. We propose a communication-based evaluation strategy: we ask a scientist agent to distill
their experiments into a natural language explanation and evaluate how much that explanation
empowers a novice agent, who does not have access to the experiments conducted by the scientist, to
make accurate predictions about the environment.

We evaluate several open and closed-source language models ranging from 7B to 32B parameters. We
find that larger models consistently outperform smaller variants, and closed-source models generally
achieve better results than open-source alternatives. We also evaluate Box’s Apprentice [26], which
augments language models with statistical modeling capabilities, but find that this augmentation
does not reliably improve performance. Notably, we observe substantial variation in difficulty across
environments, which remaining challenging even for the strongest models. Promisingly, some
environments show clear performance improvements with model scale. These results highlight
significant opportunities for improving automated scientific reasoning.

2 Related Works

Optimal Experimental Design. Bayesian optimal experimental design (BOED) is a principled
framework for designing maximally informative experiments across various disciplines [48, 12,
]. While theoretically appealing, BOED’s practical implementation is challenging due to the
intractability of information gain metrics like expected information gain (EIG). Although several
methods [43, 16, 17] exist to approximate EIG, they assume the data follows a fixed generative
model—limiting their utility when model revision is needed as new data is collected.

Automated Model Discovery. Automated model discovery from data has been a long-standing goal
in Al, aiming to build interpretable models that capture underlying patterns in data—from physical
laws [0, 31] to nonparametric regression [ 5]. Recent work [26, 27] has integrated language models
into this process, leveraging their ability to both propose and critique candidate models, demonstrating
their potential as tools for automated model discovery. This work highlights the potential of using
language models as a powerful tool for model discovery.

Reasoning and Exploration with LLMs. Language models have shown promising capabilities in
both deductive reasoning (deriving consequences from hypotheses) Saparov et al. [46], Saparov and
He [45], Poesia et al. [4 1] and inductive reasoning (inferring hypotheses from observations) [52, 42].
While reinforcement learning has improved LLMs’ reasoning abilities [23, 21, 20, 22], these advances
have primarily focused on deterministic, verfiable systems rather than the stochastic data typical in
scientific discovery. Efficient exploration and information-seeking are crucial for experimental design
and model building. Recent work [36, 32, 19, 18, 47, 25] has investigated in-context exploration



102 strategies and shown how language models can learn how to search and explore directly through
103 sequence modeling, developing effective search strategies in language.

104 Interactive Environments. Drawing inspiration from established reinforcement learning principles
105 [10, 33], BoxingGym adopts the modularity and simplicity of classic environments like OpenAl Gym
106 while shifting focus to evaluation rather than agent training. While recent work has expanded interac-
107 tive benchmarks to language agents —spanning tasks from software debugging [24] to automated
108 scientific research[35, 28], our work advances this direction by introducing a principled framework
109 for evaluating language agents’ capabilities in iterative experimental design and model discovery.

1m0 3 Boxing Gym
111 3.1 Problem Formulation.

112 We formalize experimental design and model discovery using probabilistic modeling and Bayesian
113 optimal experimental design (BOED). In BoxingGym , each environment is implemented as a
114  generative model defining a joint distribution over the experimental outcome y, experimental design
115 d, and unobserved parameters 6. This joint distribution is defined in terms of a prior distribution
116 over 0, p(#) and a simulator p(y|0,d) which is a model of the experimental outcome y given
117 parameters 6 and design d. For example, in a psychology experiment, 6 could be the parameters
118 of a behavioral model of participants, d could be the questions posed to participants, and y could
119 be the participant’s response to d. Running an experiment corresponds to choosing a design d
120 and observing a sample y from the marginal predictive distribution conditioned on that design,

121 de,y~ pyld) = Eye)lp(ylo,d))) .

122 3.2 Evaluation

123 3.2.1 Evaluating experimental design via Expected Information Gain

124 To evaluate experimental design, we take inspiration from the Bayesian OED literature [16, 17].
125 Crucially, our choice to implement environments as generative models enables us to leverage this
126 literature. For each domain, we have an underlying predictive model p(y|6, d). We quantify the
127 informativeness of a design d through the expected information gain (EIG), that measures the
128 reduction in posterior uncertainty about the model parameters 6 after running an experiment d. Below,
129 H is the Shannon entropy.

EIG(d) = Ep(yja) [H[p(0)] — H[p(0ly, d)]]

130 Since the EIG is typically not available in closed-form, we use a Nested Monte Carlo estimator

N

. 1 P(Yn|On.0,d) iid.

91 e (d) = 7 ) log ’ where 0y~ p(0), Yo ~ p(yl0 = 050, d)
N nZl LM (Y| m, d)

132 We chose this estimator because it is a consistent estimator of the true EIG [43] and is straightforward
133 to implement. EIG measures the value of an experiment under the assumption that the true distribution
134 of experimental outcomes is modeled by p(y|d). In general, this assumption is not true, but EIG is
135 still a useful measure since we generate data from an underlying model in our benchmarks.

136 3.2.2 Evaluating model discovery via communication

137 To evaluate the quality of a model, we use standard model evaluation metrics (e.g., prediction MSE)
138 and a communication-based metric that takes advantage of the natural language interface. In particular,
139 a scientist agent interacts with an environment through experiments. After these experiments, we ask
140 the scientist agent to synthesize their findings through an explanation. We then evaluate how much
141 that explanation enables a novice agent to make more accurate predictions about the environment
142 without any additional experiments. Since a good explanation is both predictive and parsimonious,
143 we set a token limit on the explanation. Crucially, this evaluation method can accommodate different
144 forms of scientific theories. In our experiments, we ask the scientist agent to produce a statistical
145 model and then distill the model into a natural language explanation to guide the novice agent.

*In the sequential setting, we replace the prior p(#) with the posterior p(8]y, d).
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3.2.3 Evaluating goals via prediction

To evaluate success at achieving a specific goal (e.g., how do the populations of predator and prey
change with time) we employ a prediction target (e.g., predict the population of predators at a
particular time) and calculate a standardized prediction error. First, we compute the error between the
predicted and true values. Then, we standardize this error with respect to the prior predictive mean,
which is obtained by assuming a uniform prior over the design space. Specifically, for each domain,
we sample a design d uniformly from the design space and a parameter ¢ from the prior distribution
p(6). We then generate samples from the predictive model p(y|0, d) and average over multiple d and
6 to obtain the prior predictive mean p and variance og. Let {y;}?_; be the ground truth outputs for
inputs {x;}7_,. and let {g; }7_; be the predictions of the agent. The standardized prediction error is
then calculated using these quantities, providing a measure of the agent’s performance relative to
the prior predictive mean. We use a domain-specific function f computing the discrepancy between
a prediction ¢j; and ground truth value y; (e.g., MSE). We compute the errors ¢; = f(4;,y;) and

€uo = f (10, y:). Finally, we compute the standardized error as & ;Z““ . Crucially, since this metric is

computed with respect to the prior predictive, this metric can be negative.

3.3 Design Decisions in Constructing BoxingGym

We outline the key design decisions of BoxingGym that allow it to capture key aspects of scientific
discovery within a flexible, simulated, and extensible environment.

Discovery via active experimentation. The agent actively interacts with the environment by
conducting experiments, reflecting the real-world coupling of experimentation and model discovery.
This approach assesses the agent’s ability to gather relevant data and refine its models based on
experimental results.

Real-world scientific models. Our environments are grounded in real-world scientific models
from several domains, ensuring the benchmark tests the agent’s ability to handle realistic scenarios.
We implement these environment as pymc generative models to make active experimentation an
automatic and tractable process.

Goal-driven discovery. Each environment has a specific goal, mirroring the inquiry-driven nature
of scientific research. This encourages the agent to engage in targeted experimentation.

Language-based interface for experiments. We use a language-based interface for our experi-
ments because it’s flexible (i.e., scientific domains can generally be described in language), easily
integrates with LLMs, and interpretable to humans.

Emphasis on Measuring Discovery with Explanations. BoxingGym places a strong emphasis
on measuring the quality of the agent’s discoveries through the explanations it can provide after
experimentation ( ). This design decision is motivated by two considerations. From a theoretical
perspective, science is fundamentally about developing better theories, and scientific theories are
explanations of observed phenomena. From a practical perspective, communicating findings to the
broader scientific community is an essential aspect of scientific research. By using language, we do
not have to commit to a particular representation of a scientific theory. We illustrate this flexibility,
by showing how different representations can be easily integrated within our method for measuring
natural language explanations.

Extensible/modular environments for benchmarking agents. BoxingGym is easily extensible and
modular, enabling researchers to integrate new environments and test different agents with minimal
effort. We illustrate this in which provides a pseudo-code example of how to implement a new
environment and goal in BoxingGym .

3.4 Domains

BoxingGym consists of 10 environments (see for full details) that cover a range of scientific
domains and test different aspects of experimental design and model discovery. Some environments
are designed to test optimal experiment design, while others focus on model discovery or involve
simulated neuro-symbolic human participants.
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Location finding. [!7] In an n-dimensional space with %k signal-emitting sources, the scientist
measure signals at any grid location. Goals include predicting the signal at any point or locating the
sources.

Hyperbolic temporal discounting. [!7] The scientist observes a participant’s choices for different
immediate rewards (ir), delayed rewards (dr), and delay periods (D days) (right). Goals
include predicting choices of a participant or discount factors.

Death process. [17] A disease spreads at an infection rate. The scientist can measure the number
of infected individuals at different points of time to predict future infections or the infection rate.

Item Response Theory (IRT). [44] In this environment, there is a set of students and a set of
questions. The experimenter can observe the correctness of a student’s response to a particular
question. The goal is to discover the underlying model that relates student ability and question
difficulty to the probability of a correct response.

Animal growth curves. [29] An experimenter can observe the length of a dugong at a particular
age. The goal is to discover the underlying growth model of dugongs.

Population growth dynamics. [29] An experimenter can observe the population of peregrines at a
particular point in time. The goal is to discover the underlying population dynamics model. This is
tested by asking the experimenter to predict population dynamics at a particular point in time.

Mastectomy Survival analysis. [!3] The experimenter can observe if a patient is alive after a
mastectomy, including metastasis status and time since surgery. The goal is to predict survival
probabilities for new patients.

Predator-Prey dynamics. [5!] This simulates predator-prey populations over time. The goal is to
discover models like the Lotka-Volterra equations to predict future populations.

Emotion from outcome. [37] Participants guess a player’s emotions after a gambling game’s outcome.
The experimenter designs games with varied probabilities and prizes to model how participants judge
the emotions of a player from outcomes. Human participants are simulated using a probabilistic
model translated into natural language by a language model.

Moral Machines. [5] Participants face moral dilemmas, choosing which group an autonomous car
should save. Experimenters manipulate group compositions and required actions to model moral
decision-making. Human participants are simulated with a probabilistic model, and their actions are
translated into natural language by a language model.

4 Experiments

We conduct experiments to evaluate the performance of two baseline agents on BoxingGym . Our
goal is to assess their ability to perform experimental design and theory building across a diverse set
of environments. We benchmark two types of agents: a standard language model (GPT-40, OpenAl
[38]) and a language model augmented with symbolic reasoning capabilities (Box’s Apprentice).

LLM Agent. We consider 6 LLMs, GPT-40 [38], Claude-3.7-sonnet [3], Qwen-2.5-32b-instruct,
Qwen-2.5-7b-instruct [54], and reasoning variants OpenThinker-32b, and OpenThinker-7b [50]; the
reasoning variants are finetuned on math and coding task. We prompt these models to interact with
our environment, purely through natural language, without additional tools (see , see

for details).

Box’s Apprentice. The apprentice agent augments language models by enabling them to implement
generative models of observed data. For model discovery, the agent writes a pymc program [26] after
10 experiments, which is then fit and provided to the scientist explaining findings to the novice. For
experimental design, the agent creates and uses these models to guide subsequent experiments.

Experiment Setup. For each environment, we run the agents for 5 independent trials. At each
step, the agent chooses to perform an experiment, by specifying a design, and observes the outcome.
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Figure 3: Normalized Error Compared across Models. (a) Comparison of the normalized errors
for different LLMs with or without prior information included in the prompt. (b) Comparison of
reasoning models (OpenThinker) and instruct models (Qwen) across environments. Error bars are the
standard error across 5 runs.
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Figure 4: Normalized Errors Over Number of Observations. Normalized errors for the LLM
agent with gpt-4o with prior information (solid blue) and without prior information (dotted yellow)
across three domains: Population Growth Dynamics (left), IRT (center) and Hyperbolic Discounting
(right). Error bars are the standard error across 5 runs.

After a fixed number of steps (0, 1, 3, 5, 7, 10), we evaluate the agent’s performance using the
metrics described earlier . The performance of models is averaged across 5 runs and over 10
evaluation points. We also explore a prior vs no prior condition to investigate whether domain
knowledge helps or hinders scientific discovery. In the prior condition, we give the LM full context
about the problem domain (e.g., “you are observing how participants balance delayed vs immediate
rewards”), simulating scientists with background knowledge. In the no prior condition, we remove
this context and describe the setting in a domain-agnostic way (e.g., “you receive a tuple of three
values”), resembling reasoning from raw observations without preconceptions. This tests whether
prior knowledge scaffolds discovery or creates biases that constrain exploration.

4.1 Experimental Design Evaluation

Setup. To evaluate the agents’ performance, we first assess their ability to gather valuable informa-
tion through their experiment selection and then measure how effectively they use this information
to predict the environment. The Expected Information Regret (EI Regret) compares the Expected
Information Gain (EIG) ( ) of the agent’s chosen experiments to the maximum EIG achievable
from 100 random experiments. Lower EI Regret indicates more informative experiment selection.

Prior information does not improve performance. We find that models often perform better
when given no prior information after 10 experiments ( a). In some cases, this is because the
LLM makes an overly strong assumption about the environment (e.g., the signal decay is symmetric
around the origin) and does not revise the assumption after more experiments; this is consistent with
findings reported by Li et al. [26]. In other cases, such as the hyperbolic discounting environment
( , right), the model overfits to limited observations.

More experiments generally lead to better predictions. We plot the learning trajectories for
three environments in ( ). The agent’s average prediction error decreases as it performs more
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Figure 5: (a) Comparison of the Box’s Apprentice with an LLM agent. (b) EIG Regret scores for six
large language models, with lower values indicating better performance.

experiments. The Hyperbolic Temporal Discounting environments shows an unexpected trends
where more experiments actually increases error. This may again be related to how prior knowledge
interferes with effective learning from data.

Models Improve with Scale. Larger models consistently outperform their smaller counterparts
within the same model family. Both OpenThinker-32B and Qwen2.5-32B demonstrate significantly
better performance than their respective 7B variants across environments ( a), highlighting the
benefits of scale for experimental design tasks.

Instruction-Tuned Models outperform Reasoning Models. Surprisingly, the instruction-tuned
Qwen2.5 models outperform the reasoning-focused OpenThinker models ( b). This may be
because OpenThinker models are finetuned to perform well on a relatively narrow set of verifiable
problems in math and code, while instruction-tuned models retain broader capabilities that could be
useful for experimental design.

Models performance varies substantially across environments. Models show varying perfor-
mance across different environments ( b). Performance is strongest on environments like
population growth dynamics and death process, where the LM agent achieves negative standardized
error, indicating that the LM successfully leveraged information gained through experimentation.
However, in environments like hyperbolic discounting, performance is low even after experimentation,
suggesting that some domains are inherently more challenging for current models.

EIG Regret reveals relationship between experimental design and prediction. Our EIG regret
analysis ( b) provides insight into the relationship between two key components of scientific
reasoning: designing informative experiments and making accurate predictions from collected
data. GPT-40 achieves both the lowest EIG regret and strong predictive performance across several
environments, suggesting these capabilities can be aligned. However, the varying performance of other
models is informative — for instance, Qwen-32B shows higher EIG regret despite good predictive
performance in some domains, indicating that while these abilities may be related, excellence in
prediction doesn’t automatically translate to optimal experimental design.

LLMs cannot always optimally leverage statistical models. While Box’s Apprentice can propose
and fit explicit statistical models to observed data, it does not consistently improve over the non-
augmented LLM (GPT-40) ( a) From qualitative analysis of the models, we find that Box’s
Apprentice tends to favor overly simple functional forms due to limited data, such as using linear
approximations for inherently nonlinear phenomena.

4.2 Evaluating Model Discovery via Communication

Setup. Next, we evaluate the agents’ ability to build and communicate models that capture the
underlying phenomena in each environment. To test this, we have the agents interact with the
environment for 10 steps (scientist phase) and then generate a natural language explanation of their
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Figure 6: Evaluation of Model Discovery via Communication. (a) Comparison of the standardized
error of the Novice (gpt-4o) with different Scientist models. (b) Comparison of errors made by the
Novice and the Scientist (both models are gpt-40). Error bars are standard error.

findings. We then provide this explanation to a novice agent, which must make predictions about the
environment without any direct interaction (novice phase by using the explanation from the scientist;

). The novice agent is always gpt-4o. The scientist’s prediction after 10 observations (Error
After Experiments) acts as a weak positive control. Ideally, if the scientist’s explanation is effective,
the novice’s error should approach the positive control.

Explanations improve with scale. Larger models generally produce more effective explanations,
as evidenced by better novice performance when using explanations from 32B variants compared to
7B models ( a). This suggests that increased model scale improves not just experimentation but
also the ability to distill and communicate findings.

Explanations are not as good as experiments As expected, novice agents perform worse than
scientists who directly interacted with the environment ( b). The gap suggests that current
explanation methods do not fully capture the knowledge gained through experimentation.

Explanations are more helpful for some environments. However, the effectiveness of explana-
tions varies substantially across domains ( b). For instance, explanations are helpful for animal
growth, but struggle with complex domains like moral judgments. This variation likely reflects the
complexity of different domains and the current limitations of language models in capturing and
communicating certain types of patterns.

5 Discussion

We introduced BoxingGym , a benchmark measuring language-based agents’ capabilities in ex-
perimental design and model discovery across 10 real-world-based environments. We evaluated
experimental design using information gain metrics and developed a novel model discovery metric
based on an agent’s ability to explain its model to a novice agent. Our evaluation across multiple
model scales (7B-32B parameters) shows that while larger and closed-source models generally per-
form better, fundamental challenges persist. Neither domain-specific prior knowledge nor statistical
modeling capabilities consistently improved performance. Some environments yielded strong results
with larger models, while others remained challenging for all approaches. BoxingGym has limitations:
it uses pre-defined experimental paradigms rather than requiring design from scratch [14], ignores
resource constraints, and covers limited scientific domains. Future work should address these limita-
tions by incorporating experiment design from scratch, resource constraints, and more diverse fields.
We could also expand the human behavior environments (Moral Machines, Emotions) with more
sophisticated participant simulations [4, |, 49, 39, 40]. While our experiments demonstrated potential
for interfaces that augment language models’ scientific reasoning capabilities, future research should
explore data visualization, strategic simulations [27], model validation, and web-based research
strategies to enhance experimental guidance and discovery.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe the design of our benchmark accurately, summarize results with
different models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See discussion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No proofs or new theoretical result.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, further, all our code, results and scripts are available on github.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All the code is accessible on the github.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (

) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe this in detail in experimental setup and have the full specification
in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report statistical significance in all our results...
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See appendix section B.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]
Justification: Single blind submission and we follow the code.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: We don’t discuss these as there are no direct negative societal impacts.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not relevant for the paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models have been cited appropriately. The papers that inspired the
environments have been credited too.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We add documentation to the BoxingGym code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human participants were recruited.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Paper does not use human participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: None of the core methods used LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy ( )
for what should or should not be described.
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