
TOWARDS EFFICIENT POSTERIOR SAMPLING IN DEEP
NEURAL NETWORKS VIA SYMMETRY REMOVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian inference in deep neural networks is challenging due to the high-
dimensional, strongly multi-modal posterior landscape. Markov Chain Monte
Carlo approaches asymptotically recover the true, intractable posterior but are
prohibitively expensive for large modern architectures. Local posterior approx-
imations, while often yielding satisfactory results in practice, crudely disregard
the posterior geometry, i.e., other functionally relevant modes. We propose to
exploit well-known parameter symmetries induced by neuron interchangeability
and output activation to retrieve a drastically reduced – yet exact – posterior over
uniquely identified parametrizations. To this end, we provide an algorithm for
explicit symmetry removal and develop an upper bound on the number of Monte
Carlo chains required to capture the reduced posterior. Our experiments suggest
that efficient sampling from the functionally relevant part of the posterior is in-
deed possible, opening up a promising path to faithful uncertainty quantification
in deep learning.

1 INTRODUCTION

Uncertainty quantification (UQ) is crucial to typical deep learning applications in which model
parametrizations are inferred from limited data. By equipping predictions with meaningful con-
fidence estimates, UQ enables higher predictive accuracy, provides credible regions, and allows for
the detection of out-of-distribution (OOD) data Ovadia et al. (2019). A key component of UQ in
neural networks is the distribution over feasible network parametrizations, represented by the pos-
terior distribution in Bayesian statistics (Hüllermeier & Waegeman, 2021). However, an analytical
form of the posterior distribution is generally not tractable for Bayesian neural networks (BNNs).
Experimental inspections of the posterior distribution have revealed complex geometries (Izmailov
et al., 2021). The highly non-monotonic hypersurface in the weight space proves a challenging ap-
proximation target. Furthermore, the classical approach of Markov Chain Monte Carlo (MCMC)
approximation is considered impractical due to the typically large number of posterior modes, pre-
venting a reasonable mixing of chains (Izmailov et al., 2021). Hence, instead of capturing the entire
distribution, recent approaches have tried to infer uncertainty from smaller regions of the param-
eter space. The Laplace approximation (LA) captures a single mode of the posterior distribution
(MacKay, 1992; Daxberger et al., 2021), while Izmailov et al. (2020) propose to use a parameter
subspace for quantifying uncertainty. Even an independence assumption for all posterior dimen-
sions in mean-field variational inference approaches can work well in practice (Farquhar et al.,
2020). Similarly, deep ensembles (DE; Lakshminarayanan et al., 2017) rely on a handful of trained
networks to characterize the uncertainty induced by the entire posterior landscape. However, in con-
trast to MCMC, these methods a priori omit regions of the parameter space that might be decisive
for a faithful quantification of uncertainty (as also shown in Section 6.4).

A rarely considered property of neural networks in the context of UQ is their unidentifiability, i.e.,
the existence of two or more equivalent parametrizations that describe the same input-output map-
ping. Sources in multi-layer perceptrons (MLPs) for equioutput parametrizations are activation
functions, such as tanh, sigmoid or ReLU (Kůrková & Kainen, 1994; Chen et al., 1993; Petzka et al.,
2020), and the free permutability of neuron parameters in hidden layers (Hecht-Nielsen, 1990). The
functional redundancy arising from this phenomenon grows rapidly with the depth and width of a
network (Chen et al., 1993), and thus also contributes to the high geometric complexity and symme-
tries of BNN posterior distributions.

1

Our contributions In this work, we analyze the role of posterior space redundancies in quantify-
ing BNN uncertainty, making the following contributions: 1) We show that the full BNN’s poste-
rior predictive distribution can be obtained from a small fraction of its parameter space containing
uniquely identified parametrizations in function space. 2) We propose an estimation procedure for
the number of Monte Carlo chains – independent of network size – required to discover all func-
tionally diverse modes, i.e., posterior modes that remain after complete symmetry removal. 3) We
relate our findings to the state-of-the-art DE and LA methods and provide an explanation for their
high-quality uncertainty but also point out their limitations. 4) We present a novel algorithm to re-
move equioutput-transformation-related symmetries from the posterior distribution of tanh-activated
BNNs, demonstrating the superior interpretability and better approximation quality of our general
proposal.

2 BACKGROUND AND NOTATION

In this work, we consider neural networks of the following form. Let fθ : X → Y;x 7→ fθ(x) =: ŷ
be an MLP with K layers, where layer l ∈ {1, . . . ,K} consists of Ml neurons, mapping a feature
vector x = (x1, . . . , xn)

⊤ ∈ X ⊆ Rn to an outcome (vector) ŷ = (ŷ1, . . . , ŷm)⊤ ∈ Y ⊆ Rm,
m,n ∈ N, to estimate y = (y1, . . . , ym)⊤ ∈ Y . For each hidden layer l ∈ {2, . . . ,K − 1}, the
inputs are linearly transformed and then activated by a function a. Throughout this paper, we will
use the tanh function a(u) = tanh(u) as an example for hidden layers and an identity activation
a(u) = u in the last (K-th) layer. We further define the activated outputs of the i-th neuron in a
hidden layer as zli = a(oli) with neuron output oli =

∑Ml−1

j=1 wlijz(l−1)j + bli, layer weights wlij ,
and bias term bli. For the input layer, we have z1i = xi for i = 1, . . . , n, and for the output layer
zKi = ŷi for i = 1, . . . ,MK . We summarize all weights of the MLP in the vector

θ :=(w211, . . . , wKMKMK−1
, b21, . . . , bKMK

)⊤ ∈ Θ ⊆ Rd.

Bayesian neural networks In the Bayesian paradigm, a prior distribution p(θ) is imposed on
the parameters, typically as part of a Bayesian model of the data. Using Bayes’ rule, the posterior
distribution of parameters p(θ|D) = p(D|θ)p(θ)/p(D) updates this prior information based on the
information given by the data D and encoded in the likelihood p(D|θ).

Equioutput transformations All MLPs with more than one neuron in at least one hidden layer
potentially exhibit equioutput parametrizations (Hecht-Nielsen, 1990; Kůrková & Kainen, 1994)
that can be converted into each other using suitable transformations. This means that 1) the Ml > 1
neurons of a hidden layer l can be freely interchanged by permuting their parameters, and 2) the
signs of parameters can be flipped for odd activation functions (satisfying a(−u) = −a(u)) without
changing the input-output mapping. In the second case, each neuron i has two parametrizations
that are related by a reflection transformation flipping the signs of corresponding parameters. A
common example for this is the tanh function. An instance of functional equality related to the
permutation of two neurons and sign flipping is shown in Appendix A. Sussmann (1992) mentions
another class of equioutput cases in MLPs arising from specific parameter values, such as zero-
valued multiplicative weights allowing for arbitrary parametrizations in the other corresponding
factor. As these are typically degenerated cases, we will not consider them further.

A formal description of equioutput transformations as given in, e.g., Chen et al. (1993), is pro-
vided in the following for the example of a tanh-activated MLP. Let FT : Θ → Θ,θ 7→ Tθ,
T ∈ {−1, 0, 1}d×d be an output-preserving reflection transformation of a parameter vector that
encodes activation-related equioutput parametrizations. Similarly, let FP : Θ → Θ,θ 7→ Pθ,
P ∈ {0, 1}d×d be a permutation of parameter vector components such that the output remains un-
changed. For a neural network with a d-dimensional parameter vector, the cardinality of the set of
reflection transformation matrices Tl = {T1, . . . ,T2Ml } in layer l is 2Ml , and the cardinality of the
permutation set Pl = {P1, . . . ,PMl!} is Ml!. Layerwise equioutput transformations El are arbitrary
combinations of elements from Tl and Pl, such that El = {TP | T ∈ Tl,P ∈ Pl} with correspond-
ing functional FEl

= FT ◦ FP . A full equioutput transformation of the MLP can be obtained by
combining layerwise transformations

E =

{
K−1∏
l=2

Al | Al ∈ El, for l = 1, . . . ,K − 1

}
, (1)

2

with fθ(·) = fEθ(·) for E ∈ E . The cardinality of this set, i.e., the amount of equioutput
parametrizations, can be computed as

|E| =
K−1∏
l=2

Ml! · 2Ml . (2)

It becomes immediately clear from Equation 2 that the amount of functional redundancy increases
rapidly with network size (see also Figure 1). As a result of equioutput parametrizations, the BNN
posterior distribution, too, exhibits functional redundancy in the form of symmetries.

0 20 40 60 80 100 120
neurons

1018
1049
1080

10111
10142
10173
10204
10235

ca
rd

in
al

ity
 (l

og
) l

l

l

4 2 0 2 4
b21

4
2
0
2
4

w
21

1

4 2 0 2 4
b21

4
2
0
2
4

w
21

1

Figure 1: Left: cardinality of the equioutput transformation set (y-axis; on log-scale) for a single hid-
den layer with 1 to 128 neurons (the functional redundancy factor for a network with 128 neurons is
at 1.31 ·10254); center: induced symmetries in a ten-dimensional BNN posterior (bivariate marginal
distribution); right: distribution of the functionally equivalent non-symmetric set of parametriza-
tions (highlighted in green) obtained by our proposed method.

3 RELATED WORK

Equioutput parametrizations Non-unique network parametrizations have been considered in the
literature before, first mentioned by Hecht-Nielsen (1990) with a focus on neuron interchangeability,
and advanced by subsequent work on single-hidden-layer MLPs with tanh and more general self-
affine activations (Sussmann, 1992; Kůrková & Kainen, 1994). An extension of MLPs with tanh
activation to arbitrary depth was studied by Chen et al. (1993). More recently, Petzka et al. (2020)
characterized equioutput parametrizations for MLPs with ReLU activation and a single hidden layer.

Functional redundancy Chen et al. (1993) provided a set of identifiability constraints alongside
their characterization of equioutput transformations for tanh-activated MLPs that can be used to ob-
tain an identifiable set of networks. However, their data-independent constraints do not respect the
geometry of the posterior distribution and might intersect modes, such that removable symmetries
between them remain. This phenomenon has been described in the context of finite mixture models,
which possess comparable symmetries in their posterior distributions, under the term label switching
(Frühwirth-Schnatter, 2001). Bardenet & Kégl (2012) introduced an adaptive Metropolis algorithm
with online relabeling for mixture models, effectively removing permutation symmetries by opti-
mizing over the discrete sets of permutation matrices. Unfortunately, such discrete optimization is
not feasible in modern neural networks due to the vast amount of existing permutations.

Symmetries in neural networks A large body of work in deep learning attests to the various
symmetries and modes in BNN posteriors. Draxler et al. (2018); Garipov et al. (2018) found modes
in BNN posteriors to be linked by paths of near-constant loss (mode connectivity) and proposed
methods to uncover these as more robust solutions. Recent work has also attempted to interpolate
between pairs of close-by network parametrizations on lower-loss curves by removing symmetries
in ReLU-activated networks: Tatro et al. (2020) permute parameters based on aligning layer-wise
network embeddings, and Pittorino et al. (2022) maximize the cosine-similarity between normalized
parameter vectors post hoc. Pourzanjani et al. (2017) propose an online-sampling algorithm for
ReLU-activated MLPs by introducing constraints for symmetry removal, albeit ignoring posterior
geometry and hence failing to remove all symmetries from the posterior distribution.

MCMC methods Posterior symmetries have been known to slow down convergence due to the
possibility of visiting symmetric modes (Nalisnick, 2018; Papamarkou et al., 2022). Izmailov et al.

3

(2021) indeed found differences of MCMC chain-mixing between the parameter and function space
in large-scale experiments, while imposing constraints to the sampling process improves mixing
(Sen et al., 2020). We propose to address the problem by mapping every sample to a reference set
of unique parameterizations. As a consequence of this approach, it is sufficient to only consider
samples from this fraction of the posterior (see Section 4). These findings advocate focusing on
functional instead of parameter space mixing during MCMC.

4 BAYESIAN INFERENCE USING A POSTERIOR REFERENCE SET

In supervised learning, a set of N feature vectors x ∈ X and outcome vectors y ∈ Y form the dataset
D = {(x(1),y(1)), . . . , (x(N),y(N))}. The posterior predictive distribution p(y∗|x∗,D) quantifies
the predictive or functional uncertainty of a model for a new observation (x∗,y∗) ∈ X × Y . Since
p(y∗|x∗,D) =

∫
Θ
p(y∗|x∗,θ)p(θ|D) dθ, deriving this uncertainty requires access to the posterior

p(θ|D). As mentioned in Section 1, the posterior itself is generally not tractable for BNNs, and an
MCMC approximation is considered to be practically infeasible for highly multi-modal posteriors.
Motivated by the large number of symmetries from equioutput parametrizations, we revisit this
infeasibility statement in the following. The presented results pave the way for a viable approach to
sample from the true (non-approximate) posterior.

4.1 POSTERIOR REFERENCE SET

As stated by Chen et al. (1993), the neural network parameter space Θ can (with the exception of
points at the boundaries) be dissected into |E| disjunctive sets of the same cardinality.

Proposition 1 (Parameter Space Dissection) Similar to Chen et al. (1993), let us define S1 as the
reference set of uniquely identified network parametrizations. Then, it holds that

Θ =

|E|⋃
j=1

Sj , where Sj = {θ | θ = Ejθ
′ ∀θ′ ∈ S1,Ej ∈ E}. (3)

Since equioutput parametrizations have the same posterior probabilities p(θ|D) = p(Ejθ|D) and,
by definition, produce the same predictions p(y∗|x∗,θ) = p(y∗|x∗,Ejθ) for any Ej ∈ E (see
Appendix B, Equations 14-16), the following holds.

Corollary 1 (Reformulated Posterior Predictive Distribution) Given a set of equioutput trans-
formations E and a reference set S1, the posterior predictive distribution for a symmetric and un-
constrained prior distribution can be reformulated as follows:

p(y∗|x∗,D) =
∫
Θ

p(y∗|x∗,θ)p(θ|D) dθ = |E| ·
∫
S1

p(y∗|x∗,θ)p(θ|D) dθ (4)

The proof of Corollary 1 is given in Appendix B and follows from Proposition 1 and the assumption
of symmetric prior distributions, which is often satisfied in practice (e.g., for widely applied Gaus-
sian priors). An alternative and more formal definition of this reference set can be found by using
equivalence classes, where the elements of S1 are the representatives of each equivalence class. As a
consequence of Corollary 1, the posterior predictive distribution can be obtained by only integrating
over the set of uniquely identified parametrizations S1, up to a multiplicative factor |E| that corrects
the probability values by the amount of redundancy in the posterior.

In other words, only a fraction 1/|E| of the posterior must be sampled in order to infer the set
of uniquely identified parametrizations of the neural network and thus to obtain the full posterior
predictive distribution. This simplifies inference drastically, as illustrated in Figure 1. For example,
it allows the posterior space of a single-layer network with 128 neurons to be effectively reduced to
a 10−254-th of its original size.
How to sample from the reference set? In practice, when using Monte Carlo to approximate
equation 4, it is not necessary to actually constrain the sampling procedure to S1, which might
indeed not be straightforward. Since any equioutput transformation is known a priori, each sample
can simply be mapped to its counterpart in the reference set after running the sampling procedure.
In Section 5, we propose an algorithm to conduct this mapping (i.e., symmetry removal) in an
automated manner.

4

4.2 AN UPPER BOUND FOR MARKOV CHAINS

The previous section showed how samples from the true posterior can be used efficiently and in-
dicates that a substantially reduced amount of samples is required for the posterior approximation
when accounting for all symmetries. The question remains how many samples are needed to ap-
proximate the set of uniquely identified parametrizations sufficiently well. Even after reducing the
posterior space and removing redundant modes, BNN posteriors can exhibit multiple functionally
diverse modes, representing structurally different hypotheses that cannot be distinguished in the
light of limited data. The existence of such a set of plausible solutions depends on the network
architecture and the underlying data-generating process. For example, in Section 6.4, we discuss the
case of an underparametrized network that preserves three distinctive modes caused by its restricted
capacity. In the following, we assume ν functionally diverse modes with the goal to visit every
mode and its local proximity at least once when running MCMC. As the ability to switch from one
mode to another within one chain depends on various factors, such as the acceptance probability
and the current state of other parameters, increasing the number of samples per chain does not nec-
essarily correlate with the number of visited modes. We therefore propose to focus on the number
of independent chains instead of the number of samples per chain to effectively control the number
of visited modes. This further allows us to derive an upper bound for the number of independent
chains that are required to visit every mode at least once. The number of samples from each chain
will then ultimately determine the approximation quality. In practice, given a user-defined number
of maximal resources ρ (e.g., CPU cores), the following proposition provides a lower bound on the
probability that the number of chains G necessary to visit every mode remains below the resource
limit of the user (i.e., G < ρ).

Proposition 2 (Probabilistic Bound for Sufficient Number of Markov Chains) Let π1, . . . , πν

be the respective probabilities of the ν functionally diverse modes to be visited by an independently
started Markov chain. Then, given ρ chains,

P(G < ρ) ≥ 1−
∑ν−1

q=0 (−1)ν−1−q
∑

J:|J|=q(1−ΠJ)
−1

ρ
with ΠJ =

∑
j∈J πj . (5)

The proof can be found in Appendix C. Note that this bound is independent of the neural network
architecture and only depends on the assumptions about the number of functionally diverse modes
ν, disregarding symmetric copies. In our experiments in Section 6, we find ν to be rather small
(< 10).

Example Assume ν = 3 functionally diverse modes in the set of uniquely identified parametriza-
tions with probabilities π1 = 0.57, π2 = 0.35, π3 = 0.08 (chosen to represent a rather diverse
functional mode set). We then find ρ such that P(G < ρ) ≥ 0.99. This results in an upper bound of
ρ = 1274 chains to observe all functionally diverse modes, an amount typically feasible in practice.

5 POSTERIOR SYMMETRY REMOVAL

The previous section used the knowledge of equioutput parametrizations to derive an upper bound
for the number of Markov chains to observe all functionally diverse modes of the network posterior
distribution. However, the obtained samples will be scattered across the sets Sj (see Section 4 and
Equation 3). This obscures any insights into the geometry of the network’s posterior distribution and
makes it infeasible to interpret anything but the obtained functional uncertainty. Ideally, all samples
should therefore be mapped to the reference set. In the following, we derive a general methodol-
ogy to achieve this symmetry removal in MLP posteriors, uncover their unique representative, and
present an algorithm to implement this method in practice.

Reasoning Based on results of the previous section, assume G available posterior samples
θ(g), g ∈ {1, . . . , G}. As equioutput transformations in MLPs factorize layerwise (see Section 2
and Equation 1), symmetries can be removed by iterating through the K − 2 hidden network layers.
We propose to operate on the layers in reverse order, motivated by the idea that the output of the pre-
vious layer l − 1 can be interpreted as an input to a single-layer MLP with Ml neurons. Therefore,
processing an MLP in this way is comparable to removing symmetries from K − 2 independent
single-layer MLPs.

5

In each step, it is sufficient to consider the parameters of neurons from the current hid-
den layer l. For a hidden neuron i ∈ {1, . . . ,Ml} in the l-th layer, the correspond-
ing parameters are the weights and biases from the neuron output oli and weights connect-
ing the neuron to the following layer. The neuron parameter vector is defined by ϕ(g,l,i) =

(w
(g)
li1 , . . . , w

(g)
liM(l−1)

, w
(g)
(l+1)1i, . . . , w

(g)
(l+1)M(l+1)i

, b
(g)
li)⊤ ∈ R(M(l−1)+M(l+1)+1), with w

(g)
lij , b

(g)
li for

2 ≤ l ≤ K − 1, 1 ≤ i ≤ Ml, 1 ≤ j ≤ M(l−1). This vector is an element of a subspace of Θ
whose dimensionality depends on the width of the previous and subsequent layer. As neurons can
be freely interchanged (see Section 2), the marginal posteriors of freely permutable neurons from
the same hidden layer are identical. This implies that the marginal distribution of every ϕ(g,l,i)

contains at least Ml different regions to which a neuron might be assigned in its mapping to the
reference set, allowing for Ml! different permutation configurations. The permutation-related sym-
metries can be removed by finding a valid reference assignment of states to hidden neurons, which
effectively dissects the parameter subspace into Ml regions. For tanh-activated MLPs, as consid-
ered in the subsequent paragraph, the number of states is further doubled due to sign-flip equioutput
parametrizations. Therefore, prior to the permutation symmetry removal, we cut the parameter sub-
space in half in a geometry-respecting manner for tanh-related symmetry removal (details below).

While the previous considerations theoretically allow for the mapping of every sample to its refer-
ence set, the approach is practically infeasible due to the large number of transformation functions
that would need to be defined. In the following, we present an exemplary algorithm for automatic
symmetry removal in tanh-MLPs without the need to explicitly specify E .

A symmetry removal algorithm for tanh-MLPs We follow the principle from Frühwirth-
Schnatter (2001) to work in a selected parameter subspace of equioutput-transformation-
related parameters, which is beneficial for finding identifiability constraints. Let M(g,l) :=
{ϕ(g,l,1), . . . ,ϕ(g,l,Ml)} be the collection of all parameters of the l-th layer for a sample g, and
let M(∗,l) =

⋃G
g=1M(g,l). In order to remove the tanh-related symmetries from a layer l, the

parameter subspace of the respective neurons must be reduced by half. Halving the space while
respecting the geometry of the distribution poses a data-dependent optimization problem of finding
the right constraints. Here, we propose a zero-centered, linear hyperplane βl ∈ RM(l−1)+M(l+1)+1

that intersects as few states or clusters of neuron parameter vectors ϕ ∈ M(∗,l) as possible. We op-
timize this hyperplane using a variant of a support vector machine (SVM; Cortes & Vapnik, 1995)
for unlabeled data, such that it has maximum distance to all neuron parameter vectors. The loss
function follows the hinge-loss formulation of SVMs but substitutes the labels for absolute values
of β⊤

l ϕ for ϕ ∈M(∗,l):

L(βl) =
1
2β

⊤
l βl + C ·

∑
ϕ∈M(∗,l) max

(
0, 1−

∣∣β⊤
l ϕ

∣∣) , (6)

where C > 0 is a cost-related hyperparameter and | · | a user-defined norm (we use the L1 norm in
analogy to the hinge loss). The loss-minimal hyperplane is chosen as a geometry-respecting con-
straint for flipping parameter vectors to one side of the hyperplane, i.e., applying the corresponding
equioutput transformation. The full algorithm is described in Appendix D (Algorithm 1).

Following the removal of tanh-related symmetries using the SVM approach, the remaining parame-
ter subspace in the marginal posterior distribution of layer l must be divided among the hidden-layer
neurons in order to remove the permutation-related symmetries. For this, we consider one sam-
ple θ(g) with elements ϕ(g,l,i) ∈ M(g,l) at a time and assign classification labels c(g,l,i), i ∈ {1,
. . . ,Ml}. Initially, each element is labeled with its neuron index i. We then perform a greedy
constrained k-NN classification (Appendix D, Algorithm 2) on the elements of each setM(g,l) to
assign each neuron parameter vector ϕ(g,l,i) to its most likely neuron position in the hidden layer,
followed by a permutation of the neuron parameter vectors of the layer according to the classification
results (i.e., neurons are re-indexed according to their class assignment; Appendix D, Algorithm 3).
This effectively clusters the parameter subspace into Ml regions that implicitly define constraints
and remove permutation-related symmetries. The k-NN classification is constrained in such a way
that no pair of neuron parameter vectors (ϕ(g,l,i),ϕ(g,l,j)) in the setM(g,l) is allowed to have the
same class. This is done greedily by assigning the element with the highest probability for any class
first, followed by the remaining elements in decreasing order of probabilities, until all vectors are
assigned. The process is repeated for I iterations over all K − 1 hidden layers and G Monte Carlo

6

samples. The complete algorithm is given in Algorithm 4 in Appendix D, where we also describe
the choice of all hyperparameters.

6 EXPERIMENTS

We now investigate our theoretical findings and compare the resulting approach to other popular
uncertainty methods. In all experiments, we employ a Bayesian regression model with Gaussian
likelihood assumption, standard Gaussian prior for parameters θ and a standard half-normal prior
for the variance of the Gaussian likelihood, which we treat as a nuisance parameter. Depending on
the task, we either use a No-U-Turn sampler (Hoffman & Gelman, 2014) with 210 warmup steps
to collect a single sample from the posterior, or derive the maximum-a-posteriori estimator using a
gradient-based method (details are given in Appendix E.2, E.3).

6.1 PERFORMANCE COMPARISON

Table 1: Mean log pointwise predictive density (LPPD) values on test sets (larger is better; one
standard deviation across samples in parentheses) for the small network (left) and large network
(right). The best method per dataset and network is highlighted in bold.

Small network f1 Large network f2
MCMC (Ours) LA DE MCMC (Ours) LA DE

Sinusoidal (DS) -0.53 (± 0.50) -0.57 (± 0.63) -0.58 (± 0.63) -0.59 (± 0.63) -2.42 (± 0.04) -2.13 (± 0.19)
Izmailov (DI) 0.79 (± 0.50) 0.53 (± 0.67) 0.56 (± 0.57) 0.91 (± 0.78) -1.81 (± 0.09) -2.02 (± 0.16)
Regression2d (DR) 0.64 (± 0.72) -27.4 (± 26.3) -1.46 (± 0.47) 0.95 (± 0.57) -2.33 (± 0.03) -2.20 (± 0.17)
Airfoil -0.74 (± 0.71) -1.78 (± 2.25) -1.62 (± 0.44) 0.92 (± 0.92) -3.57 (± 3.16) -2.17 (± 0.26)
Concrete -0.41 (± 0.77) -14.5 (± 14.6) -1.59 (± 0.49) 0.26 (± 0.95) -4.36 (± 6.48) -2.03 (± 0.21)
Diabetes -1.20 (± 0.69) -1.46 (± 0.84) -1.47 (± 0.63) -1.18 (± 0.78) -2.61 (± 0.02) -2.09 (± 0.40)
Energy 0.92 (± 0.44) -31.7 (± 23.2) -1.76 (± 0.29) 2.07 (± 5.67) -1.39 (± 0.80) -1.99 (± 0.20)
Forest Fire -1.37 (± 0.69) -2.39 (± 1.67) -1.60 (± 0.59) -1.43 (± 4.54) -2.80 (± 0.05) -2.20 (± 0.23)
Wine 9.67 (± 1.34) -24.5 (± 25.2) -1.15 (± 0.62) 8.62 (± 0.64) -2.81 (± 0.02) -2.08 (± 0.26)
Yacht 1.90 (± 1.26) -5.60 (± 10.4) -1.14 (± 1.08) 3.31 (± 1.67) -2.69 (± 0.02) -2.18 (± 0.26)

In our first experiment, we demonstrate the performance of an MCMC-trained BNN that makes
use of the derived upper bound for MCMC chains. We then compare the posterior approximation
quality to the one of LA and DE, using ten ensemble members for the latter. We choose tanh-
activated MLPs in this section to be consistent with our proposed symmetry removal algorithm
but note that our bound is independent of the activation function. We use a small neural network
f1 with a single hidden layer containing three neurons and a larger network f2 with three hidden
layers having 16 neurons each. As in Section 4.2, we assume ν = 3 and mode probabilities as in the
given example. While this might seem restrictive, results confirm that this assumption yields enough
functional flexibility. Table 1 shows the performance of our MCMC-based posterior approximation
in comparison to LA and DE. To measure the goodness-of-fit of the resulting predictive posterior,
we use the log point-wise predictive density (LPPD; Gelman et al., 2014)

LPPD = log

∫
Θ

p(y∗|x∗,θ)p(θ|D) ≈ log 1
G

∑G
g=1 p(y

∗|x∗,θ(g))

averaged over N∗ independent test data points (x∗(1),y∗(1)), . . . , (x∗(N∗),y∗(N∗)). Using the
LPPD, we can assess how well the predictive distribution defined by the entirety of estimated pa-
rameters is able to fit the test data. Our results clearly indicate that using only a reasonable amount
of Markov chains yields better approximations of the posterior compared to LA and DE.

6.2 PRACTICAL EVALUATION OF COROLLARY 1

Next, we investigate the property derived in Corollary 1. We therefore analyze the posterior pre-
dictive distribution for the dataset DI using the network f2. For every newly collected sample
in the MCMC run, the updated posterior predictive distribution is approximately computed on a
two-dimensional (input/output) grid. Then the Kullback-Leibler (KL) divergence between consec-
utive distributions is calculated and averaged over the grid of input values of f2 (details in Ap-
pendix F.1). As shown in Figure 2, despite the size of the network f2 and the high amount of

7

equioutput parametrizations |E| =
(
16! · 216

)3 ≈ 2.58 · 1054, the posterior predictive distribution
converges within notably fewer samples compared to |E|, and plots of the function space indicate
the saturation of functional diversity already after 1274 samples from as many chains.

2 0 2
x

2

0

2

y

1 samples

2 0 2
x

2

0

2

16 samples

2 0 2
x

2

0

2

256 samples

2 0 2
x

2

0

2

1274 samples

0 500 1000
samples

0.0

0.5

1.0

av
g.

 K
L-

Di
v.

10

5

0

lo
g

Figure 2: First four plots: approximated posterior predictive distribution of the network after 1, 16,
256, and 1274 samples; darker colors correspond to higher probabilities. Right plot: KL-divergence
(black) and its value on the log-scale (blue) between consecutive distributions after adding another
sample to the pool of samples.

6.3 POSTERIOR SYMMETRY REMOVAL

In order to test our symmetry removal approach, we apply the proposed Algorithm 4 to tanh-
activated neural networks. We demonstrate the efficacy of the approach for two architectures of
different sizes, f1 having a single layer with 3 neurons and f3 having a single layer with 16 neu-
rons, yielding 48 and 1.37 · 1018 equioutput parametrizations, respectively. We use two exemplary
synthetic datasets DS and DI , described in the Appendix E.1, and fit these with f1 and f3, respec-
tively. The resulting neuron parameter subspace of our approach is visualized in Figure 3 for both
experiments, including the steps of the symmetry removal algorithm. Different colors encode the
current neuron index in the hidden layer of the respective neuron parameter vector. In experiment
A (Figure 3, top) initially, the neuron parameter vectors are distributed identically and symmetries
of the posterior distributions are clearly noticeable (Figure 3a). Upon the first step of the algorithm
(Figure 3b), the parameter space is effectively halved, and three clusters remain. The algorithm’s
second (clustering) step completely removes all permutation symmetries from the full posterior dis-
tribution by assigning areas of this parameter subspace to the neurons of the model. This is depicted
in Figure 3c and clearly shows the separation of states by different cluster colors. In Figure 3d and
e, the univariate marginal distribution of each neuron’s inner weight w2i1 reveals their reassignment
to the parameter space. After running our algorithm, each neuron is now assigned to a distinct uni-
modal distribution, resulting in a unimodal distribution in the full parameter space (visualization in
Appendix G.1).

In the case of experiment B (bottom row of Figure 3), the initial parameter subspace of hidden neu-
rons reveals less distinct states, instead neuron parametrizations coincide at the center. However, the
symmetry removal algorithm manages to assign a coherent region of the parameter space to each
neuron, such that they are unimodal. Due to the discovered unimodal distribution of the uniquely
identified set of parametrizations in these two examples, an LA could result in reasonable UQ here
as well, even though the unreduced BNN posterior contains many more (symmetric) modes. Simi-
larly, a deep ensemble consisting of only one model would be sufficient for a comparable predictive
performance in this case.

6.4 INTERPRETABILITY

Lastly, we demonstrate the benefit of removing symmetries from the BNN posterior distribution
for improved interpretation and approximation purposes. Here we impose the same assumption on
the functionally diverse modes of the posterior of f1 as before and apply the proposed symmetry
removal algorithm after running MCMC. After convergence of our algorithm, three modes remain
in the BNN posterior and the transformed samples are clustered using a spectral clustering approach
(details in Appendix F.2). Figure 4 visualizes network parametrizations in the function space, show-
ing three functionally diverse hypotheses the network can potentially learn from the given dataset.
Having removed all functionally redundant modes, our approach allows for a better-suited approxi-
mation of the uniquely identified reference set by, e.g., using a mixture of Laplace approximations

8

2.5 0.0 2.5
w2i1

2.5

0.0

2.5

w
31

i

exp. A

a

2.5 0.0 2.5
w2i1

2.5

0.0

2.5 b

2.5 0.0 2.5
w2i1

2.5

0.0

2.5 c

4 2 0 2 40.0

0.2

 d

1 0 1 2 3 4
w2i1

0

1

 e

2.5 0.0 2.5
w2i1

2.5

0.0

2.5

w
31

i

exp. B

a

2.5 0.0 2.5
w2i1

2.5

0.0

2.5 b

2.5 0.0 2.5
w2i1

2.5

0.0

2.5 c

6 4 2 0 2 4 60.00

0.25 d

4 2 0 2 4
w2i1

0

1

 e

Figure 3: Visualization of the initial parameter subspaces of hidden neurons (a) and their transfor-
mation and reassignment during the steps of the algorithm (b, c) for experiment A using the network
f1 on DS (top row) and experiment B using f3 on DI (bottom row). Plots on the right: Univariate
marginal distributions of the neurons before (d) and after (e) the application of the algorithm.

(MoLA; Eschenhagen et al., 2021), as provided in Appendix G.2. With a functional redundancy of
|E| = (3! · 23) = 48, we have a total of 144 modes in the unreduced posterior and can discard all
but three modes for the approximation to observe the full function space. Note that standard LA
would have captured only a third of the functional diversity, which highlights its limitation in pro-
viding high-quality uncertainty in cases where multiple modes exist in the set of uniquely identified
parametrizations. In contrast, an ensemble approach such as DE will likely recover the different
modes and thus be more suitable for the given application.

5 0 5
b21

5

0

5

w
31

3

a

2 0 2
x

2

0

2

y

b

2 0 2
x

2

0

2 c

2 0 2
x

2

0

2 d

2 0 2
x

2

0

2 e

Figure 4: From left to right: The three remaining modes in the BNN’s posterior after clustering,
visualized in the bivariate marginal space of two weights (a); resulting functionally diverse network
parametrizations based on the three parameter clusters (b - d); the observed function space as a
composition of the three parameter clusters (e) by combining b - d.

7 DISCUSSION

We proposed a principled approach toward Bayesian inference that makes explicit use of symmetries
in the posterior distribution of neural networks. Specifically, we argue that removing such functional
redundancies enables exact uncertainty quantification in a substantially reduced posterior space and
thus improves over local approximations. Our considerations are based on the idea of an upper bound
for the number of Monte Carlo chains required to sample all functionally diverse posterior modes
that remain after the elimination of symmetries. We further developed an algorithm for symmetry
removal in tanh-activated MLPs. With this work, we hope to help pave the way to exact inference
(up to a Monte Carlo error) in deep learning. Ultimately, a better understanding of the posterior
geometry is paramount to the reliability and interpretability of neural networks. In the future, we
plan to address the current limitations of our symmetry removal algorithm, such as scalability to
larger multi-layer architectures, and explore other architectures and potential sources of symmetry.

9

REFERENCES

Rémi Bardenet and Balázs Kégl. An adaptive Monte-Carlo Markov chain algorithm for inference
from mixture signals. Journal of Physics: Conference Series, 368:012044, June 2012. Publisher:
IOP Publishing.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the Geometry of Feedforward Neural
Network Error Surfaces. Neural Computation, 5(6):910–927, November 1993.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
September 1995.

Paulo Cortez and Anı́bal de Jesus Raimundo Morais. A data mining approach to predict forest fires
using meteorological data, 2007.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace Redux – Effortless Bayesian Deep Learning, 2021. arXiv: 2106.14806.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially No Barriers
in Neural Network Energy Landscape. In Proceedings of the 35th International Conference on
Machine Learning, pp. 1309–1318. PMLR, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of Laplace
Approximations for Improved Post-Hoc Uncertainty in Deep Learning, 2021. arXiv: 2111.03577.

William Falcon. PyTorch lightning. https://github.com/PyTorchLightning/pytorch-lightning, 2019.

Sebastian Farquhar, Lewis Smith, and Yarin Gal. Liberty or Depth: Deep Bayesian Neural Nets Do
Not Need Complex Weight Posterior Approximations. In Proceedings of the 34th Conference on
Neural Information Processing Systems (NeurIPS 2020), 2020.

Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. Birthday paradox, coupon collectors, caching
algorithms and self-organizing search. Discrete Applied Mathematics, 39(3):207–229, 1992.

Sylvia Frühwirth-Schnatter. Markov chain Monte Carlo Estimation of Classical and Dynamic
Switching and Mixture Models. Journal of the American Statistical Association, 96(453):194–
209, 2001.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. In Proceedings of the 32nd Con-
ference on Neural Information Processing Systems (NeurIPS 2018), 2018.

Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information criteria for
Bayesian models. Statistics and Computing, 24(6):997–1016, 2014.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Ad-
vanced Neural Computers, pp. 129–135. Elsevier, 1990.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. RMSProp: Divide the Gradient by a Run-
ning Average of Its Recent Magnitude (Lecture on Neural Networks for Machine Learning), 2012.

Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(47):1593–
1623, 2014.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and Epistemic Uncertainty in Machine Learn-
ing: An Introduction to Concepts and Methods. Machine Learning, 2021.

Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Subspace Inference for Bayesian Deep Learning. In Proceedings of The
35th Uncertainty in Artificial Intelligence Conference, pp. 1169–1179. PMLR, 2020. ISSN: 2640-
3498.

10

Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson. What Are
Bayesian Neural Network Posteriors Really Like? In Proceedings of the 38th International
Conference on Machine Learning, PMLR 139,, 2021.

Věra Kůrková and Paul C. Kainen. Functionally Equivalent Feedforward Neural Networks. Neural
Computation, 6(3):543–558, 1994.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Proceedings of the 31st Conference on Neural
Information Processing Systems (NIPS 2017), 2017.

David J. C. MacKay. Bayesian Interpolation. Neural Computation, 4:415–447, 1992.

Eric Thomas Nalisnick. On Priors for Bayesian Neural Networks. PhD thesis, University of Cali-
fornia, Irvine, 2018.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V.
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can You Trust Your Model’s Uncertainty?
Evaluating Predictive Uncertainty Under Dataset Shift. In Advances in Neural Information Pro-
cessing Systems 32 (NeurIPS 2019), 2019.

Theodore Papamarkou, Jacob Hinkle, M. Todd Young, and David Womble. Challenges in Markov
Chain Monte Carlo for Bayesian Neural Networks. Statistical Science, 37(3), 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),,
December 2019.

Henning Petzka, Martin Trimmel, and Cristian Sminchisescu. Notes on the Symmetries of 2-Layer
ReLU-Networks. Proceedings of the Northern Lights Deep Learning Workshop, 1, 2020.

Fabrizio Pittorino, Antonio Ferraro, Gabriele Perugini, Christoph Feinauer, Carlo Baldassi, and
Riccardo Zecchina. Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
Flat Regions in the Landscape Geometry, 2022.

Arya A Pourzanjani, Richard M Jiang, and Linda R Petzold. Improving the Identifiability of Neural
Networks for Bayesian Inference. In Second Workshop on Bayesian Deep Learning (NIPS 2017,
2017.

Deborshee Sen, Theodore Papamarkou, and David Dunson. Bayesian neural networks and dimen-
sionality reduction, 2020. arXiv: 2008.08044.

Héctor J. Sussmann. Uniqueness of the Weights for Minimal Feedforward Nets with a given input-
output Map, 1992.

N. Joseph Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Op-
timizing Mode Connectivity via Neuron Alignment. In Proceedings of the 34th Conference on
Neural Information Processing Systems (NeurIPS 2020), 2020.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of
residential buildings using statistical machine learning tools. Energy and buildings, 49:560–567,
2012.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Ce-
ment and Concrete research, 28(12):1797–1808, 1998.

11

A FUNCTIONAL EQUALITY OF EQUIOUTPUT PARAMETRIZATIONS

Permutation-related equality The commutable property of addition directly implies that the per-
mutation of two neurons v, w in the (l−1)-th layer does not change the output oli of the i-th neuron
in the l-th layer.

oli = (wli1z(l−1)1 + bl1) + · · ·+ (wlivz(l−1)v + blv) + (wliwz(l−1)w + blw) (7)

+ · · ·+ (wliMl−1
z(l−1)Ml−1

+ blMl−1
) (8)

= (wli1z(l−1)1 + bl1) + · · ·+ (wliwz(l−1)w + blw) + (wlivz(l−1)v + blv) (9)

+ · · ·+ (wliMl−1
z(l−1)Ml−1

+ blMl−1
) (10)

Tanh-related equality Since tanh is an odd function, flipping the signs of all parameters tethered
to the outputs of incoming neurons (from layer l − 1) and outgoing neurons (to layer l + 1) as well
as the associated bias parameter of layer l leaves the output unchanged.

w(l+1)ki tanh(oli) = w(l+1)ki tanh

Ml−1∑
j=1

wlijz(l−1)j + bli

 (11)

= −w(l+1)ki tanh

Ml−1∑
j=1

−wlijz(l−1)j − bli

 = −w(l+1)ki tanh(−oli) (12)

B DERIVATIONS FOR POSTERIOR DISTRIBUTION REFERENCE SET

For a neural network parametrization θ ∈ Rd and any equioutput parametrization Ej ∈ E , the prior
probability for θ and Ejθ is identical if we assume a symmetric prior (which is, by definition of
functional symmetry, invariant to permutations in its input arguments). Here, we provide exemplary
proof for the popular Gaussian prior (note that non-unitary precision would lead to the same result).

p(θ) = N (θ|0, I) = 1

(2π)d/2
exp

(
−1

2
θ⊤θ

)
Ej orthogonal

=
1

(2π)d/2
exp

(
−1

2
θ⊤E⊤

j Ejθ

)
(13)

=
1

(2π)d/2
exp

(
−1

2
(Ejθ)

⊤(Ejθ)

)
= N (Ejθ|0, I) = p(Ejθ) (14)

Similarly, we can show that the likelihood is invariant to equioutput parametrizations.

p(D|θ) =
N∏
i=1

p(y(i)|x(i),θ) =

N∏
i=1

p(y(i)|fθ(x(i)))
equioutput

=

N∏
i=1

p(y(i)|fEjθ(x
(i))) (15)

=

N∏
i=1

p(y(i)|x(i),Ejθ) = p(D|Ejθ) (16)

Following from the above, the posterior probabilities for two equioutput parametrizations are iden-
tical.

p(θ|D) = p(D|θ)p(θ)
p(D)

14,16
=

p(D|Ejθ)p(Ejθ)

p(D)
= p(Ejθ|D) (17)

12

We now derive the full implication of symmetries for the posterior predictive distribution.

p(y∗|x∗,D) =
∫
Θ

p(y∗|x∗,θ)p(θ|D) dθ (18)

1
=

∫
S1

p(y∗|x∗,θ)p(θ|D) dθ + · · ·+
∫
S|E|

p(y∗|x∗,θ)p(θ|D) dθ (19)

14,16
=

∫
S1

p(y∗|x∗,θ)p(θ|D) dθ + · · ·+
∫
S1

p(y∗|x∗,E|E|θ)p(E|E|θ|D) dθ (20)

=

∫
S1

p(y∗|x∗,θ)p(θ|D) + · · ·+ p(y∗|x∗,E|E|θ)p(E|E|θ|D) dθ (21)

=

∫
S1

|E| · p(y∗|x∗,θ)p(θ|D) dθ (22)

= |E| ·
∫
S1

p(y∗|x∗,θ)p(θ|D) dθ (23)

C DERIVATIONS FOR UPPER BOUND OF MARKOV CHAINS

We now prove the upper bound derived in Equation 5. We first note that Markov’s inequality for the
number of chains G yields

P (G ≥ ρ) ≤ E(G) · ρ−1. (24)
We can rewrite this inequality as

P (G < ρ) ≥ 1− E[G] · ρ−1. (25)

As the number of independent chains that are required to visit every mode at least once can be
framed as a generalized Coupon Collector’s Problem (CCP; Flajolet et al., 1992), where the number
of draws (independent chains) needed to collect (visit) all ν coupons (modes) is estimated. This
gives us an expression for the expected number of chains:

E(G) =

ν−1∑
q=0

(−1)ν−1−q
∑

J:|J|=q

(1−ΠJ)
−1, with ΠJ =

∑
j∈J

πj . (26)

Putting together Equation 25 and Equation 26, we get Equation 5.

D SYMMETRY REMOVAL ALGORITHM

In Algorithm 1, we describe how to remove tanh sign-flip symmetries by projecting parameter vec-
tors to one side of a hyperplane with maximum distance to all parameters.

Algorithm 1 Geometry-respecting tanh removal algorithm.

procedure TANHREMOVAL(M(∗,l), Kβ)
R ← ∅
for each k in range Kβ do

βk ← argminβ L(β)
R ← R∪ {βk}

end for
β∗ ← β ∈ R with minimal loss L(β)
FLIPPARAMETERSBYHYPERPLANE(M(∗,l), β∗)

end procedure

We choose Kβ > 1 since in practice we observe that hyperplanes sometimes get stuck in local op-
tima. Note that any hyperplane is valid for the removal of tanh-related equioutput parametrizations.
However, in posterior symmetry removal, we strive for a solution that respects the geometry for

13

optimal mode reduction rate. FLIPPARAMETERSBYHYPERPLANE is a generic method that tests
for a neuron parameter vector ϕ whether β⊤ϕ < 0 and if yes, projects it to the other side of the
hyperplane.

Algorithm 2 demonstrates how to assign each neuron parameter vector its most likely neuron posi-
tion in hidden layer l. Here, KNNCLASSIFICATION is just a standard k-NN classification algorithm
that returns the class probabilities for a vector ϕ (here: Ml classes) and that is based on the Gaus-
sian similarity function s(a, b) = exp

(
−||a− b||2 · (2σ2)−1

)
, with σ = 1.0. The hyperparameter k

should be carefully selected, however, we generally recommend high values, such that the classifica-
tion is based on as many neighbors as possible. In all the provided experiments we used k = 1024.

Algorithm 2 Algorithm to perform greedy constrained k-NN classification.

procedure GREEDYCONSTRAINEDKNNCLASSIFICATION(M(g,l),M(∗,l), k)
R ← ∅
for each i in range Ml do

ϕ(g,l,i) ∈M(g,l)

(pi(c = 1), . . . , pi(c = Ml))← KNNCLASSIFICATION(ϕ(g,l,i),M(∗,l), k)
R ← R∪ {(pi(c = 1), . . . , pi(c = Ml))}

end for
for each i in range Ml do

Find the prob. vector pj fromR with highest probability for a class c∗.
c(g,l,j) ← argmaxc pj(c = c∗)
Set pj(c = c∗) = 0 for all j.

end for
return {c(g,l,1), . . . , c(g,l,Ml)}

end procedure

Employing Algorithm 2, we show in Algorithm 3 how permutation symmetries can be removed
from a hidden layer l. The method PERMUTE permutes the neuron index of neuron parameter
vectors according to the classification results. Since the classification by the greedy constrained
k-NN classification algorithm is based on local relationships between neuron parameter vectors, the
procedure has to be repeated multiple times I in order to obtain a globally coherent clustering of
neuron parameter vectors. We use I = 256 in all our experiments.

Algorithm 3 Permutation symmetry removal for a hidden layer l.

procedure PERMUTATIONREMOVAL(M(1,l), . . . ,M(G,l),M(∗,l), k, I)
for I times do

for each g in range G do
{c(g,l,1), . . . , c(g,l,Ml)} ←

GREEDYCONSTRAINEDKNNCLASSIFICATION(M(g,l),M(∗,l), k)
end for
for each s in range S do

PERMUTE(M(g,l), {c(g,l,1), . . . , c(g,l,Ml)})
end for

end for
end procedure

Lastly, Algorithm 4 summarizes the above steps to remove all considered symmetries while respect-
ing the posterior geometry.

14

Algorithm 4 Complete geometry-respecting symmetry removal algorithm.
procedure GEOMETRYREMOVAL({θ1, . . . ,θG}, I , k, Kβ)

for each layer l (reverse) do
Construct neuron parameter sets M (1,l), . . . ,M (G,l) from MCMC samples {θ1, . . . ,θG}
M(∗,l) ←M(1,l) ∪ · · · ∪M(G,l)

TANHREMOVAL(M(∗,l), Kβ)
PERMUTATIONREMOVAL(M(1,l), . . . ,M(G,l),M(∗,l), k, I)

end for
end procedure

E EXPERIMENTAL SETUP

E.1 DATASETS

The sinusoidal dataset DS is adopted from an example provided in Daxberger et al. (2021) and the
izmailov dataset DB is a synthetic dataset from Izmailov et al. (2020). The Regression2d dataset
DR is another synthetic dataset that we generate as follows (U denoting a uniform distribution).

p(x1) = U(a = −2.0, b = 2.0)

p(x2) = U(a = −2.0, b = 2.0)

f(x1, x2) = x1 · sin(x1) + cos(x2)

p(y|x1, x2) = N (µ = f(x1, x2), σ = 0.1)

p(D) i.i.d.
=

256∏
i=1

p(y(i)|x(i)
1 , x

(i)
2)p(x

(i)
1)p(x

(i)
2)

All synthetic datasets are standardized and visualized in Figure 5. We split the data in 80% training
and 20% test observations.

2 0 2
x

3

2

1

0

1

2

3

y

2 0 2
x

3

2

1

0

1

2

3

y

x
2 0 2

y
2

0
2

0

2

Figure 5: Left, center, right: Visualization of datasets DS , DI and DR

Together with the synthetic datasets we further provide descriptives and references also for the UCI
datasets used in our benchmarks in Table 2.

15

Table 2: Dataset characteristics and references.

Dataset # Observations # Features Reference
Sinusoidal (DS) 150 1 adapted from Daxberger et al. (2021)
Izmailov (Di) 400 1 adapted from Izmailov et al. (2020)
Regression2d (DR) 256 2 –
Airfoil 1503 5 Dua & Graff (2017)
Concrete 1030 8 Yeh (1998)
Diabetes 442 10 Dua & Graff (2017)
Energy 768 8 Tsanas & Xifara (2012)
Forest Fire 517 12 Cortez & Morais (2007)
Wine 178 13 Dua & Graff (2017)
Yacht 308 6 Dua & Graff (2017)

E.2 MARKOV CHAIN MONTE CARLO

MCMC sampling from the Bayesian models was performed using the NumPyro implementation of
the No U-Turn Sampler with default settings. Specifically, we only provide our model to the method
and set the step size to 1.0 and allow for adaptation during the warm-up phase. We use a diagonal
inverse mass matrix which is initialized with the identity matrix and is allowed to adapt during the
warm-up phase. The target acceptance probability is set to 0.8.

E.3 POINT ESTIMATES

For the LA and DE estimates, both the small architecture f1 (one hidden layer of three neurons) and
the larger architecture f2 (three hidden layers of 16 neurons each) were trained with an RMSProp
optimizer (Hinton et al., 2012) for 500 (f1) and 1000 (f2) epochs, using a constant learning rate
of 10−4 and no weight decay. In the case of DE we initialized each weight vector with a different
random seed and did not use data bootstrapping, following the approach described in the original
work by Lakshminarayanan et al. (2017). LA samples were drawn directly from the posterior.
Due to the small dataset sizes, we performed full-batch training. Our loss function is derived from
the negative log posterior, which is to be minimized over the network parameters θ and nuisance
parameter σ, namely minθ,σ − log p(θ|D), s.t.

L(θ, σ) = − log p(θ|D) = 1
2σ2

∑N
i=1(fθ(xi)− yi)

2 +N · log σ + 1
2θ

⊤θ (27)

The code is mainly based on the PyTorch (Paszke et al., 2019) and PyTorch Lightning
(Falcon, 2019) libraries, as well as the Laplace library by Daxberger et al. (2021).

F METHODS AND METRICS

F.1 KL-DIVERGENCE FOR THE POSTERIOR PREDICTIVE

The KL-divergence for two distributions p, q of continuous random variables is defined as

DKL(p||q) =
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx. (28)

The analogous formulation for random variables with discrete probability distributions p, q is

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (29)

In Section 6.2 the KL-divergence of consecutive posterior predictive distributions is calculated on
a regular grid of values y ∈ [−3.0, 3.0] for a particular input x. Further, this KL-divergence is
averaged over a regular grid of input values x ∈ [−3.0, 3.0] to obtain the final measure.

16

F.2 SPECTRAL CLUSTERING

The spectral clustering in Section 6.4 was performed by first constructing a 4-NN graph using the
Gaussian similarity function s(a, b) = exp

(
−||a− b||2 · (2σ2)−1

)
, with σ = 1.0 as a distance

measure, defined as the adjacency matrix A. We then compute the normalized graph Laplacian
from A as follows.

D := degree matrix (30)

Dij =

{∑N
k=1 Aik if i = j

0 else
(31)

Lnorm = D−1/2LD1/2 (32)

Afterwards, the eigenvalue spectrum of the Laplacian was determined and KMeans clustering was
performed for K = 3.

G ADDITIONAL RESULTS

G.1 SYMMETRY REMOVAL

Full posterior Figure 6 visualizes the full posterior distribution of the BNN of f1 on datasetDS as
investigated in Section 6.3 before (red) and after (green) the application of the symmetry removal al-
gorithm. The resulting posterior distribution is unimodal and much simpler compared to the original
posterior distribution, yet functionally they are identical.

17

2.5
0.0
2.5

1

2.5
0.0
2.5

2

2.5
0.0
2.5

3

2.5
0.0
2.5

4

2.5
0.0
2.5

5

2.5
0.0
2.5

6

2.5
0.0
2.5

7

2.5
0.0
2.5

8

2.5
0.0 2.5

0

2.5
0.0
2.5

9

2.5
0.0 2.5

1

2.5
0.0 2.5

2

2.5
0.0 2.5

3

2.5
0.0 2.5

4

2.5
0.0 2.5

5

2.5
0.0 2.5

6

2.5
0.0 2.5

7

2.5
0.0 2.5

8

Figure 6: Visualization of the posterior of the BNN f1 in a triangle plot of pairwise bivariate marginal
distributions. The full posterior as collected from MCMC (red) shows a symmetric geometry, the
transformed posterior distribution (green) is unimodal.

G.2 INTERPRETABILITY EXAMPLE APPROXIMATED

The three remaining modes in the BNN’s posterior of the interpretability example can be analytically
approximated using a mixture of LA upon clustering. Figure 7 depicts the approximated function
space component-wise and as a mixture.

18

5 0 5
b21

5

0

5

w
31

3

a

2 0 2
x

2

0

2

y

b

2 0 2
x

2

0

2 c

2 0 2
x

2

0

2 d

2 0 2
x

2

0

2 e

Figure 7: From left to right: The three remaining modes in the BNN’s posterior after clustering
approximated by MoLA, visualized in the bivariate marginal space of two weights (a); resulting
functionally diverse network parametrizations based on the three Gaussian components (b - d); the
resulting function space as a composition of the samples of the three Gaussian distributions (e) by
combining b - d.

19

	Introduction
	Background and notation
	Related work
	Bayesian inference using a posterior reference set
	Posterior reference set
	An upper bound for Markov chains

	Posterior symmetry removal
	Experiments
	Performance comparison
	Practical evaluation of Corollary 1
	Posterior symmetry removal
	Interpretability

	Discussion
	Functional equality of equioutput parametrizations
	Derivations for posterior distribution reference set
	Derivations for upper bound of markov chains
	Symmetry removal algorithm
	Experimental Setup
	Datasets
	Markov chain Monte Carlo
	Point estimates

	Methods and metrics
	KL-Divergence for the posterior predictive
	Spectral clustering

	Additional results
	Symmetry removal
	Interpretability example approximated

