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Abstract

Fast and accurate surrogates for physics-driven partial differential equations (PDEs) are
essential in fields such as aerodynamics, porous media design, and flow control. However,
many transformer-based models and existing neural operators remain parameter-heavy, re-
sulting in costly training and sluggish deployment. We propose D-SENO (Dilated Squeeze-
Excitation Neural Operator), a lightweight operator learning framework for efficiently solv-
ing a wide range of PDEs, including airfoil potential flow, Darcy flow in porous media, pipe
Poiseuille flow, and incompressible Navier–Stokes vortical fields. D-SENO combines dilated
convolution (DC) blocks with squeeze-and-excitation (SE) modules to jointly capture wide
receptive fields and dynamics alongside channel-wise attention, enabling both accurate and
efficient PDE inference. Carefully chosen dilation rates allow the receptive field to focus on
critical regions, effectively modeling long-range physical dependencies. Meanwhile, the SE
modules adaptively recalibrate feature channels to emphasize dynamically relevant scales.
Our model achieves training speed of up to ≈ 20× faster than standard transformer-based
models and neural operators, while also surpassing (or matching) them in accuracy across
multiple PDE benchmarks. Ablation studies show that removing the SE modules leads to
a slight drop in performance. Code: github.com/pj1911

1 Introduction

Partial differential equations (PDEs) dictate many natural phenomena, from synoptic-scale weather systems
to wingtip vortices, to subsurface multiphase flow, and many more. Conventional numerical solvers such
as finite difference, finite volume, spectral, and finite element schemes deliver high fidelity, yet their cost
explodes with mesh resolution, geometric complexity, and parametric sweeps Quarteroni & Valli (2008). To
close this computational gap, the focus is increasingly shifting to machine learning surrogates, which reduce
the cost of high-resolution data in training and then provide accurate predictions at lower cost.
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Recent neural PDE solvers range from physics-informed regressor to fully data-driven operator learners,
each occupying a different point on the spectrum of accuracy, flexibility, and computational efficiency. At
the physics-heavy end of the spectrum, physics-informed neural networks (PINNs) embed the governing
equations, initial conditions, and boundary conditions directly into the loss via automatic differentiation,
allowing them to train on sparse or even entirely unlabeled solution data. However, their stiff multiscale
residuals make optimization delicate, and each change in geometry or forcing profile usually requires an
expensive full retraining or at least substantial fine-tuning Raissi et al. (2019). To reduce training and
inference costs, recent work has focused on operator learning, where a single neural network approximates
the solution operator, mapping input functions to their corresponding PDE solutions across a family of
problems.
The first operator–learning model, DeepONet Lu et al. (2019), represents the mapping with two sub-networks:
a branch net that processes the input function and a trunk net that evaluates basis functions at the query
points. Its mesh-free design and small parameter count make it attractive for parametric problems, yet
running both nets at every spatial point slows training and inference as the grid becomes large Lu et al.
(2021). To mitigate this scaling bottleneck and capture interactions that extend across the entire domain,
subsequent work turned to architectures with built-in global couplings.

The Fourier Neural Operator (FNO) addresses these goals by exchanging, to certain extent, spatial locality
for spectral mixing Li et al. (2020): Fast Fourier transforms (FFT) reduce complexity to O(N log N) and
grant mesh invariance, but the resulting all-to-all convolution can blur sharp discontinuities and inflate GPU
memory on large three-dimensional domains such as wind-tunnel flows. To enhance spatial locality, some
variants perform FFTs over overlapping windows or decompose the integral kernels onto wavelet bases Gupta
et al. (2021), Tripura & Chakraborty (2023). While, these approaches partially recover local interactions,
the necessary window overlap or boundary padding adds computational overhead and can introduce artifacts
that complicates training.

In fixed Cartesian grids, U-NO Rahman et al. (2022) combines global Fourier-based integral layers with a
U-Net-style encoder–decoder and multiscale skip connections. whereas F-FNO Tran et al. (2021) employs
separable spectral (Fourier) layers factorized across dimensions alongside residual shortcuts. Like FNO, both
U-NO and F-FNO inherit its core limitations: they depend on global FFTs, making them naturally suitable
for periodic and uniform grids. They also share FNO’s high memory and computational costs, especially
in higher dimensions. Their spectral kernels require deeper architectures or windowed variants to capture
fine-scale locality, which further increases overhead and can destabilize training.

Transformer-based neural operators have recently advanced the state of the art by leveraging multi-head
attention to capture long-range dependencies. However, standard self-attention scales quadratically with the
number of spatial grid points O(N2), making high-resolution problems computationally demanding without
aggressive sparsification or patching strategies Cao (2021); Guibas et al. (2021).

Among these models, Transolver Wu et al. (2024) introduces a physics-aware clustering mechanism that
groups flow-aligned regions before applying intra- and inter-cluster attention. This approach yields state-of-
the-art accuracy across several PDE benchmarks, outperforming FNO, UNO, and prior transformer-based
baselines. Despite its accuracy gains, Transolver incurs substantial computational overhead: its iterative
clustering, multi-stage refinement, and large hidden dimensions lead to training and inference times an order
of magnitude higher than many neural operator architectures.

Our Contribution. We introduce D-SENO, a lightweight neural operator architecture designed for fast
and accurate surrogate modeling of partial differential equations (PDEs). While previous convolution-based
neural operators (e.g., CNO Raoníc et al. (2023)) rely on fixed receptive fields and uniform filter patterns,
D-SENO advances this paradigm by effectively integrating two key components within a unified framework:

1. Dilated Convolutional Blocks: We apply residual blocks with non-uniform, dataset-specific dila-
tion rates across spatial dimensions. This allows the model to flexibly expand its receptive field and
capture multiscale spatial dependencies, while maintaining strict locality and linear computational
complexity. In contrast to the Dilated Convolution Neural Operator (DCNO) Xu et al. (2025),
which employs all dilation rates in every process block, our approach customizes and selects a single,
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dataset-specific rate per block and connects them via residual links for improved expressiveness and
adaptability.

2. Convolutional Channel Attention: To enhance channel-wise expressiveness without global op-
erations, we incorporate Squeeze-and-Excitation (SE) blocks Hu et al. (2018) using pointwise convo-
lutions. These blocks dynamically recalibrate feature channels based on global context, improving
relevance to physical patterns without incurring the overhead of transformer-style attention.

This architecture remains strictly local and fully convolutional, requiring neither Fourier transforms nor
self-attention mechanisms. All layers preserve spatial resolution and scale linearly with input size, making
D-SENO particularly efficient for high-resolution PDE inference.

We validate our model on diverse PDE benchmarks, including airfoil potential flow, Poiseuille pipe flow,
heterogeneous Darcy flow, and Navier–Stokes vortices. D-SENO achieves high accuracy while offering up
to a 20× speedup in training and inference over state-of-the-art neural operator and transformer-based
surrogates.

The remainder of this paper is organized as follows: we begin by reviewing the relevant prior work, followed
by discussing the core components of our approach, then detail the architecture and training protocol of
D-SENO, and finally evaluate its accuracy, efficiency, and generalization across multiple PDE benchmarks.

2 Related Work

While the literature contains a wide array of neural PDE surrogates, we focus our discussion on representative
models that are most relevant to our approach: the Fourier Neural Operator (FNO), the Convolutional Neural
Operator (CNO), and the Dilated Convolutional Neural Operator (DCNO). We briefly summarize their core
methodologies and highlight their limitations in the context of our work.

Fourier Neural Operator (FNO). The Fourier Neural Operator (FNO) Li et al. (2020) was among the
first neural operators to approximate mappings between function spaces using the Fast Fourier Transform
(FFT). Instead of learning convolutional kernels in physical space, FNO projects the input function onto
a spectral basis via FFT, applies learned complex-valued weights to a subset of low-frequency modes, and
then returns to the physical domain using an inverse FFT. This produces a global convolution-like behavior
over the spatial domain.

At each layer, the update rule combines a spectral convolution (in frequency space) with a pointwise convo-
lution, enabling the model to capture long-range dependencies. Since FFTs operate globally, FNO exhibits
resolution invariance and has shown strong performance on structured and periodic PDE problems. How-
ever, this global nature introduces limitations. FNO may struggle with problems involving localized features
(e.g., sharp shocks), complex or irregular boundary conditions, or uneven spatial behavior due to the lack of
spatial localization in spectral kernels Chauhan et al. (2025).

In contrast, our method replaces global spectral operations with spatially localized dilated convolutions,
allowing receptive fields to grow in a controlled manner. Combined with channel-wise recalibration via
Squeeze-and-Excitation (SE) blocks, this leads to a lightweight architecture better suited for capturing
localized physical patterns.

Convolutional Neural Operator. The Convolutional Neural Operator (CNO) Raoníc et al. (2023) is
a fully convolutional architecture for learning resolution-specific mappings arising in PDEs, designed to be
robust across varying discretizations and noise levels. It builds on standard convolutional layers arranged
in an encoder–decoder (U-Net-like) fashion, with residual blocks and anti-aliased downsampling to maintain
spatial fidelity, while avoiding the use of global Fourier or attention-based mechanisms. The model empha-
sizes locality and generalization, but it does not incorporate direction-dependent non-uniform convolutions
for data-dependent receptive field shaping, nor explicit input-adaptive feature mixing through channel-wise
recalibration mechanisms. Our approach addresses these limitations by integrating non-uniform dilated
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Figure 1: D-SENO architecture

convolutions for multiscale spatial context and Squeeze-and-Excitation blocks for input-aware channel recal-
ibration, yielding improved adaptability in both space and feature selection.

Dilated Convolution Neural Operator. The Dilated Convolution Neural Operator (DCNO) Xu et al.
(2025) introduces a hybrid operator learning architecture that combines spectral and spatial mechanisms.
Specifically, it inserts dilated convolutional blocks between Fourier layers, aiming to capture both high-
frequency local details and low-frequency global behavior. The use of dilated convolutions allows for an
expanded receptive field without additional parameters, while the Fourier layers provide resolution-invariant
global context. Although DCNO leverages FNO components to preserve operator generalization across
discretizations, the added convolutional modules improve efficiency and local feature representation. While
this design improves expressiveness, it also introduces several limitations. First, the reliance on FFT makes
DCNO best suited for periodic domains and structured grids, limiting its applicability in problems with
irregular or non-periodic boundaries. Second, although dilated convolutions are lightweight, the interleaved
Fourier layers increase model’s complexity and reduces it’s flexibility. Third, the fixed dilation schedule
may not generalize optimally across different datasets or spatial scales. These trade-offs affect both runtime
performance and adaptability across diverse PDE regimes.

3 Background

Deep neural networks have demonstrated remarkable effectiveness in modeling spatially structured data
across a wide range of domains. To handle complex patterns that vary across spatial scales, modern ar-
chitectures often incorporate mechanisms that expand receptive fields and adaptively recalibrate internal
representations. This section reviews two such components: Dilated Convolutions (DC) and Squeeze-and-
Excitation (SE) network blocks.

Dilated Convolutions. Dilated convolutions, also referred to as atrous convolutions, are a variant of the
standard convolutional operation that introduces a spacing factor between kernel elements. This modifi-
cation enables the filter to cover a larger receptive field without increasing the number of parameters or
reducing resolution. Originally explored in wavelet analysis Holschneider et al. (1987); Shensa (1992), di-
lated convolutions were later adopted in deep learning for tasks such as semantic segmentation Yu & Koltun
(2015), and more recently, operator learning Xu et al. (2025).
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Let f : Z2 → R be a discrete input function and k : Ωr → R a convolutional kernel with support size
(2r + 1)2, r ∈ Z≥0. The conventional 2D convolution is given by:

(f ∗ k)(x) =
∑

s+t=x

f(s) · k(t). (1)

A dilated convolution introduces a dilation factor l ∈ N. We denote the l-dilated convolution by ∗l, defined
as:

(f ∗l k)(x) =
∑

s+l·t=x

f(s) · k(t). (2)

This effectively stretches the kernel by inserting l − 1 zeros between adjacent filter elements along each axis.
When l = 1, the operation reduces to the standard convolution. Higher dilation rates allow the network
to aggregate information across a wider area of the input without pooling or strided operations. In our
case, we allow different dilation factors along each spatial axis, denoted by lx, ly ∈ N, yielding a direction-
dependent dilated convolution ∗(lx,ly). This results in non-uniform receptive field expansion along the spatial
dimensions, enabling the operator to capture elongated and orientation-specific structures by aggregating
spatial context at different rates along the horizontal and vertical directions while preserving resolution.

Figure 2: Top. Dilated Convolution for 3 dilation rates, Middle. Cumulative tap locations for dilation
rates 1, 2, 3 (left to right), Bottom Receptive field growth with propagation for dilation rates 1, 2, 3, each
applied twice (left to right)

Squeeze-and-Excitation Blocks. To enhance the representational capacity of convolutional neural net-
works, Hu et al. (2018) introduced the Squeeze-and-Excitation (SE) block, a lightweight architectural unit
that adaptively recalibrates channel-wise feature responses. The core idea is to model inter-channel depen-
dencies explicitly, allowing the network to emphasize informative features and suppress less useful ones based
on global context.

The SE block acts on the feature maps U, generated by a preceding transformation. Let U ∈ RH×W ×C be
the output of the DC block, the SE block then recalibrates these features in two stages:
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Squeeze. In the first stage, global information is captured by compressing each channel-wise feature map
uc ∈ RH×W (for channel index c) into a single scalar descriptor via global average pooling:

zc = 1
H × W

H∑
i=1

W∑
j=1

uc(i, j), (3)

resulting in a vector z that summarizes the global statistics for each channel. In implementation, this vector
is typically stored as a 1 × 1 × C tensor, so that it can be broadcast back over the feature maps, but in the
following we identify it with its flattened vector form z ∈ RC for notational convenience.

Excitation. In the second stage, the aggregated descriptor z is then passed through a small channel-wise
gating mechanism. Although implemented using two successive 1 × 1 convolutions in our architecture, this
operation is equivalent to applying two fully connected layers to the flattened descriptor and is expressed in
matrix form for clarity:

ẑ = ϕ (W1z + b1) , (4)
s = σ (W2ẑ + b2) , (5)

where W1 ∈ RC
r ×C and W2 ∈ RC× C

r are learnable weight matrices, b1 ∈ RC
r and b2 ∈ RC are bias terms,

ϕ is the GELU activation function, and σ is the element-wise sigmoid function. The reduction ratio r ∈ Z+
(with r = 1 meaning no reduction) explicitly controls the width of the intermediate channel representation:
the first layer reduces the channel dimension from C to C/r, and the second layer restores it from C/r back
to C. The output s ∈ RC provides a set of channel-wise modulation weights.

Finally, the original feature maps are reweighted channel-wise using the learned modulation weights. The
vector s ∈ RC , in practice, is expanded to R1×1×C and broadcast over spatial locations, and each channel
slice uc ∈ RH×W of U ∈ RH×W ×C is scaled by its corresponding weight sc:

ũc(i, j) = sc · uc(i, j), (6)

yielding a recalibrated feature map Ũ ∈ RH×W ×C in which each channel’s contribution is adjusted based
on global context.

SE blocks have been successfully integrated into various backbone architectures (e.g., ResNet, Inception)
and demonstrate consistent improvements in classification accuracy at a low computational cost Hu et al.
(2018).

4 Method

4.1 Learning solution operator for PDEs

A (solution) operator G : A → U maps elements from an input function space A (e.g., boundary conditions,
source terms, or coefficients of a PDE) to an output function space U , which typically contains the corre-
sponding solutions of the PDE. The precise definition of these spaces depends on the particular PDE under
consideration and the physical domain of interest.

Solving a PDE can thus be interpreted as evaluating u = G(a), where a ∈ A is the input function and
u ∈ U is the resulting solution field. A neural operator aims to approximate this mapping G in a data-driven
manner by learning a parametric representation Gθ ≈ G, which generalizes to new inputs a ∈ A that were
not seen during training.

In the following subsection, we introduce our proposed model, D-SENO, which is specifically designed to
learn such solution operators for PDEs while efficiently capturing both local and global dependencies through
dilated convolutions and squeeze-and-excitation mechanism.
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4.2 D-SENO

We develop a fully convolutional architecture that combines multiscale dilated convolutions with SE-based
adaptive channel-wise recalibration. The model follows a lift-process-project structure: the input field a is
first lifted to a latent space, processed by a sequence of Dilated-Squeeze (DS) layers, and then projected to
the output solution u. An overview is shown in Figure 1.

Each DS layer, denoted as Bi, begins with a dilated convolution block (DC) which consists of two stacked
k × k convolution layers (typically 3 × 3) that use dataset-specific dilation rates applied independently along
the x- and y-axes. These dilation rates (for details, we refer the reader to supplementary materials) allow the
receptive field to grow flexibly without down sampling or increasing the number of parameters. Following the
dilated convolutions, a lightweight SE block adjusts the importance of each feature channel. We modify the
original squeeze-and-excitation block by retaining global average pooling but substituting the fully-connected
layers with two 1 × 1 convolutions, separated by a GELU activation. These layers reduce and then restore
the number of channels, controlled by a reduction factor r ∈ Z+ as shown in section 3. Global average
pooling is used to compute channel-wise statistics, which are transformed into scaling weights and applied
via element wise multiplication. A residual connection adds the DS block input to the recalibrated output,
followed by a GELU activation. This allows each Bi to modulate both spatial and channel information,
improving expressiveness and efficiency.

The full model is composed of three stages:

1. Lifting: A pointwise convolutional layer P transforms the input a into a high-dimensional latent
space.

2. Processing: A sequence of n DS blocks B1, . . . , Bn, each preserving spatial resolution and expanding
receptive fields.

3. Projection: A final pointwise layer Q maps the processed features to the output u.

All spatial operations preserve resolution; no striding or downsampling is used. Global average pooling
occurs only within SE blocks to compute channel-wise weights, without altering spatial dimensions.

Formally, the model approximates the solution operator G by a learned mapping Gθ : A → U , producing an
approximate solution function:

û(·) = Gθ(a)(·) = Q ◦ (Bn ◦ · · · ◦ B1) ◦ P (a)(·), (7)

where θ denotes the model parameters.

To assess the impact of dilation and recalibration, we conduct ablation studies and refer the reader to the
supplementary materials for details on the configurations evaluated.

5 Experiments

We evaluate the proposed D-SENO on the PDE benchmarks used by previous operator learners and trans-
former based models. The suite spans structured and regular grids, mirroring the experimental protocol of
Transolver Wu et al. (2024) for direct comparability.

Benchmarks. Table 1 presents four benchmark PDE problems: (1) airfoil potential flow, (2) Poiseuille
pipe flow, (3) heterogeneous Darcy flow (these three are steady), and (4) the time-dependent incompressible
Navier–Stokes equations (unsteady), brief per-dataset summaries are given below.

5.1 Airfoil

The airfoil dataset comprises transonic Euler simulations of inviscid flow around randomly deformed NACA–
0012 airfoils. The dataset (2D) consists of 1,000 training and 200 test samples of airfoil geometries, each
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Table 1: Summary of experiment benchmarks with dimensions and mesh size.

BENCHMARK #DIM MESH

Airfoil 2D 221 × 51
Pipe 2D 129 × 129
Darcy 2D 85 × 85
Navier–Stokes (time) 2D + T 64 × 64 × 20

discretized on a structured mesh of size 221 × 51. For each case, the input tensor has shape 221 × 51 × 2,
encoding the airfoil’s structural geometry at every mesh point, and the target output is the local Mach
number (the ratio of the local flow velocity to the speed of sound) at each point of shape 221 × 51 × 1.
All shapes are generated by deforming the baseline NACA-0012 profile provided by the National Advisory
Committee for Aeronautics Li et al. (2023b).

5.2 Pipe

The pipe-flow dataset contains simulations of incompressible, viscous fluid moving through two-dimensional
pipes whose centerlines are randomly curved. The dataset (2D) comprises of 1,000 training and 200 test
samples of pipe geometries, each discretized on a structured mesh of size 129 × 129. For each case, the input
tensor has shape 129 × 129 × 2, which encodes the structural geometry of the pipe at each mesh point, and
the target output is the horizontal velocity of the fluid at each point of shape 129 × 129 × 1. All samples are
generated by varying the pipe’s centerline geometry Li et al. (2023b).

5.3 Darcy

Darcy flow describes the steady, viscous motion of an incompressible fluid through a porous medium. The
dataset (2D) consists of 1,000 training and 200 testing samples of two-dimensional porous media, originally
defined on a 421×421 regular grid and down-sampled to 85×85 for experiments. Each input tensor of shape
85 × 85 × 1 encodes the binary structure of the porous medium, and the target output of shape 85 × 85 × 1
gives the fluid pressure at each grid point. Different cases contain different medium structures Li et al.
(2020).

5.4 Navier Stokes

The Navier–Stokes dataset models incompressible, viscous flow on a unit torus with constant density and
viscosity 10−5 Li et al. (2020). Each trajectory is discretized on a 64 × 64 regular grid. The input tensor
of shape 64 × 64 × 2 × 10 contains the two velocity components over the past 10 time steps, and the target
output of the same shape predicts the velocity field for the next 10 steps. A total of 1,000 simulations with
varying initial conditions are used for training, and 200 new trajectories are reserved for testing.

Baselines and Implementation Protocol. We compare D-SENO with more than ten representative
models: neural operators (FNO Li et al. (2020), U-NO Rahman et al. (2022), LSM Wu et al. (2023)),
transformer-style PDE solvers (GNOT Hao et al. (2023), Factorized FNO Tran et al. (2021)). Transolver Wu
et al. (2024) represents the previous state-of-the-art on all benchmarks. Moreover, we observe that modest
tweaks to FNO such as replacing ReLU with GELU activations, removing batch normalization, preserving
sufficient Fourier modes and implementing complex Fourier multiplication directly with einsum, yield a
notable boost in accuracy, speed and parameter counts. We refer to this refined baseline as FNO+, and it
surpasses many neural operator variants introduced after the original FNO. The appendix provides a detailed
breakdown of the specific changes made to FNO. Note that, D-SENO and FNO+ have been trained using
the same hyper parameters as shown in Table 3, unless stated otherwise.
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Table 2: Cross-representation test errors (lower is better). ’/’ indicates a value not reported.

MODEL STRUCTURED MESH REGULAR GRID
AIRFOIL PIPE DARCY NAVIER–STOKES

FNO Li et al. (2020) / / 0.0108 0.1556
WMT Gupta et al. (2021) 0.0075 0.0077 0.0082 0.1541
F-FNO Tran et al. (2021) 0.0078 0.0070 0.0077 0.2322
U-NO Rahman et al. (2022) 0.0078 0.0100 0.0113 0.1713
U-FNO Wen et al. (2022) 0.0269 0.0056 0.0183 0.2231
geo-FNO Li et al. (2023b) 0.0138 0.0067 0.0108 0.1556
LSM Wu et al. (2023) 0.0059 0.0050 0.0065 0.1535
Galerkin Cao (2021) 0.0118 0.0098 0.0084 0.1401
HT-Net Liu et al. (2022) 0.0065 0.0059 0.0079 0.1847
OFormer Li et al. (2022) 0.0183 0.0168 0.0124 0.1705
GNOT Hao et al. (2023) 0.0076 0.0047 0.0105 0.1380
FactFormer Li et al. (2023a) 0.0071 0.0060 0.0109 0.1214
ONO Xiao et al. (2023) 0.0061 0.0052 0.0076 0.1195
FNO+ (Time s) 0.0057 (1.67) 0.0072 (5.41) 0.0070 (1.10) 0.1054 (5.75)
Transolver (Time s) 0.0053 (28.03) 0.0033 (41.00) 0.0057 (18.47) 0.0900 (245.10)
Ours (Time s) 0.0052 (1.99) 0.0030 (3.30) 0.0048 (0.93) 0.1391 (7.04)

All D-SENO experiments are performed on a single NVIDIA A100 80 GB PCIe GPU, and performance
numbers are averaged over three independent random seeds. We report the relative L2 error of predicted
fields on the held out test sets as the primary evaluation metric. For additional metrics and ablation results
along with the hyperparameter details for every benchmark, we refer the reader to supplementary materials.

6 Results and Discussion

Table 2 summarizes the results obtained by D-SENO on the PDE benchmarks. The model consistently
outperforms the prior state-of-the-art Transolver Wu et al. (2024) on three out of four datasets, showing
markedly reduced training time ("Time s" in Table 2 represents the training time per epoch) along with
superior predictive accuracy, highlighting the high accuracy and lightweight design of D-SENO. Conducting
similar experiments with FNO+, we find that it consistently achieves significantly higher accuracy than the
original FNO in all four datasets. Moreover, it outperforms many neural operators developed after FNO on
the same benchmarks. For details on how its performance varies with the number of Fourier modes and the
projection width, we refer the reader to the supplementary material.

Figure 3 compares the Mach number reconstructions around a deformed NACA–0012 airfoil in latent space.
Both D-SENO and FNO+ capture the overall shock and expansion pattern, but FNO+ shows slightly larger
errors, softening those steep Mach transitions. D-SENO, in contrast, significantly resolves these discontinu-
ities, closely matching the reference peak and trough values along the airfoil surface.

Meanwhile, Figure 4 presents the centerline velocity profiles for Poiseuille pipe flow. Although both operators
reproduce the characteristic velocity profile, FNO+ exhibits higher errors continuously along the edges of the
pipe, indicating a persistent under prediction of the steep velocity gradient. D-SENO, by contrast, confines
its largest discrepancies to the downstream end of the pipe and at significantly lower magnitudes than FNO+,
thereby preserving accurate gradient structure throughout the channel.

Figure 5 shows the results for Darcy flow, it can be observed that FNO+ tends to systematically over predict
the pressure in regions of high permeability, resulting in larger relative errors. In contrast, D-SENO exhibits
minimal underestimation overall. This behavior further highlights D-SENO’s superior ability to resolve sharp
transitions and fine-scale heterogeneity in complex porous media flows.
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Figure 3: Sample from the Airfoil dataset.
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Figure 4: Sample from the Pipe dataset.

In the Navier–Stokes torus dataset shown in Figure 6, 7, FNO+ outperforms D-SENO. This may be due to
periodic boundary conditions on the unit torus, that align naturally with FNO’s Fourier-based representation,
enabling it to capture spatiotemporal flow patterns more effectively. Moreover, the 2D+T forecasting task
leverages FNO+’s ability to perform multi-step predictions in the frequency domain. In contrast, D-SENO
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Figure 5: Sample from the Darcy dataset.
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Figure 6: Predicted D-SENO results for
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Figure 7: Predicted FNO+ results for Navier–Stokes
fields at times t = 12, 14, 16, 18, and 20 (left to
right).

primarily performs better for static spatial deformations and does not explicitly exploit temporal periodicity,
which likely limits its accuracy in this dataset. Future extensions, such as integrating periodic temporal
kernels or expanding D-SENO’s spectral receptive field may help bridge this gap.

These results collectively demonstrate that D-SENO captures discontinuities better than FNO+ not only in
shock-dominated airfoil flows and shear-layer pipe flows, but also in Darcy porous-media flows. By using
multiple rates of dilated convolutions to expand its receptive field, aggregating multiscale context, and using
squeeze-and-excitation blocks to adaptively re-weight channel responses, D-SENO sharpens and emphasizes
steep gradients, preserving them with lower local error and resolving fine-scale heterogeneity in the solution.
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7 Conclusion

This paper introduces the D-SENO , a fully convolution surrogate that combines receptive-field expanding
dilated kernels with lightweight squeeze and excitation channel attention. By retaining strict locality, that
is, no Fourier transforms, self-attention, or positional encoding, D-SENO reduces the time complexity for
training the model while capturing domain-scale interactions that are essential in fluid and porous-media
flows. Extensive experiments on canonical PDE benchmarks show that D-SENO attains low relative error
while delivering speed-ups of multiple orders of magnitude over transformer-based solvers and neural oper-
ators. Beyond its empirical performance, D-SENO also offers practical benefits as it relies exclusively on
standard convolution operations, enabling efficient execution on existing, highly optimized hardware.

Limitations. While D-SENO achieves strong accuracy and efficiency trade-offs on a range of benchmarks,
several aspects merit further development. First, on the Navier-Stokes benchmark, transformer-based solvers
and neural operators often attain higher accuracy, suggesting that more explicit global context aggregation
may be beneficial for highly multiscale dynamics. Second, our evaluation focuses on structured-grid datasets,
extending the framework to unstructured meshes and more complex geometries is an important next step
to broaden applicability. Third, the present study is primarily empirical, and a complementary theoretical
analysis of approximation, stability, and generalization would strengthen understanding. Finally, dilation
schedules are currently chosen per dataset, learning or adapting dilation patterns automatically could improve
robustness, with potential compute and accuracy trade-offs.

Future work. Promising avenues for future work include extending D-SENO to unstructured meshes via
masked or graph-based dilation, integrating physics-informed priors or constraints to improve generalization
and combining D-SENO with attention modules to capture long-range dependencies even better. We envision
D-SENO as a simple, computationally efficient baseline and a flexible building block for the next generation
of neural solvers in science and engineering.
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A Appendix

A.1 Ablation Study

Our ablation methodology addresses five architectural and data-related parameters: (i) depth (number of DS
blocks), (ii) squeeze and excitation block, (iii) dilation configuration, (iv) projection width (latent channel
dimensionality), and (v) dataset resolution (for Darcy dataset only). We apply this study to our model D-
SENO (Dilated Squeeze-and-Excitation Neural Operator), FNO, the FNO+ variant introduced in the main
paper, and Transolver, and discuss each parameter in detail in the following subsections. Table 3 and Table 4
details the training configuration (optimizer type, learning rate and schedule, batch size, number of epochs,
etc.) and the model configurations used for each of the datasets in the following experiments. Note that
D-SENO, FNO+ and FNO use the same parameters, while for Transolver the parameters given in Wu et al.
(2024) were used unless otherwise specified. The datasets used in this study are publicly available: airfoil
potential flow and Poiseuille pipe flow datasets are available at https://github.com/neuraloperator/
Geo-FNO, and the Darcy flow and Navier–Stokes datasets are available at https://drive.google.com/
drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-.

A.1.1 Depth Sensitivity

In this subsection, we evaluate how model depth, defined by the number of DS blocks, affects the predictive
accuracy. For each of the three steady benchmark datasets (Airfoil, Pipe and Darcy dataset), we system-
atically increase the number of DS blocks to quantify accuracy gains as model depth grows, while keeping
all other architectural and training settings fixed. At each depth, we record the complete configuration and
report the time per epoch (in seconds), the number of trainable parameters (in millions), and the relative
L2 error; all error values are averaged over multiple random seeds to mitigate variance. In addition to our
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Table 5: Model performance summary on the Airfoil dataset.

Model # DS Blocks Time per Epoch (s) # Parameters (M) Relative L2 Error

Model Airfoil-A 1 0.43 0.156 0.0131
Model Airfoil-B 2 0.67 0.304 0.0072
Model Airfoil-C 3 0.93 0.451 0.0067
Model Airfoil-D 4 1.16 0.599 0.0057
Model Airfoil-E 5 1.43 0.747 0.0055
Model Airfoil-F 6 1.68 0.894 0.0055
Model Airfoil-G 7 1.99 1.042 0.0052
Model Airfoil-G w/o SE 7 1.70 0.984 0.0056
Model Airfoil-G w/o SE (PM) 7 2.05 1.042 0.0056
Model Airfoil-G-alt 7 2.04 1.042 0.0054
Transolver – 28.03 2.811 0.0053
FNO+ (m = 8) – 1.39 2.123 0.0058
FNO+ (m = 16) – 1.51 8.414 0.0059
FNO+ (m = 24) – 1.67 18.899 0.0057
FNO Original (m = 24) – 2.47 37.774 0.0060

Table 6: Detailed dilation values for Airfoil dataset showing dx and dy in each model.

Model dx dy

Model Airfoil-A [16] [6]
Model Airfoil-B [16,54] [4,10]
Model Airfoil-C [16,48,2] [1,6,4]
Model Airfoil-D [16,56,30,2] [1,2,10,4]
Model Airfoil-E [16,56,36,24,1] [1,2,10,6,1]
Model Airfoil-F [16,56,42,36,24,1] [1,2,8,12,6,1]
Model Airfoil-G [16,56,42,36,32,24,1] [1,2,8,12,6,2,1]
Model Airfoil-G w/o SE [16,56,42,36,32,24,1] [1,2,8,12,6,2,1]
Model Airfoil-G w/o SE (PM) [16,56,42,36,32,24,1] [1,2,8,12,6,2,1]
Model Airfoil-G-alt [20,52,46,38,30,20,2] [2,4,8,10,8,4,2]

model, we also report the above metrics for Transolver, FNO and FNO+. We test FNO+ by varying the
number of Fourier modes, then test FNO using the modes count that gave the best results for FNO+.

The results for airfoil, pipe, and Darcy dataset are summarized in Tables 5, 7 and 9. Note that in the tables,
each model variant is denoted by appending successive letters (A, B, C, . . . ) to its name, corresponding
to increasing numbers of DS blocks. The results show that increasing the number of DS blocks lowers the
relative L2 error, this is because the additional dilation rates expand the receptive field and yield significant
accuracy gains, but this comes with increased computational cost, as can be seen by the increased number
of parameters and higher training time per epoch. It can also be seen that FNO+ significantly outperforms
the regular FNO in all cases, showing that its architectural enhancements, increase its expressive capacity
to capture the underlying dynamics. Similar experiments on the time-varying Navier-Stokes dataset, shown
in Table 11, were carried out with only a single dilation rate, since D-SENO did not outperform FNO+. The
details of the exact dilation rates used for the above experiments for each of the four dataset, are given in
Table 6, 8, 10 and 12 where dx gives the dilation rates along x dimension and dy gives the dilation rates
along the y dimension.

A.1.2 Squeeze and Excitation impact

In this subsection, we assess the impact of the Squeeze-and-Excitation (SE) block by comparing the full
D-SENO to a variant with the SE block removed from each DS block. The ablated model is identified in
the results table by the suffix “w/o SE” appended to its name. From Tables 5, 7, 9 and 11, it can be
observed that omitting the SE block leads to a substantial degradation in D-SENO’s accuracy, reflected in a
significant increase in the relative L2 error, which highlights the importance of the SE module for effective
feature representation learning.
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Table 7: Model performance summary on the Pipe dataset.

Model # DS Blocks Time / Epoch (s) Parameters (M) Relative L2 Error

Model Pipe-A 1 0.77 0.197 0.0107
Model Pipe-B 2 1.29 0.382 0.0073
Model Pipe-C 3 1.79 0.567 0.0046
Model Pipe-D 4 2.31 0.752 0.0040
Model Pipe-E 5 2.80 0.936 0.0035
Model Pipe-F 6 3.47 1.121 0.0031
Model Pipe-G 7 4.28 1.306 0.0030
Model Pipe-G w/o SE 7 3.30 1.176 0.0030
Model Pipe-G w/o SE (PM) 7 4.01 1.306 0.0037
Model Pipe-G-alt 7 4.05 1.306 0.0030
Transolver – 40.01 2.811 0.0033
FNO+ (m = 8) – 5.41 4.769 0.0074
FNO+ (m = 16) – 5.79 18.925 0.0075
FNO+ (m = 32) – 6.72 75.548 0.0072
FNO Original (m = 32) – 4.44 9.488 0.0086

Table 8: Detailed dilation values for Pipe dataset showing dx and dy in each model.

Model dx dy

Model Pipe-A [9] [9]
Model Pipe-B [23,1] [23,1]
Model Pipe-C [23,11,1] [23,11,1]
Model Pipe-D [23,15,7,1] [23,15,7,1]
Model Pipe-E [23,15,9,3,1] [23,15,9,3,1]
Model Pipe-F [25,19,11,7,3,1] [25,19,11,7,3,1]
Model Pipe-G [23,17,13,9,7,3,1] [23,17,13,9,7,3,1]
Model Pipe-G w/o SE [23,17,13,9,7,3,1] [23,17,13,9,7,3,1]
Model Pipe-G w/o SE (PM) [23,17,13,9,7,3,1] [23,17,13,9,7,3,1]
Model Pipe-G-alt [25,19,11,9,5,3,1] [25,19,11,9,5,3,1]

Additionally, we conduct a parameter-matched ablation to separate the effect of the SE mechanism from that
of model capacity. In this variant, the SE block is still removed, but the parameter count is restored to match
the SE-based D-SENO by appending two 1 × 1 point-wise convolutions after the dilated spatial convolutions
in each DC block. This adds learnable channel-mixing capacity while preserving the original receptive field
and residual structure, yet does not perform explicit SE-style channel recalibration. We denote this model
as “w/o SE (PM)” in the results, so that performance differences relative to the full model primarily reflect
the functional role of SE block rather than reduced parameters.
From the results shown in Tables 5, 7, 9 and 11, we see that the SE-based model consistently achieves better
performance than the parameter-matched baseline on the airfoil, pipe, and Navier–Stokes datasets, while
the baseline obtained by simply increasing the number of parameters performs better only on the Darcy flow
task. This pattern indicates that the performance gains largely stem from the SE architecture rather than
mere model size, and that overall our SE-based approach provides the stronger model across datasets.

A.1.3 Dilation rate impact

In this study, the dilation rates are dataset-specific hyperparameters rather than learned quantities, selected
via a small number of manual trials using a simple, well-spaced pattern that covers both local and global
spatial scales. This is a heuristic choice, not an exhaustive grid search or an adaptive method. To isolate
the influence of receptive-field enlargement strategy, we replace the adopted dilation rates in the SE-based
model with an alternative rates for each dataset, keeping all other hyperparameters constant, this reveals
the sensitivity of the model to the chosen pattern of dilation. Models employing these alternative rates are
identified by the suffix “-alt” appended to their names in the results. The exact dilation rates used are given

16



Published in Transactions on Machine Learning Research (02/2026)

Table 9: Model performance summary on the Darcy dataset.

Model # DS Blocks Time / Epoch (s) Parameters (M) Relative L2 Error

Model Darcy-A 1 0.35 0.089 0.0282
Model Darcy-B 2 0.46 0.173 0.0247
Model Darcy-C 3 0.55 0.256 0.0084
Model Darcy-D 4 0.69 0.338 0.0064
Model Darcy-E 5 0.80 0.422 0.0051
Model Darcy-F 6 0.93 0.505 0.0048
Model Darcy-F w/o SE 6 0.80 0.476 0.0053
Model Darcy-F w/o SE (PM) 6 0.99 0.505 0.0046
Model Darcy-F-alt 6 0.92 0.505 0.0050
Transolver – 18.48 2.811 0.0057
FNO+ (m = 8) – 0.78 1.196 0.0086
FNO+ (m = 16) – 0.90 4.735 0.0073
FNO+ (m = 32) – 1.10 18.890 0.0070
FNO+ (m = 42) – 1.30 32.531 0.0071
FNO Original (m = 32) – 1.92 37.765 0.0089

Table 10: Detailed dilation values for Darcy dataset showing dx and dy in each model.

Model dx dy

Model Darcy-A [7] [7]
Model Darcy-B [1,19] [1,19]
Model Darcy-C [1,11,19] [1,11,19]
Model Darcy-D [1,7,13,19] [1,7,13,19]
Model Darcy-E [1,5,9,13,19] [1,5,9,13,19]
Model Darcy-F [1,3,5,9,13,19] [1,3,5,9,13,19]
Model Darcy-F w/o SE [1,3,5,9,13,19] [1,3,5,9,13,19]
Model Darcy-F w/o SE (PM) [1,3,5,9,13,19] [1,3,5,9,13,19]
Model Darcy-F-alt [1,3,7,11,15,21] [1,3,7,11,15,21]

in Table 6, 8, 10 and 12. It can be observed that, across the datasets, using alternative dilation rates results
in only negligible changes in accuracy, showing the robustness of the model.

A.1.4 Projection width

In this case, we vary the projection width of the inputs to examine the trade-off between representational
capacity and performance of the best performing model from Tables 5, 7 and 9. The results are shown in
Figure 8. It can be observed that the relative L2 loss decreases with projection width until it reaches a dataset
specific minimum. Beyond this width, further increases produce negligible improvement. Also, as projection
width increases, both time per epoch and parameter count grow, reflecting the additional computational
cost.

A.1.5 Resolution robustness

To probe resolution robustness, we used heterogeneous Darcy flow dataset. The dataset was uniformly down
sampled from the original 421 × 421 grid to several spatial resolutions. Each of these resolutions were used
to test the three models : Transolver, FNO+ and D-SENO as shown in Table 13. The results indicate that
D-SENO outperforms both Transolver and FNO+ across all resolutions. The exact rates of dilation used
for D-SENO are given in Table 15. Complementing these findings, Table 14 reports a systematic analysis
of how varying the number of retained Fourier modes influences performance at each resolution for FNO+.
Note that the hyper parameters and error used here for Transolver are the same as mentioned in Wu et al.
(2024) for Darcy dataset.
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Table 11: Model performance summary on the Navier–Stokes dataset.

Model # DS Blocks Time / Epoch (s) Parameters (M) Relative L2 Error

Model NS-A 8 7.04 0.666 0.1391
Model NS-A w/o SE 8 5.94 0.600 0.1432
Model NS-A w/o SE (PM) 8 7.53 0.666 0.1433
Model NS-A-alt 8 7.67 0.666 0.1431
Transolver – 245.10 11.232 0.0900
FNO+ (m = 8) – 5.75 2.123 0.1054
FNO+ (m = 16) – 5.81 8.414 0.1122
FNO+ (m = 32) – 6.93 33.580 0.1153
FNO Original (m = 8) – 13.53 4.220 0.1436

Table 12: Dilation values (dx and dy) for models corresponding to performance results in Table 11.

Model dx dy

Model NS-A [15,25,17,13,7,5,3,1] [15,25,17,13,7,5,3,1]
Model NS-A w/o SE [15,25,17,13,7,5,3,1] [15,25,17,13,7,5,3,1]
Model NS-A w/o SE (PM) [15,25,17,13,7,5,3,1] [15,25,17,13,7,5,3,1]
Model NS-A-alt [21,27,19,11,9,7,3,1] [21,27,19,11,9,7,3,1]

A.2 FNO+ Architecture

We introduce FNO+ as a minimally modified variant of the original FNO, designed to serve as a strong and
improved baseline. In its original formulation, the FNO architecture consists of a lifting layer that maps
the input fields to a higher-dimensional channel space, followed by a stack of Fourier layers and a projec-
tion layer that maps back to the target field. Each Fourier layer performs a spectral convolution with the
retained Fourier modes, combined with a point-wise linear transformation in physical space. The default im-
plementation uses ReLU activations and includes batch-normalization layers within each Fourier block, while
realizing complex Fourier multiplications via separate real and imaginary linear projections. Architecturally,
FNO+ has the following changes compared to the standard FNO: (i) we replace the ReLU nonlinearity with
GELU in all FNO layers, (ii) we remove all batch-normalization layers, and (iii) we implement complex-
valued Fourier multiplication directly using a single einsum-based operation. Beyond these changes, the
layer types, block structure, and connectivity patterns are kept identical to the original FNO design. On
top of this fixed architecture, we consider purely experimental variations, reported in the appendix, such as
runs with different numbers of retained Fourier modes and different widths in the lifting layer to probe the
effect of spectral resolution and model capacity.
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Figure 8: Performance metrics vs. projection width.

Table 13: Performance metrics (time per epoch, parameter count, and relative L2 error) for different models
at various input resolutions on the Darcy dataset.

Model 32 × 32 64 × 64 128 × 128 256 × 256
Time

(s)
Params

(M)
Rel.
L2

Time
(s)

Params
(M)

Rel.
L2

Time
(s)

Params
(M)

Rel.
L2

Time
(s)

Params
(M)

Rel.
L2

Transolver 12.21 2.827 0.0135 12.56 2.827 0.0069 38.95 2.827 0.0052 151.73 2.827 0.0058
FNO+ 0.66 4.734 0.0159 0.74 18.890 0.0083 2.33 75.513 0.0065 9.52 302.006 0.0063
D-SENO 0.35 0.256 0.0131 0.70 0.588 0.0063 1.73 0.505 0.0042 7.96 0.588 0.0036

Table 14: 2D Darcy relative L2 loss and per-epoch time vs. number of modes across resolutions for FNO+.

MODES 32 × 32 64 × 64 128 × 128 256 × 256 PARAMS (M)
Rel L2 TIME (s) Rel L2 TIME (s) Rel L2 TIME (s) Rel L2 TIME (s)

8 0.0157 0.65 0.0092 0.66 0.0081 1.19 0.0080 5.32 1.195
16 0.0159 0.66 0.0084 0.67 0.0070 1.23 0.0068 4.96 4.734
32 – – 0.0083 0.74 0.0067 1.44 0.0065 5.85 18.890
64 – – – – 0.0065 2.33 0.0064 5.68 75.513
128 – – – – – – 0.0063 9.52 302.006

Table 15: Dilation values (dx and dy) for models corresponding to performance results in Table 13.

Resolution dx dy

32 × 32 [1,2,6] [1,2,6]
64 × 64 [1,3,5,7,9,13,15] [1,3,5,7,9,13,15]
128 × 128 [1,5,9,15,21,27] [1,5,9,15,21,27]
256 × 256 [1,5,7,15,23,39,61] [1,5,7,15,23,39,61]
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