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Abstract

This paper presents a surprising empirical phenomenon in the domain of adversarial1

machine learning: standard adversarial attacks, while successful at fooling a neural2

network’s final classification layer, fail to significantly impact the representations3

at early and intermediate layers. Through experiments on ResNet152 models4

finetuned on CIFAR-10, we demonstrate that when an image is adversarially5

perturbed to be misclassified, its intermediate layer representations remain largely6

faithful to the original class. Furthermore, we uncover a decoupling effect where7

attacks trying to fool specific intermediate layers have limited impact on other8

layers’ classifications, both before and after the targeted layer. These findings9

challenge the conventional understanding of how adversarial attacks operate and10

suggest that deep networks possess more robust internal representations by default11

than previously thought.12

1 Introduction13

This paper presents a subset of the experiments in [redacted]14
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Figure 1: A picture of a dog looks like a dog to the
intermediate features of a neural network classifier
as well. When we attack it to look like a car for
the network, the intermediate features still see a
dog. The network is only fooled at the very final
layers.

Adversarial attacks are ubiquitous in the domain15

of image classification, from small models and16

datasets [Szegedy et al., 2013] all the way to17

the largest currently deployed AI systems [Fort18

and Lakshminarayanan, 2024]. They are small,19

typically human-imperceptible modifications P20

of the input image X that do not confuse a hu-21

man, yet cause a complete misclassification of22

the perturbed image X + P by a neural net-23

work classifier. In this work, we study whether24

fooling the final decision of a network by a mod-25

ified images causes the hidden activation vectors26

propagating through the network to be fooled27

as well. In other words, does a picture of a dog28

attacked to look like a car have car-like edges,29

textures, and even higher-level features? More30

generally, if an image X of a ground truth class31

y is adversarially modified to look like a target32

class t to a classifier, do the intermediate activa-33

tions of the model also correspond to the target34

class t?35

We show that, surprisingly, adversarial attacks on standard neural networks do not fool the full36

network, only its final layer. The dog attacked to look like a car still has dog-like early and middle-37

layer features in the network. It is only at the very end of the network that the decision is flipped.38
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We also study a more general regime in which we design the perturbation to fool the features of the39

layer `, and observe the effect on the classification decision at all other layers. We see that there is40

a strong decoupling of the susceptibility of different layers to adversarial attacks, where the layers41

surrounding the target one, `, are affected, but layers before and after do recover to an extent.42

We use this layer decorrelation to construct a passive flag that, based on the profile of the predicted43

probabilities over the layers, can determine whatever an image has been adversarially attacked.44

2 Methods45
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Figure 2: The result of an L∞ = 8/255 adversarial attack on an image of a ship. The color bars
indicate the probability of the ground truth (blue, ship), target (red, deer), and other classes for all
intermediate layers. This is an experimental version of Figure 1.

Our goal is to experimentally investigate the decoupling between the adversarially susceptibility of46

intermediate layer representations within a neural network classifier. To do that, we fix a trained47

network f : X → y and use its intermediate layer activations h1(X), h2(X), · · · , hL(X) to train48

linear probes (= just single affine layers that are independently trained) that map the hidden activation49

of the layer l into the classification logits zl. A single image X therefore generates intermediate layer50

representations (h1, h2, . . . , hL) that in turn produce L different classification logits (z1, z2, . . . , zL).51

Let us label the classifier mapping X , the input image, into zl, the intermediate layer prediction, at a52

particular layer φl(X).53

This allows us to perform two basic experiment:54

Basic experiment: Perturbing the input X → X+P in order for the full network to classify it as the55

target class argmax f(X + P ) = t, and observing the corresponding intermediate layer predictions56

φl(X + P ) across all layers l ∈ {0, 1, . . . , L}.57

Detailed experiment: Perturbing the input X → X + P in order for the prediction at layer l = α58

to be the target class argmaxφα(X + P ) = t, and observing the corresponding intermediate layer59

predictions φl(X + P ) across all layers l ∈ {0, 1, . . . , L}, both before and after α.60

2.1 Generating the attacks61

In all our experiments, we are using a simple approach for finding adversarial perturbations that62

was described in the original paper Szegedy et al. [2013]. We calculate the cross-entropy loss L63

of the model predictions with respect to the target label t. We then use the input image gradient64

∇XL(φl(X)) with respect to the loss. We then employ the Adam optimizer Kingma and Ba [2014]65

and run it for 10 steps at the learning rate η = 0.01.66

3 Experimental Results67

We use an ImageNet-1k [Deng et al., 2009] pretrained ResNet1521 [He et al., 2015] finetuned on68

CIFAR-10 [Krizhevsky, 2009] via trained linear probes. Each probe is trained for a single epoch with69

the Adam optimizer at the learning rate η = 0.001.70

1https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet152.
html

2

https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet152.html
https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet152.html


In Figure 3 we showcase the effect of intermediate layers not beeing fooled by an adversarial attack71

on the full network. Images attacked to look like some other class than their ground truth (to the72

final layer classification) do not look like that to intermediate layers, as shown by the target class73

probability only rising in the very last layers (see Figure 3). We can therefore confirm that indeed the74

activations of attacked images do not look like the target class in the intermediate layers.75
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Figure 3: The impact of adversarial attacks (L∞ = 8/255, 10000 attacks) against the full classifier
on the accuracy and probabilities at all intermediate layers for an ImageNet-1k pretrained ResNet152
finetuned on CIFAR-10 via trained linear probes. The left panel shows the prediction accuracy on
clean, unperturbed images, which rises from layer to layer, and the accuracy on adversarially attacked
images, which is only lightly affected for all layers apart from the very last ones. These are the
closest to the last layer, whose classification the attack was designed against. On the right panel, the
mean predicted probability of the ground truth class and the target class of the adversary (always
different from the ground truth) are shown. The target class probability only rises for the very last
layers. Therefore the intermediate activations of an adversarially attacked image do not look like the
target class, retaining the character of the original class instead.

This setup also allows us not only to investigate what the intermediate classification decision would76

be for an adversarially modified image X ′ that confuses the network’s final layer classifier, but also77

to generally ask what the effect of confusing the classifier at layer α would do to the logits at a layer78

β. The results are shown in Figure 4 for 6 selected layers to attack.79

We find that attacks designed to confuse early layers of a network do not confuse its middle and late80

layers. Attacks designed to fool middle layers do not fool early nor late layers, and attacks designed81

to fool late layers do not confuse early or middle layers. In short, there seems to be roughly a 3-way82

split: early layers, middle layers, and late layers. Attacks designed to affect one of these do not83

generically generalize to others. We call this effect the adversarial layer de-correlation.84

We conducted equivalent experiments with stronger attacks (higher L∞) as well as on other net-85

works (e.g. the Vision Transformer Dosovitskiy et al. [2021]) with qualitatively equivalent results.86

We believe that this shows a general feature of how neural networks build up their hierarchical87

representations.88

3.1 Passive attack detection and classification based on intermediate layers89

To check if we can use the intermediate layer probabilities as a passive detector of adversarial attack,90

we attacked the first 5000 images of the CIFAR-10 test set with L∞ = 8/255 attacks. For an image,91

the intermediate layer predictions give us 54 probability vectors of 10 classes. Flattening this into92

540-dimensional vectors, we tried the following: 1) distinguishing adversarially attacked images93

from original, unperturbed images based on just the predicted probabilities (and emphatically not94

knowing the ground truth class or the target class of the attack), and 2) predicting the ground truth95

class from this vector alone.96

For both, we used a simple 3-layer affine neural network with ReLU activations, predicting 2 classes97

(original and attacked) in the first case, and 10 classes in the second case. We evaluated its success98

on the next 5000 test set images. For distinguishing unperturbed vs attacked images, we got ≈ 99%99

train set accuracy, and ≈ 94% test set accuracy, demonstrating that we can use the intermediate layer100

features as a passive attack flag. For determining the ground truth class, we got ≈ 94% on the train101
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Figure 4: Transfer of adversarial attacks (L∞ = 8/255, 1000 attacks) against the activations of
layer α on the accuracy of layer β for α = 0, 10, 27, 43, 53 on ImageNet-1k pretrained ResNet152
finetuned on CIFAR-10 via trained linear probes. Each panel shows the effect of designing a pixel-
level attack to confuse the linear probe at a particular layer. The blue curve is the test accuracy on the
unperturbed data, and the red line shows the accuracy on the attacked images. The accuracy drops to
0 at the layer that is directly attacked (marked in orange), showing a successful attack. The effect is
localized: attacking early layers mainly affects early layer predictions, middle layer attacks primarily
affect middle layers, and likewise attacks on the final layers (the standard regime) primarily influence
late layer performance.

set (equal mixture of attacked and original images), ≈ 88% on the test set of unperturbed images,102

and ≈ 69% on a test set of attacked images. The attack original drove this accuracy to 0%, out of103

which we recovered to ≈ 69%. This shows that using the intermediate layer features, we can recover104

the ground truth class of the image with high fidelity after the attack, i.e. not in a white-box regime105

where the attacker can back-propagate gradients both through the network as well as this aggregating106

function (the way to do that is discussed in [redacted].107

4 Discussion and Conclusion108

In this paper we experimentally demonstrate a surprising empirical finding that intermediate layer109

representations in neural network classifiers are not fooled by adversarial attacks designed to fool110

the network as a whole. Furthermore, we demonstrate the fooling a particular layer’s representation111

generally only affects the layers surrounding it, with both layers before and after partially covering112

their ability to see the true class of the image in question. In other words, the susceptibility of hidden113

representations in a neural network to adversarial attacks is only partially correlated.114

This can be used as a passive flag to detect if an image has been tampered with after the fact, and to115

an extent to even recover the ground truth class of the image. While this approach would not suffice116

in a white-box scenario, it is possible to use it to construct very robust neural network classifiers in117

vision as shown in [redacted].118
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