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Abstract

The quadratic complexity and weak length extrapolation of Transformers limits
their ability to scale to long sequences, and while sub-quadratic solutions like linear
attention and state space models exist, they empirically underperform Transformers
in pretraining efficiency and downstream task accuracy. We introduce MEGA-
LODON, an neural architecture for efficient sequence modeling with unlimited
context length. MEGALODON inherits the architecture of MEGA (exponential
moving average with gated attention), and further introduces multiple technical
components to improve its capability and stability, including complex exponen-
tial moving average (CEMA), timestep normalization layer, normalized attention
mechanism and pre-norm with two-hop residual configuration. In a controlled
head-to-head comparison with LLAMA2, MEGALODON achieves better efficiency
than Transformer in the scale of 7 billion parameters and 2 trillion training tokens.
MEGALODON reaches a training loss of 1.70, landing mid-way between LLAMA2-
7B (1.75) and 13B (1.67). The improvements of MEGALODON over Transformers
are robust throughout a range of benchmarks across different tasks and modalities.
Code: https://github.com/XuezheMax/megalodon

1 Introduction

In many real-world applications, such as multi-turn conversation, long-document comprehension,
and video generation, large language models (LLMs) must efficiently process long sequential data,
understand internal long-range dynamics, and generate coherent output. The Transformer archi-
tecture (Vaswani et al., 2017), despite its remarkable capabilities, faces challenges with quadratic
computational complexity and limited inductive bias for length generalization, making it inefficient
for long sequence modeling (Wang et al., 2024; Zhou et al., 2024). Even with recently proposed
distributed attention solutions (Li et al., 2023b; Liu et al., 2024), computing a single training step of a
7B parameter model over a 1M-token sequence is more than 100 times slower than performing the
equivalent computation using 256 separate sequences of 4K tokens each.

Techniques like efficient attention mechanisms (Tay et al., 2020; Ma et al., 2021) and structured state
space models (Gu et al., 2022a; Poli et al., 2023; Gu and Dao, 2023) have been introduced to overcome
these limitations, aiming to enhance scalability and performance. However, the practical application
of these methods still falls short of Transformers (Tay et al., 2022; Gu and Dao, 2023). This work
introduces an unlimited context model that outperforms the canonical Transformer architecture on
real-world language modeling.
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Figure 1: Negative log-likelihood for MEGALODON-7B, LLAMA2-7B and LLAMA2-13B.

Table 1: Performance on standard academic benchmarks, compared to open-source base models.
We reported model size, context length and total data tokens during model pretraining. — indicates
that the number was not reported in the original paper.

Model Size Tokens Context MMLU BoolQ HellaSw PIQA SIQA WinoG Arc-e Arc-c NQ TQA
Mamba 3B 0.6T 2K 26.2 71.0 71.0 78.1 - 65.9 68.2  41.7 - -

RWKV 7B 11T 4K - - 70.8 77.3 - 68.4 749  46.1 - -

MPT 7B 1T 4K 26.8 75.0 76.4 80.6 48.5 68.3 70.2 426 208 504
Mistral 7B - 16K 60.1 83.2 81.3 82.2 47.0 74.2 80.0 549 232 625
Gemma 3B 6T 8K 64.3 83.2 81.2 81.2 51.8 72.3 81.5 532 230 634
LLAMA2 13B 2T 4K 54.8 81.7 80.7 80.5 50.3 72.8 773 494 312 65.1
LLAMA2 7B 2T 4K 453 774 71.2 78.8 48.3 69.2 752 459 257 585
MEGALODON 7B 2T 32K 49.8 80.5 71.5 80.1 49.6 714 79.8 53.1 257 60.5

We introduce MEGALODON, an improved MEGA architecture (Ma et al., 2023), which harnesses
the gated attention mechanism with the classical exponential moving average (EMA) (Hunter, 1986)
approach (§2). To further improve the capability and efficiency of MEGALODON on large-scale long-
context pretraining, we propose multiple novel technical components. First, MEGALODON introduces
the complex exponential moving average (CEMA) component, which extends the multi-dimensional
damped EMA in MEGA to the complex domain (§3.1). Then, MEGALODON proposes the timestep
normalization layer, which generalizes the group normalization layer (Wu and He, 2018) to auto-
regressive sequence modeling tasks to allow normalization along the sequential dimension (§3.2). To
improve large-scale pretraining stability, MEGALODON further proposes normalized attention (§3.3),
together with pre-norm with two-hop residual configuration by modifying the widely-adopted pre-
and post-normalization methods (§3.4). By simply chunking input sequences into fixed blocks, as is
done in MEGA-chunk (Ma et al., 2023), MEGALODON achieves linear computational and memory
complexity in both model training and inference.

Empirically, we demonstrate the potential of MEGALODON as a general architecture for modeling
long sequences, by evaluating its performance across multiple scales of language modeling, as well
as downstream domain-specific tasks. Through a direct comparison with LLAMA2, while controlling
for data and compute, MEGALODON-7B significantly outperforms the state-of-the-art variant of
Transformer used to train LLAMA2-7B (Touvron et al., 2023) on both training perplexity (Figure 1)
and across downstream benchmarks (Table 1). Evaluation on long-context modeling, including
perplexity in various context lengths up to 2M and long-context QA tasks in Scrolls (Parisotto et al.,
2020) prove MEGALODON’s ability to model sequences of unlimited length. Additional experimental
results on small/medium-scale benchmarks, including LRA (Tay et al., 2021), ImageNet (Deng et al.,
2009), Speech Commands (Warden, 2018), WikiText-103 (Merity et al., 2017) and PG19 (Rae et al.,
2019), demonstrate the robust improvements of MEGALODON across scales and modalities.



2 Background: Moving Average Equipped Gated Attention (MEGA)

In this section, we setup notations, briefly review the key components in the MEGA architecture (Ma
et al., 2023), and discuss the existing problems in MEGA.

Following the notations in MEGA, we use X = {x;,X2,...,X,} € R and Y =
{y1,¥2,---,¥n}t € R" to denote the input and output sequences with length n, and assume
the representations of the input and output sequences have the same dimension d.

2.1 Multi-dimensional Damped EMA

MEGA embeds an EMA component into the calculation of the attention matrix to incorporate
inductive biases across the timestep dimension. Concretely, the multi-dimensional damped EMA first
expands each dimension of the input sequence X individually into & dimensions via an expansion
matrix 3 € R4*", then applies damped EMA to the h-dimensional hidden space. Formally, for each
dimension j € {1,2,...,d}:

ugj) _ ,Bjxt,j
b =a;0u +(1-a;©6;) ©hY (1)
Ytj = nj'Thgj)

where ugj ) € R is the expanded h-dimensional vector for the j-th dimension at timestep ¢. o €
(0,1)?%", 8 € (0,1)%*" are the decaying and damping factors, respectively. h\’) € R” is the EMA
hidden state for the j-th dimension at timestep t. 7 € R?*" is the projection matrix to map the
h-dimensional hidden state back to 1-dimensional output y; ; € R.

2.2 Moving Average Equipped Gated Attention

In the gated attention mechanism in MEGA, the output from EMA (1) is used to compute the
shared representation (Hua et al., 2022), because it encodes contextual information through EMA.
Subsequently, MEGA introduces the reset gate, the update gate , and computes the candidate activation
with the update gate and the residual connection. The technical details are provided in Appendix A.

2.3 Existing Problems in MEGA

To reduce the quadratic complexity in the full attention mechanism, MEGA simply split the sequences
of queries, keys and values in (14-16) into chunks of length c. The attention in (17) is individually
applied to each chunk, yielding linear complexity O(kc?) = O(nc). Technically, the EMA sub-layer
in MEGA helps capture local contextual information near each token, mitigating the problem of losing
contextual information beyond chunk boundaries in the chunk-wise attention.

Despite the impressive successes of MEGA, it still suffers its own problems: i) the performance of
MEGA with chunk-wise attention still fails behind the one with full attention, due to the limited
expressiveness of the EMA sub-layer in MEGA. ii) for different tasks and/or data types, there are
architectural divergences in the final MEGA architectures. For example, different normalization
layers, normalization patterns (pre-norm vs. post-norm) and attention functions (f(-) in (17)) are
applied to different data types (see Ma et al. (2023) for details). iii) There are no empirical evidences
showing that MEGA is scalable for large-scale pretraining.

3 MEGALODON

To address the aforementioned problems of MEGA, in this section we describe the novel technical
advancements of MEGALODON.

3.1 CEMA: Extending Multi-dimensional Damped EMA to Complex Domain

As discussed in Ma et al. (2023), the EMA component can be regarded as a simplified state space
model with diagonal state matrix. Directly inspired from Gu et al. (2022b), as almost all matrices
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Figure 2: Normalization methods. The elements in blue or pink are the regions to compute means
and variances. We omit the batch dimension for simplicity.

diagonalize over the complex plane, a straight-forward idea to improve EMA capability is to extend
to work over the complex number system C. We propose the complex exponential moving average
(CEMA), which re-writes Eq. (1):

hgj) = a(cosb; +isinb;) © ugj) +(1—a; ®d;)(cosf;+isinb;) © hgj_)l
yi; = Re(n/hy) @)

where o, § € R?*" are the real number parameters same as in EMA. Different from EMA, n € C4*"
in CEMA are complex numbers. 0; € R", j € {1,2,...,d} are the h arguments. To uniformly
space the h arguments over the period 27, we parameterize ¢; as:

27k
b0 = 7wy, ke {12, h} 3)
where the learnable parameter w € R¢ depicts the d base angles. By decaying the absolute value of
each h;, CEMA preserves the decaying structure in kernel weights, which is a key principle to the
success of convolutional models on long sequence modeling (Li et al., 2023c).

3.2 Timestep Normalization

Despite the impressive performance of Layer Normalization combined with Transformer, it is obvious
that layer normalization cannot directly reduce the internal covariate shift along the spatial dimension
(a.k.a timestep or sequential dimension) (Ioffe and Szegedy, 2015). Group Normalization (Wu and
He, 2018) normalizes hidden representations both along the timestep dimension and a subset of
the feature dimension, which has obtained improvements over Layer Normalization on a range of
computer vision tasks. However, it cannot be directly applied to Transformer on auto-regressive
sequence modeling, due to the leakage of future information via the mean and variance across the
timestep dimension.

In MEGALODON, we extend Group Normalization to the auto-regressive case by computing the

cumulative mean and variance. Formally, suppose an input sequence X = {x;,Xz,...,X,} € R"X9,
and k groups along the feature dimension with d, = d/k elements per group. Then, the mean and
variance of the first group at timestep ¢t € {1,2,...,n} are:
1 t dg 1 t dg
= 2 s 0= g 2D (e~ w)? )
txdy 4 txdg — “
=1 j=1 1=1 j=1

Figure 2 illustrates Layer Normalization and Timestep Normalization. To efficiently and precisely
calculate the cumulative mean and variance in each timestep, we provide hardware-friendly imple-
mentation on modern hardware (GPU) (see Appendix B.1).

3.3 Normalized Attention in MEGALODON

Previous studies have investigated the saturation and instability issues in the original scaled dot-
product attention (17). A number of novel techniques have emerged to modify the scaled dot-product
attention, among which normalized attention mechanisms, such as (scaled-) cosine attention (Luo
et al., 2018; Liu et al., 2022) and QK-normalization (Henry et al., 2020), have stood out for the
simplicity and effectiveness.
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Figure 3: Illustration of the MEGALODON architecture. Figure (a) shows a sketch of one MEGA-
LODON layer. Figure (b) and (c) display the configurations of pre-norm and pre-norm with two-hop
residual, respectively.

Directly inspired from these normalized attention mechanisms, we propose the normalized attention
mechanism specifically defined for MEGA to improve its stability. Formally,

X' = CEMA(X) € R4 6))
zZ

Z=X'W,+b, Z = Tzl € R"*# (©6)

Q=r,0Z +p, € R"** @)

K=k,02Z +pu, € R™** 8)

where @Q and K are computed by using the normalized shared representation Z’ instead of Z. Note
that we remove the SiLU (Ramachandran et al., 2017) activation function ¢g;,, in (13), because the
normalization on Z has incorporated non-linearity into Z’. Then the attention operation in (17) has
been changed to:

O = fuotimax (QKT) V e R ©)

As we use learnable k4, Ky, in (7) and (8), we can remove the scaled term 7(X'). In addition, we
found that with the normalized attention, the softmax function fs.fmax Obtains the best or at least
comparable performance on different tasks and data modalities (see Appendix C). Hence, throughout
this paper we use softmax as the default attention function.

3.4 Pre-Norm with Two-hop Residual

Normalization configurations are crucial in stably training deep architectures, and pre-
normalization (Xiong et al., 2020) has become the default normalization configuration because
of its better convergence properties than post-normalization in the original Transformer architec-
ture (Vaswani et al., 2017). However, extensive studies have investigated the instability issue of
pre-normalization when scaling up model size (Davis et al., 2021; Liu et al., 2022). Formally, a
Transformer-based block in pre-noromalization can be formulated as (shown in Figure 3 (b)):

Y = Attention(Norm(X)) + X
Y = FFN(Norm(Y)) + Y

= FFN(Norm(Y")) + Attention(Norm (X)) + X (10)

where the output Y is the sum of the input X and the output of each component in one block. Hence,
the range and/or variance of Y keeps increasing for deeper blocks, causing the instability issue. In



the original MEGA architecture, the update gate ¢ (19) is used for a gated residual connection (21) to
mitigate this problem (Parisotto et al., 2020; Xu et al., 2020). However, the update gate ¢ introduces
more model parameters and the instability issue still exists when scaling up model size to 7 billion.

MEGALODON introduces a new configuration named pre-norm with two-hop residual, which simply
re-arranges the residual connections in each block (shown in Figure 3 (c):

Y = Attention(Norm(X)) + X

Y = FFN(Norm(Y)) + X (11)

where the input X is reused as the residual connection of the FFN layer. Since Y is directly followed
by a normalization layer, we remove the update gate ¢ and use standard residual connection. The
graphical architecture of a MEGALODON sub-layer is visualized in Figure 3 (a). Note that the
Timestep Normalization is only applied before the attention layer. Before the FFN layer, we still
use Layer Normalization. The reasons are two-fold: i) Layer Normalization is faster than Timestep
Normalization; ii) the output vector of each token from the attention layer is a mixture of vectors from
contextual tokens via attention weights. Hence, normalizing the attention output along the feature
dimension is similar to indirectly normalize along the timestep dimension.

3.5 4-Dimensional Parallelism in Distributed LLM Pretraining

Efficient distributed training algorithm is essential to train a large-scale language model, and several
parallelization mechanisms have been introduced. The three most commonly used parallelism
strategies are data, tensor (Shoeybi et al., 2019) and pipeline parallelism (Huang et al., 2019).
However, the 3-dimensional parallelism is still insufficient to scale up the context length of LLMs (Li
et al., 2023b; Liu et al., 2024).

Benefiting from the chunk-wise attention in MEGALODON, we can efficiently parallelize it along the
new timestep/sequence dimension, which is orthogonal to all the aforementioned three parallelism
dimensions. In MEGALODON, the only communications between devices in one chunk-parallel group
are the last hidden state of CEMA and the cumulative mean and variance of Timestep Normalization
in each block. Using asynchronous communication, we can minimize the overhead of chunk
parallelization by hiding the communication costs in the computation of other components inside the
same block and/or other blocks.

4 Experiments

To evaluate the scalability and efficiency of MEGALODON on long-context sequence modeling, we
scale up MEGALODON to 7-billion model size and apply it to large-scale language model pretraining
on 2 trillion tokens. We also conduct experiments on small/medium-scale sequence modeling
benchmarks, including Long Range Arena (LRA) (Tay et al., 2021), raw speech classification on
Speech Commands (Warden, 2018), image classification on ImageNet-1K (Deng et al., 2009), and
language-modeling on WikiText-103 (Merity et al., 2017) and PG19 (Rae et al., 2019). > Empirically,
MEGALODON significantly outperforms all the state-of-the-art baseline models on these tasks across
various data modalities.

4.1 LLM Pretraining

Architectural Details In our MEGALODON-7B model, we adopt most of architectural hyperparam-
eters from LLAMAZ2-7B to ensure fair comparison: MEGALODON-7B consists of 32 blocks, with
feature dimension d = 4096. Following LLAMA?2, we use the SwiGLU activation function (Shazeer,
2020) in the feed-forward layer, and rotary positional embedding (RoPE, Su et al. (2021)). We set
the attention chunk size ¢ = 4096, which is the same as the pretraining context length in LLAMA?2.
Benefiting from the attention gate (v in (18)), we use a much smaller number of attention heads h = 4
in MEGALODON-7B, comparing to h = 32 in LLAMA2-7B. In addition, we apply pre-norm with
two-hop residual (§3.4), using Timestep Normalization (§3.2) and Layer Normalization (Ba et al.,
2016), while LLAMA2 models apply pre-normalization with RMSNorm (Zhang and Sennrich, 2019).

2Some results are provided in Appendix C, due to space limits.



Data and Pretraining Details We use the same mix of publicly available data from LLAMA2,
ensuring that the model are trained on exactly the same 2-trillion tokens. We also use the same
tokenizer as LLAMA?2, whose vocabulary size is 32K.

We trained MEGALODON-7B using the AdamW optimizer (Loshchilov and Hutter, 2019), with
B1=0.9, B2 = 0.95, ¢ = le — 8. The learning rate is 3.5¢ — 4 and cosine learning rate schedule is
applied with warmup of 2500 steps. We use a weight decay of 0.1 and gradient clipping of 1.0, and
no dropout is applied during training. The context length in pretraining is 32K (4 attention chunks).
The global batch size is 4M tokens, and is distributed on 256 NVIDIA A100 GPUs (16K tokens per
A100). We set data parallel size to 128, chunk parallel size to 2 and tensor parallel size to 1.

Data and Computation Efficiency We evaluate the efficiency of MEGALODON w.r.t both the data
and computation perspectives. For data efficiency, we display the negative log-likelihood (NLL)
for MEGALODON-7B, LLAMA2-7B and LLAMA2-13B w.r.t processed tokens during training in
Figure 1. MEGALODON-7B obtains significantly better (lower) NLL than LLAMA2-7B under the
same amount of training tokens, demonstrating better data efficiency. Moreover, MEGALODON
suffers less training spikes than the Transformer-based architecture in LLAMA2. Note that at the first
1/4 of the pretraining process (< 500B tokens), the NLL of MEGALODON-7B is slightly worse than
LLAMA2-7B. We found that the main reason is that we increased the base 6 of RoPE from 10, 000 in
LLAMAZ2 to 100,000 in MEGALODON, which slows down model convergence at the beginning of
the pretraining process. At the end, MEGALODON reaches a training loss of 1.70, landing mid-way
between LLAMA2-7B (1.75) and LLAMA2-13B (1.67).

For computation efficiency, we conduct exper-
iments of running LLAMA2-7B and MEGA-
LODON-7B using the same amount of compu- x1.48

tational resources and comparing their training % 1.40

speed under various context lengths. Specif- %132

ically, we execute each experiment to train a

model with global batch size 4M tokens dis-

tributed on 256 NVIDIA A100 GPUs (16K to-

kens per A100) and calculate the word/token

per second (WPS) to measure the training speed.

Figure 4 illustrates the average WPS per device l

of LLAMA2-7B and MEGALOD ON',7B using Liame2-7B  Megalodon-78 Megalodon 7B Llama2-7B
4K and 32K context lengths, respectively. For 32K

LLAMA?2 models, we accelerate the computation
of full attention with Flash-Attention V2 (Dao,
2024). Under 4K context length, MEGALODON-7B is slightly slower (about 6%) than LLAMA2-7B,
due to the introduction of CEMA and Timestep Normalization. When we scale up context length to
32K, MEGALODON-7B is significantly faster (about 32%) than LLAMA2-7B, demonstrating the com-
putation efficiency of MEGALODON for long-context pretraining. In addition, MEGALODON-7B-32K,
which utilizes chunk parallelism (§3.5), achieves about 94% utilization of MEGALODON-7B-4K.

Tokens Per Second

Figure 4: Average WPS per device.

4.2 Short-Context Evaluation on Academic Benchmarks

We compare MEGALODON-7B to LLAMA2 models on standard academic benchmarks with short
contexts (< 4K tokens), closely following the settings in LLAMA2 (Touvron et al., 2023). The
benchmarks are grouped into the categories listed below:

* Commonsense Reasoning (0-shot): HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e and -c (Clark et al., 2018).

* World Knowledge (5-shot): NaturalQuestions (NQ, Kwiatkowski et al. (2019)) and TriviaQA
(TQA, Joshi et al. (2017)).

* Reading Comprehension (0-shot): BoolQ (Clark et al., 2019).

* Popular aggregated results (5-shot): MMLU (Hendrycks et al., 2020).

Table 1 summarizes the results of MEGALODON and LLAMA?2 on these academic benchmarks,
together with other open-source base models, including MPT (MosaicML, 2023), RWKYV (Peng
et al., 2023), Mamba (Gu and Dao, 2023), Mistral (Jiang et al., 2023) and Gemma (Mesnard et al.,
2024). Pretrained on the same 2T tokens, MEGALODON-7B surpasses LLAMA2-7B across all the



Model NaQA Qasper QMSum
Xgen 17.4 20.5 6.8
B MPT 18.8 24.7 8.8
& Yarn 20.9 26.2 11.4
K LLAMA?2 18.8 19.8 10.1
LLAMA2-L* 23.5 28.3 14.5
MEGALODON 23.9 28.0 13.1
B 10K 3K Co?‘ltfxt iﬁ:th%w SIKIM - 2M - Table 2: Results on Scrolls. * LLAMA2-L (Xiong
et al., 2023) continually trains LLAMAZ2 on 500B
Figure 5: PPL in various context lengths. tokens for length extension.

benchmarks. On some tasks, MEGALODON-7B achieves comparable or even better performance with
LLAMA2-13B. Note that Mistral-7B and Gemma-8B were pretrained on much larger datasets than
MEGALODON-7B, hence the results are not directly comparable.

4.3 Long-Context Evaluation

Perplexity over Long Sequences To demonstrate the capability of MEGALODON to make use
of very long contexts to improve next-token prediction, we start by conducting the evaluation of
valid perplexity on different context lengths. Concretely, we construct a validation dataset which
consists of 1,920 selected books. Each of these books contains sequences with at least 2M tokens.
The validation dataset is constructed by first randomly shuffling all the files and then concatenating
them. Figure 5 shows the perplexity (PPL) of the validation dataset in various context lengths ranging
from 4K to 2M. We observe that the PPL decreases monotonically with context length, validating the
effectivenss and robustness of MEGALODON on modeling extremely long sequences.

Long-Context QA tasks in Scrolls Next, we evaluate MEGALODON on long-context open-book
question answering (QA) tasks in the Scrolls dataset (Shaham et al., 2022), including Narra-
tiveQA (Kocisky et al., 2018), Qasper (Dasigi et al., 2021) and QMSum (Zhong et al., 2021).
Following Xiong et al. (2023), we use a simple prompt { CONTEXT} Q: {QUESTION} A: for all
the tasks, and evaluate O-shot Fl-score on NarrativeQA, 2-shot Fl-score on Qasper and 1-shot
geometric-ROUGE? on QMSum. Table 2 lists the results of MEGALODON-7B, together with other
open-source long-context models in the scale of 7B, namely Xgen-7B-8K (Nijkamp et al., 2023),
MPT-7B-8K (MosaicML, 2023), YaRN-7B-128k (Peng et al., 2024), LLAMA2-7B-4K (Touvron
et al., 2023) and LLAMA2-7B-32K (LLAMA2-L, Xiong et al. (2023)). MEGALODON-7B obtains
the best F1 on NarrativeQA, and competitive results with LLAMA?2-7B Long. It should be noticed
that LLAMA2-7B Long extends the context length of LLAMA2-7B from 4K to 32K by continually
pretraining it on additional 500B tokens from long-context data.

4.4 Instruction Finetuning

To evaluation the generalization capability of MEGA- Table 3: MT Bench. Comparison of Chat
LODON on instruction following and alignment, We models. * LL.AMA2-Chat utilizes RLLHF.
finetune the base model of MEGALODON-7B on a

proprietary instruction-alignment data under a con- Model Size MT-Bench
trolled setting. We did not apply any RLHF tech-

; : ; Vicuna 7B 6.17
?ﬁques to further finetune it. Table 3 summarizes LLAMA2-Chat* 7B 627

e performance of chat models in 7B scale on :
Mistral-Instruct 7B 6.84

MT-Bench*. MEGALODON exhibits superior per-
formance on MT-Bench compared to Vicuna (Chi- MEGALODON 7B 6.27
ang et al., 2023), and comparable performance to
LLAMA2-Chat, which utilizes RLHF for further alignment finetuning. We present some outputs from
instruction finetuned MEGALODON in Appendix D.

3Geometric mean of ROUGE-1, 2 and L.
*nttps://klu.ai/glossary/mt-bench-eval
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Table 4: (ImageNet-1K) Top-1 accuracy. Table 5: (PG-19) Word-level perplexity.

Model #Param. Acc. Model #Param. Val Test
ResNet-152 60M 78.3 Compressive Trans. - 434 336
ViT-B 86M 77.9 Perceiver AR 975M 459 289
DeiT-B 86M 81.8 Block-Recurrent Trans. 1.3B - 26.5
MEGA 90M 82.3 MEGABYTE 1.3B 42.8 364
MEGALODON 90M 83.1 MEGALODON 1.3B 295 254

4.5 Evaluation on Medium-Scale Benchmarks

ImageNet Classification To evaluate MEGALODON on image classification task, we conduct
experiments on the Imagenet-1K (Deng et al., 2009) dataset, which consists of 1.28M training images
and 50K validation images from 1000 classes. We mostly follow DeiT’s approach of applying several
data augmentation and regularization methods that facilitate the training process, and adopt most the
hyperparameters from Ma et al. (2023). For classification task, we replace the timestep normalization
with the standard group normalization method. Top-1 accuracy on the validation set is reported in
Table 4 to assess various models. MEGALODON obtains about 1.3% accuracy improvement over
DeiT-B (Touvron et al., 2021), and 0.8%. improvement over MEGA (Ma et al., 2023).

Auto-regressive Language Modeling on PG-19 We also evaluate MEGALODON on auto-regressive
language modeling on the medium-scale PG19 (Rae et al., 2019) datasets. We use the same vocabu-
lary from Block-Recurrent Transformer (Hutchins et al., 2022) and adopt most of its hyper-parameters
to train a MEGALODON model with 1.3B parameters. Table 5 illustrate the word-level perplexity
(PPL) of MEGALODON on PG-19, together with previous state-of-the-art models, including Com-
pressive Transformer (Rae et al., 2020), Perceiver AR (Hawthorne et al., 2022), Block-Recurrent
Transformer (Hutchins et al., 2022) and MEGABYTE (Yu et al., 2024). MEGALODON significantly
outperforms all the baselines.

5 Conclusion

We have introduced MEGALODON, an improved MEGA architecture with multiple novel technical
components, including complex exponential moving average (CEMA), the timestep normalization
layer, normalized attention and pre-norm with two-hop residual configuration, to improve its ca-
pability, efficiency and scalability. Through a direct comparison with LLAMA2, MEGALODON
achieves impressive improvements on both training perplexity and across downstream benchmarks.
Importantly, experimental results on long-context modeling demonstrate MEGALODON’s ability to
model sequences of unlimited length. Additional experiments on small/medium-scale benchmarks
across different data modalities illustrate the robust improvements of MEGALODON, which lead to a
potential direction of future work to apply MEGALODON for large-scale multi-modality pretraining.
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Appendix: MEGALODON: Efficient Long-Context LLM Pretraining and
Inference with Unlimited Context Length

A Background: Moving Average Equipped Gated Attention

In the gated attention mechanism in MEGA, the output from EMA (1) is used to compute the shared
representation (Hua et al., 2022) Z:

X' = EMA(X) e R™*d (12)
Z = ¢silu(X/Wz + bz) € Rnxz (13)
where X'’ can be regarded as the updated or contextual input, because it encodes contextual infor-

mation through EMA. Then, the query and key sequences are computed by applying per-dimension
scalars and offsets to Z, and the value sequence is from the original X:

Q=k0Z+p, € R"** (14)
K=k,0Z+ py € R"** (15)
V= ¢silu(XWv + bv) S Rnxv (16)

where K¢, p,, Kk, by, € R are the learnable scalars and offsets of queries and keys, respectively. v
is the expanded intermediate dimension for the value sequence. The output of attention is computed
as follows:

QK"

o=+ (T(X)> 17 € R™" (17)

Subsequently, MEGA introduces the reset gate -y, the update gate ¢, and computes the candidate
activation H and final output Y:

v = ¢aira (X' W, +by) € RXY (18)
¢ = Psigmoid (X Wi, + by) c Rxd (19)
H = ¢ (X' W), + (v © O)Uy, + by,) c Rxd 20)
Y=poH+(1-9p)0X c Rrxd en

with the update gate ¢ and the residual connection X.

B Implementation Details

B.1 Efficient Fused CUDA Operators Implementation

Fused Attention We implemented a fused attention operator to improve the efficiency, mainly
by fusing the causal mask, softmax function and dropout operation (if necessary). The fused
implementation reduces the 10 costs from global memory for the attention weight. For attention
dropout, we adopt the dropout-before-softmax scheme in DropKey (Li et al., 2023a), which applies
the dropout mask on the input attention matrix of the softmax function. Concretely, we fill the values
of the attention matrix at dropout mask positions to —oo before feeding it into the softmax function.
One important advantage of this dropout-before-softmax scheme comparing to the standard attention
dropout is that the computation of the gradients in back-propagation is independent with the applied
dropout mask.

Efficient FFTConv We also provide an efficient fused implementation of the FFTConv operator.
Similar with the FlashConv in H3 (Fu et al., 2023), we fused the real number FFT (RFFT), its inverse
(IRFFT) and implemented the Cooley-Tukey FFT algorithm (Cooley and Tukey, 1965) in the CUDA
shared memory. Similar with the FlashConv in H3 (Fu et al., 2023), we fused the real number FFT
(RFFT), its inverse (IRFFT) and the element-wise multiplication, and implemented the Cooley-Tukey
FFT algorithm (Cooley and Tukey, 1965) in CUDA’s shared memory. Our implementation is able to
accommodate up to 16K tokens in the limited shared memory of an A100 GPU.
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Table 6: (Long Range Arena) Accuracy on the full suite of long range arena (LRA) tasks. Results of
previous models are reported in Ma et al. (2023).

Models ListOps Text Retrieval Image Pathfinder Path-X Avg.
Transformer 37.11 65.21 79.14 42.94 71.83 X 59.24
Reformer 37.27 56.10 53.40 38.07 68.50 X 50.67
Linformer 3570  53.94 52.27 38.56 76.34 X 51.36
BigBird 36.05 64.02 59.29 40.83 74.87 X 55.01
Luna-256 37.98 65.78 79.56 47.86 78.55 X 61.95
S4 59.10 86.53 90.94 88.48 94.01 96.07 85.86
MEGA-chunk 58.76  90.19 90.97 85.80 94.41 93.81 85.66
MEGA 63.14  90.43 91.25 90.44 96.01 9798 88.21
MEGALODON-chunk  62.23 90.53 91.74 87.11 96.89 97.21 87.62
MEGALODON 63.79  90.48 91.76 89.42 98.13 98.17 88.63

Timestep Normalization For the TimestepNorm operator, we have an efficient implementation to
improve both its speed and numerical stability. To compute the cumulative mean and variance for
each of the timesteps, our implementation distributed the threads in each CUDA block in both the
timestep/sequence dimension and the feature dimension to balance the parallelism of the algorithm
and the performance of the global memory access. To improve numerical stability, we used the
Welford algorithm (Welford, 1962) to compute the cumulative mean and variance and the Kahan
Summation (Kahan, 1965) to reduce the numerical error from summation.

B.2 Plus 1 Reparameterization in Normalization Layers

In the normalization methods, two learnable parameters v and 3 are introduced to scale and shift the
normalized value:

y=r""t 48 (22)
g

where 1 and o2 are the mean and variance of the input 2 across the pre-defined dimensions. Initial-
ization of ~y and S is crucial for model performance and stability. The standard implementation of
normalization layers, such as PyTorch (Paszke et al., 2019), initializes v and J to vectors of ones and
zeros, respectively, to preserve the mean and variance of the normalized inputs at the beginning of
training.

This standard implementation, however, suffers a problem when weight decay regularization is
applied to prevent overfitting (Hanson and Pratt, 1988). Technically, the weight decay regularization
pushes the values of model parameters towards smaller magnitudes. In the context of normalization
methods, weight decay pushes the values in v towards zero, which diverges from its initialization of
one. This may prevent the model from learning the true scale of the data distribution, and may cause
numerical stability issues as well.

To address this problem, we used the plus I reparameterization’® of the scale parameter ~:
T —
y=(+)=—F+8 23)

where -y is initialized to zero. Under weight decay, v remains centered around zero, resulting in a
desirable scale of v + 1 around one.

C Experiments on Small-Scale Benchmarks

We conducted small-scale experiments on five benchmarks across various data modalities, including
text, audio and image. To demonstrate the robustness of the MEGALODON architecture on different
tasks and data types, we used a single unified architecture with minimal architectural divergence in

SSimilar idea in the blog: https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-
challenges-and-a-reparameterization-solution-ad4d12c24950
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Table 7: (SC-Raw) Accuracy. Table 8: (WikiText-103) Word-level PPL.

Model #Param. Acc. Model #Param. PPL
Transformer 786K X Transformer 247TM 18.66
S4 300K 97.50 Transformer-XL 257TM 18.30
MEGA 300K 96.92 S4 249M 20.95
MEGA (big) 476K 97.30 MEGA 252M 18.07
MEGALODON 300K 98.14 MEGALODON 252M 17.23

all the experiments: softmax attention function, rotary postional embedding, pre-norm with two-hop
residual, and timestep Normalization (Group Normalization for classification). We adopt (almost) all
the architectural and training hyperparameters from the corresponding experiments of the original
MEGA (Ma et al., 2023).

C.1 Long Range Arena (LRA)

Long Range Arena (LRA) benchmark (Tay et al., 2021) is designed for evaluating sequence models un-
der the long-context scenario. They collect six tasks in this benchmark which are ListOps (Nangia and
Bowman, 2018), byte-level text classification (Text; Maas et al. (2011)), byte-level document retrieval
(Retrieval; Radev et al. (2013)), image classification on sequences of pixels (Image; Krizhevsky et al.
(2009)), Pathfinder (Linsley et al., 2018) and its extreme long version (Path-X; Tay et al. (2021)).
These tasks consist of input sequences ranging from 1K to 16K tokens and span across a variety of
data types and modalities.

Table 6 compares MEGALODON against several baselines, including Transformer and its efficient
variants, the state space model S4 (Gu et al., 2022a), and the original MEGA model. Following Ma
et al. (2023), we also evaluate MEGALODON-chunk on each task, by setting the chunk size ¢ = 128
for all the tasks, except Path-X where ¢ = 4096. With chunk-wise attention, MEGALODON-chunk
substantially outperforms MEGA-chunk on all the six tasks. In addition, MEGALODON significantly
narrows the gap between chunk-wise attention and full attention.

C.2 Raw Speech Classification

To evaluate the capability of MEGALODON on the long-range modeling of speech signals, we apply
MEGALODON to classify raw speech (with length 16000), rather than using traditional preprocessing
(e.g. convert to MFCC features). Following Ma et al. (2023), we perform speech classification on the
SC10 subset of the Speech Commands dataset (Warden, 2018), and set attention chunk size ¢ = 1000.
As shown in Table 7, our MEGALODON model with 300K parameters achieves an accuracy of 98.14,
which is significantly better than 97.50 from S4 and 96.92 from MEGA with similar model size.

C.3 Auto-regressive Language Modeling

We also evaluate MEGALODON on auto-regressive language modeling on the small-scale WikiText-
103 (Merity et al., 2017) datasets. Following Baevski and Auli (2018), we adopt adaptive softmax and
input embeddings and use a vocabulary of 260K tokens for WikiText-103 and train a MEGALODON
model with about 250M parameters with attention chunk size ¢ = 2048. Table 8 illustrate the word-
level perplexity (PPL) of MEGALODON on WikiText-103, together with previous state-of-the-art
models, including Transformer (Baevski and Auli, 2018), Transformer-XL (Dai et al., 2019), S4 (Gu
et al., 2022a) and MEGA (Ma et al., 2023). MEGALODON significantly outperforms all the baselines
on both the two datasets.

D Model Outputs from Instruction-finetuned MEGALODON
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What is the central dogma of molecular biology? What processes are involved? Who named this?

The central dogma of molecular biology describes the flow of genetic information from DNA to RNA to proteins. The three processes
involved in the central dogma are transcription, translation, and translocation.

The central dogma was first proposed by Francis Crick, James Watson, and Maurice Wilkins in the 1950s, and was later formalized by
Crick in a 1958 paper titled ”On the Central Dogma of Molecular Biology”. The term central dogma” was coined by Crick to describe
the flow of genetic information from DNA to RNA to proteins.

Identify and fix one incorrect fact in your previous response.
The correct name of the person who proposed the central dogma of molecular biology is James Watson, not Maurice Wilkins. James

Watson, along with Francis Crick, first proposed the central dogma in the 1950s, and Maurice Wilkins was a co-recipient of the Nobel
Prize in Physiology or Medicine in 1962 for his contributions to the discovery of the double helix structure of DNA.

Act as a math teacher. I will provide some mathematical equations or concepts, and it will be your job to explain them in
easy-to-understand terms. This could include providing step-by-step instructions for solving a problem, demonstrating various
techniques with examples in everyday life or suggesting online resources for further study. My first request is ’I need help
understanding how probability works.”

Probability is a branch of mathematics that deals with the likelihood of an event occurring. It is often expressed as a number between 0
and 1, where 0 represents an impossible event and 1 represents a certain event.

For example, if you were to roll a fair six-sided die, the probability of rolling a 1 would be 1/6, or about 17%. This is because there is
only one way for the die to land on a 1 out of the six possible outcomes.

To calculate probability, you can use the formula:

Probability = Number of ways the event can occur / Total number of possible outcomes

For example, if you were to ask "What is the probability of flipping heads on a fair coin toss?”, the answer would be 1/2, or 50%. This is
because there is only one way for the coin to land heads-up out of the two possible outcomes (heads or tails).

There are many different ways to interpret probability, and it can be used in a variety of real-world applications such as gambling,
insurance, and statistics.

I hope this helps to give you a basic understanding of probability. Let me know if you have any questions or need further clarification.

What are the differences between Riemannian geometry and euclidean geometry?

Riemannian geometry and Euclidean geometry are both branches of mathematics that study the properties of space, but they differ in
their assumptions and methods.

Euclidean geometry is based on the assumption that the space is flat and flat Euclidean space is the simplest non-empty connected flat
metric space. It studies the properties of space using concepts such as distance, angle, and parallelism. It is named after the Greek
mathematician Euclid, who developed the foundations of the field in his book “Elements”.

Riemannian geometry, on the other hand, is based on the assumption that the space is curved. It studies the properties of space using
concepts such as distance, angle, and parallelism, but in a more general setting, and it is named after the German mathematician Bernhard
Riemann.

In Riemannian geometry, the concept of a metric is used to measure the distance between two points in a curved space. A metric is a
mathematical function that assigns a distance to each segment in a space. The most common metric in Riemannian geometry is the
distance function induced by a Riemannian metric, which is a mathematical function that assigns a distance to each segment in a space.
In summary, Euclidean geometry is a special case of Riemannian geometry, where the metric is the flat Euclidean metric. Riemannian
geometry is a more general field that studies the properties of curved spaces, and it is used in many areas of mathematics, physics and
other sciences.

I hope this helps to give you a basic understanding of the differences between Riemannian geometry and Euclidean geometry. Let me
know if you have any questions or need further clarification.

Evaluate the following movie reviews on a scale of 1 to 5, with 1 being very negative, 3 being neutral, and 5 being very positive: 1.
This movie released on Nov. 18, 2019, was phenomenal. The cinematography, the acting, the plot - everything was top-notch. 2.
Never before have I been so disappointed with a movie. The plot was predictable and the characters were one-dimensional. In my
opinion, this movie is the worst one to have been released in 2022. 3. The movie was okay. There were some parts I enjoyed, but
there were also parts that felt lackluster. This is a movie that was released in Feb 2018 and seems to be quite ordinary. Return the
answer as a JSON array of integers.

[5,1,3]

Update your previous reply by including the release date as part of the JSON content.

[
{"release_date": "Nov 18, 2019", "rating": 5},
{"release_date": "2022", "rating": 1},
{"release_date": "Feb 2018", "rating": 3}

]

Figure 6: Model outputs from instruction-finetuned MEGALODON.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: see the abstract
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results involved.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: see appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: see appendix
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: see experiments and appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

¢ If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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