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Abstract

Oncogenetic graphical models are crucial for understanding cancer progression by analyz-
ing the accumulation of genetic events. These models are used to identify statistical depen-
dencies and temporal order of genetic events, which helps design targeted therapies.
However, existing algorithms do not account for temporal differences between samples in
oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new
statistical model that uses temporal differences to improve accuracy and reliability.
TimedHN models the accumulation process as a continuous-time Markov chain and
includes an efficient gradient computation algorithm for optimization. Our simulation experi-
ments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction
methods. We also compare TimedHN with existing methods on a luminal breast cancer
dataset, highlighting its potential utility. The Matlab implementation and data are available at
https://github.com/puar-playground/TimedHN

Introduction

The progression of human cancer can be understood as an evolutionary process at the cellular
level [1]. This process involves accumulating genetic changes, including mutations, copy num-
ber alterations, and modifications in DNA methylation and gene expression, which provide
cancer cells with selective advantages and result in clonal expansion [2]. The accumulations of
genetic alterations often exhibit a consistent pattern in different patients, for example, the
sequential accumulation of APC—K-RAS—TP53 gene mutations in colorectal carcinogenesis
[3]. However, identifying complex dependencies among a larger number of genetic alterations
remains an open question with important implications for patient treatment.

During the past 20 years, a dozen oncogenetic modeling methods have been developed for
cross-sectional samples. Assuming different individuals’ genetic alteration profiles are inde-
pendent observations from the same multivariate stochastic process, these methods construct
directed graphical models that reflect the dependencies or causalities between genetic alter-
ations among the patient population using cross-sectional samples. Specifically, each node
stands for a genetic event whose probability depends on the events connected by incoming
edges. Commonly used oncogenetic models infer three types of graphs. The first type of
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models infer a tree or forest structure where a single event may have multiple outgoing edges
but have at most one incoming edge (e.g., oncotrees [4], METREX [5], Mtreemix [6], CAPR-
ESE [7]). This structure is used for simplicity and is expected to have a lower false-positive rate
because it only captures the dominant factors in oncogenesis. The second class of methods
tends to adopt structural learning for bayesian networks to learn a directed acyclic graph
(DAG) (e.g., Conjunctive Bayesian Networks [8], DiProg [9], Bayesian Mutation Landscape
[10], TO-DAG [11], CAPRI [12]). The structure learning algorithm typically consists of two
steps. The first step involves constraining the search space of valid solutions by using statistical
tests or causal theories [13]. The second step involves fitting the model to the data by maximiz-
ing the likelihood of the model and using regularization to prevent overfitting [14-16]. The
third type of model is capable of inferring a general directed graph without imposing any
structure constraints (e.g., NAM [17], Mutual Hazard Networks [18]). These methods use the
oncogenetic graph to parameterize the transition probability matrix of a continuous-time Mar-
kov chain, which models the accumulation of events over time.

The main limitation of existing oncogenetic models is that they do not explicitly include
time variables in the algorithm design, as the progression time of a sample is often unknown.
However, temporal information is crucial in the oncogenetic analysis as it can reflect the
trends and patterns of the event accumulation process in cancer development, potentially
enhancing the reliability of oncogenetic models. To estimate the temporal order of samples,
researchers have developed numerous trajectory analysis methods [19] that estimate the
pseudo-time of a sample by measuring its distance along the progression trajectory. These
methods have been used to infer progression roadmaps and identify drivers and regulators
involved in the development of breast and bladder cancer [20, 21]. However, to the best of our
knowledge, no existing method utilizes the progression time of samples to learn the oncoge-
netic graph.

This paper introduces TimedHN, a novel statistical model that incorporates temporal infor-
mation to improve oncogenetic modeling accuracy. TimedHN has the capability to take
pseudo-times as fixed input to infer the oncogenetic graph, or jointly infer the times and onco-
genetic graph without pseudo-time. This feature enables TimedHN to be applied to datasets
without established progression roadmaps, making it more versatile than existing methods.
TimedHN models progression as a continuous-time Markov chain parameterized by a hazard
network, following the Mutual Hazard Networks approach [18]. In contrast to previous mod-
els, TimedHN includes times as observable variables in the objective function, rather than
marginalizing them. The hazard network and progression times of samples are estimated by
solving a constrained maximum likelihood problem using the backpropagation algorithm
[22]. To handle the long-tailed nature of mutation profiles [23, 24], an efficient method is
developed to compute the likelihood and its gradient in a subspace of all states. This method
significantly reduces the model’s memory and time complexity. Finally, TimedHN can com-
pute the maximum likelihood transition path and the expectation of progression time for each
sample using the estimated hazard network, allowing it to estimate both the temporal order of
events and the temporal order of samples.

To evaluate the performance of the proposed method, we conducted several experiments.
Firstly, we used synthetic data to compare the precision, recall, and F-score of TimedHN
against three state-of-the-art methods and classic oncotrees. Secondly, we compared
TimedHN against itself using actual sampling times as constants, demonstrating the accuracy
and effectiveness of our joint inference algorithm. Thirdly, we tested the robustness of our
model to profile errors by conducting experiments using noisy data. Our simulations demon-
strated that the time cost of our gradient computation algorithm is linear to the total number
of events and exponential to the number of accumulated events, which is typically much
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smaller than the total number of events. Finally, we applied TimedHN to a real-world luminal
breast cancer dataset [25] to further demonstrate its practical applicability and performance.

Methods

We propose a model for the event accumulation process based on a continuous-time Markov
chain parameterized by a weighted directed graph. To determine the optimal parameters for
the graph and progression times, we employ the backpropagation algorithm to maximize the
log-likelihood, subject to certain constraints. In order to analyze cross-sectional data, we
assume that the samples are independent. To efficiently compute the gradient, we develop an
algorithm that avoids constructing the full transition matrix, significantly reducing computa-
tional complexity.

Model overview

Following the Mutual Hazard Networks [18], we model the mutation accumulation of n
genetic events in cancer progression as a continuous-time Markov chain (CTMC) on 2" states.
States are represented by n dimensional binary vectors x € {0, 1}"”, where x; = 1 means that
event i has occurred in the tumour by time ¢, while x; = 0 means that it has not. We assumed
that every progression trajectory starts at a normal state x = (0, 0, - - -, 0), accumulates irrevers-
ible genetic alteration events one at a time, and will eventually end at a fully aberrant state x =
(1,1, -, 1). Observed sample profiles correspond to states at unknown intermediate times

0 < t < oo from independent progression. Fig 1 provided an overview of the method.

In a TimedHN, transition rates are parameterized by a hazard rate matrix R, which can be
decomposed into an inter-event graph and spontaneous rates. The transition rate matrix Q is
constrained to have a hypercube structure due to the accumulation assumptions. The transi-
tion probability matrix P(f) is computed using the matrix exponential of Q, which reflects the
probability of transitioning from one state to another after a time interval t. Therefore, sample
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Fig 1. Overview of the proposed method.
https://doi.org/10.1371/journal.pone.0283004.9g001
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likelihood at a given time is the probability of transitioning from the normal state to the corre-
sponding state.

Hazard network

We use a weighted directed graph (hazard network) with adjacency matrix R € R*"" to repre-
sent the pairwise dependencies and use the weights to parameterize the transition rate matrix
describing the accumulation process. Specifically, the model was built with three assumptions:
First, for any event j, its waiting time without being affected by other events has an exponential
distribution #]0 ~ Exp(R;;). We call it a spontaneous accumulation, and R;; is the spontaneous
rate. Second, without considering the spontaneous accumulation, the waiting time of event j
under the influence of event i also has an exponential distribution, t|i ~ Exp(R;). Third, we
assumed that the pairwise dependencies between events are independent. Then, we can use
these rates to model the conditional waiting time for any event, for example, for a state x =

(- -+ xj-1, 0, X}, 1, - - -) to acquire the event j, the conditional waiting time is the minimum of all
the independent waiting times: t;|x = min(t|0, t;|m;, . . ., t;|my), where k is the number of accu-
mulated events and m; is the index of the j-th happened event in state x. By the property of
competing exponentials [26], t}|x is also exponentially distributed. Specifically, the distribution
of the conditional waiting time is:

t;|x ~ Exp(R; + ZRU’C')' (1)
i=1

Transition rate matrix
Next, we show that the event accumulation process is equivalent to a continuous-time Markov

process on 2" states that is uniquely defined by a transition rate matrix Q € R+ The states
are ordered by a index function dec(x) = x-b + 1, where b = 2% - -+, 2" YT is the basis vector.
Due to the progression assumptions: events are irreversible and accumulated one at a time, the
transition can only happen between two states that differ by one entry. For example, from state
x= (%1, 0, 1, -) tostatex , j= (-, xj_1, 1, Xj4 1, - - ). The diagonal entries are defined
as: Qj, ;= —Zi % dec(x + j)Qidec(x + j) 50 that rows sum to zero, which is required for Q to be a
valid transition rate matrix of a CTMC. The transition rate from state X to x,; is defined as:

P(X(t + At) = x_|X(t) = x)

Qdec(x) dec(x,;) = BH}) At 7 (2)

which by the definition of exponential distribution equals to the rate parameter of the waiting
time in Eq (1):

Qdec(x)‘dec(x,j) = R]J + ZRijxi' (3)
i—1

Computation in subspace

The major problem of the computation in TimedHN is the exponentially increasing number

of states, which results in unfeasible computational costs of the transition probability matrix
P(x) = (¢' 9. We developed an efficient method using the sparsity of x to compute the likeli-
hood and its gradient. Specifically, the transition matrix Q is transformed by a column permuta-
tion matrix U such that U' Q U keeps the upper triangular structure. The dec(x)-th column is
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mapped to the column with the smallest possible column number. For a sample that accumu-
lated k events, in the {m;, m,, - - -, my} entries, the smallest possible column number is 2K We
can write the column permutation as 2 independent transpositions that swap the i-th column
and the (bity(i — 1)-byy, + 1)-th column, fori =1, - - -, 2%, where b, = (2™,2™, .-, 2'”k)T is
the subspace basis vector and bity(-) is the inverse function of dec(-) that map a integer to its k
dimension binary vector. Thus, due to the upper triangular property [27, 28] (S1 Appendix), we
can get the likelihood by computing only the matrix exponential of the 2-th order leading prin-
cipal submatrix Q = U' QU i .« as:

P(x, t) = (etQ)l,dec(x) = (eté)lg"' (4)

And the conditional time expectation is given by:

(Ve Q)
E(tx) = / = -

Optimization objective

Next, we propose to infer the hazard network through constrained maximum likelihood esti-
mation. The goal of this approach is to identify the set of hazard rates that best explain the
observed data while also incorporating prior knowledge about the progression provided by
pseudo-time. The objective function is given as follows:

1 D]
maximize — ) log((e"%), ;) — % |R|
Rt |D‘ i=1 —_——

sample likelihood
subject to R, t>0,]|[t]|, =c.

The likelihood is given by P(x, t) = (e’ Q)l, dec(x)» Where ¢ may be fixed to pre-defined pseudo-
time values if they are available, or treated as trainable parameters otherwise. The function dec
(x) maps the state x to its corresponding column index in the transition matrix. To ensure the
validity of the model, we impose three constraints: (1) the hazard rates must be non-negative,
as they are parameters of the exponential distribution; (2) we use £1 regularization to encour-
age the sparseness of the matrix R, which results in a simpler topology of the hazard network
and helps prevent overfitting; and (3) the observation times of all states must be non-negative
and have a constant summation. This last constraint helps to prevent the hazard rates from
becoming too small, which can occur due to the regularization term. By bounding the times,
we can ensure the hazard rates do not vanish. In our implementation, we use the ReLU (recti-
fied linear unit) activation function to ensure that all hazard rates in the R matrix are positive.
We scale times after each gradient step to maintain a constant summation.

Backpropagation in the subspace

To optimize the objective function using the backpropagation algorithm, we need to calculate
the partial derivatives of the likelihood with respect to hazard rate matrix R and time ¢. These
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partial derivatives are given as:

XMty _ 52 i 90y
R 0Q; OR’ @)

ij

8(etQ ) 1,dec(x)

ot = (QetQ)Ldec(x) : (8)

Since the likelihood equals to (¢'?), . only depends on Q, the derivatives could be computed

efficiently in the subspace as:

a(efQ)Ldec(x) _ 8(eté)l.2k/aé 0 T
“aq Y U (9)
oQ 0 0
8(3“2) ,dec(x ~ ~
= QY (10)

As shown in the computation in S1 Appendix the derivative of matrix exponential required in

Eq (9) is given as: a(e“?)mk/a() = (t€®) .ok ok 1041, Where matrix B is constructed as:

tQT Emk
B = . (11)
0 Q"

Results
Simulation on synthetic datasets

We sample synthetic data using CTMCs parameterized by random hazard networks to test
the performance of TimedHN in inferring the structure of hazard networks using a given
amount of data. We set the numbers of events to #n = 15 and tested different sample sizes

|D] € {100,250, 500,1000}. We used hazard networks with forest and directed acrylic graph
(DAG) structure to parameterize CTMCs. For each combination of sample size |D| and topol-
ogy type, we generated 100 sets of data using different randomly generated hazard networks.

Generation of random hazard networks. To generate forests, we set a maximum depth
of log(n) and assign each node a random depth between 1 and Llog(n)J , ensuring that each
depth has at least one node. We then randomly select a parent from the nodes in the previous
depth for each node. To generate DAGs, we first assign topological sort ranks to the event
nodes. We then randomly connect a higher-ranked node to a lower-ranked node to form

L1.5xnd inter-event edges. For simplicity, we set all edge weights to 1. In addition, the sponta-
neous rates of all the source nodes are set to 1, and the spontaneous rates of all the rest nodes
are set to 0.1.

Event profiles sampling. In real-world data, we observed that most samples accumulate
fewer than 10 mutations in cancer-related genes. This observation may be because accumulat-
ing more mutations could make a cell less viable, therefore, less frequently observed. To reflect
this phenomenon in our simulation, we set the maximum number of accumulated events to
10. Specifically, we let a CTMC transition ten times to get one simulation run of the accumula-
tion process. We then use the time T of the tenth jump as the termination time. Finally, we
randomly sample an observation time ¢ € [0, T] and use the state of the CTMC at time tas a
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data sample. This sampling process is repeated multiple times to generate independent sam-
ples of synthetic datasets.

Performance measure. Algorithmic performance was evaluated using the metrics preci-
sion, recall, and F-score between the inferred and true graphs used in the simulation. Precision
and recall are defined as follows: precision tp/(tp+fp), recall tp/(tp + fn), and F-score 2tp/(2tp
+ fp + fn) which is the harmonic mean of precision and recall, where tp are the true positives,
fp are the false positives and fn are the false negatives. Values for precision, recall, and F-score
range from 0 to 1. The closer to 1, the better.

Experimental settings. We compared our method with Mutual Hazard Networks
(MHN) [8, 18], CAPRESE [7], CAPRI [12], and oncotrees [4]. For MHN, we used the source
code downloaded from the paper websites. The L1 constraint weight for MHN is set to 1/|D)|
as suggested in the original paper. We used the implementation in the R package TRONCO
(2.26.0) [29] with the default parameter settings for CAPRESE and CAPRI. For oncotrees, we
used our python implementation. For TimedHN, we used the proposed method to maximize
the average log-likelihood in Eq (6) and set the learning rate to le — 3. We found that a larger
regularization parameter A usually results in more false negatives, which results in a low recall.
On the other hand, although a smaller regularization parameter results in more false positives,
the weights of true positive edges are usually much larger. Thus we can effectively remove false
positive edges by using a threshold. In the simulation experiment, we used A = le — 2, and we
used 0.1max(R) as the threshold. However, the threshold is a hyperparameter and could be set
manually after the optimization based on the user’s preference over precision and recall.

Benchmark experiment on synthetic datasets. We compared the performance of
TimedHN and four competing methods for inferring trees and DAGs using synthetic data.
We also tested the TimedHN with true time observations instead of inferring times to demon-
strate the advantage of the joint inference algorithm. Fig 2 showed the performance of the six
methods on simulations of 15 events with different sample sizes
(|D| € {100,250, 500, 1000} ), obtained by averaging over 100 runs.

We apply six methods to infer trees and forests, where each event has only one parent
event. CAPRESE and TimedHN use real-time and joint inference, performing almost perfectly
when sample sizes are larger than 500. Since CAPRESE is designed only to infer a tree or forest
structure, this simulation perfectly fits its assumptions. Although oncotrees’ simple heuristic
does not lead to perfect performance, it assumes a tree structure. Thus it still significantly out-
performs CAPRI and MHN, which do not assume a tree structure. On the contrary, TimedHN
converges to the correct structure without these assumptions. Our results showed that the pre-
cision and F-score of CAPRI decrease as the sample size increases. This is because CAPRI
tends to infer a denser graph on larger sample sets, resulting in a higher false positive rate and
recall. We find MHN performs poorly even in this simple case. Two possible reasons are (i) it
assumes an identical distribution for progression times P(¢) for all samples, while the condi-
tional distributions P(t|x) are different, which could lead to an erroneous topology of the haz-
ard network. (il) MHN also tries to infer negative hazard rates, which means the searching
space of its optimization algorithm is much more complicated. Thus, it is easier to converge to
alocal optimum or result in overfitting. Moreover, in section, we find that MHN prefers to use
edges with negative weights to fit the data rather than adding edges with positive weights.

Then, we apply the six methods to infer DAGs, where events can have multiple parent
events. In terms of precision, CAPRESE is still comparable with TimedHN. However, in terms
of recall, TimedHN using real-time or joint inference outperforms all competing methods.
TimedHN using joint inference performs slightly better than the actual time and has a smaller
standard deviation. A possible explanation is that joint inference reduces the variance of sam-
pling times. Due to the tree and forest assumption, oncotrees and CAPRESE can infer (n — 1)
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Fig 2. The precision, recall, and F-score of the six methods was compared on synthetic datasets consisting of 15 events sampled from CTMCs
parameterized by forests and DAGs.
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edges at most. Thus their recall is low when there are 1.5# edges in the true hazard networks.
The recall of CAPRI decreases dramatically compared to their results on forests. Because its
prima facie causality rules could fail in this case since the probability of observing a parent
event is not guaranteed to be larger than that of observing a child. Finally, TimedHN signifi-
cantly outperforms all competing methods in F-score due to its good performance on preci-
sion and recall.

Experiment with profile noise. We conducted simulation experiments to evaluate the
robustness of our model to observation errors and compared the results with four competing
methods. We used datasets of size |D| = 250 generated from forest and DAG structures with
n =15 events. We randomly generated 100 datasets for each topology type using different
hazard networks and added noise by flipping each event independently with a small proba-
bility. Fig 3 shows the performance of the six methods. As expected, the performance of all
methods decreased as the noise level increased. However, TimedHN using real-time and
joint inference remained comparable to CAPRESE in inferring forests and outperformed all
competing methods in inferring DAGs at all noise levels. For forest structure, CAPRESE and
Oncotrees performed better than CAPRI and MHN due to their structure assumptions. We
found that TimedHN sometimes had to infer false edges to maintain positive likelihoods for
defected profiles. However, the weights of these false edges were usually small enough to be
removed by a threshold when the number of errors was small. When the number of profile
errors was large, the false positive edges became indistinguishable from edges connecting
low-frequency events.
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Time complexity analysis

We performed a test to analyze the time complexity of our gradient computation algorithm.
We first fixed the profile dimension n = 20 and tested different numbers of accumulated events
ke {l1,---,15}. In Fig 4(a), we can see the run time of gradient computation increased expo-
nentially to k. It is because the computation of matrix exponential is the most time-consuming
step, and the size of the matrix Q in section grows exponentially to k.

Then, we fix the number of accumulated events to k = 10 and test different profile dimen-
sions n € 10, 11, .. ., 30. Fig 4(b) shows that the computation time increases slowly as n
increases. This is because since k is fixed, only the size of the permutation matrix U is increas-
ing linearly to # using sparse representation. These results show that our algorithm can take
advantage of the sparsity of event profiles. When most patients just accumulate less than 10
cancer-related events, our algorithm can compute the gradient efficiently, regardless of the
total number of events.

Luminal breast cancer

In this study, we compared the performance of TimedHN to CAPRESE and MHN using lumi-
nal breast cancer data from The Cancer Genome Atlas (TCGA) [25, 30]. The dataset, which
consists of 685 profiles of luminal A and luminal B subtypes, was previously used in the Can-
cerMapp pipeline [20]. We obtained event profiles from the Mutation Annotation Format
(MAF) file used for the MutSig2CV [31] mutation analysis in TCGA, which catalogs mutations
in 15,889 genes in 973 breast tumor samples. These mutations were classified into five
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categories: missense, nonsense, in-frame indels, frameshift indels, and splice site. As these
types of mutations can damage the function of a gene to varying degrees by altering the amino
acid sequence or disrupting the translation process, we treated all of them as non-silent muta-
tions of a gene in our analysis.

To select genes for our experiment, we used the CancerMapp pipeline [20], which applies a
statistical approach to identify significant changes in gene mutations along a progression
model inferred from expression profiles. We applied the Benjamini-Hochberg procedure [32]
to compute a false discovery rate (FDR) for each gene, and only included those with an FDR
lower than 0.01 in our analysis (see S1 Table).

We compared the results of TimedHN to CAPRESE, which demonstrated the highest preci-
sion level in the benchmark experiment. As shown in Fig 5, TimedHN was able to capture all
of the edges identified by CAPRESE shown in Fig 6(a), except for the edge from PIK3CA to
TP53. Instead, TimedHN identified TP53 as a source node with a high spontaneous rate to fit
the 36 samples in the dataset that had TP53 mutations but not PIK3CA mutations. The inde-
pendence of PIK3CA and TP53 inferred by TimedHN is consistent with their known roles as
an oncogene and tumor suppressor, respectively, suggesting that abnormalities in either gene
can promote a malignant phenotype [33].

TimedHN has inferred several edges that are consistent with the findings of other research
studies. For example, the predicted interaction between PIK3CA and MAP3K1/MAP2K4
mutations is in line with the fact that these genes cooperate at both the mutation and pathway
levels [34]. The inferred edge from PIK3CA to CDHI is consistent with the finding in lung
adenocarcinoma that the inactivation of the PI3K pathway significantly reduced CDH1
expression [35]. The predicted interaction between CDH1 and RUNX1 is consistent with the
observation of significant enrichment of RUNX1 binding on E-cadherin (CDH1) in breast
cancer cells [36]. The connection between RUNX1 and CTCEF is consistent with the findings
that CTCF suppresses RUNX1 expression [37], thus the loss of CT'CF will further cause an
over-expression of RUNX1, which can lead to the proliferation of abnormal cells.

However, TimedHN identified several edges that were not inferred by CAPRESE or
reported in previous research. These include the GATA3, CBFB, GRHL2 series, the confluence

PLOS ONE | https://doi.org/10.1371/journal.pone.0283004 March 16, 2023 10/15


https://doi.org/10.1371/journal.pone.0283004.g004
https://doi.org/10.1371/journal.pone.0283004

PLOS ONE

Timed hazard networks: Incorporating temporal difference for oncogenetic analysis

p /\) -
:GATAS
PIK3CA OTP53
Y MaP2ka MAP3K1 4
\ N
A CDH1
g ARID1A
O—F———
RUNX1 X3
. J{)L
<
MED23
L Y /
ATP10BH o J CBFRO<
CTCF
. ‘iohﬂpe L _ Yapamz9 3 L . (“J"' )
L NPAS4 GRHL2

Fig 5. The oncogenetic graph inferred by TimedHN. Edge widths and shade are linear to the inter-event hazard rates. The node sizes are linear to

spontaneous hazard rates.
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Fig 6. The oncogenetic tree inferred by CAPRESE is shown in subfigure (a) Its edges and nodes are shown in uniform width and size. The Oncogenetic
graph inferred by MHN is shown in subfigure (b). Its edge widths and shade are linear to the exponential of inter-event hazard rates. Node sizes are
linear to the exponential of spontaneous hazard rates. Solid lines represent edges with positive weights, and dashed lines represent negative ones.
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of MAP3K1, MAP2K4, and CDH1 to MED23, and the edges connecting MAP3K1 to CTCEF,
MAP2K4 to ADAM29, and MAP2K4 to MYO6. While some of these edges may not be as sig-
nificant as those identified by CAPRESE, they are strong enough to withstand the €, norm reg-
ularization and thresholding. These findings suggest that these edges reflect valuable patterns
in the dataset, although further studies are needed to confirm this hypothesis.

We also compared the results of Mutual Hazard Networks (MHN, Fig 6(b)) to demonstrate
its limitations. MHN inferred many mutually exclusive relationships using a fully connected
subgraph with only negative weighted edges, such as the mutual exclusiveness between
MAP3K1, MAP2K4, and CDH1. However, this approach is expensive in terms of ¢, cost, and
as a result, the model tends to trade positive edges to model such a dense subgraph. Addition-
ally, due to the incorrect assumption of the conditional time distribution P(¢|x), the direction
of some inferred edges with positive weight is reversed compared to the results from TimedHN
and CAPRESE. In contrast, methods like CAPRESE and TimedHN that only infer positive
dependencies can also represent mutually exclusive relationships by disconnection. Allowing
negative hazard rates would significantly expand and complicate the search space in optimiza-
tion, which could lead to convergence to a local optimum or overfitting.

Finally, as shown in S2 Table, TimedHN demonstrated the ability to estimate the pseudo-
time order of profiles and events. Event profiles were sorted by the conditional time expecta-
tion, and a brute force search of all possible accumulation orders of events in a profile was
used to find the maximum likelihood accumulation order.

Conclusion

In this study, we present TimedHN, a new framework for inferring the temporal order of sam-
ples and the oncogenetic graph underlying the accumulation of genetic events in cancer pro-
gression. We developed an efficient gradient computation algorithm that can take advantage
of data sparsity and significantly reduce the computational complexity of the proposed model.
In our experiments on synthetic datasets, we proved the correctness and robustness of
TimedHN by showing convergence to the correct typology. We compared TimedHN to the
state-of-the-art tree reconstruction algorithm (CAPRESE), bayesian probabilistic graphical
model (CAPRI), and Mutual Hazard Networks (MHN). The results showed that TimedHN
outperforms them on synthetic data. Furthermore, we experimented on luminal breast cancer
mutation data using CAPRESE, MHN, and TimedHN. The analysis suggested that the results
of TimedHN are highly consistent with the most precise method, CAPRESE, in the simulation
and can infer novel dependencies that are undetected by CAPRESE. At the same time, the
analysis of the result of MHN showed its limitation in reliability and ease of interpretation.

Despite its strengths, TimedHN has some limitations that should be acknowledged. One
limitation is that its application is highly dependent on the selection of genetic events, as it is
only able to infer meaningful results on a pre-selected set of events that are thought to be
involved in a cumulative causal process. This is a limitation shared by all oncogenetic graph
learning methods. TimedHN can still be useful as a tool for providing computational evidence
for such hypotheses or for identifying potential oncogenetic dependencies. Another limitation
is that the computational complexity of the proposed algorithm is still exponential in the num-
ber of accumulated events, making it only efficient for sparse profiles.

There are several directions for future research that could expand the capabilities and appli-
cability of TimedHN. One possibility is to improve the scalability and efficiency of the tool,
such as through approximations or alternative optimization techniques. This would make it
more widely applicable and useful for researchers, particularly in cases where data is not
sparse. Another potential direction is to apply TimedHN to multi-region and single-cell data,
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as the framework is capable of computing the transition probability between any two states.
This would allow researchers to utilize datasets from different sources and benefit from the
results of phylogenetic analysis [38-40]. Additionally, TimedHN could be applied to the analy-
sis of other disease progressions or cumulative causal processes, such as the development of
drug resistance-associated mutations in the HIV genome [41] or similar processes. This would
allow researchers to leverage the strengths of TimedHN in a wider range of research contexts.

We expect that in the future, TimedHN will be a valuable resource for cancer research and
provide new insights into the development of more effective targeted therapies.
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