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Abstract

We present the first systematic study of effective-
ness of robustness transformations on a diverse set
of 24 probabilistic programs representing gener-
alized linear models, mixture models, and time-
series models. We evaluate five robustness transfor-
mations from literature on each model. We quantify
and present insights on (1) the improvement of the
posterior prediction accuracy and (2) the execution
time overhead of the robustified programs, in the
presence of three input noise models.
To automate the evaluation of various robustness
transformations, we developed ASTRA – a novel
framework for quantifying the robustness of prob-
abilistic programs and exploring the trade-offs
between robustness and execution time. Our ex-
perimental results indicate that the existing trans-
formations are often suitable only for specific
noise models, can significantly increase execu-
tion time, and have non-trivial interaction with
the inference algorithms.

1 INTRODUCTION

Probabilistic programming (PP) has recently emerged as a
general and flexible approach for Bayesian inference [Good-
man et al., 2012, Carpenter et al., 2016, Bingham et al.,
2018]. PP decouples model specification from the infer-
ence procedures, and thus allows the users to update their
models while automatically applying general inference al-
gorithms for Markov Chain Monte Carlo (MCMC) sam-
pling [Robert and Casella, 2013] or Variational Inference
(VI) [Beal, 2003]. In recent years, PP has been applied
in various real-world machine learning applications, e.g.,
forecasting [Taylor and Letham, 2018], recommendations in
social networks and predicting user locations [Ai et al., 2019,
Gokkaya et al., 2018], rating players in games [Gordon et al.,
2014], and COVID-19 modeling [Bherwani et al., 2021].

Figure 1: Posteriors of Different Robust Models Fitted with
Corrupted Data

Automatically deploying probabilistic programs on such a
diverse set of real-world applications raises the question of
how much the results of their inferences change in presence
of outliers and other deviations of data from model’s as-
sumptions (which we summarily call noise). Robustness is
the property of systems, including probabilistic programs,
to remain unaffected by data noise [Huber and Ronchetti,
1981]. For instance, many statistical models assume a Gaus-
sian prior or likelihood, but few data points that are far away
from the rest can significantly change the inferred mean. In
contrast, inference using robust models is more likely to
yield posteriors that are not affected by such noise.

Robustness transformations have been traditionally custom-
designed for specific models, such as linear regression.
Some common transformations can however be applied
across different model classes, for instance, by replacing
Gaussian likelihood with Student-T. However, it remains
unknown (1) which robustness transformation to apply to
obtain most robust inference result for a given model and
noise model, and (2) how off-the-shelf inference algorithms
in popular PP languages interact with these transformations–
e.g., which ones have higher execution overhead. Most pre-
vious works consider only a few examples, without any thor-
ough comparisons or systematic run time measurements.
However, these questions become particularly important
when the models are deployed in real-world settings where
both accuracy (inference results) and execution cost matter.

Example: How Good are the Robust Models? Figure 1
presents the posteriors fitted on a corrupted dataset when
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applying different robustness transformations on the original
model. The model y ∼ N (β, 1) fits the parameter β as
the mean of data y. In the dataset, 80% data points are
good (non-noisy) observations centered at 0, while 20%
are outliers centered at -10, far from the good observations.
We present the posterior distributions of β obtained from
original and robust models as different lines on the plot.

We observe that all robust models are not equally useful:
while some (e.g., Reweighting) yield posteriors that are
close to ideal in presence of outliers, some others (e.g.,
Localization) are not too different than the original (non-
robust) model. These observations motivate the need for a
systematic study of robustness transformations.

Our Work. The goal of our work is to develop a systematic
understanding of how various robustness transformations
perform in different scenarios through rigorous empirical
evaluation on a broad range of subjects. We study the impact
on the performance (accuracy) and execution cost of four
factors: (1) Inference Algorithms, (2) Noise Models and
Noise Levels, (3) Model Class, (4) User time budget.

We present the first extensive study of different robust-
ness transformations on 24 probabilistic models from three
classes: generalized linear models, mixture models, and
time-series models. To help users understand both the prac-
tical and fundamental properties of probabilistic robustness
transformations, we developed the ASTRA framework. AS-
TRA automatically modifies the program code to apply the
robust transformation (and check for its legality) and system-
atically evaluates different robustness transformations for
user-defined input noise models and posterior accuracy met-
rics. ASTRA then ranks the transformed programs by pre-
dictive accuracy. ASTRA is extensible: users can easily add
new noise models, transformations, and accuracy metrics.

We implemented three common noise models for cor-
rupting the datasets (Section 5): (1) Simple Outliers ran-
domly changes the value of several data points, (2) In-
troducing Hidden Groups corrupts the data by adding a
new distribution mode, and (3) Skewing Data adds non-
symmetric error to most data points to skew the distri-
bution. We also implemented five robustness transforma-
tions from literature for each model (we describe them
in Section 3): (1) Bayesian Data Reweighting [Wang
et al., 2017], (2) Localization [Wang et al., 2018],
(3) Robust Reparameterization combines reparameteriza-
tion from [Stan User’s Guide. Chapter 25.7] with localiza-
tion, (4) StudentT transformation of Gaussian variables, and
(5) Contaminated Group Mixture [Berger et al., 1994].

We analyze the posterior predictive accuracy of the
robustified models and their execution times using two
state-of-the-art inference algorithms: No U-Turn Sampler
(NUTS) and Automatic Differentiation Variational Infer-
ence (ADVI), implemented in Stan [Carpenter et al., 2016].

Results and Insights. Our study yields several interesting
insights and observations:

• Different inference algorithms respond differently to each
robustness transformation. For instance, for Simple Out-
liers noise model, Student-T always performs better than
Reparameterization for ADVI but for NUTS, Reparame-
terization outperforms Student-T.

• Robustness transformations can be effective for some
noise models – in particular for Simple Outliers – even
when 10% of the data has been replaced with outliers
the robustness transformations reduce the error by up to
3x, compared to the original program on the same data.
However, most transformations do not generalize well
across different noise models. For instance, all transforma-
tions provide very limited benefits for Hidden Group and
Skewed data attacks – this motivates future research to de-
velop novel robustness transformations for these attacks.

• Robustness transformations incur greater overheads for
NUTS than ADVI. The run time overheads (over original
model) for ADVI range between 1.04x and 7.03x, while
for NUTS they are between 1.76x and 14.5x. Hence, some
transformations may be impractical in scenarios with tight
time budgets. We present more insights in Section 6.

Contributions. This paper makes several contributions:

• Automated Robustness Evaluation: We develop AS-
TRA, a novel automated system that efficiently evaluates
the robustness transformations for probabilistic programs.

• Systematic Evaluation of Robustness: We present an
extensive study of 24 probabilistic programs with multi-
ple robustness transformations, input noise models, and
inference algorithms. Our results inform how users select
a robustness transformation for their use cases.

• Insights: We demonstrate that the robustness transforma-
tions can effectively improve predictive accuracy for some
models of noisy data, but they may also incur significant
execution time overhead. Using ASTRA, we obtained
numerous useful insights that are beneficial for both the
users and researchers of the probabilistic programming
community in particular and AI in general.

ASTRA is open sourced at https://github.com/
uiuc-arc/astra.

2 ROBUSTNESS METRICS
To evaluate model robustness, we follow the standard
methodology in existing research on robust Bayesian mod-
elling [Wang et al., 2017, 2018], by injecting noise in the
observed data and computing the relative change in posterior
predictive accuracy of the model.

Given a probabilistic program P , and the observed dataset
y (we will also call it uncorrupted), we fit P to a corrupted
dataset yNoise that is generated by injecting noise in y. We
use the fitted posterior of P to generate predicted data ŷ,
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Table 1: Robustness Transformations: Original and Transformed Models (α, β, s, η, ν, ρ, σ, z are parameter variable place-
holders; y is a data variable placeholder; F, π are distribution placeholders)

β ∼ πβ(α)

yD
i=1 ∼ F (β)

⇓

wD
i=1 ∼ Beta(γ, ζ)
β ∼ πβ(α)

yD
i=1 ∼ F (β)wi

β ∼ πβ(α)

yD
i=1 ∼ F (β)

⇓
β ∼ πβ(α)

s ∼ Unif(0, 1)
ηD
i=1 ∼ N (β, s)

yD
i=1 ∼ F (ηi)

β ∼ πβ(α)

yD
i=1 ∼ N (β, σ)

⇓
ν ∼ πν(γ)
β ∼ πβ(α)

yD
i=1 ∼ T (ν, β, σ)

β ∼ πβ(α)

yD
i=1 ∼ N (β, σ)

⇓
ν ∼ πν(γ)

τD
i=1 ∼ Gamma( ν

2 ,
ν
2 )

β ∼ πβ(α)

yD
i=1 ∼ N (β, σ√

τi
·)

β ∼ πβ(α)

yD
i=1 ∼ F (β, σ)

⇓
ρout, ηout, σout ∼ π(γ)
ν ∼ N (ηout, σout)

β ∼ πβ(α)

zD
i=1 ∼ Bernoulli(ρout)
yi|zi = 0 ∼ F (β, σ)

yi|zi = 1 ∼ F (β,
√
eν)

(a) Reweighting (b) Localization (c) Normal-to-Student-T (d) Reparameterization (e) Cont. Mixture

and we evaluate the robustness of this program through the
mean squared error (MSE) metric, as

MSE(ŷ, y) =
1

D

D∑
i=1

(ŷi − yi)
2, (1)

where D is the size of the dataset. Intuitively, MSE quanti-
fies by how much the posterior predictive accuracy changes
in presence of data corruptions. Computing MSE using pre-
dictive data is recommended by [Gelman et al., 2013] as the
posterior predictive check to evaluate model fitting and is
also used by [Wang et al., 2018] as the predictive R2 metric
to evaluate model robustness.

Since the value of MSE depends on the scale of data val-
ues, we standardize the MSEs on the original model, fol-
lowing Saad et al. [2019]. Specifically, let MSE(ŷ, y) and
MSE(ŷT , y) be the estimated robustness of the original
model P and a transformed model PT , respectively. Then
we define the relative improvement of robustness of the
transformed model as:

RIMSE(ŷ, ŷT , y) = MSE(ŷ, y) /MSE(ŷT , y). (2)

Intuitively, RIMSE denotes the relative improvement of the
“robustified” model over the original model. RIMSE >1
indicates improved robustness, RIMSE of 1 indicates no
improvement, and RIMSE <1 indicates that the accuracy of
robustified model is lower than the original model. In our ex-
ample (Figure 1), the best transformation (Reweight) yields
a RIMSE of 5.22, whereas the least useful transformation
(Localization-Location) yields a RIMSE of 1.31.

3 ROBUSTNESS TRANSFORMATIONS

We describe various robustness transformations for proba-
bilistic models from the literature that we use in our study.

Bayesian Data Reweighting. This transformation changes
the contribution of each data sample (observation) by raising
its likelihood term in the model to its own weight [Wang
et al., 2017]. The weights are then exposed as latent vari-
ables and inferred along with the rest of the model’s param-
eters. During inference, the outliers are automatically as-
signed lower weights, which improves prediction. Table 1(a)

presents an example of an original model and its transformed
version. The transformation introduces a vector of weights
w with a Beta prior. yi ∼ F (β)wi denotes that the likelihood
F for each data sample is raised to the power of its weight.

Localization. This transformation allows each likelihood
term to depend on its own copy of latent variable [Wang
et al., 2018]. Table 1(b) presents an example original and
robustified probabilistic models. In the transformed model,
there are D local versions of the latent variables: ηi, one
for each data point yi. All the auxiliary local variables are
sampled from prior πη. We use a Gaussian prior for ηi in
evaluation, following the examples in the original work
[Wang et al., 2018]. Unlike [Wang et al., 2018] that designs
a specialized E-M algorithm to fit s in the Gaussian prior,
we fit s with other parameters via Bayesian inference.

Normal to Student-T. Normal distribution is not robust to
outliers or over-dispersed data. An easy alternative is the
Student-T distribution [Berger et al., 1994]. Intuitively, the
fatter tail of Student-T can better capture the data points
far away from the majority. In this transformation, ASTRA
replaces a Normal distribution with Student-T by preserving
the location and scale parameters in the program, while
adding a new parameter ν as the degree of freedom (DOF).
Table 1(c) presents the transformation. In the transformed
model, ν is from the prior πν . Since we may not have prior
knowledge, we use a uniform (non-informative) prior for ν.

Reparameterization and Localization of the Scale Pa-
rameter. This transformation changes the Gaussian likeli-
hood distribution to an equivalent of Student-T distribution
and also localizes the additional parameter τ . Table 1(d)
presents an example. The transformation adds D parameters
τi to adjust the standard deviation of the likelihood for each
data point. This has similar effects as the Localization trans-
formation. τi is from a Gamma prior with hyper-parameter
ν. If we integrate out all the τis, ν will be equivalent to
the DOF parameter in the Normal to Student-T transforma-
tion [Stan User’s Guide. Chapter 25.7] (but can be more
amenable when sampled with MCMC algorithms). This
transformation is only applicable for Normal distributions.

Contaminated Group Mixture. To make the model capture
a small amount of corruption in data, we can encode in the



model that the data is from a mixture of the original model
and a outlier group [Berger et al., 1994]. Table 1(e) presents
an example. With probability 1− ρout, the data point is from
the original model; with ρout, the data point comes from
another distribution with a different (likely larger) variance.
Benefitting from the outlier group, the contaminated data
will not directly affect the original model’s parameters. ρout

and the scale of the new group are latent parameters which
can adapt to the user’s data. To ensure a positive scale pa-
rameter, we set the outlier group scale parameter to be

√
eν

where ν is another hyper-parameter.

4 ASTRA

At a high level, ASTRA takes a probabilistic program P , a
dataset y, the desired noise model A, inference algorithm
I , and a set of transformations T to apply on P . ASTRA
first generates the transformed programs by applying each
transformation in T to P . ASTRA then compares each trans-
formed program against the original program and returns the
list of transformed programs and their corresponding robust-
ness scores, sorted in decreasing order of their robustness.

4.1 PROBABILISTIC PROGRAM
TRANSFORMATIONS

1 data {
2 int<lower=0> N;
3 vector[N] y;
4 }
5 parameters {
6 real b;
7 }
8 model {
9 for (i in 1:N)

10 y[i]~normal(b,1);
11 }

Figure 2: Example PP

Probabilistic Programs. AS-
TRA takes a probabilistic pro-
gram (PP) in Stan probabilistic
programming language [Carpen-
ter et al., 2016] as input, which is
to encode a probabilistic model in
the form of a program. Figure 2
shows the Stan program for the
original model in the motivating
example (Figure 1). The represen-
tation is intuitive: the data block declares N observations
of data y; the parameters block declares one parameter
b in the model; and the model block encodes that each data
observation is conditional on b. Given such a probabilistic
program, Stan can automatically apply inference algorithms
like MCMC or VI to compute the posterior of parameters.

Transformations. To allow automated transformations on
the probabilistic program, we use Storm-IR [Dutta et al.,
2019] as our internal representation. Storm-IR can represent
program constructs like sampling from distributions (Dist)
and conditioning on data (factor) as a graph with program
elements as nodes, and control flow as edges (similar to a
compiler CFG [Allen, 1970]). Since Storm-IR supports mul-
tiple languages (e.g., Stan, Pyro, Edward), it allows ASTRA
to be language-agnostic. ASTRA first parses the original
probabilistic program into abstract syntax tree and converts
to Storm-IR. On this IR, searching for the code pattern from
Table 1 amounts to searching for a subgraph that encodes

the pattern (e.g., statements corresponding to β ∼ πβ(α)
and yDi=1 ∼ F (β); which do not need be adjacent), while re-
membering the concrete variable names (e.g., β 7→ b, y 7→
y) and distributions (e.g., F 7→ N (b,1)). ASTRA uses the
identified distributions/variables to instantiate the transfor-
mation template and update the program. For example, to
apply the Normal-to-Student-T transformation on Figure 2,
ASTRA will replace the normal distribution on Line 10
with a Student-T distribution, as student_t(nu,b,1),
where nu is a new parameter for the degree of freedom.
ASTRA will also place a uniform prior on nu.

We show the details of Storm-IR syntax in Appendix A, the
code transformation patterns (on Storm-IR) in Appendix B,
and the proof of correctness (in the sense of code transfor-
mations matching the models from Table 1) in Appendix C.

4.2 ASTRA ALGORITHM

Algorithm 1 presents ASTRA’s main algorithm. First, AS-
TRA initializes a set, Results, for storing the robustness
scores of all transformed programs (L.2). ASTRA generates
the transformed programs PT (L.3). Next, ASTRA evalu-
ates the robustness of each transformed program (L.4-13).
For each transformed program, PT ∈ PT , ASTRA per-
forms the following steps N times: it first generates a noisy
dataset, yNoise, using the specified noise model A (L.7). It
runs the inference algorithm I selected by the user to esti-
mate the latent parameters (or posterior data predictions), ŷ,
in program P using the noisy dataset yNoise (L.8). Besides,
the user also specifies other inference specifications such
as number of samples (for MCMC) or number of iterations
(for VI). The Infer method encapsulates this step. ASTRA
infers the parameters of the transformed program PT on the
same noisy dataset (L.9), and computes the robustness score
using the RIMSE metric (L.10).

Algorithm 1 ASTRA Algorithm

Input: Program P, Data y, Noise Model A, Inference Algo I ,
Transformations T

Output: Transformed Programs Ranked by Robustness

1: procedure ASTRA(P , y, A, I , T )
2: Results← ∅
3: PT ← ApplyTransforms(P, T )
4: for PT ∈ PT do
5: Score← ∅
6: for i← 1 to N do
7: yNoise ← A(y)
8: ŷ ← Infer(P, yNoise, I)
9: ŷT ← Infer(PT , y

Noise, I)
10: Score← Score ∪ {RIMSE(ŷ, ŷT , y)}
11: end for
12: Results← Results ∪ {(PT ,Avg(Score))}
13: end for
14: return Sort(Results)



ASTRA computes the average score (e.g. arithmetic or geo-
metric mean) for the transformed program PT and appends
the result to the Results set (L.12). Averaging the scores
over multiple runs (and different noisy data-sets) produces
a better estimate of the robustness of a transformation. Fi-
nally, ASTRA returns the list of transformed programs in
descending order of their robustness scores (L.14).

ASTRA also supports other user-specified robustness met-
rics, which can be specified as a simple function using our
python interface. Further, unlike Wang et al. [2018]’s ap-
proach that uses only synthetic data (simulated from the
original model with known parameters) as y, ASTRA al-
lows users to provide the uncorrupted data as y if the true
data model is unknown. Given the uncorrupted data y, AS-
TRA helps users to compare how different models fit to y.

5 METHODOLOGY

Probabilistic Models. To evaluate the transformations in
ASTRA, we obtain a set of 24 probabilistic programs from
a popular repository [StanExampleModels] including 13 Re-
gression models, 5 Time-Series/State-Space models, and 6
Mixture models. Table 2 presents the details of all probabilis-
tic programs we evaluate using ASTRA, their description,
number of parameters and data items, and run times (in sec-
onds) for ADVI and NUTS inference algorithms with Stan.
The TimeSeries models start with “S-”, Mixture models
with “M-”, and Regression models with “R-”.

Automated Inference. We use NUTS [Hoffman and Gel-
man, 2014] and ADVI [Kucukelbir et al., 2015] inference
algorithms from Stan [Carpenter et al., 2016] – a popular
probabilistic programming language – to run each trans-
formed program and compare their relative behaviors. For
NUTS, we run each program with 4 chains, 1000 warmup
iterations, and 1000 sampling iterations with a timeout of 8
minutes for each chain. We exclude the programs that timed
out. For ADVI, we use 10000 iterations and 1000 posterior
samples for comparison. For our evaluation, we use Azure
VMs, each with 4 cores, 2.3 GHz CPU, and 16 GB RAM.

Robustness Metric. We use the RIMSE metric defined
in Section 2. For each model, we repeat generating noise
and inference 5 times and compute the geometric mean
of RIMSE scores. We chose RIMSE instead of other infor-
mation criteria used in [Gelman et al., 2013] for model
selection because there are several challenges for apply-
ing them on general probabilistic programs: AIC [Akaike,
1974] does not work under strong priors; DIC [Ando, 2010]
gives poor results when the distributions are not well sum-
marized by mean; WAIC [Watanabe and Opper, 2010] and
Cross-Validation [Stone, 1974] require data partitioning,
which is hard to automate for structured models; Bayes
factor method [Kass and Raftery, 1995] only works well
for discrete models [McElreath, 2020].

Convergence Metric. The sampling-based automated infer-
ence may suffer from non-convergence and result in inaccu-
rate estimation of the result. Robustness transformations that
introduce new parameters can make the program harder to
converge and thus affect its accuracy and robustness. Hence,
for evaluation, we also measure the convergence score using
Gelman-Rubin Diagnostic [Gelman et al., 2013]. A score
significantly larger than 1 indicates non-convergence.

Noise Models. The dataset D is usually composed of re-
sponse data (labels) and explanatory data (features) with the
same length. In this work, we only add noise to the response
data. We select five noise levels for the fraction of perturbed
data inputs between 2%, 4%, 6%, 8%, and 10%. Hereon we
denote the response data as y and its size as D:

• Adding Outliers. We randomly select a subset of data
points and add random noise to them. Let sd(y) be stan-
dard deviation estimated from the original dataset y =
{y1, y2, . . . , yD}, then we simulate the outliers by:

zi=1...D ∼ Bernoulli(k%)

yOutliers
i |zi = 1 ∼ N (c · yi, |yi| · sd(y))

where k% corresponds to the amount of noise, can be
specified by the user. The constant c > 1 allows us generate
outliers far from the typical observations. In our experiment,
we let c = k. This noise model simulates a scenario
where some observations get corrupted due to some
exception or failure (e.g., of a sensor, storage, or network).
• Introducing Hidden Groups. This strategy introduces a
hidden group (with its own mode) that does not agree with
the modeling assumptions. The location and scale of the
hidden group is controlled by the noise level k. Similar to
previous case, we allow the user to specify the size of data
subset to be changed (e.g., our experiments use c = 20%).

zi=1...D ∼ Bernoulli(c)

yHidden_Group
i |zi = 1 ∼ N (yi +

k

2
· sd(y), 0.1k)

• Skewing data. Using this strategy, we skew the distribu-
tion of data points. Skewing causes the mean of the distribu-
tion to shift and lose symmetry. It also makes it harder for
the inference strategy to sample using a non-robust model.
In this work, we apply positive skew to the datasets – for
data y we generate skewed data as follows:

ySkewed
i =

(
yi − ymin

ymax − ymin

)(1+0.1k)

·(ymax − ymin) + ymin

where k is the noise level for this noise model. We first
scale all the data to [0, 1], then we raise it to a chosen
power to skew the data, and finally scale it back to ymin =
mini=1...D yi and ymax = maxi=1...D yi.

A reproducible version of ASTRA is available at https:
//figshare.com/s/38668524113696505ef4.
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Table 2: Description of Benchmarks

Prog Name Description #Param #Data ADVI NUTS

RA anova_radon_nopred_chr Multi-level linear model with set up for ANOVA with Choo-Hoffman Parametrization 88 919 10.38 20.28
RE electric_chr Multi-level linear model with varying intercept with Choo-Hoffman Parametrization 100 192 5.65 12.57
RG flight_simulator_17.3 Varying intercept model 17 281 4.25 12.28
RK hiv Multi-level linear model with varying slope and intercept 173 369 7.00 20.33
RL lightspeed Linear model with no predictors 2 66 0.68 0.69
RN pilots Multi-level linear model with varying intercept and redundant parameterization 17 40 1.57 3.17
RQ radon_no_pool Multi-level linear model without pooling 89 919 12.64 13.60
RR radon.pooling Multi-level linear model with complete pooling 3 919 7.18 5.53
RU radon_vary_si Multi-level linear model with group level predictors 175 919 14.77 33.95
RV unemployment Linear model with one predictor 3 57 0.48 1.46
RW wells_dae Logitistic regression model 4 3020 14.06 113.85
RX y_x Linear model with one predictor 3 919 7.93 9.17
RY kidscore_momwork Linear model with discrete predictor 5 434 3.98 9.26
SA gp-fit-latent Gaussian process (GP) with exponentiated quadratic kernel and Gaussian likelihood 104 101 150.63 732.07
SB stochastic-volatility Moving average model for time-series 503 500 11.52 170.22
SC gp-fit-pois GP with exponentiated quadratic kernel and Poisson likelihood 104 101 108.98 697.92
SD gp-fit-ARD GP with ARD-parameterized exponentiated quadratic kernel and Gaussian likelihood 105 101 141.25 1188.97
SE koyck Geometric lag time-series 4 200 1.88 6.61

MA normal_mixture_k_prop Mixture model with unknown locations, scales and mixing proportion 11 1000 9.98 601.02
MB normal_mixture_k Mixture model with unknown locations, scales and mixing proportion 9 1000 1.98 80.11
MC normal_mixture Mixture model with known scale 3 1000 25.49 27.91
MD gauss_mix_asym_prior Mixture model with non-exchangeable priors 5 100 1.75 3.28
ME gauss_mix_given_theta Mixture model with known mixing proportion 4 1000 19.81 54.51
MF gauss_mix_ordered_prior Mixture model with ordered priors 5 1000 14.08 30.30

6 EVALUATION

6.1 PERFORMANCE OF TRANSFORMATIONS

We apply the following transformations (discussed in Sec-
tion 3): Robust reweighting data (Reweight), Localization of
location parameter (Local-Loc), Localization of scale param-
eter (Local-Scale), Reparameterization and Localization of
scale parameter (Reparam), Normal to StudentT (StudentT)
and Contaminated Group Mixture (Mixture). To evaluate
the transformations using ASTRA, we apply 3 different
noise models (Outliers, Hidden Groups, and Skewing) on
the datasets obtained from 24 programs.

General Trends of Different Transformations. Figures 3
and 4 present the geomean of the relative improvement of
MSE (RIMSE) by different robustness transformations at
different noise levels for ADVI and NUTS algorithms re-
spectively. Each sub-plot presents the results for one noise
model. The X-axis represents the noise level while the Y-
axis represents the geometric mean of RIMSE over all pro-
grams. Each line in the plots represent the performance of
one transformation. We also present the MSE of the original
(non-robust) program at all noise levels below the X-axis
(as “Orig MSE"). The robust transformations reduce MSE
by the factor represented on the Y-axis (e.g., up to 3.31x for
StudentT transformation for Outliers (ADVI)).

Overall, the transformations are most effective for the
Outliers noise model. The improvements are significantly
smaller for Hidden Group. For Skewed Data noise model,
none of the transformations are effective because the noisy
samples are harder to distinguish from typical observations.

In general, RIMSE increases with higher noise level, show-
ing that the transformations are more helpful when there is
more corruption in the data.

Insight 1. Our results show that most transformations do
not generalize well beyond the Outliers noise model and
provide limited benefits. Hence, there is a need to develop
novel robustness transformations, especially for Hidden
Group and Skewed Data noise models.

For the Outliers and Hidden Group noise models, StudentT
transformation is the best in most cases, closely followed by
Reparam. However, Reparam requires inferring many more
parameters than StudentT (e.g., for D data points, StudentT
transformation adds one more parameter while Reparam
adds D + 1 auxiliary parameters), which increases the run
time of inference (see also RQ3).

The Local-Loc and Local-Scale transformations provide less
protection from noisy data. Local-Scale may help improve
the accuracy with NUTS, but it is likely to diverge when us-
ing ADVI (Table 4), leading to inaccurate results. One poten-
tial cause for this may be that we infer the hyper-parameters
for localization transformations in the Bayesian model using
automated inference along with other parameters. It may be
possible to obtain a better result by applying the E-M algo-
rithm proposed in [Wang et al., 2018], which is customized
for each model. However, it is unclear how to automatically
apply such an algorithm for general probabilistic programs.

6.2 PREDICTIVE ACCURACY IMPROVEMENT

Table 3 presents the RIMSE scores for all programs with the
Outliers noise model at noise level 10 for ADVI and NUTS.



Figure 3: Mean Improvement of Transformed Programs at Different Noise
Levels (ADVI)

Figure 4: Mean Improvement of Transformed Programs at Different Noise
Levels (NUTS)

Table 3: MSE Improvement at Noise
Level 10 (Outliers)

Prog ADVI NUTS

RE 256.42 (StudentT) 412.60 (StudentT)
RV 28.04 (StudentT) 31.94 (Reparam)
MC 27.48 (Local1) 1.00 (Original)
SE 14.23 (StudentT) 16.02 (Reweight)
RK 8.41 (StudentT) 9.25 (Reparam)
RN 7.11 (Reparam) 6.25 (Local2)
RU 3.42 (StudentT) 3.75 (StudentT)
RA 3.31 (StudentT) 3.19 (Reparam)
MF 3.27 (StudentT) 2.81 (Reparam)
RQ 3.23 (StudentT) 3.78 (StudentT)
RR 2.95 (Reparam) 3.00 (Reparam)
RX 2.93 (StudentT) 3.18 (Reparam)
SD 2.52 (StudentT) 3.52 (StudentT)

MD 2.21 (Reweight) 6.08 (Reweight)
ME 1.27 (StudentT) 1.41 (Reparam)
RY 1.25 (StudentT) 1.00 (Original)
MB 1.14 (StudentT) 1.22 (StudentT)
RG 1.04 (StudentT) 1.03 (Reweight)
SA 1.02 (Mixture) 1.56 (Reparam)

RW 1.00 (Reweight) 1.00 (Reweight)
SB 1.00 (StudentT) 1.00 (Original)
SC 1.00 (Original) 1.05 (Local1)
RL 1.00 (Original) 1.00 (Original)

MA 1.00 (Original) 1.68 (StudentT)

(R-): Regression, (M-): Mixture, (S-): TimeSeries

Each row represents one program. Each column presents
the largest improvement of MSE and the name of the trans-
formation that enabled this improvement in parentheses. For
example, "256.42 (StudentT)" means that StudentT is the
best among all the transformations (and the original one)
and yields 256.42x reduction of the MSE of the original pro-
gram. For the RIMSE scores with other noise models, see
Appendix D. A larger value means the posterior obtained
by the transformation is closer to the posterior based on the
non-noisy data. “Local1" stands for Local-Loc and “Local2"
stands for Local-Scale. We do not apply Hidden Group noise
model on Mixture models and Skewed Data noise model
on programs with binary data since they are unsuitable. In
summary, when using ADVI, StudentT provides the best im-
provement on 15 benchmarks, followed by Original which
is the best on 3 benchmarks, while the other transformations
only lead on fewer than 3 benchmarks each. When using
NUTS, Reparam is the best on 8 benchmarks; StudentT is
the best on 6 benchmarks; Reweight and Original both dom-
inate 4 benchmarks; Local1 and Local2 both dominate one.

Characteristics for Different Model Categories. Gener-
ally, Regression (R-) models show the largest improvement
in robustness, while Time-Series models (S-) show the small-
est improvement. We observe substantial improvements in
most linear regression models (e.g. RE and RV), since most
transformations are designed for such models. However, for
a logistic regression model (RW), we observe very small
improvements (up to 1.00x). This is because this model
already has a high tolerance for noise compared to other
models, since the noise is limited between 0 and 1 for binary
data, and thus makes most transformations redundant.

Most Time-Series models model the auto-correlation within
data points or fit a correlation matrix for Gaussian processes.
As a result, small noise in the data may not affect the fitted
correlation. For instance, we observe that the MSE scores
of the original models of SA and SB are not affected as
the noise level increases. Further, since the robustness trans-
formations are generally designed for exchangeable data
[Wang et al., 2017], they are unlikely to work well for many
Time-Series models. For instance, for models SC and SD,
the transformations are not as effective as other models. Un-
like other time-series models, the model SE does not model
the correlation but describes a regression equation between
the past and current observations and thus can benefit more
from the robustness transformations.

Mixture models are less robust to outliers than other classes,
because they require fitting a large number of parameters,
i.e. the locations, scales, and the probabilities of multiple
groups. Several robustness transformations could help fit the
locations correctly, however, they tend to classify outliers
into one of the groups and infer a less accurate scale or
probability, which is the case for models MD, MB, and ME.
Also, mixture models are more expensive to fit (due to the
label switching problem [Stan User’s Guide. Chapter 23.2])
and thus are likely to diverge when they are not robust to
outliers. We observe that at the noise level 10, for the origi-
nal mixture models, the geomean of the convergence score
is 8.94, which is much larger than that of all the original
models (2.09). As a result, models like MC and MD can
occasionally show a large improvement (up to 27.48x and
6.08x) when the original model diverges due to outliers but
the transformed model converges to correct result.



Table 4: (Geometric-)Mean of Convergence Score (Gelman-
Rubin Diagnostic) at Noise Level 10

Transformations Outliers Hidden Group Skewed Data

ADVI NUTS ADVI NUTS ADVI NUTS

Original 2.12 1.60 1.25 1.00 2.15 1.19
Reweighting 1.40 1.15 1.20 1.01 1.36 1.06
Localized-Loc 3.97 1.44 2.13 1.20 5.07 1.31
Localized-Scale 2.77 1.23 1.88 1.05 5.48 1.19
Reparam-Local 2.15 1.34 1.29 1.13 2.27 1.25
StudentT 1.69 1.36 1.15 1.05 1.87 1.35
Cont. Group Mixture 9.41 – 9.53 – 9.94 –

Insight 2. Overall, we observe the transformations are
most useful for most regression models. However, for most
time-series models and some classes of regression models,
the benefits of transformations are limited since they are
already tolerant to input noise. For mixture models, due to
the model complexity, transformations generally have less
protection against noise, however, they might occasionally
protect the original model from divergence.

Convergence of Transformed Models under Noise. Ta-
ble 4 shows the geometric mean of convergence scores by
different transformations averaged by the models with three
noise models at noise level 10 when running with ADVI and
NUTS. We present the convergence scores at noise levels 2
and 6 in Appendix E.

The convergence score with NUTS is generally better than
that with ADVI: for all the transformed programs, the ge-
ometric mean of the convergence score for NUTS is 1.33,
while for ADVI it is 2.74. We observe that StudentT gener-
ally has better average convergence score than Reparam with
ADVI. For example, at noise level 10 with Outliers attack,
the average convergence score for Reparam is 2.15 while
for StudentT it is 1.69 (the lower the better). When using
NUTS, the heavy-tailed nature of StudentT can make sam-
pling less efficient [Stan User’s Guide. Chapter 25.7]. Hence,
StudentT transformation has worse convergence score with
NUTS than with ADVI. This also explains why StudentT
has slightly higher RIMSE than Reparam when using ADVI,
while their RIMSEs are similar using NUTS.

The Local-Loc and Local-Scale transformations introduce
a strong dependency between the original parameter and
new parameters, as described in [Gorinova et al., 2019].
This creates a complex posterior geometry, which is difficult
for both algorithms to explore [Stan User’s Guide. Chapter
25.7]. For instance, for ADVI, at noise level 10, the geo-
metric mean of the convergence score over all models for
Local-Loc is 3.69 while for Local-Scale it is 3.18. NUTS
does not work well with mixture models (including the Mix-
ture transformation) [Stan User’s Guide. Chapter 23.2]. For
ADVI, Cont. Mixture provides best improvements only for
two models. Finally, good convergence may not necessar-
ily lead to high accuracy. For example, the Reweighting
transformation obtains the best convergence score but only
provides the best improvement for four models.

Insight 3. The performance of a transformation depends on
both the inference algorithm and the convergence quality.

6.3 THE OVERHEAD OF ROBUSTNESS

Overhead of Transformations for Different Model Cat-
egories. Table 5 presents the time overhead for different
transformations using ADVI and NUTS (over the original
program). We divide the benchmarks into three categories:
generalized linear models (GLM), Time-Series (TS) and
Mixture Models (Mix). The overhead is calculated by di-
viding the run time of a transformed model by the run time
of the original model, and then computing geometric mean
over all the benchmarks in the corresponding category. For
instance, applying Reweight on GLM is 2.25x times (on av-
erage) slower than running the original program with ADVI.
NUTS generally has a higher overhead than ADVI. Also, for
Mixture Models, the transformations incur the largest over-
heads among the three model categories, followed by GLM,
and Time-Series. The significant increase in execution time
for Mixture Models is because the transformations add addi-
tional dependency between the parameters in these models,
making inference more difficult and slow. On the other hand,
since Time-Series Models already have strong dependencies
between the parameters, the robust transformations do not
affect their execution times much.

Trade-off of Time vs Performance. We evaluate how the
choice for best transformation changes (based on posterior
predictive accuracy) when the user has limited time budget.
For this experiment, we consider different overhead time
budgets (from 1x to ∞). For each budget, we filter out
transformations that exceed the budget and choose the best
transformation among the rest. Figures 5 and 6 present the
results for ADVI and NUTS respectively, for the Outliers
noise model. The X-axis represents time budgets. The Y-axis
represents percentage of models for which a transformation
obtained the best improvement in predictive accuracy. Each
line shows the mean across all noise levels for either a
transformation or the original model.

For lower time budgets (1-3x), the transformations often pro-
duce unacceptable execution overheads, which makes the
original model more preferable than the transformed models,
especially for NUTS. For ADVI, we observe that StudentT
consistently dominates other transformations across all over-
head budgets, while Reparam and Reweight assume the
second place in most cases and yield best results for similar
number of cases. For NUTS, StudentT and Reweight pro-
vide better gains than Reparam for overhead budgets of up
to 10x. However, for higher budgets, Reparam dominates
Reweight and shows closer performance to StudentT.

Insight 4. Overall, since we observe a larger variance of
overheads for NUTS, the users should carefully select a
robustness transformation based on the maximum tolerable
execution overhead in their applications.



Table 5: GeoMean Time Overhead

Transforms ADVI NUTS

GLM TS Mix GLM TS Mix

Reweight 2.25x 1.60x 3.13x 6.41x 1.76x 4.88x
Local-Loc 1.73x 1.79x 6.01x 14.75x 3.30x 18.12x
Local-Scale 2.34x 1.81x 6.84x 22.75x 8.00x 30.15x
Reparam 2.47x 1.75x 7.03x 13.05x 3.64x 14.50x
StudentT 1.24x 1.04x 2.21x 6.13x 2.44x 3.15x
Mixture 4.05x 2.70x – – – –

Figure 5: (Outliers) ADVI Figure 6: (Outliers) NUTS

7 DISCUSSION

Since MSE supports a wide variety of model classes and is
easily automated, we only report the evaluation result based
on MSE in this work. However, our methodology may not
tell the entire story about the robustness for all models: (1) it
does not take into account the uncertainty in predictions; and
(2) it does not use a held-out test set to compute the MSE.

Therefore, after the posterior predictive checks in ASTRA
show how well the robustness transformations perform, we
suggest ASTRA users to further evaluate the subset of well-
performing transformations (semi-automatically) for spe-
cific model classes using specialized methods (e.g., predic-
tive on test data, cross-validation, sensitivity analysis, etc.)
[Gelman et al., 2013]. These methods can play a comple-
mentary role to ASTRA automated analyses.

For example, one may further study the model performance
on future observations using the following procedure: if
ASTRA shows a poor fit (high MSE) using its noise models,
then it indicates that prediction of future data is also likely
highly inaccurate. If ASTRA shows a good fit (low MSE), it
means one could also apply other analyses to improve user
confidence in the model. In particular, for regression models,
one could conduct a cross-validation by splitting the existing
data into train/validation/test. For time-series models, one
can manually split the data and apply the leave-future out
(LFO) cross-validation [Bürkner et al., 2020].

We anticipate our work and further automation of applying
model robustness transformations and testing for model ro-
bustness can lead to future works on 1) general techniques
for improving PP robustness, 2) libraries of techniques appli-
cable for specific, but broad, classes of probabilistic models.
In addition, we believe that symbolic techniques for robust-
ness analysis and inference (e.g. [Huang et al., 2018, 2021])
can further help improve the reliability of the implementa-
tions of robust probabilistic programs.

8 RELATED WORK

Robust Probabilistic Modeling. We evaluated various
robustness transformations previously proposed in litera-
ture [Wang et al., 2017, 2018, Berger et al., 1994]. These
works did only evaluate small number of programs which

makes the generality of their methods unclear. Wang et al.
[2017] evaluated on six models, and they compared to
[Wang et al., 2018] on a single model. Wang et al. [2018]
evaluated their method on four models. Also, these works
did not the report run time of the robust models. In addition
to these approaches, Futami et al. [2017] proposed a robust
version of KL divergence to make variational inference
robust of outliers. Their approach focuses on making
the inference more robust instead of the model itself.
Gbohounme et al. [2017] proposed special measures to
improve the robustness of logistic regression models.

Robustness of Neural Networks. Despite their tremendous
success in various domains, neural networks are known to
be vulnerable to adversarial examples. Researchers have pro-
posed ways to both design attacks for testing the robustness
of neural networks [Carlini and Wagner, 2017, Gopinath
et al., 2017] and defending against adversarial observa-
tions [Gu and Rigazio, 2014, Papernot et al., 2016, Shaham
et al., 2018]. In this work, we consider multiple attack
(or noise) models used previously for probabilistic models.
The source of our noise may not necessarily be adversarial
but may stem from practical sources such as erroneous
measurements, data corruptions, or random failures.

9 CONCLUSION

We presented ASTRA – the first system for automatically
evaluating the robustness of probabilistic programs against
various noise patterns. Our study on 24 benchmarks is
the first systematic study of robustness of a diverse set
of probabilistic programs. We highlight the benefits of ro-
bustness transformations when applied on different mod-
els. We show the tradeoffs between the level of robust-
ness and the time overhead for different transformations,
which can allow users deploy those robust model versions
that best fit their needs.
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