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Abstract

The need for modelling causal knowledge at differ-
ent levels of granularity arises in several settings.
Causal Abstraction provides a framework for for-
malizing this problem by relating two Structural
Causal Models at different levels of detail. Despite
increasing interest in applying causal abstraction,
e.g. in the interpretability of large machine learning
models, the graphical and parametrical conditions
under which a causal model can abstract another
are not known. Furthermore, learning causal ab-
stractions from data is still an open problem. In
this work, we tackle both issues for linear causal
models with linear abstraction functions. First, we
characterize how the low-level coefficients and the
abstraction function determine the high-level coef-
ficients and how the high-level model constrains
the causal ordering of low-level variables. Then,
we apply our theoretical results to learn high-level
and low-level causal models and their abstraction
function from observational data. In particular, we
introduce Abs-LiNGAM, a method that leverages
the constraints induced by the learned high-level
model and the abstraction function to speedup the
recovery of the larger low-level model, under the
assumption of non-Gaussian noise terms. In simu-
lated settings, we show the effectiveness of learn-
ing causal abstractions from data and the potential
of our method in improving scalability of causal
discovery.

1 INTRODUCTION

Causal Abstraction formalizes the property of distinct causal
models to describe the same phenomenon with different lev-
els of detail [Beckers and Halpern, 2019]. Despite having
different variables and mechanisms, whenever two Struc-

tural Causal Models (SCMs) are in an abstraction relation,
there must always exist at least one implementation on the
low-level concrete model of any property of the high-level
abstract one — such as values, interventions, mechanisms,
and endogenous or exogenous distributions.

Abstract causal models allow the interpretation of causal
models with large number of variables, such as in climate
phenomena [Chalupka et al., 2016] or brain activation pat-
terns [Dubois et al., 2020]. Causal Abstraction has also
found wide interest in explainable AI to align machine rep-
resentations with human-interpretable concepts in feedfor-
ward neural networks [Geiger et al., 2021, 2023], concept-
based neural networks [Marconato et al., 2023], and Large
Language Models [Wu et al., 2024, Geiger et al., 2024].

Previous works on the definition of Causal Abstraction do
not focus on the graphical and parametrical conditions for
two models to be in an abstraction relation. Furthermore,
the problem of learning abstractions from data, when the
high-level model is not known, is still open. In this context,
Zennaro [2022] and Geiger et al. [2023] propose methods to
learn an abstraction function assuming to know both the low-
level and the abstract model, while Chalupka et al. [2016],
Kekić et al. [2023] and Felekis et al. [2024] assume to have
at least the graphical structure of the abstract model.

In this paper, we tackle these issues by focusing on the
scenario where two linear SCMs are abstracted by a linear
transformation, as shown in Figure 1. In particular, we study
necessary and sufficient conditions for abstraction in terms
of the edges and the coefficients of the models. We then
propose Abs-LiNGAM, a strategy to learn from data the
abstract model, the concrete model, and their abstraction
function under the further assumption of non-Gaussian ex-
ogenous noise. We summarize our contributions as follows:

1. We first prove that abstract edges necessarily require
edges in the low-level model to connect relevant vari-
ables, i.e., variables on which the abstraction function
directly depends (Theorem 1). Then, we show that the
abstraction necessarily arranges concrete variables in
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Figure 1: An overview of our contributions: (a.) A linear SCMH, representing the abstract causal model, is a T-abstraction
of a linear SCM L, representing the concrete causal model, whenever the linear transformation T from concrete to abstract
variables is interventionally consistent, i.e., whenever it relates both values and interventions on the abstract model and the
concrete model. We prove that, for each abstract variable Y , the transformation T induces a block Π(Y ) of concrete causal
variables that necessarily follows the causal ordering of the abstract model and whose parameters are constrained by the
abstract coefficients. For each block, the abstraction function depends on a possibly smaller subset of relevant variables,
which we portray as dashed. (b.) We propose Abs-LiNGAM, a method to speedup the causal discovery of the concrete
model L given an additional dataset DJ sampled from the joint distribution of the abstract and the concrete model. In order,
Abs-LiNGAM (i.) reconstructs the transformation T, (ii.) fits the abstract model by abstracting the concrete dataset DL,
(iii.) infers a set of constraints K on which paths cannot exist in the concrete graph, and finally (iv.) discovers the concrete
model in a search space reduced by the constraints.

adjacent and disjoint blocks that must follow the ab-
stract causal ordering (Theorem 2).

2. We then prove a necessary and sufficient condition for
causal abstraction that relates the coefficients of the
linear models and the abstraction function (Theorem 3).
In this way, we can characterize the set of all concrete
models that are abstracted by a given abstract SCM
and design a complete and correct algorithm to sample
any model from this set (Algorithm 1).

3. We introduce Abs-LiNGAM, a method to speedup the
causal discovery of large linear non-Gaussian models
given an additional and small dataset sampled from the
observational joint distribution of the model and one
of its abstractions. Abs-LiNGAM recovers the abstrac-
tion function, learns the abstract model using low-level
data, and finally constrains the recovery of the concrete
model by ensuring that the necessary conditions we
introduced are satisfied (Algorithm 2).

4. As we report in Section 5, experiments in simulated
settings show that Abs-LiNGAM substantially reduces
the search space, and thus the execution time, com-
pared to directly solving the problem on the low-level
dataset with DirectLiNGAM [Shimizu et al., 2011].

We also publicly release online the code of Abs-LiNGAM
and the experimental settings1.

2 BACKGROUND

Given a set of variables X , we denote the domain of
each variable X ∈X as D(X) and of any subset V ⊆X
asD(V ). We define a Structural Causal Model [SCM; Pearl,
2009] as a tupleM =

(
X,E, {fX}X∈X ,PE

)
, where

1. X is a set containing d distinct endogenous variables,
2. E is a set containing d distinct exogenous variables,
3. fX : D(Pa(X) ∪ {EX})→ D(X) is a causal mecha-

nism, i.e. a function that determines the value of the
variable X ∈ X given its parents Pa(X) and the ex-
ogenous noise term EX ∈ E,

4. PE is the joint distribution over E.

We assume that parental relations define a directed acyclic
graph GM and, consequently, that the reduced form of the
model always has a unique solution [Bongers et al., 2021].
By slightly abusing the notation, we denote as M both

1https://github.com/rmassidda/causabs
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the SCM and its reduced formM : D(E) → D(X) map-
ping exogenous to endogenous values. A hard intervention
is an assignment i = (V ← v) on a subset of variables
V ⊆ X that replaces each mechanism of the variables
V with a constant value v ∈ D(V ). We denote as I∗ the
set of all hard interventions on an SCM, containg all pos-
sible assignments to any subset of endogenous variables,
also including the empty intervention. Formally, an inter-
vention i results in a different SCMMi defined by the tuple(
X,E, {f i

X}X∈X ,PE

)
, where f i

X = fX if X /∈ V and
f i
X(·) = vX otherwise. We then define the restriction of an

intervened causal model as the set of values that the model
can take after the intervention, which we denote as

Rst
(
MV←v

)
= {x ∈ D(X) | xV = v} , (1)

where Rst (M) = D(X) for a non-intervened SCM.

We assume faithfulness and causal sufficiency, i.e., the ab-
sence of hidden confounding and selection bias [Spirtes
et al., 2000]. In particular, faithfulness implies the absence
of canceling paths across variables, while causal sufficiency
implies mutual independence of exogenous terms, as in
E1 ⊥⊥ E2 for any E1, E2 ∈ E.

A linear SCMM = (X,E,W,PE), also known as a lin-
ear Additive Noise Model (ANM) [Peters et al., 2017], is an
SCM whose structural equations are linear and represented
by an upper-triangular adjacency matrix W ∈ Rd×d, as in

X = W⊤X+E. (2)

We can compute the reduced form of the model in closed
form as,

M(e) = F⊤e, (3)

where F = (I−W)
−1 is a d× d linear transformation.

Causal Abstraction theory relates variables across different
SCMs to determine whether they represent in a consistent
way the same system at different levels of detail [Beckers
and Halpern, 2019]. Overall, we refer to concrete, or low-
level, causal models as L = (X,E,f ,PE) and to abstract,
or high-level, causal models asH = (Y ,U , g,PU ), where
|X| ≥ |Y |. An abstraction requires to consider two subsets
of allowed interventions I ⊆ I∗ and J ⊆ J∗ respectively
on the concrete and the abstract model.

In this work, we focus on strong abstractions, where any
concrete or abstract intervention is allowed, i.e., I = I∗

and J = J∗. Then, given a surjective function τ : D(X)→
D(Y ),H is a τ -abstraction of L if and only if there exists
a surjective function γ : D(E)→ D(U) on the exogenous
variables such that, for any low-level intervention i ∈ I and
any exogenous configuration e ∈ D(E), it holds

τ(Li(e)) = Hω(i)(γ(e)), (4)

where the intervention map ω : I → J is uniquely induced
by the value abstraction function τ [Massidda et al., 2023].
Formally, ω(i) = j if and only if Rst

(
Hj

)
= τ(Rst

(
Li

)
)

and j ∈ J , otherwise ω(i) is undefined. We refer to Equa-
tion (4) as the interventional consistency property and to the
function γ as the exogenous abstraction function. Similarly,
we refer to the equation

τ(L(e)) = H(γ(e)) (5)

on non-intervened models as observational consistency.
Since the empty intervention is necessarily a fixed point
of the intervention map [Massidda et al., 2023], interven-
tional consistency implies observational consistency.

Finally, as for the causal mechanisms, we assume that the
abstraction function does not yield cancelling paths towards
abstract variables. Formally, the composition of the abstrac-
tion function τ , with the concrete model L must not cancel
the effect of concrete variables X on abstract variables Y .

3 THEORY OF LINEAR CAUSAL
ABSTRACTION

In this section, we study graphical and structural proper-
ties of linear causal models in a linear abstraction relation.
First, we prove that the set of concrete relevant variables
on which each abstract variable depends are necessarily
disjoint (Section 3.1). Further, we prove necessary and suf-
ficient conditions on the existence of an abstract edge in
terms of the directed paths between relevant variables in
the concrete graph (Section 3.2). We then show that the ab-
straction function constrains the causal ordering of concrete
blocks composed of both relevant and non-relevant variables
(Section 3.3). Finally, given the notion of concrete block,
we provide an equivalent formulation of abstraction based
on the model parameters, which also characterizes the set of
possible concretizations of an abstract model (Section 3.4).

3.1 LINEAR CAUSAL ABSTRACTION

We focus on the scenario where the value abstraction func-
tion τ between an abstract and a concrete causal model is a
linear transformation represented by a matrix T. We then
define such linear relation between SCMs as T-abstraction.

Definition 1 (T-Abstraction). Let H be a strong τ -
abstraction of L, whereH and L are two SCMs respectively
on variables Y and X . Then, H is a T-abstraction of L
whenever there exists a linear transformation T ∈ Rd×b,
where d = |X| and b = |Y |, such that τ(x) = T⊤x.

One of the common aspects of causal abstraction consists of
reducing the dimensionality of a causal model by selecting
relevant and discarding irrelevant variables [Zennaro, 2022].
Therefore, for each abstract variable Y , we define its set of



relevant variables ΠR(Y ) as the set of concrete variables
on which it directly depends according to the T-abstraction.
Overall, we refer to the set of relevant variables in the con-
crete model as the union of the relevant variables of each
abstract variable and to all the remaining as irrelevant.

Definition 2 (Relevant Variables). LetH be a T-abstraction
ofL, whereH andL are two SCMs respectively on variables
Y and X . We define the set of relevant concrete variables
of an abstract variable Yj ∈ Y as the subset

ΠR(Yj) = {Xi ∈X | tij ̸= 0}, (6)

where tij is the i-th element on the j-th column of T. More-
over, we define the set of relevant variables ΠR(Y ) of the
abstract modelH as the union of all relevant sets for each
variable Y ∈ Y . Formally,

ΠR(Y ) =
⋃

Y ∈Y
ΠR(Y ). (7)

We define as irrelevant the remaining variables in the con-
crete model L, i.e. X \ΠR(Y ).

To guarantee surjectivity, the transformation T must have
full column-rank and, consequently, the set of relevant vari-
ables for each abstract variable must be non empty. Since we
require consistency to hold on the set of all possible abstract
hard interventions, we can easily prove that this implies that
the sets of relevant variables must be mutually disjoint.

Lemma 1 (Disjoint Relevant). Let H be a T-abstraction
of L, whereH and L are two linear SCMs respectively on
variables Y and X . Then, for any pair of distinct abstract
variables Y1, Y2 ∈ Y , it holds that ΠR(Y1) ∩ΠR(Y2) = ∅,
where ΠR(Y1) ̸= ∅ and ΠR(Y2) ̸= ∅.

Proof. We report the proof in Appendix B.1.

Beckers and Halpern [2019] define constructive abstraction
as a special case where abstract variables depend on disjoint
sets of low-level variables and conjectures that, under further
assumptions, strong abstraction might entail constructive
abstraction. Notably, with our linearity assumptions, such
conjecture immediately derives from Lemma 1.

Corollary 1 (Constructive Abstraction). LetH be a strong
τ -abstraction of L where H and L are linear SCMs and
τ is a linear transformation. Then, H is a constructive τ -
abstraction of L.

Proof. We report the proof in Appendix B.2.

3.2 GRAPHICAL CHARACTERIZATION OF
T-ABSTRACT LINEAR CAUSAL MODELS

To characterize the relation between abstract edges and the
concrete graph in a T-abstraction, we must take into ac-
count that directed paths between relevant variables in the
concrete graph might be mediated by irrelevant variables.
Therefore, to study how causal effect propagates, we say
that a directed path between two relevant variables is T-
direct whenever it is mediated by irrelevant variables only.
We denote edges and directed paths between two variables
X1, X2 respectively as X1 → X2 and X1 99K X2.

Definition 3 (T-direct Path). LetH be a T-abstraction of
L, whereH and L are two SCMs respectively on variables
Y and X with graphs GH and GL. Given two concrete
variables X1, X2 ∈ X , we say that there exists T-direct
path in GL, denoted as X1

T−→X2, if and only if there exists a
directed path X1 99K X2 in GL such that any other variable
X3 in the path is irrelevant, i.e., for any abstract variable
Y , it holds X3 ̸∈ ΠR(Y ).

First, we show that a T-direct path between relevant vari-
ables in the concrete graph is a sufficient condition for the
presence of an edge between their corresponding abstract
variables. Further, as an immediate corollary, a direct path
between relevant variables entails an abstract direct path.

Lemma 2 (Sufficient Abstract Connectivity). Let H be a
T-abstraction of L, where H and L are two linear SCMs
respectively on variables Y and X with graphs GH and GL.
Then, for any pair of relevant variables X1, X2 ∈ ΠR(Y ),
such that X1 ∈ ΠR(Y1) and X2 ∈ ΠR(Y2) with Y1 ̸= Y2 ∈
Y , it holds

X1
T−→X2 in GL =⇒ Y1 → Y2 in GH. (8)

Proof. We report the proof in Appendix B.3

Corollary 2 (Sufficient Directed Paths). Let H be a T-
abstraction of L, where H and L are two linear SCMs
respectively on variables Y and X with graphs GH and GL.
Then, for any pair of relevant variables X1, X2 ∈ ΠR(Y ),
such that X1 ∈ ΠR(Y1) and X2 ∈ ΠR(Y2) with Y1 ̸= Y2 ∈
Y , it holds that

X1 99K X2 in GL =⇒ Y1 99K Y2 in GH. (9)

Proof. We report the proof in Appendix B.4

In our previous results, the faithfulness assumption plays a
fundamental role to ensure that causal effect is not canceled
out and thus propagates through T-direct paths. As we show
in Example 1, whenever we allow for cancelling paths we
can construct a T-abstraction where two abstract variables
are not connected despite the presence of a T-direct path
between their relevant variables.



Example 1 (Unfaithful Concrete Model). Consider the fol-
lowing unfaithful linear SCM L where, given the weights
as reported on the edges, the causal effect of X1 on X4 is
canceled out. On the right, we show a linear SCMH.

1

−1

1

1

1 1

X1

X2

X3

X4

X5

1 1

Y1 Y2

Y3

Consider the linear abstraction function

T =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⊤ (10)

that maps each variable in X in L to the corresponding
variable in Y inH, e.g. the first column assigns X1 to Y1,
the second column assigns X2 to no high-level variable
etc. We visualize the assignments by having the same color
for the variables in the two models. Given this abstraction
function, H is a T-abstraction of L, despite the T-direct
path X1

T−→X4 between X1 ∈ ΠR(Y1) and X4 ∈ ΠR(Y2),
not having a corresponding path Y1 ↛ Y2 (Appendix B.5).

While the presence of a T-direct path between relevant
variables is a sufficient condition for the presence of an
abstract edge, the converse entails a stronger requirement. It
is in fact necessary, for an abstract edge Y1 → Y2 to exist,
that for each variable in the relevant set of the source node
ΠR(Y1) there exists a T-direct path to at least one relevant
variable of the target ΠR(Y2). Intuitively, any manipulation
on a concrete variable impacts its own abstract variable
and, consequently, its descendants in the abstract model.
To ensure consistency, it is therefore necessary that the
manipulation has an effect on the relevant variables of the
descendants (Example 2).

Theorem 1 (Abstract Connectivity). Let H be a T-
abstraction of L, where H and L are two linear SCMs
respectively on variables Y and X with graphs GH and GL.
Then, there exists an edge Y1 → Y2 in GH if and only if for
each X1 ∈ ΠR(Y1) there exists X2 ∈ ΠR(Y2) such that
X1

T−→X2 in GL.

Proof. We report the proof in Appendix B.6

By combining the sufficient condition in Lemma 2 and the
stronger necessary condition in Theorem 1, we can derive
a graphical condition to show whether a model does not
T-abstract another according to their graphs and the set
of relevant variables. We formalize this condition in the
following corollary, which we also describe in Example 2.

Corollary 3 (Connectivity Violation). LetH and L be two
linear SCMs respectively on variables Y and X with graphs
GH and GL. Consider a linear transformation T between
them leading to the sets of relevant variables ΠR(Y ). If
there exists three variables X1 ∈ ΠR(Y1), X2 ∈ ΠR(Y2),
and X3 ∈ ΠR(Y1), such that both conditions hold

• X1
T−→X2 in GL, and

• for any X4 ∈ ΠR(Y2), X3 ̸T−→ X4 is not in GL,

thenH is not a T-abstraction of L.

Proof. We report the proof in Appendix B.7.

Example 2 (Abstract Connectivity Violation). Consider the
following linear SCM L and a linear abstraction transfor-
mation T leading to the reported sets of relevant variables.

X1 X2 X3

ΠR(Y1) ΠR(Y2)

Given the concrete edge X2
T−→X3, there must exist an

abstract edge Y1 → Y2 (Lemma 2). However, since for
X3 ∈ ΠR(Y1), the only path X1 99K X3 to a variable in
ΠR(Y2) is mediated by the relevant variable X2, it is not
T-direct and thus breaks the conditions of Theorem 1, im-
plying that there should be no abstract edge Y1 → Y2 and
leading to a contradiction. Intuitively, any two interventions
i = (ΠR(Y1)← [a, b]) and i′ = (ΠR(Y1)← [a′, b]) where
a ̸= a′, have the sam ecausal effect on X3, since there is
not a T-direct path X1

T−→X3. This breaks interventional
consistency as i, i′ lead to distinct abstract interventions
on Y1 and, thus, to different valus of Y2. However, in the
concrete model, the value of X3 is the same regardless of
i, i′ and, consequently, the value of Y2 is constant. Therefore,
given the portrayed graphs and relevant sets, for any choice
of both structural and abstraction parameters any abstract
modelH does not T-abstract L.

3.3 ORDERING OF CONCRETE BLOCKS
INDUCED BY THE ABSTRACT MODEL

Given our definition of T-direct path, we characterized the
edges of the abstract graph in terms of the connectivity
of the relevant variables. However, despite not influencing
directly the abstraction function, we can show that irrele-
vant variables still contribute to abstract variables and thus
have constraints on their causal ordering. In particular, we
identify the set of concrete variables whose corresponding
exogenous variable contributes to the noise term of the ab-
stract variable. We call this subset of variables the concrete
block Π(Y ) of an abstract variable Y . To define the con-
crete block Π(Y ), we exploit the following corollary, which
proves that, whenever the endogenous abstraction function



and the causal models are linear, the exogenous abstraction
function γ is necessarily a unique linear transformation.

Corollary 4 (Exogenous Abstraction). Let H =
(Y ,U , g,PU ) be a T-abstraction of L = (X,E,f ,PE),
whereH and L are two linear SCMs. Then, the exogenous
abstraction function γ : D(E)→ D(U), has form

γ(e) = S⊤e, (11)

where S = FTG−1 and F,G are the linear transforma-
tions of respectively the reduced forms of L and H, i.e.,
L(e) = FTe andH(u) = GTu.

Proof. We report the proof in Appendix B.8.

Definition 4 (Concrete Block). LetH = (Y ,U , g,PU ) be
a T-abstraction of L = (X,E,f ,PE), where H and L
are two linear SCMs. We define the concrete block of each
abstract variable Yj ∈ Y as

Π(Yj) = {Xi ∈X | sij ̸= 0}, (12)

where sij is the i-th element on the j-th column of the matrix
of the exogenous abstraction function S. Moreover, we de-
fine the set of block variables Π(Y ) of the abstract modelH
as the union of the blocks of each Y ∈ Y . Formally,

Π(Y ) =
⋃

Y ∈Y
Π(Y ). (13)

We prove that the concrete block of an abstract variable con-
tains the set of corresponding relevant variables. In addition,
it also contains all the irrelevant variables that are connected
to one of these relevant variables through a T-direct path.

Lemma 3 (Block Composition). LetH be a T-abstraction
of L, whereH and L are two linear SCMs respectively on
variables Y and X . Then, for any abstract variable Y ∈ Y ,
it holds X ∈ Π(Y ) if and only if

• X ∈ ΠR(Y ), or

• X ̸∈ ΠR(Y ), i.e., X is irrelevant, and there exists
X ′ ∈ ΠR(Y ) s.t. X T−→X ′.

Proof. We report the proof in Appendix B.9.

Intuitively, this result proves that the irrelevant part of a
block lies between the relevant variables of the abstract
variable and those of the abstract parents (Example 3).

Example 3 (Block Composition). Given a concrete model
L with six variables and an abstract model H with three
variables such that Y1 → Y3 ← Y2 that is a T-abstraction
of L, we visualize a partition of concrete blocks induced by
T, where dashed lines denote sets of relevant variables.

Π(Y1)

Π(Y2)

Π(Y3)

Here block Π(Y3) does not coincide with the set of relevant
variables. The irrelevant variables in Π(Y3) have T-direct
paths to at least one of the relevant variables ΠR(Y3).

In principle, while sets of relevant variables are mutually dis-
joint, the rest of the block could be shared without breaking
the consistency of the abstraction, as we show in Example 4.

Example 4 (Block Overlap). Let L be a linear SCM rep-
resented in the figure below, where the variable X2 is in
the block of both Y2 and Y3. Then, any abstract linear SCM
H that is a T-abstraction of L that induces these concrete
blocks is not causally sufficient, since the exogenous terms
U2, U3 inH are a linear function of respectively E2, E3 and
E2, E4 in L, and hence they are not independent. Conse-
quently, Y2 and Y3 are confounded in any of theseH.

Π(Y1)

Π(Y3)

Π(Y2)

X1

X2

X3

X4

Y1 Y2

Y3

We prove that disjointness of irrelevant variables in a block
is a necessary condition to ensure abstract causal sufficiency.

Lemma 4 (Disjoint Block). Let H be a T-abstraction of
L, where H and L are two linear SCMs respectively on
variables Y and X . If for any two distinct endogenous
variables Y1, Y2 it holds that Π(Y1) ∩Π(Y2) ̸= ∅, then the
abstract model is not causally sufficient.

Proof. We report the proof in Appendix B.10.

We now prove our main result of this section, which shows
that the causal ordering of the concrete blocks must be
consistent with the abstract graph. Intuitively, all relevant
variables must follow the abstract order (Theorem 1) and
any irrelevant variable in a block must precede at least one
relevant variable (Lemma 3). Then, given the causal suffi-
ciency of the abstract model, which ensures that blocks are
disjoint (Lemma 4), we can sort concrete blocks according
to the causal ordering of the abstract model. Further, we can
ignore variables that are not in any block as they must be last
in the ordering and thus do not impact abstract variables.

Theorem 2 (Block Ordering). Let H be a T-abstraction
of L, whereH and L are two linear SCMs respectively on
variables Y and X with graphs GH and GL. Then, for any
valid topological ordering ≺H of GH there exists a valid
ordering ≺L of GL such that for any Y1, Y2, Y ∈ Y :



• Y1 ≺H Y2 ⇐⇒ Π(Y1) ≺L Π(Y2), and

• Π(Y ) ≺L
(
X \Π(Y )

)
.

Proof. We report the proof in Appendix B.11.

Given that the ordering of concrete variables depend on
the abstract model, we can show that adding or removing
variables outside of the blocks still preserves T-abstraction.

Lemma 5 (Submodel Abstraction). Let H and L be two
linear SCMs respectively on variables Y and X . Then,H
is a T-abstraction of L if and only ifH is a T-abstraction
of L′, where L′ is a submodel of L defined on the subset
of variables X ′ = Π(Y ), i.e., all of the variables in the
concrete blocks.

Proof. We report the proof in Appendix B.12.

3.4 CLASS OF T-CONCRETIZATIONS OF AN
ABSTRACT MODEL

After having characterized the graphical structure of two lin-
ear SCMs in a T-abstraction relation, we now focus on how
abstraction constraints the parameters of the two models. As
we detailed in Lemma 5, variables that are not in any block
never cause, either directly or indirectly, relevant variables
and thus can be ignored. Therefore, without loss of general-
ity, we consider only variables within the blocks Π(Y ) of
the abstract model. Furthermore, we permute the weights of
the concrete model according to the abstract causal ordering
with a permutation πH, derived from the valid ordering in
Theorem 2, as in the following upper-diagonal block matrix

W =


W11 W12 · · · W1b

0 W22 · · · W2b

...
...

. . .
...

0 0 · · · Wbb

 , (14)

where we denote by Whk ∈ RNh×Nk the submatrix con-
taining the edges from the concrete block Π(Yh) to Π(Yk).
Under the same permutation πH, we can also block-wise
define the linear abstraction transformation as follows

T =


t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tb.

 (15)

where each tk is a vector of size Nk. Each of these vectors
can still have zero entries for the irrelevant variables. No-
tably, due to the fact that no irrelevant variable follows a
relevant one in the same block, the last component of each
vector is non-zero.

Given the same permutation πH, the exogenous transforma-
tion S necessarily follows the same structure and is defined

by the endogenous abstraction function and the causal rela-
tions among variables in the same block. As a direct conse-
quence, the exogenous and the endogenous transformations
coincide whenever a block lacks internal causal relations
and, consequently, all variables in the block are relevant.

Lemma 6 (Exogenous Abstraction). Let H =
(Y ,U ,M,PU ) and L = (X,E,W,PE) be two lin-
ear SCMs such thatH is a T-abstraction of L, such that W
follows permutation πH. Then, the exogenous abstraction
function γ : D(E) → D(U) is unique and has form
γ(e) = S⊤e for a linear transformation S ∈ Rd×b defined
as the upper-diagonal block matrix

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sb,

 (16)

where sk = Fkktk = (I−Wkk)
−1

tk for any Yk ∈ Y .

Proof. We report the proof in Appendix B.13.

Given the structure and the ordering induced by the abstrac-
tion function, we introduce a provably equivalent formula-
tion of T-abstraction entirely based on the model parame-
ters. In this way, we guarantee interventional consistency
on all possible abstract hard interventions as a property of
the weights of the two linear SCMs. Further, by assessing
abstraction in closed-form, we can characterize the set of
T-concretizations of an abstract model (Example 5).

Theorem 3 (Block Abstraction). LetH = (Y ,U ,M,PU )
and L = (X,E,W,PE) be two linear SCMs with graphs
GH and GL respectively. ThenH is a linear T-abstraction
of L if and only if for any valid topological ordering ≺H
of GH there exists a valid ordering ≺L of GL such that, for
any Yi, Yj ∈ Y it holds

Yi ≺H Yj ⇐⇒ Π(Yi) ≺L Π(Yj), and (17)
Wijsj = mijti, (18)

where Wij is the i-th element on the j-th column of W,
and mij is the i-th element on the j-th column of M.

Proof. We report the proof in Appendix B.14.

Example 5 (T-Concretization Class). LetH be an abstract
causal model with two variables such that Y1 → Y2 with
unitary weight, and let T be the following transformation

T =

[
1 1 0 0
0 0 1 1

]⊤
, (19)

Then, of the three following linear SCMs, we can easily
verify that only the first two models are T-abstracted byH.



Algorithm 1: T-Concretization Sampling

Input: Abstract adjacency matrix M ∈ Rb×b

Abstraction function T ∈ Rd×b

Result: Concrete adjacency matrix W ∈ Rd×d

W← 0 ▷ Init Concrete Weights
for Yj ∈ Y do ▷ Abstract Target Node

Nj ← |Π(Yj)|
Wjj ← RandomDAG(Nj) ▷ Target Block Weights

sj ← (I−Wjj)
−1

tj
for Yi ∈ Y do ▷ Abstract Source Node

for Xk ∈ Π(Yi) do ▷ Source Block

v ∼ {v ∈ RNj |∑Nj

h=1 vh = 1}
c← v/sj ▷ Right-Inverse of sj

[Wij ]k, : ← mij [ti]kc
⊤ ▷ Assign k-th row

end
end

end

X1

X2

X3

X4

1

0.5

0.5

1

X1

X2

X3

X4

1 1

1

X1

X2

X3

X4

0.51

1

Given the identical inner-block connections, the exogenous
abstraction function is the same for all three models, as in

s1 =

[
2
1

]
, s2 =

[
1
1

]
. (20)

Then, only for the first two models it holds W12s2 = t1.

By building on our novel formulation, we define a complete
and sound procedure to sample concrete models from an
abstract adjacency matrix and a linear abstraction function
(Algorithm 1). First, for each abstract target variable Yj , the
algorithm samples the inner-block weights Wjj , where we
assume that any irrelevant variable has at least a relevant
variable as a descendant. Consequently, all variables are
members of the block. Then, for each source variable Yi, the
algorithm samples consistent coefficients Wij respecting
Theorem 3 by first sampling a right-inverses of the exoge-
nous abstraction function sj . Since the generated model
follows the abstract causal ordering and Theorem 3 by con-
struction, it is a valid concretization.

4 ABSTRACT INFORMATION FOR
NON-GAUSSIAN LINEAR DISCOVERY

In this section, we introduce Abs-LiNGAM (Algorithm 2),
a strategy to exploit our results on T-abstraction to speedup

Algorithm 2: Abs-LiNGAM
Input: Concrete Observational Dataset DL,

Joint Observational Dataset DJ .
Result: Abstraction function T̂ ∈ Rd×b,

Abstract adjacency matrix M̂ ∈ Rb×b,
Concrete adjacency matrix Ŵ ∈ Rd×d.

T̂← argminT∈Rb×d

∑
(x,y)∈DJ

∥x⊤T− y⊤∥22;
for Yi ∈ Y do ▷ Select Relevant Variables

Π̂R(Yi)← {Xk ∈X | [t̂i]k ̸= 0}
end

DĤ ← {T̂
⊤
x | x ∈ DL} ▷ Create Abstract Dataset

M̂← DirectLiNGAM(DĤ, ∅) ▷ Abstract Discovery
K ← ∅
for Yi, Yj ∈ Y do ▷ Collect Prior Knowledge

if Yi 9̸9K Yj then ▷ Check Ancestorship in M̂

for Xk ∈ Π̂R(Yi), Xh ∈ Π̂R(Yj) do
K ←K ∪ {Xk 9̸9K Xh}

end
end

end
Ŵ← DirectLiNGAM(DL,K) ▷ Concrete Discovery

observational causal discovery of linear non-Gaussian mod-
els, e.g. LiNGAM [Shimizu et al., 2011]. The intuition is
that whenever we have a T-abstraction of an unknown
model to learn, we can exclude all the candidate solu-
tions not satisfying the graphical conditions we presented
in the previous sections. Furthermore, in Abs-LiNGAM,
we demonstrate how to infer prior knowledge for the con-
crete model from a small number of paired concrete-abstract
samples, even when the abstract model and the abstraction
function are unknown, and an abstract dataset is not directly
available. In the following, we formalize the data-generation
process and the steps of Abs-LiNGAM.

4.1 DATA-GENERATION PROCESS

As in many real-world applications, where observations are
produced by sensors or other data-collecting devices, we
assume that samples from the low-level concrete model have
a significantly larger availability than high-level abstract
samples. We formalize this intuition by defining two datasets

DL ∼ PL (21)
DJ ∼ PL,H, (22)

where the former contains concrete samples only and the
latter paired observations from the joint observational distri-
bution of both models, such that |DJ | ≪ |DL|. Therefore,
we define the following data-generating process, where we



produce a significantly lower number of abstract samples.

e(i) ∼ Exponential for i = 1, . . . , |DL|, (23)

x(i) = L(e(i)) for i = 1, . . . , |DL|, (24)

y(i) = H(γ(e(i))) for i = 1, . . . , |DJ |. (25)

Since we assume linear and non-Gaussian data, the models
are identifiable in the limit of infinite data [Shimizu et al.,
2006]. In Appendix D, we discuss preliminary results to
tackle an additional scenario where we consider abstract
observations to be perturbed by random noise.

4.2 ABS-LINGAM

T-Reconstruction. Since we assume a linear transfor-
mation, we can fit the abstraction function from the joint
dataset DJ by solving a least-squares problem [Trefethen
and Bau, 2022]. Then, for each abstract variable Yi ∈ Y ,
we can identify its set of relevant variables Π̂R(Y ), as

Π̂R(Yi) = {Xk | [̂ti]k ̸= 0}. (26)

In practice, we mask the coefficients of the fitted abstraction
transformation T̂ with a small threshold to handle numerical
instability, which, whenever a sufficient number of joint
samples |DJ | is available, ensures that each relevant block
pertains to a single abstract variable.

Abstract Causal Discovery. Then, we focus on learning
the abstract causal structure from data. Since we assume
abstract samples to be scarce, even in our simplified set-
ting of linear and non-Gaussian models, the abstract model
might not be discoverable by the high-level samples in the
joint dataset DJ alone. However, after having identified the
abstraction function, we can use it on the concrete dataset
to abstract each sample as in

DĤ = {T̂⊤x | x ∈ DL}. (27)

In fact, whenever the target model is a T-abstraction, the
observational consistency property ensures that abstracting
concrete samples is equivalent to directly sampling from the
abstract distribution, as in the data-generating process. Then,
we can use the newly generated abstract samples with any
causal discovery algorithm for linear non-Gaussian models.

Concrete Causal Discovery Finally, we can use the con-
straints induced by the abstract model to speedup discovery
of the concrete causal model. As an immediate consequence
of Theorem 1, the existence of an abstract directed path
Yi 99K Yj entails the existence of at least a concrete di-
rected path between variables in the corresponding relevant
blocks ΠR(Yi) and ΠR(Yj). We cannot, however, directly
infer which of the possibly many ancestral relations the
concrete model contains. On the other hand, whenever an

abstract path does not exist, we can infer that any variable
in the source block does not cause, neither directly or in-
directly, any variable in the target block. We can therefore
restrict the search space of the concrete causal discovery
problem by excluding all solutions that do not satisfy the
following set of constraints

K = {Xk 9̸9K Xh | Xk ∈ ΠR(Yi)

∧Xh ∈ ΠR(Yj) ∧ Yi 9̸9K Yj}.
(28)

We use the DirectLiNGAM algorithm [Shimizu et al., 2011]
to solve the concrete causal discovery problem, as it can
integrate prior knowledge in the form of forbidden direct
paths and thus restrict the set of candidate solutions.

5 EXPERIMENTAL RESULTS

In this section, we discuss our analysis on the performance
of Abs-LiNGAM (Algorithm 2) on simulated data. In partic-
ular, we validate whether a small amount of paired concrete-
abstract observations can reduce the search space, and
thus the execution time, of DirectLiNGAM [Shimizu et al.,
2011], without compromising the quality of the retrieved
concrete causal structure. As baseline, we compare against
applying DirectLiNGAM to the concrete dataset without
any abstract-induced prior knowledge.

For each run, we sample the parameters of an abstraction
function and of an abstract linear SCM. We then generate
a concrete causal model by sampling one of the possible
T-concretizations of the abstract model with Algorithm 1.
We provide details on our experimental setup and additional
results respectively in Appendix C and in Appendix E.

We study the performance of Abs-LiNGAM for an in-
creasing number of paired samples (Figure 2a). Since Abs-
LiNGAM is a multi-step algorithm, the quality of the re-
trieved concrete causal model strictly depends on the cor-
rectness of the abstraction function, the consequent gen-
erated abstract data and abstract causal discovery. As ex-
pected, whenever the size of the paired dataset |DJ | is too
small, Abs-LiNGAM wrongly identifies concrete paths as
forbidden and, compared to the baseline, fails to retrieve
the correct concrete causal model. However, whenever the
number of paired samples approaches the number of con-
crete nodes |X|, Abs-LiNGAM performs similarly to the
baseline and correctly retrieves the concrete causal model.
We observe the same trend for concrete graphs of increasing
size (Figure 2b), highlighting how prior knowledge induced
from the abstract model significantly reduces the execution
time compared to the baseline.

Furthermore, we found that bootstrapping abstract causal
discovery, i.e., aggregating several iterations on randomly
extracted sub-datasets, improves the performance on the
downstream concrete discovery task without noticeably af-
fecting the execution time, which is still dominated by the
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Figure 2: We report the performance of Abs-LiNGAM for (a) an increasing number of paired samples |DJ | and (b) an
increasing number of concrete nodes |X| .We plot a variant of Abs-LiNGAM where we bootstrap the abstract causal
discovery step with five repetitions. We report the area under the ROC curve and the execution time over 30 runs on randomly
generated Erdős-Rényi abstract graphs with b = 5 nodes and 8 edges. In the first experiment, we sample for each abstract
graph a concrete model with random size |X| ∈ [25, 50]. In the second experiment, we also vary the number of paired
samples to always be twice the number of concrete nodes.

final concrete causal discovery run.

6 RELATED WORKS

Several works addressed the problem of clustering together
variables to reduce dimensionality and maintain the identifi-
ability of causal effect. Both Anand et al. [2023] and Wahl
et al. [2023] deal with the problem of partitioning a causal
graph into clusters where causal relations at the micro-level
are translated as causal edges at the macro-level. Tikka et al.
[2023] study instead a particular class of groups, which they
define as transit clusters, where only part of the variables are
allowed to have ingoing or outgoing edgs from the cluster.

Differently from previous works, our work focuses instead
on the necessary conditions for causal abstraction and results
in different definitions for the grouping of micro-variables.
It is however an interesting direction to assess whether dif-
ferent assumptions, for instance on the intervention map,
might lead to comparable definitions.

In parallel, several recent papers explored the problem of
fitting an abstraction function from data by focusing on
either discrete [Zennaro et al., 2023, Felekis et al., 2024]
or linear [Kekić et al., 2023, Geiger et al., 2024] SCMs.
Notably, apart from interventional samples, all these works
assume to have at least partial knowledge of the graphs, the
intervention map, or the set of concrete relevant variables
corresponding to each abstract one.

Based on our theoretical results on the graphical and para-
metric conditions of linear abstraction for linear causal mod-
els, we instead propose to learn both the abstract and the
concrete model, and their abstraction function directly from
observational data and without any prior knowledge or any
constraint on the graphical structure of the two models.

7 CONCLUSION

In this paper, we studied the necessary and sufficient con-
ditions on the causal ordering and the parameters for two
linear Structural Causal Models to be in a linear abstraction.
Furthermore, we introduced the first procedure to sample
from the set of all possible concretizations of an abstract
SCM, which can be used in other abstraction applications.

We also proposed Abs-LiNGAM, a strategy to speedup
causal discovery of a linear non-Gaussian concrete causal
model given an additional dataset of paired observations
on concrete and abstract variables. Finally, we empirically
highlighted how Abs-LiNGAM leverages abstract informa-
tion to reduce the search space and improve execution time
without sacrificing on the quality of the discovered structure.

An interesting direction for future work is to extend our
results to non-linear models and non-linear abstraction func-
tions, and to tackle the causal sufficiency assumption, which
requires full-observability of the concrete realizations.
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APPENDIX

We organize the Appendix as follows. In Appendix A, we
report further information on our notation by summarizing
it in a glossary. Then, in Appendix B, we report all the
proof for the theoretical results discussed in the main body.
Finally, in Appendix C, we present further details on the
generative process of the synthetic datasets used for our
empirical study, of which we report additional results in
Appendix E.

A GLOSSARY

Notation Definition
X Set of endogenous concrete variables
E Set of exogenous concrete variables
Y Set of endogenous abstract variables
U Set of exogenous abstract variables
d Number of concrete variables
b Number of abstract variables
L Concrete Causal Model
H Abstract Causal Model
W Weighted Adjacencies of L
M Weighted Adjacencies ofH
F Reduced Form of L
G Reduced Form ofH
τ Endogenous Abstraction Function
γ Exogenous Abstraction Function
T Linear Endog. Abstraction Transformation
S Linear Exog. Abstraction Transformation
tj Vector in T abstracting Yj from ΠR(Yj)
sj Vector in S abstracting Uj from eΠ(Yj)

ΠR(Y ) Set of relevant variables for Y
Π(Y ) Block of Y
Ni Number of variables in Π(Yi)
Wij Submatrix of weights from Π(Yi) to Π(Yj)
Fij Submatrix of sub-model from Π(Yi) to Π(Yj)
DL Dataset sampled from PX

DJ Dataset sampled from the joint PX,Y

B PROOFS

B.1 LEMMA 1

Lemma 1 (Disjoint Relevant). LetH be a T-abstraction
of L, whereH and L are two linear SCMs respectively on
variables Y and X . Then, for any pair of distinct abstract
variables Y1, Y2 ∈ Y , it holds that ΠR(Y1) ∩ΠR(Y2) = ∅,
where ΠR(Y1) ̸= ∅ and ΠR(Y2) ̸= ∅.

Proof. Firstly, we show that given an abstract intervention
j = (Y1 ← k) on Y1, any concrete intervention i such that
ω(i) = j must fix all relevant variables ΠR(Y1). Otherwise,

if we assume the existence of a non-intervened variable
Xs ∈ ΠR(Y1) the function Li

ΠR(Y1)
would be non-constant.

Therefore, since τY1
depends on Xs by definition of relevant

variable, interventional consistency would not hold, as in

τY1
◦ Li

ΠR(Y1)
̸= Hj

Y1
◦ γ = k. (29)

Therefore, for any abstract intervention j = (Y1 ← k), the
corresponding concrete interventions must have form

i = (ΠR(Y1)← v), (30)

for any vector v such that τY1(v) = k, without intervening
on further relevant variables.

We firstly prove Lemma 1 whenever Y1 9̸9K Y2. Then, we
assume the existence of a non-empty subset V = ΠR(Y1)∩
ΠR(Y2) of shared variables. Since Y1 has no causal effect
on Y2, given an high-level intervention j = (Y1 ← k), it
must hold that

Hj
Y2

= HY2 . (31)

However, by intervening on Y1, any concretization must also
fix V . Therefore, we prove the property by contradiction, as

Hj
Y2
◦ γ = τY2

◦ Li
ΠR(Y2)

(32)

̸= τY2
◦ LΠR(Y2) (33)

= HY2
◦ γ (34)

=⇒ Hj
Y2
̸= HY2

, (35)

given the surjectivity of γ and the lack of cancelling paths.

Finally, we can tackle the last scenario, where Y1 99K Y2,
by showing that ΠR(Y ) ∩ΠR(An(Y )) = ∅, where An(Y )
is the set of ancestors of Y . Given the model acyclicity, for
any abstract intervention j = (Y ← k), it must hold

Hj
An(Y ) = HAn(Y ). (36)

However, if the relevant variables of Y were to overlap with
the relevant variables of its ancestors, we could show that

Hj
An(Y ) ◦ γ = τAn(Y ) ◦ Li

An(Y ) (37)

̸= τAn(Y ) ◦ LAn(Y ) (38)
= HAn(Y ) ◦ γ (39)

=⇒ Hj
An(Y ) ̸= HAn(Y ). (40)

Therefore, since interventional consistency does not hold,H
is not a T-abstraction of L, which contradicts the hypothesis
and concludes the proof.

B.2 COROLLARY 1

Corollary 1 (Constructive Abstraction). Let H be a
strong τ -abstraction of L whereH and L are linear SCMs
and τ is a linear transformation. Then,H is a constructive
τ -abstraction of L.



Proof. By definition of linear transformation, the set of
low-level variables on which an abstract variable Y ∈ Y
depends through the linear abstraction function τ coincides
with its set of relevant variables ΠR(Y ) ⊆ X . Therefore,
by showing that the relevant sets are disjoint whenever
the SCMs H and L are linear, a T-abstraction on linear
SCMs is also a constructive abstraction. By definition of
T-abstraction, this is equivalent to state that a linear τ -
abstraction on linear SCMs is a constructive abstraction un-
der our assumption on the absence of cancelling paths.

B.3 LEMMA 2

Lemma 2 (Sufficient Directed Paths) Let H be a T-
abstraction of L, where H and L are two linear SCMs re-
spectively on variables Y and X with graphs GH and GL.
Then, for any pair of relevant variables X1, X2 ∈ ΠR(Y ),
such that X1 ∈ ΠR(Y1) and X2 ∈ ΠR(Y2) with Y1 ̸= Y2 ∈
Y , it holds

X1
T−→X2 in GL =⇒ Y1 → Y2 in GH. (41)

Proof. Let Y1, Y2 be two distinct abstract variables and let
i, i′ be two concrete interventions that fix any relevant vari-
able except for those in the relevant set ΠR(Y2), and whose
assignments differ only in X1 ∈ ΠR(Y1). Formally,

i = (V ← v, ΠR(Y1)← c) (42)
i′ = (V ← v, ΠR(Y1)← c′), (43)

where

V =
⋃

Y ∈Y \{Y1,Y2}
ΠR(Y ). (44)

Given X1
T−→X2, there exists at least a directed path com-

posed only of non-relevant variables, that are therefore non-
intervened. Consequently, due to the faithfulness assump-
tion, the concrete model does not have cancelling paths and,
therefore, an intervention on a variable always has an effect
on its descendants. In particular, since i, i′ constrain X1 to
two different values, it holds that

Li
X2
̸= Li′

X2
(45)

τY2 ◦ Li ̸= τY2 ◦ Li′ (46)

Hj
Y2
◦ γ ̸= Hj′

Y2
◦ γ, (47)

where, given the intervention map, the concrete interven-
tions correspond to the following abstract interventions

j = (Y \ {Y1, Y2} ← τ(v), Y1 ← τY1
(c)) (48)

j′ = (Y \ {Y1, Y2} ← τ(v), Y1 ← τY1
(c′)). (49)

Therefore, due to the surjectivity of γ, it also holds

Hj
Y2
̸= Hj′

Y2
. (50)

Consequently, since j and j′ differ only in Y1 and fix every-
thing but Y2, Y1 has a direct effect on Y2, i.e., Y1 → Y2.

B.4 COROLLARY 2

Corollary 2 (Sufficient Directed Paths) Let H be a T-
abstraction of L, where H and L are two linear SCMs re-
spectively on variables Y and X with graphs GH and GL.
Then, for any pair of relevant variables X1, X2 ∈ ΠR(Y ),
such that X1 ∈ ΠR(Y1) and X2 ∈ ΠR(Y2) with Y1 ̸= Y2 ∈
Y , it holds that

X1 99K X2 in GL =⇒ Y1 99K Y2 in GH. (51)

Proof. Given Lemma 2, whenever there exists a T-direct
path between relevant variables X1 ∈ ΠR(Y1) and X2 ∈
ΠR(Y2) there must exist an abstract edge Y1 → Y2. How-
ever, if the path is not T-direct, then there must exists some
relevant variable X3 ∈ ΠR(Y3) for another abstract vari-
able Y3 along the path. We firstly consider the case where
Y3 ̸= Y1 and Y3 ̸= Y2. Consequently, there must exist an
edge Y1 → Y3 and, by applying the same argument on the
path X3 99K X2, the corollary holds for Y1 99K Y2. Due to
the acyclicity of the abstract graph, the case where Y3 = Y1

or Y3 = Y2 can arise only at the beginning (resp. the end)
of the path. In this case, we could consider the successive
variable until we get one different from Y1, Y2, if any. If
there is none, then there exists a T-direct path between the
relevant variables of Y1, Y2 and we fallback to the scenario
of Lemma 2, which directly entails Y1 99K Y2.

B.5 EXAMPLE 1

Example 1 (Unfaithful Concrete Model)

Proof. To prove T-abstraction of the example, we antici-
pate the parametrical characterization of linear abstraction
which we introduce in Section 3.4. In particular, given the
adjacencies of the model,

W =


0 1 −1 0 1
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 (52)

M =

0 0 1
0 0 1
0 0 0

 (53)

the necessary form for the exogenous abstraction function,
which we will introduce in Lemma 6, is

S =


1 0 0
0 1 0
0 1 0
0 1 0
0 0 1

 . (54)



Consequently, we can prove abstraction by showing that for
any Yi, Yj it holds that

Wijsj = mijti. (55)

For this example, of particular interest is the case Y1 → Y2,
where it holds that

W1,2s2 = m1,2t1 (56)

[
1 −1 0

] 11
1

 = 0 ·
[
1
]

(57)

0 = 0, (58)

and thusH T-abstracts L.

B.6 THEOREM 1

Theorem 1 (Abstract Connectivity) Let H be a T-
abstraction of L, where H and L are two linear SCMs
respectively on variables Y and X with graphs GH and
GL. Then, there exists an edge Y1 → Y2 in GH if and only
if for each X1 ∈ ΠR(Y1) there exists X2 ∈ ΠR(Y2) such
that X1

T−→X2 in GL.

Proof. The sufficient condition follows immediately from
Lemma 2, where we already proved that any T-direct path
between relevant variables entails an abstract edge.

To prove the necessary condition, we consider instead two
abstract interventions j, j′ which differ only in Y1 and fix
everything but Y2. Formally,

j = (Y1 ← k,V ← v) (59)
j′ = (Y1 ← k′,V ← v), (60)

where V = Y \ {Y1, Y2}. Consequently, since Y1 has a
direct linear effect on Y2, it holds that

Hj
Y2
̸= Hj′

Y2
(61)

Hj
Y2
◦ γ ̸= Hj′

Y2
◦ γ (62)

τY2
◦ Li ̸= τY2

◦ Li′ , (63)

for any intervention i, i′ such that ω(i) = j and ω(i′) = j′.

Let now X1 ∈ ΠR(Y1) be a relevant concrete variable for
Y1, and t11 be the non-zero coefficient from X1 to Y1 in the
linear abstraction transformation T. We can then build two
concrete interventions i, i′ by setting all relevant variables
of Y1 to zero, except for X1. Formally, the interventions
have the following form

i = (X1 ←
k

t11
, Π(Y1) \ {X1} ← 0, . . .) (64)

i′ = (X1 ←
k′

t11
, Π(Y1) \ {X1} ← 0, . . .). (65)

If we suppose that it does not exist a variable X2 ∈ ΠR(Y2)

such that X1
T−→X2, all directed paths X1 99K X2, if any,

are mediated by a relevant variable of any abstract variable
Y ∈ Y \{Y2}. Consequently, given our construction of j, j′

and consequently i, i′, any path is mediated by an intervened
variable and, therefore, it holds

τY2
◦ Li = τY2

◦ Li′ , (66)

which however breaks interventional consistency and im-
plies thatH is not a T-abstraction of L, proving the neces-
sary condition by contradiction.

B.7 COROLLARY 3

Corollary 3 (Connectivity Violation) Let H and L be
two linear SCMs respectively on variables Y and X with
graphs GH and GL. Consider a linear transformation T be-
tween them leading to the sets of relevant variables ΠR(Y ).
If there exists three variables X1 ∈ ΠR(Y1), X2 ∈ ΠR(Y2),
and X3 ∈ ΠR(Y1), such that both conditions hold

• X1
T−→X2 in GL, and

• for any X4 ∈ ΠR(Y2), X3 ̸T−→ X4 is not in GL,

thenH is not a T-abstraction of L.

Proof. Follows directly from Lemma 2 which applied to
the first item implies that Y1 → Y2, and from Theorem 1,
which applied to the second item implies that Y1 ̸→ Y2,
hence providing a contradiction to the assumption thatH is
a T-abstraction of L.

B.8 COROLLARY 4

Corollary 4 (Exogenous Abstraction) Let H =
(Y ,U , g,PU ) be a T-abstraction of L = (X,E,f ,PE),
whereH and L are two linear SCMs. Then, the exogenous
abstraction function γ : D(E)→ D(U), has form

γ(e) = S⊤e, (67)

where S = FTG−1 and F,G are the linear transformations
of respectively the reduced forms of L andH, i.e., L(e) =
FTe andH(u) = GTu.

Proof. SinceH T-abstracts L, it must hold τ ◦ L = H ◦ γ.
Consequently, due to the invertibility of the reduced form
H of linear SCMs, it holds that

γ = H−1 ◦ τ ◦ L. (68)

Since, L, τ , and H−1 are linear transformations, their
composition coincides with a linear transformation S =
FTG−1.



B.9 LEMMA 3

Lemma 3 (Block Composition) LetH be a T-abstraction
of L, whereH and L are two linear SCMs respectively on
variables Y and X . Then, for any abstract variable Y ∈ Y ,
it holds X ∈ Π(Y ) if and only if

• X ∈ ΠR(Y ), or

• X ̸∈ ΠR(Y ), i.e., X is irrelevant, and there exists
X ′ ∈ ΠR(Y ) s.t. X T−→X ′.

Proof. Let Y be an abstract variable and j = (Pa(Y )← k)
be a hard intervention fixing all of its endogenous parents.
Consequently, the value of the abstract variable, Hj

Y (u)
depends only on its exogenous term UY . Further, given the
definition of concrete block, the formulation

Hj
Y (γ(e)) = Hj

Y (S
⊤e), (69)

depends only on the exogenous terms eΠ(Y ). Therefore,
given the interventional consistency property

Hj
Y (γ(e)) = τY (Li

ΠR(Y )(e)), (70)

and the lack of cancelling paths, Li
ΠR(Y ) also depends only

on the exogenous terms eΠ(Y ), for any concrete intervention

i = (ΠR(Pa(Y ))← c), (71)

where τPa(Y )(c) = k. Notably, given the intervention i, the
structural mechanisms of ΠR(Y ) depend only on the exoge-
nous noise of the relevant variables and on those variables
whose direct path is non-mediated by another relevant vari-
able. Given Lemma 2, any of such relevant variables must
be in the relevant set of a parent, and thus be constrained
by the intervention i. Consequently, Li

ΠR(Y ) depends only
on its relevant variables and the irrelevant variables with a
T-direct path towards the former.

B.10 LEMMA 4

Lemma 4 (Disjoint Block) LetH be a T-abstraction of
L, where H and L are two linear SCMs respectively on
variables Y and X . If for any two distinct endogenous
variables Y1, Y2 it holds that Π(Y1) ∩Π(Y2) ̸= ∅, then the
abstract model is not causally sufficient.

Proof. By definition of concrete block (Definition 4), each
abstract exogenous term UY is a function γ of the noise
terms of the block Π(Y ). Therefore, given two variables
Y1, Y2 ∈ Y , we can write

U1 = γ1(EΠ(Y1)) (72)
U2 = γ2(EΠ(Y2)). (73)

Therefore, whenever the blocks share a subset of variables
S = Π(Y1) ∩Π(Y2), both U1 and U2 are a function of the
exogenous terms

V = {EX ∈ E | X ∈ S}. (74)

Consequently, the exogenous terms U1, U2 are not indepen-
dent and the variables Y1, Y2 are then confounded.

B.11 THEOREM 2

Theorem 2 (Block Ordering) LetH be a T-abstraction
of L, whereH and L are two linear SCMs respectively on
variables Y and X with graphs GH and GL. Then, for any
valid topological ordering ≺H of GH there exists a valid
ordering ≺L of GL such that for any Y1, Y2, Y ∈ Y :

• Y1 ≺H Y2 ⇐⇒ Π(Y1) ≺L Π(Y2), and

• Π(Y ) ≺L
(
X \Π(Y )

)
.

Proof. Firstly, we recall that in a valid topological order,
a variable precedes another only if there is a directed path
from the former to the latter [Bondy and Murty, 2008].

X1 99K X2 =⇒ X1 ≺ X2 (75)

Since we always compare abstract variables with abstract
variables and concrete variables with concrete variables, in
the following we ease the notation by avoiding the subscript
on the precedence operator ≺.

We show the existence of a valid topological ordering on
the concrete model by construction. Given the topological
ordering on the abstract model, we assign to each abstract
node Y ∈ Y an integer ρY (Y ) ∈ {1, . . . , |Y |} such that

Y1 ≺ Y2 ⇐⇒ ρY (Y1) < ρY (Y2). (76)

Then, we can take any valid topological ordering within any
concrete block Π(Y ) and assign in the same way ρΠ(Y )(X)
for any Y ∈ Y and X ∈ Π(Y ). We do the same for the
set Q of concrete variables outside of any block, which we
formally define as follows

Q = X \
⋃

Y ∈Y
Π(Y ). (77)

We then assign the “position” of each concrete variable
X ∈X through a further integer defined as follows,

ρX =

{∑
Y ′≺Y |Π(Y ′)|+ ρΠ(Y )(X) ∃Y.X ∈ Π(X)∑
Y ∈Y |Π(Y )|+ ρQ(X) X ∈ Q.

(78)

Notably, since the blocks do not overlap (Lemma 4), the
assignment is unique. We finally define the concrete topo-
logical ordering for any X1, X2 ∈X as

X1 ≺ X2 ⇐⇒ ρX(X1) < ρX(X2). (79)



Given this ordering, it holds by construction that

∀Y1, Y2 ∈ Y . Y1 ≺H Y2 ⇐⇒ Π(Y1) ≺L Π(Y2) (80)

∀Y ∈ Y .Π(Y ) ≺L {X ∈X | X /∈
⋃

Y ∈Y
Π(Y )}. (81)

Therefore, to finally prove the Theorem we have to show
that the ordering we defined is valid for the concrete graph.
Formally, we have to show that, for any X1, X2 ∈X ,

X1 → X2 =⇒ X1 ≺ X2 (82)
=⇒ ρX(X1) < ρX(X2). (83)

Case {X1, X2} ⊂ Π(Y ) ∨ {X1, X2} ⊂ Q. Whenever
X1 → X2 and X1, X2 are in the same block Π(Y ) for
some Y ∈ Y or are both in Q, then ρX(X1) < ρX(X2)
by definition.
Case X1 ∈ Π(Y1), X2 ∈ Q. Also holds by definition.
Case X1 ∈ Q, X2 ∈ Π(Y ). By definition of block, this case
never occurs, since otherwise X1 would be in Π (Lemma 3).
Case X1 ∈ Π(Y1), X2 ∈ Π(Y2). Further, whenever X1 →
X2 such that X1 ∈ Π(Y1) for some Y1 and X2 ∈ Π(Y2)
for some Y2, then X1 is relevant, otherwise it would have
also been in the block Π(Y2), which are necessarily disjoint
(Lemma 4). Therefore, given the sufficient condition on the
existence of an abstract edge (Lemma 2), it must hold

Y1 → Y2 (84)
=⇒ Y1 ≺ Y2 (85)

=⇒ Π(Y1) ≺ Π(Y2) (86)
=⇒ X1 ≺ X2. (87)

B.12 LEMMA 5

Lemma 5 (Submodel Abstraction) LetH and L be two
linear SCMs respectively on variables Y and X . Then,H
is a T-abstraction of L if and only if H is a T-abstraction
of L′, where L′ is a submodel of L defined on the subset
of variables X ′ = Π(Y ), i.e., all of the variables in the
concrete blocks.

Proof. The Lemma directly follows from Theorem 2, where
the variables not in any block always follow in the topo-
logical ordering the remaining. Therefore, by removing
them, for any intervention i the interventional consistency
τ ◦ L′i = τ ◦ Li still holds since they do not influence any
relevant variable, hence the abstraction function τ , nor any
block, hence the exogenous abstraction function γ. Simi-
larly, we could add as many variables and mechanism not
influencing the blocks and interventional consistency would
still hold.

B.13 LEMMA 6

Lemma 6 (Exogenous Abstraction) Let H =
(Y ,U ,M,PU ) and L = (X,E,W,PE) be two linear
SCMs such that H is a T-abstraction of L, such that W
follows permutation πH. Then, the exogenous abstraction
function γ : D(E) → D(U) is unique and has form
γ(e) = S⊤e for a linear transformation S ∈ Rd×b defined
as the upper-diagonal block matrix

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sb,

 (88)

where sk = Fkktk = (I−Wkk)
−1

tk for any Yk ∈ Y .

Proof. Given the definition of T-abstraction, we can
rephrase observational consistency as

τ ◦ L = H ◦ γ (89)
FT = SG (90)

where F and G are respectively the reduced forms of the
concrete and the abstract SCM. Consequently, by exploiting
the block-definition of T, we can reformulate the left side
of the equation as


F11 F12 · · · F1b

0 F22 · · · F2b

...
...

. . .
...

0 0 · · · Fbb



t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tb

 (91)

=


F11t1 F12t2 · · · F1btb
0 F22t2 · · · F2btb
...

...
. . .

...
0 0 · · · Fbbtb

 (92)

Given that block variables are not shared (Lemma 4) and
follow the same topological order of T, the exogenous trans-
formation must also have form

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sb,

 . (93)

We can therefore reformulate the right side SG of the ob-



servational consistency equation as
s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sb,



1 g12 · · · g1b
0 1 · · · g2b
...

...
. . .

...
0 0 · · · 1

 (94)

=


s1 g12s1 · · · g1bs1
0 s2 · · · g2bs2
...

...
. . .

...
0 0 · · · sb.

 (95)

Consequently, for any Yi ∈ Y , it holds si = Fiiti.

B.14 THEOREM 3

Theorem 3 (Block Abstraction) Let H =
(Y ,U ,M,PU ) and L = (X,E,W,PE) be two lin-
ear SCMs with graphs GH and GL respectively. Then H
is a linear T-abstraction of L if and only if for any valid
topological ordering ≺H of GH there exists a valid ordering
≺L of GL such that, for any Yi, Yj ∈ Y it holds

Yi ≺H Yj ⇐⇒ Π(Yi) ≺L Π(Yj), and (96)
Wijsj = mijti, (97)

where Wij is the i-th element on the j-th column of W,
and mij is the i-th element on the j-th column of M.

Proof. Firstly, we introduce the following decomposition
of the reduced forms of the concrete and the abstract model,
which we separately prove in Appendix B.15.

Fij =


(I−Wii)

−1 if i = j

Fii(Wij +Rij)Fjj if i < j

0 otherwise,
(98)

Rij =
∑

i<k<j

WikFkk(Wkj +Rkj) (99)

gij =


1 if i = j

mij + ρij if i < j

0 otherwise,
(100)

ρij =
∑

i<k<j

mik(mkj + ρkj) (101)

Necessary Condition. We show that T-abstraction implies
both conditions. For the existence of a valid concrete order-
ing, we invite the reader to consult the proof of Theorem 2.
Therefore, we focus on proving that T-abstraction entails
Wijsj = mijti for any Yi, Yj ∈ Y . Given the decompo-
sition consistency condition FT = SG from the proof of

Lemma 6, for each i < j, it must hold that

Fijtj = sigij (102)
Fii(Wij +Rij)Fjjtj = Fiiti(mij + ρij) (103)

(Wij +Rij)sj = ti(mij + ρij) (104)
Wijsj = mijti, (105)

where the first step comes from the previously introduced
decomposition, proved in Appendix B.15. To prove the last
step we firstly notice that

Rijsj = ρijti ⇐⇒ Wijsj = mijti. (106)

We then prove the statement for each row by induction on
the columns. We take j = i+ 1 as base case, where it holds

Rijsj = ρijti (107)
0sj = 0 · ti (108)
0 = 0 (109)

=⇒ Wijsj = mijti. (110)

Consequently, we can show that

Rijsj =
∑

i<k<j

WikFkk(Wkj +Rkj)sj (111)

=
∑

i<k<j

WikFkkWkjsj +WikFkkRkjsj (112)

=
∑

i<k<j

WikFkkWkjsj +WikFkkρkjtk (113)

=
∑

i<k<j

WikFkkmkjtk +WikFkkρkjtk (114)

=
∑

i<k<j

WikFkktkmkj +WikFkktkρkj (115)

=
∑

i<k<j

miktimkj +miktiρkj (116)

=
∑

i<k<j

mik(mkj + ρkj)ti (117)

= ρijti. (118)

Sufficient Condition. We now show that the conditions imply
interventional consistency of the abstraction. That is, we
want to prove that

τY ◦ Lι
Π(Y ) = H

ω(ι)
Y ◦ γ, (119)

for any concrete intervention ι on the relevant sets defined
by the linear abstraction transformation T. Firstly, we notice
that the equation is immediately true for any abstract vari-
able Y ∈ Y whenever the intervention targets its relevant
set. Therefore, we focus on the case where the abstract inter-
vention ω(ι) does not affect Y . Consequently, given that we
assume that the topological ordering of the blocks coincides



with that of the abstract variables, we can decompose the
concrete model as

Lι
Π(Yj)

(e) =
∑

Yi∈Pa(Yj)

([
Lι
Π(Yi)

(e)
]⊤

Wij + e⊤Π(Yj)

)
Fjj ,

(120)

where we (i.) compute the linear contribution of the parents,
(ii.) sum the exogenos noise of the block, (iii.) and apply
the submodel composed of the internal connections in the
block. Similarly, we can decompose the abstract model as

Hω(ι)
Yj

(u) =
∑

Yi∈Pa(Yj)

Hω(ι)
Yi

(u) ·mij + uj . (121)

Abstraction holds whenever interventional consistency is
satisfied by at least an exogenous transformation γ. To con-
tinue the proof, we then define it as the linear transformation
from Lemma 6, where sj = Fjjtj for any Yj ∈ Y . There-
fore, we can reformulate interventional consistency as

∑
Yi∈Pa(Yj)

([
Lι
Π(Yi)

(e)
]⊤

Wij + e⊤Π(Yj)

)
Fjjtj

=
∑

Yi∈Pa(Yj)

Hω(ι)
Yi

(S⊤e) ·mij + e⊤Π(Yj)
sj ,

(122)

which further simplifies to

∑
Yi∈Pa(Yj)

[
Lι
Π(Yi)

(e)
]⊤

WijFjjtj

=
∑

Yi∈Pa(Yj)

Hω(ι)
Yi

(S⊤e) ·mij

(123)

given our choice of the exogenous transformation S. We
prove this last equation by induction on the topological
ordering of the abstract graph. In fact, as a base case, for any
root of the graph the equation holds given that the parent
set is the empty set. Consequently, we can finally show that
Wijsj = mijti implies abstraction as follows∑

Yi∈Pa(Yj)

Hω(ι)
Yi

(S⊤e) ·mij (124)

=
∑

Yi∈Pa(Yj)

[
Lι
Π(Yi)

(e)
]⊤

ti ·mij (125)

=
∑

Yi∈Pa(Yj)

[
Lι
Π(Yi)

(e)
]⊤

Wijsj (126)

=
∑

Yi∈Pa(Yj)

[
Lι
Π(Yi)

(e)
]⊤

WijFjjtj . (127)

B.15 MODEL REDUCTION DECOMPOSITION

In the following, we prove the decomposition of the model
reduction matrix F from the proof in Appendix B.14. To
simplifiy the notation, we define the matrix A = (I−W).

Proof. Back-substituting to solve FA = I leads to

Fij =


A−1ii i = j

−∑
i<k≤j FiiAikFkj i < j

0 i > j

. (128)

Therefore, we want to prove that whenever i < j, it holds

−
∑

i<k≤j
FiiAikFkj = Fii(Wij +Rij)Fjj , (129)

where

Rij =
∑

i<k<j

WikFkk(Wkj +Rkj). (130)

Overall, we simplify the thesis as follows

Fii(Wij +Rij)Fjj = −
∑

i<k≤j
FiiAikFkj (131)

Fii(Wij +Rij)Fjj =
∑

i<k≤j
FiiWikFkj (132)

FiiRijFjj =
∑

i<k<j

FiiWikFkj (133)

RijFjj =
∑

i<k<j

WikFkj . (134)

We finally prove our thesis by induction on the decreasing
row component i, starting from i = j − 1. In the base
case, both sides of the equation reduce to zero and thus
the statement holds. We then prove the inductive case by
showing that if the statement holds for any k > i, then it
also holds for i. Formally,∑

i<k<j

WikFkj (135)

=
∑

i<k<j

WikFkk(Wkj +Rkj)Fjj (136)

= RijFjj . (137)

C DATASET

In the following, we report further details on the simulation
procedure used to generate the dataset for the experiments,
which we also visualize in Figure 4.



Abstract Model. Given a number of desired nodes and
edges, we sample the abstract model by randomly sampling
an Erdős-Rényi graph for the given parameters. Then, we
sample the weights of the edges from the uniform distribu-
tion in the interval [−2,−0.5] ∪ [0.5, 2].

Abstraction Function. Given the abstract model, we sam-
ple the abstraction function by firstly assigning a block size
to each node from the uniform distribution, whose mini-
mum and maximum values are given as input. Then, within
each block we randomly choose at least half of the nodes
to be relevant and randomly assign the remaining as rele-
vant or not. We also sample a further block to contain the
ignored variables, for which the abstraction function maps
to zero. We finally sample the abstraction coefficients from
the uniform distribution in the interval [−2,−0.5]∪ [0.5, 2].

Concrete Model. Given an abstract model and an abstrac-
tion function, we sample the concrete model using the algo-
rithm in Algorithm 1. Firtsly, we sample the causal relations
within each block by randomly sampling an upper triangu-
lar matrix with non-zero entries from the standard normal
distribution. Then, we employ the Dirichlet distribution to
sample each vector v with sum one as requested by the
algorithm to explore the right-inverses of the exogenous
abstraction function. Finally, we randomly sample from the
standard normal distribution. the weights to connect ignored
variables.

Data Generation. As we detailed in the main body, we
sample the data from the concrete model by first sampling
the non-Gaussian noise and then by abstracting the noise
to sample from the abstract model. In all experiments, we
use the Exponential distribution. We then normalize the data
to have zero mean and unit variance and permute all the
variables in both the concrete and abstract samples.

D ADDITIVE NOISE ON ABSTRACT
OBSERVATIONS

In this section, we discuss strategies to handle a further
scenario where we consider abstract observations to be fur-
ther perturbed by random noise. We consider the following
generative model for the abstract observations:

e(i) ∼ Exponential for i = 1, . . . , |DL|, (138)

x(i) = L(e(i)) for i = 1, . . . , |DL|, (139)

y(i) = H(γ(e(i))) + ϵ(i) for i = 1, . . . , |DJ |, (140)

where ϵ ∼ N (0, σ2) is a Gaussian noise term and the data-
generating process is the same of Section 4.1. Due to the
presence of noise, minimizing the least-squares error does
not ensure to recover the true abstraction function. We thus
propose two strategies to identify the concrete blocks of each
abstract variable. By exploiting the fact that each concrete
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Figure 3: Results of Abs-LiNGAM over pairs of abstract
(b = 5 nodes) and concrete (d ∈ [25, 50] nodes) linear
SCMs after perturbing the abstract observations with normal
noise of increasing variance σ2. We denote as “Top-1” the
strategy where we force the selection of at most a single
abstract variable per concrete one and as “Top-1-Refit” the
one where we then refit each abstraction vector. All results
are averaged over 30 independent runs with |DL| = 20000
concrete samples and |DJ | = 150 paired samples.



variable pertains to a single abstract variable, we can filter
the resulting matrix T̂ to select only the largest component
per row if it is above the threshold. We find then beneficial
to refit the model once we have identified the block in this
way, as in

ti = argmin
ti

∥∥xΠRYi − t⊤i yi

∥∥2
2
. (141)

In Figure 3, we report results for the reconstruction of the
blocks from the paired samples for increasing variance σ2

of the noise term for these strategies.

E ADDITIONAL RESULTS

In this section, we report additional results on our experi-
ments on Abs-LiNGAM (Algorithm 2). We mostly consider
three settings: small, where the number of nodes in the
abstract model is b = 5 and the number of nodes in the
concrete model is d ∈ [25, 50]; medium, where the number
of nodes in the abstract model is b = 10 and the num-
ber of nodes in the concrete model is d ∈ [50, 100]; and
large, where the number of nodes in the abstract model is
b = 10 and the number of nodes in the concrete model is
d ∈ [100, 150]. We then report results on the sensitivity of
Abs-LiNGAM to the number of paired samples DJ (Fig-
ures 5 to 7), the number of concrete samples DL (Figures 8
to 10), and the number of nodes in the concrete model d
(Figures 11 to 13). Further, we report results on the quality
of the retrieved prior knowledge given the threshold used
to mask the learned abstraction function T̂ (Figure 14) and
the threshold used to mask the learned abstract model Ĥ
(Figure 15). Similarly, we study the retrieval of the prior
knowledge for different number of bootstrap samples to
identify the abstract model Ĥ (Figure 16). To provide fur-
ther insights on the performance of Abs-LiNGAM, we also
report precision and recall on the three settings (Tables 1
to 3). We finally report additional results on the reconstruc-
tion of the abstraction function T̂ in the small (Figure 17),
medium (Figure 18), and large (Figure 19) settings.
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Figure 4: Visualization of a pair of concrete-abstract models and their abstraction function. The abstract graph has 5 nodes
and 8 edges while the concrete has 5 blocks of random size from [5, 10], with an additional block for the ignored variables.
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Figure 5: Results of Abs-LiNGAM over pairs of abstract (b = 5 nodes) and concrete (d ∈ [25, 50] nodes) linear SCMs.
In all subfigures we plot the results for an increasing number of paired samples DJ and we report the average size of the
concrete graphs as a vertical dashed line. Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function
and the abstract model are given. The first plot (top left) shows the ROC-AUC of the retrieved concrete causal model L̂.
The second plot (top right) shows the execution time required to retrieve the concrete causal model. The third and fourth
plots (bottom) show the precision and recall of the prior knowledge inferred by the learned abstraction function T̂ and the
consequent abstract model Ĥ. All results are averaged over 30 independent runs with |DL| = 15000 concrete samples.
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Figure 6: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete (d ∈ [50, 100] nodes) linear SCMs.
In all subfigures we plot the results for an increasing number of paired samples DJ and we report the average size of the
concrete graphs as a vertical dashed line. Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function
and the abstract model are given. The first plot (top left) shows the ROC-AUC of the retrieved concrete causal model L̂.
The second plot (top right) shows the execution time required to retrieve the concrete causal model. The third and fourth
plots (bottom) show the precision and recall of the prior knowledge inferred by the learned abstraction function T̂ and the
consequent abstract model Ĥ. All results are averaged over 30 independent runs with |DL| = 15000 concrete samples.
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Figure 7: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete (d ∈ [100, 150] nodes) linear SCMs.
In all subfigures we plot the results for an increasing number of paired samples DJ and we report the average size of the
concrete graphs as a vertical dashed line. Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function
and the abstract model are given. The first plot (top left) shows the ROC-AUC of the retrieved concrete causal model L̂.
The second plot (top right) shows the execution time required to retrieve the concrete causal model. The third and fourth
plots (bottom) show the precision and recall of the prior knowledge inferred by the learned abstraction function T̂ and the
consequent abstract model Ĥ. All results are averaged over 30 independent runs with |DL| = 15000 concrete samples.
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Figure 8: Results of Abs-LiNGAM over pairs of abstract (b = 5 nodes) and concrete (d ∈ [25, 50] nodes) linear SCMs. In
all subfigures we plot the results for an increasing number of concrete samples |DL|. Abs-LiNGAM-GT denotes a ground
truth oracle where the abstraction function and the abstract model are given. The first plot (top left) shows the ROC-AUC of
the retrieved concrete causal model L̂. The second plot (top right) shows the execution time required to retrieve the concrete
causal model. The third and fourth plots (bottom) show the precision and recall of the prior knowledge inferred by the
learned abstraction function T̂ and the consequent abstract model Ĥ. All results are averaged over 30 independent runs with
|DJ | = 100 paired samples.
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Figure 9: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete (d ∈ [50, 100] nodes) linear SCMs. In
all subfigures we plot the results for an increasing number of concrete samples |DL|. Abs-LiNGAM-GT denotes a ground
truth oracle where the abstraction function and the abstract model are given. The first plot (top left) shows the ROC-AUC of
the retrieved concrete causal model L̂. The second plot (top right) shows the execution time required to retrieve the concrete
causal model. The third and fourth plots (bottom) show the precision and recall of the prior knowledge inferred by the
learned abstraction function T̂ and the consequent abstract model Ĥ. All results are averaged over 30 independent runs with
|DJ | = 200 paired samples.
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Figure 10: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete (d ∈ [100, 150] nodes) linear SCMs.
In all subfigures we plot the results for an increasing number of concrete samples |DL|. Abs-LiNGAM-GT denotes a ground
truth oracle where the abstraction function and the abstract model are given. The first plot (top left) shows the ROC-AUC of
the retrieved concrete causal model L̂. The second plot (top right) shows the execution time required to retrieve the concrete
causal model. The third and fourth plots (bottom) show the precision and recall of the prior knowledge inferred by the
learned abstraction function T̂ and the consequent abstract model Ĥ. All results are averaged over 30 independent runs with
|DJ | = 300 paired samples.
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Figure 11: Results of Abs-LiNGAM over pairs of abstract (b = 5 nodes) and concrete models with increasing size d ∈ [5, 60].
Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function and the abstract model are given. The first
plot (top left) shows the ROC-AUC of the retrieved concrete causal model L̂. The second plot (top right) shows the execution
time required to retrieve the concrete causal model. The third and fourth plots (bottom) show the precision and recall of
the prior knowledge inferred by the learned abstraction function T̂ and the consequent abstract model Ĥ. All results are
averaged over 30 independent runs with |DL| = 1500 concrete samples and |dsetJ | = 2 · |X| paired samples.
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Figure 12: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete models with increasing size
d ∈ [10, 120]. Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function and the abstract model are
given. The first plot (top left) shows the ROC-AUC of the retrieved concrete causal model L̂. The second plot (top right)
shows the execution time required to retrieve the concrete causal model. The third and fourth plots (bottom) show the
precision and recall of the prior knowledge inferred by the learned abstraction function T̂ and the consequent abstract
model Ĥ. All results are averaged over 30 independent runs with |DL| = 1500 concrete samples and |dsetJ | = 2 · |X|
paired samples.

25 50 75 100 125 150 175 200
Concrete Nodes |X|

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R
O

C
AU

C
L

LiNGAM

Abs-LiNGAM-GT

Abs-LiNGAM (Bootstrap=0)

Abs-LiNGAM (Bootstrap=1)

Abs-LiNGAM (Bootstrap=2)

Abs-LiNGAM (Bootstrap=5)

Abs-LiNGAM (Bootstrap=10)

25 50 75 100 125 150 175 200
Concrete Nodes |X|

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

LiNGAM

Abs-LiNGAM-GT

Abs-LiNGAM (Bootstrap=0)

Abs-LiNGAM (Bootstrap=1)

Abs-LiNGAM (Bootstrap=2)

Abs-LiNGAM (Bootstrap=5)

Abs-LiNGAM (Bootstrap=10)

25 50 75 100 125 150 175 200
Concrete Nodes |X|

0.992

0.994

0.996

0.998

1.000

P
rio

rK
no

w
le

dg
e

P
re

ci
si

on

LiNGAM

Abs-LiNGAM-GT

Abs-LiNGAM (Bootstrap=0)

Abs-LiNGAM (Bootstrap=1)

Abs-LiNGAM (Bootstrap=2)

Abs-LiNGAM (Bootstrap=5)

Abs-LiNGAM (Bootstrap=10)

25 50 75 100 125 150 175 200
Concrete Nodes |X|

0.4

0.5

0.6

0.7

0.8

0.9

P
rio

rK
no

w
le

dg
e

R
ec

al
l

LiNGAM

Abs-LiNGAM-GT

Abs-LiNGAM (Bootstrap=0)

Abs-LiNGAM (Bootstrap=1)

Abs-LiNGAM (Bootstrap=2)

Abs-LiNGAM (Bootstrap=5)

Abs-LiNGAM (Bootstrap=10)

Figure 13: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete models with increasing size
d ∈ [20, 180]. Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function and the abstract model are
given. The first plot (top left) shows the ROC-AUC of the retrieved concrete causal model L̂. The second plot (top right)
shows the execution time required to retrieve the concrete causal model. The third and fourth plots (bottom) show the
precision and recall of the prior knowledge inferred by the learned abstraction function T̂ and the consequent abstract
model Ĥ. All results are averaged over 30 independent runs with |DL| = 1500 concrete samples and |dsetJ | = 2 · |X|
paired samples.
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Figure 14: Analysis of the prior knowledge inferred by the learned abstraction function T̂ and the consequent abstract
model Ĥ on a concrete model (d ∈ [25, 50] nodes). We report precision (left) and recall (right) of the prior knowledge for
different thresholds to mask the learned abstraction function T̂.
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Figure 15: Analysis of the prior knowledge inferred by the learned abstraction function T̂ and the consequent abstract
model Ĥ on a concrete model. We report precision (left) and recall (right) of the prior knowledge for different thresholds to
mask the learned abstract model Ĥ.
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Figure 16: Analysis of the prior knowledge inferred by the learned abstraction function T̂ and the consequent abstract
model Ĥ, with b nodes, on a concrete model with d nodes. We report precision (left) and recall (right) of the prior knowledge
for different number of bootstrapped samples to fit the abstract model Ĥ.



Method ROCAUC Precision Recall Time

Abs-Fit (Bootstrap=0) 0.965±0.066 0.957±0.123 0.940±0.074 42±13
Abs-Fit (Bootstrap=1) 0.977±0.012 0.980±0.015 0.953±0.026 42±14
Abs-Fit (Bootstrap=2) 0.977±0.012 0.980±0.015 0.952±0.027 43±11
Abs-Fit (Bootstrap=5) 0.977±0.012 0.980±0.015 0.952±0.027 45±13
Abs-Fit (Bootstrap=10) 0.977±0.012 0.980±0.015 0.952±0.027 46±12
Abs-LiNGAM-GT 0.977±0.011 0.982±0.013 0.953±0.026 45±15
DirectLiNGAM 0.977±0.011 0.980±0.013 0.953±0.026 61±12

Table 1: Results of Abs-LiNGAM over pairs of abstract (b = 5 nodes) and concrete (d ∈ [25, 50] nodes) linear SCMs.
Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function and the abstract model are given. All results
are averaged over 30 independent runs with |DL| = 15000 concrete and |DJ | = 150 paired samples.

Method ROCAUC Precision Recall Time

Abs-LiNGAM (Bootstrap=0) 0.963±0.043 0.939±0.119 0.926±0.067 179±53
Abs-LiNGAM (Bootstrap=1) 0.952±0.066 0.914±0.169 0.914±0.085 181±53
Abs-LiNGAM (Bootstrap=2) 0.968±0.027 0.956±0.041 0.930±0.061 182±50
Abs-LiNGAM (Bootstrap=5) 0.968±0.027 0.955±0.041 0.930±0.061 189±51
Abs-LiNGAM (Bootstrap=10) 0.968±0.027 0.954±0.040 0.930±0.061 194±51
Abs-LiNGAM-GT 0.969±0.026 0.965±0.022 0.931±0.060 186±54
DirectLiNGAM 0.968±0.025 0.958±0.020 0.930±0.061 394±94

Table 2: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete (d ∈ [50, 100] nodes) linear SCMs.
Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function and the abstract model are given. All results
are averaged over 30 independent runs with |DL| = 15000 concrete and |DJ | = 270 paired samples.

Method ROCAUC Precision Recall Time

Abs-LiNGAM 0.927±0.070 0.919±0.119 0.845±0.132 748±121
Abs-LiNGAM (Bootstrap=1) 0.913±0.083 0.877±0.187 0.834±0.136 731±116
Abs-LiNGAM (Bootstrap=2) 0.925±0.072 0.912±0.130 0.844±0.132 738±123
Abs-LiNGAM (Bootstrap=5) 0.926±0.067 0.913±0.109 0.844±0.130 755±140
Abs-LiNGAM (Bootstrap=10) 0.927±0.065 0.918±0.090 0.844±0.130 775±183
Abs-LiNGAM-GT 0.927±0.069 0.920±0.117 0.845±0.131 763±116
DirectLiNGAM 0.928±0.061 0.925±0.047 0.844±0.128 1608±212

Table 3: Results of Abs-LiNGAM over pairs of abstract (b = 10 nodes) and concrete (d ∈ [100, 150] nodes) linear SCMs.
Abs-LiNGAM-GT denotes a ground truth oracle where the abstraction function and the abstract model are given. All results
are averaged over 30 independent runs with |DL| = 15000 concrete and |DJ | = 270 paired samples.
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Figure 17: Reconstruction metrics of the linear abstraction function T over pairs of abstract (b = 5 nodes) and concrete
(d ∈ [25, 50] nodes) linear SCMs for an increasing number of paired samples |DJ |. For different thresholds, we report the
normalized Hamming Distance (left), the F1 score (center), and the average number of abstract variables assigned to each
concrete variable (right). All results are averaged over 30 independent runs.
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Figure 18: Reconstruction metrics of the linear abstraction function T over pairs of abstract (b = 10 nodes) and concrete
(d ∈ [50, 100] nodes) linear SCMs for an increasing number of paired samples |DJ |. For different thresholds, we report the
normalized Hamming Distance (left), the F1 score (center), and the average number of abstract variables assigned to each
concrete variable (right). All results are averaged over 30 independent runs.
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Figure 19: Reconstruction metrics of the linear abstraction function T over pairs of abstract (b = 10 nodes) and concrete
(d ∈ [100, 150] nodes) linear SCMs for an increasing number of paired samples |DJ |. For different thresholds, we report
the normalized Hamming Distance (left), the F1 score (center), and the average number of abstract variables assigned to
each concrete variable (right). All results are averaged over 30 independent runs.
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